
An	Introduction	to

KPL:

A	Kernel	Programming	

Language

Harry	H.	Porter	III

Portland	State	University

HHPorter3@gmail.com

17	June	2021	

This	document	describes	the	KPL	programming	language,	which	is	an	integral	part	
of	the	Blitz-64	Computer	System.	KPL	has	many	of	the	features	in	Java,	C,	and	C++.	
This	document	is	written	for	experienced	programmers	who	are	familiar	with	those	
languages.

Like	C	and	C++,	KPL	is	a	compiled	language	and	is	intended	for	writing	systems	
software,	such	as	OS	kernel	code.	KPL	is	meant	to	be	usable	in	isolation,	with	zero	
dependencies	on	outside	software.

	 Available	Online: Blitz64.org/Documentation/KPL-Introduction.pdf

http://Blitz64.org/Documentation/KPL-Introduction.pdf

Table	of	Contents

Introduction	
7
The	Blitz-64	Project	
7
Design	Philosophy	
8
Familiar	Features	
9
Advanced	Features	
9
Novel	and	Unusual	Features	
10

About	This	Document	
13
Prerequisite	Background	
13
Related	Documents	
13
Document	Revision	History	/	Permission	to	Copy	
15
Versioning	System	
15
Related	Software	Tools	
16
Notation	and	Terminology	
16

The	Hello-World	Program	
18

Packages	
19

Compiling	
20
Safe	and	Unsafe	
21
Linking	
22

The	Header	and	Code	Files	
24
The	Header	File	
25
The	Code	File	
27

Syntax	and	Grammar	
29
Missing	Semicolons	
30
Comments	
31
Lexical	Tokens	
31

Statements	
33
The	If	Statement	
33
The	While	Statement	
34
The	Do-Until	Statement	
35

Blitz-64:	KPL	Introduction	/	Porter	 Page	 	of	2 207

Table	of	Contents

The	For	Statement	
36
The	Switch	Statement	
37
The	Return	Statement	
38
Other	Statements	
38

Basic	Data	Types	
39
Integer	Constants	
41
Character	Constants	
41
Floating	Point	Constants	
42
Conversions	
43

Variables	
44
Variable	Declarations	
44
Local	Variables	
45
Global	Variables	
45

Complex	Data	Types	
47
Type	Definitions	
48

Arrays	
50
Creating	Arrays	
51
Array	Representation	
53
Array	Sizes	
54
Initializing	Arrays	
55
Dynamic	Arrays	
57
Multidimensional	Arrays	
58
Array	Equality	
59

Strings	
60
String	Equality	
61
Unicode	and	UTF-8	
61

The	Struct	and	Union	Types	
63
Struct	
63
Union	
64
Data	Representation	and	Alignment	
64

Pointers	
66

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	3 207

Table	of	Contents

Creating	New	Objects	
66
The	“null”	Pointer	
68

Functions	
71
Pointers	to	Functions	
72
External	Functions	
75

Objects	and	Classes	
76
Visibility	Control	
79
Fields	
80
Methods	
81
Creating	Objects	
84
Object	Representation	and	Layout	
87
Dispatch	Tables	and	Runtime	Class	Representation	
89

Interfaces	
96

The	Assignment	Statement	
98
Operators	+=	and	-=	
99
Operators	++	and	--	
101

Type	Checking	and	Subtypes	
102
Type	Conversions	
102
Object-Oriented	Type	Checking	
106
Dynamic	Type	Checking	
107
Pointer	Casting	
108
Subtyping	Among	Array	and	Struct	Types	
110

The	SwitchOnClass	Statement	
112
Implementation	
113

Operators	and	Expression	Syntax	
115
64	Bit	Signed	Arithmetic	
117
Integer	Division	
117
Arithmetic	Shifting	
118
Syntax	Exception	Regarding	‘*’	
119

Constants	and	Enumerations	
121

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	4 207

Table	of	Contents

Constants	
121
Enumerations	
122

Errors	and	Try-Throw-Catch	
125
The	Try	and	Throw	Statements	
125
Declaring	Errors	
127
Uncaught	Errors	and	Debugging	
128

