
An	Overview	of	

Unicode	
including	

ASCII	and	UTF-8	
		

Harry	H.	Porter	III	

HHPorter3@gmail.com	

4	October	2020		

Abstract	

•	Unicode	is	introduced	and	explained.	
•	The	ASCII	character	set	is	listed.	
•	The	UTF-8	encoding	is	introduced	and	explained.	

	 Available	Online: Blitz64.org/Documentation/Unicode-Overview.pdf

http://Blitz64.org/Documentation/Unicode-Overview.pdf

Table	of	Contents	
Chapter	1:	ASCII	 	3
The	ASCII	Character	Set	 	3

Chapter	2:	Unicode	 	6
The	Unicode	Character	Set	 	6
Complications	and	Details	 	7

Chapter	3:	UTF-8	 	11
Character	Encoding	 	11
The	UTF-8	Encoding	 	12
UTF-8	Encoding	Examples	 	14
UTF-8	and	ASCII	Text	Files	 	15
UTF-8	Error	Conditions	 	17

Appendix	1:	About	this	Document	 	20
Document	Revision	History	/	Permission	to	Copy	 	20

About	the	Author	 21

Unicode,	ASCII,	and	UTF-8	/	Porter	 Page	 	of	2 21

Chapter	1:	ASCII	

The	ASCII	Character	Set	

The	ASCII	character	set	is	older	and	simpler	than	Unicode,	so	we	describe	ASCII	Qirst.		

The	ASCII	character	code	is	a	7	bit	code,	in	which	each	code	number	is	assigned	to	a	
single	character.	There	are	128	different	ASCII	codes,	over	the	range:	

	 decimal	 hex	 binary	
	 0	 00 0000 0000	
	 1	 01 0000 0001

… … …
	 127	 7F 0111 1111

ASCII	characters	are	stored	with	exactly	one	character	per	byte.	

Since	ASCII	is	a	7	bit	code,	the	most	signiQicant	bit	of	the	byte	is	always	0.	In	other	
words,	the	following	byte	values	are	not	used	in	ASCII.	This	will	become	important	
when	we	discuss	UTF-8,	which	uses	these	values:	

	 decimal	 hex	 binary	
	 128	 80 1000 0000	
	 129	 81 1000 0001

… … …
	 255	 FF 1111 1111

The	table	on	the	following	page	lists	the	ASCII	character	set,	giving	the	character	
corresponding	to	each	numerical	code.	

Unicode,	ASCII,	and	UTF-8	/	Porter	 Page	 	of	3 21

Chapter	1:	ASCII	

Most	codes	correspond	to	“printable”	characters	but	ASCII	also	contains	some	
“control	characters”.	

	 Number	of	printable	characters	 84	
	 Number	of	control	characters	 34	
	 Total	 128	

Most	of	the	control	characters	have	only	historical	signiQicance.	They	are	not	widely	
used	and	the	full	table	below	simply	includes	them	with	no	description.	The	more	
common	control	characters	which	you	may	encounter	are:	

		Decimal	 Hex	 Description																																	
 0 00 NUL /0 Null
 7 07 BEL /a Bell/Alert
 8 08 BS /b Backspace
 9 09 HT /t Tab
 10 0A LF /n Linefeed/Newline
 13 0D CR /r Enter/Return
 27 1B ESC /e Escape
127 7F DEL /d Delete

Note	that	all	the	control	characters	are	grouped	at	the	beginning	(in	the	range	0x00	
…	0x1F)	except	for	the	“delete”	character	(0x7F)	which	occurs	in	the	last	place.	

In	the	past,	ASCII	keyboards	were	not	perfectly	standardized.	

For	example,	the	backspace	key	on	the	keyboard	may	be	labeled	with	“DELETE”	or	a	
left	arrow	or	something	else;	hitting	this	key	may	result	in	the	“backspace”	BS	
character	(0x08)	or	the	“delete”	character	(0x7F)	or	something	else	being	sent	to	
software.	Likewise,	hitting	the	key	labelled	“RETURN”	or	“ENTER”	may	result	in	LF	
(0x0A)	or	CR	(0x0D)	being	sent	to	the	software.	The	Unix/Linux	system	was	able	to	
deal	with	the	variety	of	keyboards,	but	at	a	cost	of	signiQicant	programming	
complexity.	

Modern	keyboards	are	more	complex	and	have	much	greater	Qlexibility,	allowing	
multi-key	combinations,	non	ASCII	characters,	etc.	

Unicode,	ASCII,	and	UTF-8	/	Porter	 	 Page	 	of	 	4 21

Chapter	1:	ASCII	

dec	 hex	 dec	 hex	 dec	 hex	

 0 00 NUL \0 Null
 1 01 SOH
 2 02 STX
 3 03 ETX
 4 04 EOT
 5 05 ENQ
 6 06 ACK
 7 07 BEL \a Bell,	alert
 8 08 BS \b Backspace
 9 09 HT \t Tab
10 0A LF \n Linefeed/Newline	
11 0B VT
12 0C FF
13 0D CR \r Enter/Return
14 0E SO
15 0F SI
16 10 DLE
17 11 DC1
18 12 DC2
19 13 DC3
20 14 DC4
21 15 NAK
22 16 SYN
23 17 ETB
24 18 CAN
25 19 EM
26 1A SUB
27 1B ESC \e Escape
28 1C FS
29 1D GS
30 1E RS
31 1F US
32 20 <space>
33 21 !
34 22 "
35 23 #
36 24 $
37 25 %
38 26 &
39 27 '
40 28 (
41 29)

42 2A *
43 2B +
44 2C ,
45 2D -
46 2E .
47 2F /
48 30 0
49 31 1
50 32 2
51 33 3
52 34 4
53 35 5
54 36 6
55 37 7
56 38 8
57 39 9
58 3A :
59 3B ;
60 3C <
61 3D =
62 3E >
63 3F ?
64 40 @
65 41 A
66 42 B
67 43 C
68 44 D
69 45 E
70 46 F
71 47 G
72 48 H
73 49 I
74 4A J
75 4B K
76 4C L
77 4D M
78 4E N
79 4F O
80 50 P
81 51 Q
82 52 R
83 53 S
84 54 T

85 55 U
86 56 V
87 57 W
88 58 X
89 59 Y
90 5A Z
91 5B [
92 5C \
93 5D]
94 5E ^
95 5F _
96 60 `
97 61 a
98 62 b
99 63 c
100 64 d
101 65 e
102 66 f
103 67 g
104 68 h
105 69 i
106 6A j
107 6B k
108 6C l
109 6D m
110 6E n
111 6F o
112 70 p
113 71 q
114 72 r
115 73 s
116 74 t
117 75 u
118 76 v
119 77 w
120 78 x
121 79 y
122 7A z
123 7B {
124 7C |
125 7D }
126 7E ~
127 7F DEL \d Delete  

Unicode,	ASCII,	and	UTF-8	/	Porter	 	 Page	 	of	 	5 21

Chapter	2:	Unicode	

The	Unicode	Character	Set	

Throughout	the	world,	there	are	many	characters	in	use	in	different	languages.	The	
Unicode	system	is	an	attempt	to	capture	all	the	world’s	characters	so	they	can	be	
represented	in	computer	memory	and	presented	graphically	on	screens	for	people	
to	see	and	read.	

The	Unicode	character	set	is	deQined,	enumerated,	and	maintained	by	a	committee.	
New	characters	are	being	added	periodically.	As	of	2020,	Unicode	version	13.0	
contains	143,859	characters.	The	Unicode	character	set	also	includes	mathematic	
symbols	and	emoji.	

Each	character	is	assigned	

	 •	A	number	(called	a	“codepoint”)	
	 •	A	glyph	(the	image)	
	 •	A	name	
	 •	A	category	

For	example:	

	 •	Codepoint:	8,713	(=	0x2209)	
	 •	Glyph:	∉	
	 •	Name:	“NOT	AN	ELEMENT	OF”	
	 •	Category:	Math	Symbol	

The	number	of	Unicode	characters	is	limited	to	a	maximum	of	1,114,112	characters.	
Roughly	12%	of	the	available	“codepoints”	have	been	assigned,	so	there	are	plenty	
of	unassigned	codepoints.	