Naming	and	Scope	Rules	
131
The	Unique	Name	Rule	
131
The	Renaming	Clause	
132

Parameterized	Classes	
135
Parameterized	Interfaces	
140

Conclusion	
142

Appendix	1:	Predefined	Functions	
143
upcastToHalfword,	upcastToWord,	upcastToInt	
145
upcastToDouble	
145
asByte,	asHalfword,	asWord	
145
forceToByte,	forceToHalfword,	forceToWord	
146
forceToDouble,	forceToInt	
147
copyBitsToDouble,	copyBitsToInt	
147
asInteger	
148
asPtrTo	
148
ptrToBool	
149
isKindOf	
149
isInstanceOf	
150
sizeOf	
151
initializeArray	
151
setArraySize	
153
arrayMaxSize	
153
arraySize	
153
initializeObject	
154
CPUControl	and	CPUControlUserMode	
155
CAS:	Compare	and	Swap	
156

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	5 207

Table	of	Contents

The	“fence”	Memory	Barrier	
157

Appendix	2:	Printing	with	“printf”	
159
Introduction	
159
Examples	
159
Format	Codes	
160
Differences	With	C	/	C++	
162

Appendix	3:	Alternate	Method	Syntax	
166
Infix	and	Prefix	Methods	
166
Keyword	Methods	
167

Appendix	4:	Style	Recommendations	
169

Appendix	5:	Memory	Management	
181
Stack	Usage	
181
The	Max_Stack_Usage	Clause	
183
The	Memory	Heap	
185

Appendix	6:	KPL	Syntax	
187
The	Notation	Used	in	this	Grammar	
187
A	Context	Free	Grammar	of	KPL	
189

Appendix	7:	Lexical	Details	
193
Source	File	Encoding	
193
Comments	
193
White	Space	
194
Identifiers	
194
Integers	
195
Floating	Point	Constants	
196
Character	Constants	
197
String	Constants	
199
Regular	Expressions	for	Token	
203

Appendix	8:	Recent	Changes	
206

About	the	Author	 207

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	6 207

Introduction

The	Blitz-64	Project

The	KPL	language	is	part	of	the	Blitz-64	project,	which	includes

•	The	Blitz-64	Processor	Computer	Architecture

•	Machine	Emulator

•	Assembler

•	Linker

•	Library	Tools

•	KPL	Language	Design

•	KPL	Compiler

•	Documentation

The	Instruction	Set	Architecture	(ISA)	describes	the	Blitz-64	processor.

The	ISA	of	a	modern	computer	is	complex,	but	we	can	summarize	the	Blitz-64	
machine.	Blitz-64	is	a	modern	processor	core	featuring	16	general	purpose	registers,	
16	Control	and	Status	Registers	(CSRs),	and	a	bank	of	Translation	Lookaside	Buffer	
registers	(TLBs).	All	registers	are	64	bits	each.	At	any	time,	the	core	is	executing	in	
one	of	two	modes:	either	in	kernel	mode	or	in	user	mode.	A	few	security-critical	
instructions	are	privileged	and	may	only	be	executed	in	kernel	mode.	Access	to	the	
CSRs	is	privileged	and	they	are	used	by	the	kernel	to	control	interrupt	processing,	
syscalls,	and	various	exception	handling.	The	TLB	registers	are	used	to	implement	
virtual	memory	address	spaces.	The	architecture	is	a	RISC	design,	aimed	at	
everything	from	a	large,	secure,	multitasking	OS	kernel	to	embedded	micro-devices.

A	hardware	implementation	of	Blitz-64	is	underway.	As	of	October	2019,	work	on	a	
Verilog	implementation	of	the	ISA	is	proceeding	smoothly.	All	non-privileged	
instructions	and	most	privileged	instructions	are	completed	and	functional.	The	
microarchitecture	uses	a	novel	out-of-order	scheduler	and	is	achieving	one	clock	
cycle	per	instruction.

The	Blitz-64	ISA	is	also	implemented	by	a	machine	emulator,	which	executes	the	full	
ISA	and	also	includes	a	built-in	debugger.	KPL	code	can	be	compiled,	assembled,	and	

Blitz-64:	KPL	Introduction	/	Porter	 Page	 	of	7 207

Introduction

linked	using	these	existing	tools.	Then,	the	KPL	code	can	be	executed	on	the	
emulator.	All	of	the	complex	examples	in	this	document	have	been	executed	this	way.