Unicode,	ASCII,	and	UTF-8	/	Porter	 Page	 	of	6 21

Chapter	2:	Unicode	

The	maximum	number	of	characters	is:	

	 decimal	 hex	
	 1,114,112	 0x11,0000	

The	codepoints	are	numbered:	

	 	 decimal	 hex	
	 min	 0	 0x00,0000	
	 max	 1,114,111	 0x10,FFFF	

An	important	fact	about	Unicode	and	ASCII	is:	

The	entire	ASCII	character	set	(printable	characters	and	control	
characters)	is	included	directly	into	Unicode.	The	Unicode	codepoint	for	
each	character	is	exactly	the	same	as	the	ASCII	encoding.	Thus,	ASCII	is	a	
proper	subset	of	Unicode.	

Complications	and	Details	

Unicode	is	more	complicated	than	described	in	this	document.	Here,	we’ll	just	
mention	a	few	of	the	complexities.	

Planes	

The	Unicode	system	groups	characters	into	“planes”.	The	“Basic	Multilingual	
Plane”	(BMP),	includes	the	Qirst	65,536	codepoints	(0x0000	…	0xFFFF).	This	plane	
includes	almost	every	character	you’ll	want	to	use.	In	total,	there	are	17	planes,	each	
of	which	contains	65,536	codepoints.	Most	are	yet	to	be	Qilled	in.	

Each	codepoint	has	a	“major	category”	and	a	“minor	category”.	For	example	“∉”	has	
major	category	“Symbol”	and	minor	category	“Math”.	The	character	“A”	which	is	
called	“LATIN	CAPITAL	LETTER	A”,	has	a	major	category	of	“Latin”	and	a	minor	
category	of	“Upper”.	

Unicode,	ASCII,	and	UTF-8	/	Porter	 	 Page	 	of	 	7 21

Chapter	2:	Unicode	

Accent	Marks	

Unicode	includes	support	for	accent	characters.	In	some	cases,	there	is	a	character	
with	the	accent	included	(as	for	example,	é).	But,	for	characters	without	such	
variants,	there	are	special	“accent	characters”,	which	are	intended	to	apply	to	the	
previous	character.	So,	a	single	“e”	would	be	followed	by	the	accent	character.	

For	example,	the	following	three	things	are	distinct	“characters”:	

		Decimal	 Hex	 Character	 OfUicial	Unicode	Name																														
 101 0065 e LATIN	SMALL	LETTER	E	
 180 00B4 ´ ACUTE	ACCENT	
 233 00E9 é LATIN	SMALL	LETTER	E	WITH	ACUTE	

Characters	that	Look	Very	Similar	

There	are	a	number	of	characters	which	may	look	identical	but	which	are	completely	
different.	Below	is	an	example.	These	character	all	look	identical	in	“font1",	but	look	
different	in	font2,	as	I	hope	you	can	see.	

		Decimal	 Hex	 Font1	 Font2	 OfUicial	Unicode	Name																
 72 48 H H LATIN	CAPITAL	LETTER	H	
 919 0397 Η Η GREEK	CAPITAL	LETTER	ETA
1053 041D Н Н CYRILLIC	CAPITAL	LETTER	EN

Thus,	there	are	multiple	ways	to	encode	what	is	(in	some	sense)	the	same	character.	
In	some	contexts,	this	presents	a	security	risk,	since	the	user	may	be	spoofed	into	
believing	that	one	identiQier	is	something	is	not.		Programmers	beware:	equality	is	
not	straightforward.	

Right-to-Left	vs.	Left-to-Right	

Unicode	includes	support	for	languages	that	are	written	right-to-left,	as	well	as	left-
to-right.	

Unicode	includes	support	for	how	and	where	lines	are	broken,	this	is,	where	
newlines	are	automatically	insert	into	text	which	spans	multiple	lines.	

Unicode,	ASCII,	and	UTF-8	/	Porter	 	 Page	 	of	 	8 21

Chapter	2:	Unicode	

The	Byte-Order-Mark	

Unicode	contains	something	called	the	“Byte	Order	Mark”	(BOM).	The	BOM	is	used	
in	conjunction	with	a	similar	codepoint,	which	is	declared	to	be	illegal	and	which	
must	never	appear	in	any	Unicode	text.	

		Decimal	 Hex	 Description																																				
 65,279 FEFF BYTE	ORDER	MARK	
 65,534 FFFE illegal	

Note	that	the	above	two	codepoints	are	identical	if	you	swap	the	byte	order.	A	
Unicode	text	may	always	contain	the	BOM.	Typically	the	BOM	would	be	the	Qirst	
character	in	the	text,	if	it	is	included	at	all.	The	BOM	prints	as	an	invisible	character.	
Unicode	describes	this	invisibility	as	“ZERO	WIDTH	NO-BREAK	SPACE”.	

The	Byte	Order	Mark	(BOM)	is	useful	whenever	Endianness	is	an	issue.	This	
primarily	affects	UTF-16	(UTF-16	is	less	widely	used	than	UTF-8	since	UTF-8	seems	
to	be	superior.)	

If	the	software	encounters	a	BOM,	then	everything	is	okay.	On	the	other	hand,	if	the	
software	encounters	the	illegal	codepoint	of	0xFFFE,	then	it	can	conclude	that	it	has	
got	the	byte	order	wrong	and	needs	to	switch	bytes.	

Character	ClassiUication	

Characters	fall	into	classes,	such	as:	

	 letter	
	 number	/	digit	
	 mathematical	symbol	
	 punctuation	
	 upper	case	/	capital	
	 lower	case	
	 space	
	 white-space	

With	so	many	different	languages	and	characters,	these	tests	should	not	be	done	by	
hand,	as	was	possible	in	the	ASCII	system.	Instead,	functions	should	be	used,	in	
order	to	encapsulate	and	hide	the	details	of	Unicode.	And	presumably	these	

Unicode,	ASCII,	and	UTF-8	/	Porter	 	 Page	 	of	 	9 21

Chapter	2:	Unicode	

functions	will	need	to	be	updated	and	modiQied,	as	Unicode	evolves	and	new	
versions	are	released.	

Alphabetization	and	Ordering	

It	is	often	required	to	alphabetize	words.	In	English,	this	is	straightforward	for	
anyone	who	has	learned	the	alphabet.	The	key	operation	needed	to	sort	a	list	is	
being	able	to	compute	a	<	relationship	between	two	strings.	When	the	strings	are	
Unicode	texts	—	and	may	contain	characters	from	many	languages	—	any	deQinition	
of	“alphabetic	order”	is	more	complex.		

The	Replacement	Character	

One	unusual	character	is	the	“replacement	character”,	shown	below.	This	character	
glyph	(i.e.,	this	graphic	image)	is	supposed	to	be	substituted	by	fonts	that	do	not	
contain	a	character.	So	when	the	software	encounters	a	codepoint	which	is	deQined	
by	Unicode	but	which	is	not	present	in	the	font,	the	“replacement	character”	is	to	be	
used.	

		Decimal	 Hex	 Glyph 	 OfUicial	Unicode	Name																														1

 65533 FFFD	 			 REPLACEMENT	CHARACTER	

If	you	see	the	image	of	the	replacement	character	in	printed	text,	it	indicates	that	
some	other	character	is	present	but	the	software	is	incapable	of	rendering	that	
character.	

 The	software	I	am	using	to	create	this	document	—	Apple’s	“Pages”	—	treats	the	replacement	character	1

differently	from	other	characters	and	refuses	to	display	it.	Thus,	I	was	forced	to	include	an	image	of	the	
glyph.

Unicode,	ASCII,	and	UTF-8	/	Porter	 	 Page	 	of	 	10 21

Chapter	3:	UTF-8	

Character	Encoding	

There	are	several	ways	to	encode	a	Unicode	character	or	string	of	Unicode	
characters.	

The	UTF-32	encoding	simply	uses	a	word	(=	4	bytes	=	32	bits)	to	encode	each	
codepoint.	This	encoding	is	good	for	encoding	individual	characters,	but	is	very	
wasteful	for	long	strings.	Thus,	UTF-32	is	not	widely	used	for	Unicode	strings.	