The	existing	toolset	includes	an	assembler,	a	linker,	and	tools	to	create	object	
libraries.	All	tools	are	written	in	C	and	the	KPL	compiler	is	written	in	C++.	The	plan	
is	to	port	all	tools	and	the	compiler	to	KPL,	but	this	work	has	not	begun.

The	following	documents	provide	more	information:

“KPL	Syntax”

“Blitz-64:	Instruction	Set	Architecture	Reference	Manual”

“Blitz-64:	Assembler,	Linker,	and	Object	File	Format”

“Personal	Statement:	The	Goals	of	the	Blitz-64	Project”

Design	Philosophy

The	primary	design	criterion	of	the	KPL	language	was	simplicity.	The	intent	was	to	
create	a	language	that	can	be	understood	and	acquired	quickly	by	any	skilled	
programmer.	Over	time,	KPL	has	grown,	yet	this	goal	remains	number	one.	
Simplicity	helps	to	achieve	our	other	goals.

A	secondary	design	criterion	is	to	create	a	language	that	facilitates	readability	and	
reliability	of	programs.	As	a	consequence,	the	syntax	emphasizes	readability,	at	the	
expense	of	terseness	and	ease	of	typing.

A	third	design	criterion	was	safety	and	error	reporting.	KPL	places	an	emphasis	on	
catching	and	reporting	errors.

The	Blitz-64	project	is	specifically	targeted	at	applications	that	require	high-
reliability	and	malware	resistance.	KPL	was	designed	with	this	objective	in	mind.	A	
key	goal	is	to	design	a	programming	language	that	puts	reliability	first.	Of	course,	
execution	efficiency	is	important	and	tradeoffs	between	reliability	and	efficiency	
cannot	be	avoided.	Traditionally,	low-level	languages	like	C	and	C++	made	design	
choices	in	favor	of	efficiency,	leaving	high-reliability	to	interpreted	languages.	Within	
the	class	of	systems	programming	languages,	KPL	is	more	aimed	at	reliability	and	
fault-tolerance	than	familiar	languages.

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
8 207

Introduction

Familiar	Features

Many	of	the	KPL	data	types	will	be	familiar.	For	example,	the	types	int,	double,	
bool,	struct,	union	are	well-known.	KPL	makes	it	easy	and	natural	to	use	pointers	
and	arrays	and	the	expressions	like	*p	and	a[i]	will	be	familiar	to	C	programmers.

Many	of	KPL’s	control	structures	will	be	familiar.	For	example,	KPL	includes	if,	for,	
while,	return,	switch,	break,	and	continue	statements.

KPL	includes	classes	and	interfaces.	C++	and	Java	programmers	will	be	at	home.	
KPL	is	closer	to	C++	than	Java,	since	KPL	allows	explicit	manipulation	of	pointers,	
although	the	KPL	syntax	is	simple	and	closer	to	Java.

KPL	is	designed	to	be	a	compiled	language,	not	an	interpreted	language.	KPL	is	
compiled	into	assembly	code,	assembled	into	machine	code,	and	executed	directly	
on	the	hardware.	KPL	is	not	a	scripting	language	and	is	not	intended	to	run	on	top	of	
other	software.

KPL	supports	separate	compilation,	and	is	intended	to	accommodate	extremely	
large	and	complex	programs,	made	of	smaller,	individually	compiled	and	tested	
pieces.

KPL	is	a	systems	programming	language	(like	C	and	C++)	and	not	an	interpreted	
language.	It	is	meant	for	low-level	programming,	and	intended	to	run	on	bare	
hardware.

The	KPL	memory	heap	model	requires	the	programmer	to	explicitly	free	memory	
(like	C	and	C++);	automatic	garbage	collection	(as	in	many	interpreted	languages)	is	
not	possible.
1

Advanced	Features

KPL	includes	the	ability	to	create	parameterized	classes.	In	C++,	these	are	called	
“template	classes”.	In	KPL,	the	code	is	not	copied;	code	sharing	is	supported.

KPL	includes	interfaces,	and	parameterized	interfaces	are	supported.	Interfaces	
are	also	related	in	a	hierarchy	which	allows	multiple	inheritance.