The	UTF-8	encoding	is	widely	used	and	will	be	discussed	in	detail	the	following	
section.	

The	UTF-16	encoding	is	not	as	widely	used	and	will	not	be	discussed	here.	

Another	encoding	is	meant	to	be	human	readable.	For	example	the	“∉”	character	is	
encoded	as:	

	 U+2209	

The	preQix	“U+”	is	followed	by	hex	characters	giving	the	numerical	codepoint.	
Generally	speaking,	there	will	be	exactly	4	hex	characters.	But	since	Unicode	
contains	some	codepoints	greater	than	0xFFFF,	4	hex	characters	will	not	always	be	
enough.	There	are	different	approaches	to	dealing	with	this.	One	common	approach	
is	to	follow	the	“U+”	preQix	by	either	4	or	6	hex	digits.	

The	Python	language	allows	the	user	to	write	Unicode	characters	within	strings	in	
several	ways	as	shown	in	these	examples.	(These	all	produce	the	same	string.)	

" d ∉ {a,b,c} "
" d \u2209 {a,b,c} "
" d \U00002209 {a,b,c} "
" d \N{NOT AN ELEMENT OF} {a,b,c} "

Unicode,	ASCII,	and	UTF-8	/	Porter	 Page	 	of	11 21

Chapter	3:	UTF-8	

In	Python,	strings	are	encoded	using	UTF-8.	Thus,	the	following	will	not	work:	

" d \x22\x09 {a,b,c} "
" d \x00\x00\x22\x09 {a,b,c} "

The	UTF-8	Encoding	

As	mentioned	above,	one	approach	to	encoding	Unicode	strings	is	to	use	4	bytes	per	
character,	but	this	is	wasteful	of	space.	The	UTF-8	encoding	scheme	is	variable	
length.	Each	character	is	encoded	with	between	1	and	4	bytes.	Common	characters	
tend	to	have	shorter	encodings.	

Since	Unicode	is	limited	to	1,114,112	codepoints,	the	largest	code	point	is:	

	 decimal	 hex	 binary	
	 1,114,111	 10,FFFF 1 0000 1111 1111 1111 1111	

As	you	can	see,	at	most	21	bits	are	needed	for	each	codepoint.	However,	since	the	
leading	bits	of	many	common	codepoints	are	zero,	the	UTF-8	can	use	fewer	bits	for	
many	codepoints.	

Depending	on	the	value	of	the	codepoint,	a	different	number	of	bytes	is	used.	

1	byte	is	used	for	codepoints	in	this	range:	

	 decimal	 hex	 binary																																																										
	 0	 0 000 0000

… … …	
	 127	 7F 111 1111	

2	bytes	are	used	for	codepoints	in	this	range:	

	 decimal	 hex	 binary																																																										
	 128	 80 000 1000 0000	

… … …	
	 2,047	 7FF 111 1111 1111	

Unicode,	ASCII,	and	UTF-8	/	Porter	 	 Page	 	of	 	12 21

Chapter	3:	UTF-8	

3	bytes	are	used	for	codepoints	in	this	range:	

	 decimal	 hex	 binary																																																										
	 2,048	 800 0000 1000 0000 0000	

… … …	
	 65,535	 FFFF 1111 1111 1111 1111	

4	bytes	are	used	for	codepoints	in	this	range:	

	 decimal	 hex	 binary																																																										
	 65,536	 1,0000 0 0001 0000 0000 0000 0000	

… … …	
	 1,114,111	 10,FFFF 1 0000 1111 1111 1111 1111	

Next,	we	give	the	UTF-8	encoding	scheme.	In	the	following,	xxx…xxx	is	the	binary	
form	of	the	codepoint.	We	can	refer	to	these	bits	as	the	“payload”.	

Frankly,	I	can’t	describe	UTF-8	more	concisely	and	clearly	than	the	following	image,	
which	is	from	Wikipedia.	
	

Unicode,	ASCII,	and	UTF-8	/	Porter	 	 Page	 	of	 	13 21

Chapter	3:	UTF-8	

UTF-8	Encoding	Examples	

First,	consider	the	following	character:	

		Decimal	 Hex	 Character	 OfUicial	Unicode	Name																														
 97 61 a LATIN	SMALL	LETTER	A	

Since	this	codepoint	is	an	ASCII	character,	it	is	encoded	in	one	byte,	exactly	as	is:	

	 01100001 Binary	encoding	
	 0x61 (in	hex)	

Next,	consider	the	following	character:	

		Decimal	 Hex	 Character	 OfUicial	Unicode	Name																														
 233 00E9 é LATIN	SMALL	LETTER	E	WITH	ACUTE	

Since	this	codepoint	is	in	the	range	requiring	a	two-byte	encoding,	it	is	encoded	as	
follows:	

	 Codepoint	U+00E9:	 0 0000 0000 0000 1110 1001
	 Regrouping	the	bits:	 00011 101001

				Header				 Extension	 	
	 110----- 10------		 Encoding	template	
	 00011 101001		 Payload	
	 11000011 10101001		 Complete	encoding	
	 0xC3 0xA9	 (in	hex)	

Unicode,	ASCII,	and	UTF-8	/	Porter	 	 Page	 	of	 	14 21

Chapter	3:	UTF-8	

Finally,	consider	this	character:	

		Decimal	 Hex	 Character	 OfUicial	Unicode	Name																														
				2,322 0912 ऒ DEVANAGARI	LETTER	SHORT	O	

Since	this	codepoint	is	in	the	range	requiring	a	three-byte	encoding,	it	is	encoded	as	
follows:	

	 Codepoint	U+0912:	 0 0000 0000 1001 0001 0010
	 Regrouping	the	bits:	 0000 100100 010010

				Header					 Extension		 Extension	 	
	 1110---- 10------ 10------	 Encoding	template	
	 0000 100100 010010	 Payload	
	 11100000 10100100 10010010		 Complete	encoding	
	 0xE0 0xA4 0x92 	 (in	hex)	

UTF-8	and	ASCII	Text	Files	

The	UTF-8	encoding	has	the	following	important	property:	

Any	string	of	characters	that	contains	only	ASCII	characters	and	ASCII	
control	characters	is	represented	identically	in	UTF-8.	A	text	Wile	
containing	only	legal	ASCII	characters	is	indistinguishable	from	a	UTF-8	
Wile	which	contains	only	ASCII	characters;	there	is	no	difference	in	the	
encodings,	if	only	ASCII	characters	are	present	in	the	strings.	

This	means	that	any	software	that	handles	UTF-8	strings	can	be	given	an	ASCII	
encoded	string	and	it	will	perform	correctly.	

Also,	any	legacy	software	that	expects	ASCII	encoded	strings	and	that	deals	with	
bytes	outside	the	ASCII	range	(i.e.,	0x80	…	0xFF)	by	printing	these	bytes	using	
escapes	(or	ignoring	them	altogether)	will	work	reasonably	well	if	accidentally	given	
a	UTF-8	encoded	string.	For	example,	the	valid	ASCII	characters	will	be	printed	
correctly,	and	the	non-ASCII	character	will	print	using	escape	codes.	

Unicode,	ASCII,	and	UTF-8	/	Porter	 	 Page	 	of	 	15 21

Chapter	3:	UTF-8	

In	particular,	control	code	like	\n	(newline)	and	\0	(null)	will	work	exactly	the	same	
in	either	UTF-8	and	ASCII.	

Determining	the	“string	length”	of	an	ASCII	string	is	straightforward	and	
unambiguous.	The	number	of	characters	and	the	number	of	bytes	will	always	be	
identical.	With	a	UTF-8	string,	“length”	can	mean	either;	

	 •	The	number	of	bytes	
	 •	The	number	of	characters.	

Accessing	a	character	using	an	integer	index	in	an	ASCII	string	is	straightforward.	
For	example:	

	 str[4000]	 Retrieve	a	character	from	a	string		

Since	a	string	of	ASCII	characters	is	an	array	of	bytes,	this	operation	is	fast.	

With	a	UTF-8	encoded	string,	locating	the	a	character	by	index	requires	a	lot	of	time,	
since	the	string	must	be	scanned	character-by-character.	(More	precisely,	the	
operation	is	linear	in	the	magnitude	of	the	index.)	

Modifying	a	character	within	an	ASCII	string	is	straightforward:	a	single	byte	is	
replaced	with	another	value.	However,	with	a	UTF-8	string	we	have	a	problem	since	
the	character	being	replaced	may	be	a	different	size	than	the	new	character.	As	a	
result,	we	may	have	to	insert	additional	bytes	or	remove	existing	bytes.	As	a	result,	
the	length	of	the	string	in	bytes	may	change.	With	long	strings,	this	may	require	
signiQicant	amounts	of	copying.	

Unicode,	ASCII,	and	UTF-8	/	Porter	 	 Page	 	of	 	16 21

Chapter	3:	UTF-8	

UTF-8	Error	Conditions	

Not	all	byte	sequences	are	legal	UTF-8	strings.	It	is	possible	that	a	binary	Qile,	when	
analyzed	as	a	UTF-8	encoded	Unicode	string,	will	contain	errors.	

Error	1:	Invalid	Byte	PreUix	

We	can	view	a	multi-byte	UTF-8	encoded	character	as	consisting	of	a	“header	byte”,	
followed	by	1-3	“extension	bytes”.	

All	UTF-8	bytes	begin	in	one	of	the	following	ways:	

	 0-------	 ASCII	character	
	 10------	 Extension	byte	
	 110-----	 Header	byte	
	 1110----	 Header	byte	
	 11110---	 Header	byte	
	 	
Any	byte	that	begins	as	follows	is	illegal:	

	 11111---	 Illegal	bytes	

Error	2:	Missing	Extension	Byte	

The	header	byte	indicates	how	many	extension	bytes	will	follow	it.	

	 110-----	 Header	byte;	followed	by	1	extension	byte	
	 1110----	 Header	byte;	followed	by	2	extension	byte	
	 11110---	 Header	byte;	followed	by	3	extension	byte	

If	the	header	byte	is	not	followed	by	the	required	number	of	extension	bytes,	it	is	an	
error.	In	other	words,	if	one	or	more	extension	bytes	is	missing,	it	is	an	error.	

Unicode,	ASCII,	and	UTF-8	/	Porter	 	 Page	 	of	 	17 21

Chapter	3:	UTF-8	

Error	3:	Unexpected	Extension	Byte	

A	related	error	is	having	too	many	extension	bytes.	

Extension	bytes	may	only	follow	header	bytes.	Each	header	byte	must	be	followed	by	
exactly	the	number	of	extension	bytes	expected.	An	extra	extension	byte	is	an	error.	
Furthermore,	any	extension	byte	that	appears	in	isolation	is	in	error.	

Error	4:	Wrong	Encoding	

The	UTF-8	encoding	scheme	is	based	on	ranges.	For	example,	a	codepoint	in	the	
range	U+0080	…	U+07FF	is	supposed	to	be	encoded	with	2	bytes.	For	example	
U+0321	is	supposed	to	be	encoded	as:	

	 Codepoint	U+0321:	 0000 0011 0010 0001
	 Regrouping	the	bits:	 01100 100001

				Header					 Extension		 	
	 110----- 10------		 Encoding	template	
	 01100 100001		 Payload	
	 11001100 10100001		 Complete	encoding	
	 0xCC 0xA1	 (in	hex)	

However,	if	the	codepoint	is	encoded	with	more	bytes	than	required,	it	is	an	error.	
The	following	is	an	encoding	of	the	same	value	(U+0321),	but	this	encoding	is	illegal:	

	 Codepoint	U+0321:	 0000 0011 0010 0001
	 Regrouping	the	bits:	 0000 001100 100001

				Header					 Extension		 Extension	 	
	 1110---- 10------ 10------		 Encoding	template	
	 0000 001100 100001	 Payload	
	 11100000 10001100 10100001		 Complete	encoding	
	 0xE0 0x8C 0xA1	 (in	hex)	

It	seems	reasonable	for	software	to	ignore	this	error	and	to	tolerate	any	such	
incorrectly	encoded	characters.	

Unicode,	ASCII,	and	UTF-8	/	Porter	 	 Page	 	of	 	18 21

Chapter	3:	UTF-8	

Error	5:	UndeUined	Codepoint	

The	Unicode	system	can	accommodate	up	to	1,114,111	codepoints.	However,	as	of	
this	writing,	the	Unicode	standard	deQines	only	143,859	codepoints.	

	 decimal	 hex	 	
	 1,114,111	 10,FFFF		 Maximum	codepoint	in	the	future	
	 143,858	 02,31F2	 Largest	deWined	codepoint	to	date	
	 344,865	 05,4321	 An	undeWined	codepoint	

An	undeQined	codepoint	should	never	appear	in	a	UTF-8	string.	(Note	that	this	
condition	implicitly	disallows	any	codepoint	greater	than	0x10,FFFF.)	

For	example,	the	string	containing	the	character	U+054321	would	be	illegal	since	it	
speciQies	an	undeQined	character.	Here	is	the	UTF-8	encoding	for	this	undeQined	
codepoint:	

	 Codepoint	U+054321:	 0 0101 0100 0011 0010 0001
	 Regrouping	the	bits:	 001 010100 001100 100001

				Header					 Extension		 Extension		 Extension	 	
	 11110--- 10------ 10------ 10------		 Encoding	template	
	 001 010100 001100 100001	 Payload	
	 11110001 10010100 10001100 10100001		 Complete	encoding	
	 0xF1 0x94 0x8C 0xA1	 (in	hex)	

Unicode,	ASCII,	and	UTF-8	/	Porter	 	 Page	 	of	 	19 21

Appendix	1:	About	this	Document	

Document	Revision	History	/	Permission	to	Copy	

Version	numbers	are	not	used	to	identify	revisions	to	this	document.	Instead	the	
date	and	the	author’s	name	is	used.	The	document	history	is:	

Date	 Author	
4	October	2020	 Harry	H.	Porter	III		<document	created>	
9	February	2022	 Harry	H.	Porter	III		<minor	correction>	

	 	
In	the	spirit	of	the	open-source	and	free	software	movements,	the	author	grants	
permission	to	freely	copy	and/or	modify	this	document,	with	the	following	
requirement:	

You	must	not	alter	this	section,	except	to	add	to	the	revision	history.	You	
must	append	your	date/name	to	the	revision	history.	

Any	material	lifted	should	be	referenced.	

Unicode,	ASCII,	and	UTF-8	/	Porter	 Page	 	of	20 21

About	the	Author		
Professor	Harry	H.	Porter	III	teaches	in	the	Department	of	Computer	Science	at	
Portland	State	University.	He	has	produced	several	video	courses,	notably	on	the	
Theory	of	Computation.	Recently	he	built	a	complete	computer	using	the	relay	
technology	of	the	1940s.	The	computer	has	eight	general	purpose	8	bit	registers,	a	
16	bit	program	counter,	and	a	complete	instruction	set,	all	housed	in	mahogany	
cabinets	as	shown.	Porter	also	designed	and	constructed	the	BLITZ	System,	a	
collection	of	software	designed	to	support	a	university-level	course	on	Operating	
Systems.	Using	the	software,	students	implement	a	small,	but	complete,	time-sliced,	
VM-based	operating	system	kernel.	Porter	has	habit	of	designing	and	implementing	
programming	languages,	the	most	recent	being	a	language	speciQically	targeted	at	
kernel	implementation.	

Porter	holds	an	Sc.B.	from	Brown	University	and	a	Ph.D.	from	the	Oregon	Graduate	
Center.	

Porter	lives	in	Portland,	Oregon.	When	not	trying	to	Qigure	out	how	his	computer	
works,	he	skis,	hikes,	travels,	and	spends	time	with	his	children	building	things.	

Professor	Porter’s	website: www.cecs.pdx.edu/~harry	

Unicode,	ASCII,	and	UTF-8	/	Porter	 Page	 	of	 	21 21

http://www.cecs.pdx.edu/~harry