	More	accurately,	“Automatic	GC	is	not	reasonable”.	After	all,	clever	researchers	have	figured	out	1

how	to	do	automatic	garbage	collection	for	C	and	C++,	proving	that	anything	is	possible.

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
9 207

Introduction

KPL	includes	the	ability	to	manipulate	pointers	to	code	and	to	create	nameless	
functions	which	can	be	stored,	passed	as	arguments,	etc.

KPL	includes	features	to	manipulate	bits.	In	KPL,	the	programmer	has	complete	and	
direct	control	over	whether	data	is	represented	in	8,	16,	32,	or	64	bits.

KPL	includes	a	try-throw-catch	mechanism,	which	will	be	familiar	to	Java	
programmers.	All	errors	(including	arithmetic	exceptions	and	overflow)	can	be	
caught	and	handled	within	the	program,	if	the	programmer	chooses.

KPL	is	designed	to	accommodate	huge	programs	that	are	broken	into	pieces	which	
are	compiled	separately	and	then	linked,	along	with	library	functions,	to	create	
an	executable.

Since	KPL	is	a	systems	programming	language	intended	for	software	that	accesses	
the	hardware	directly,	linkage	to	external	functions	(often	coded	in	assembly)	is	
supported	and	arguments	and	returned	values	of	invocations	are	fully	type-checked	
on	the	KPL	side.	Upcalls	(in	which	assembly	code	invokes	KPL	functions)	are	also	
supported.

Novel	and	Unusual	Features

Most	features	of	KPL	are	safe	operations	and,	regardless	of	how	bad	a	bug	is,	the	
program	should	not	result	in	a	system	crash.	Any	possible	runtime	error	will	be	
caught	and	a	descriptive	error	message	will	be	displayed.	However,	several	language	
features	are	specifically	identified	as	being	unsafe	operations,	and	buggy	use	of	
them	can	cause	unpredictable	/	implementation-dependent	behavior.	The	
programmer	must	say	explicitly	if	any	of	the	unsafe	features	are	used,	thus	dividing	
programs	into	two	broad	reliability	classes.

Although	KPL	is	a	rather	low-level	language	appropriate	for	bit	fiddling	and	pointer	
manipulation,	the	approach	to	arrays	is	high-level.	All	arrays	are	bounds-checked.	
The	well-known	buffer-overflow	danger	doesn’t	plague	KPL.	All	array	operations	are	
“safe”,	in	that	any	bugs	will	be	caught	immediately	and	descriptive	error	messages	
will	be	displayed.

Various	approaches	to	breaking	large	programs	into	independent	modules	have	
been	proposed.	This	language	introduces	KPL	packages,	which	form	a	unit	of	
encapsulation	larger	than	classes	and	functions.	Packages	are	an	integral	part	of	the	

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
10 207

Introduction

language	and	support	full	compiler	checking	for	huge	programs	which	involve	
separate	compilation	of	independent	modules.	One	goal	is	to	eliminate	consistency	
errors	across	multiple	packages.	Another	goal	is	to	make	all	dependencies	explicit.	
The	ultimate	goal	is	to	prevent	accidentally	breaking	previously	debugged	code	in	
one	package	by	modifying	code	in	another	package.

KPL	introduces	the	switch-on-class	statement.	This	is	something	I	have	not	
encountered	before	and	believe	to	be	both	novel	and	useful.

KPL	was	designed	in	conjunction	with	the	Blitz-64	Instruction	Set	Architecture	
(ISA),	which	is	quite	unusual.	Modern	language	designers	always	assume	a	fixed	and	
unchangeable	legacy	software	and	hardware	base.		At	most,	they	can	encourage	the	
additions	to	the	ISA,	but	never	simplifications.	Modern	architecture	work	takes	it	as	
a	given	that	the	full	C	language	must	be	supported	efficiently	and,	in	many	cases,	that	
already	compiled	code	must	continue	to	run	flawlessly.	At	most,	hardware	designers	
can	add	additional	functionality	to	handle	special	cases.

With	the	Blitz-64	project,	we	had	the	flexibility	to	change	the	ISA	to	better	support	
the	language;	the	ISA	and	the	language	grew	up	together	and	evolved	jointly	in	
the	exploration	of	new	points	in	the	ISA	and	language	design	spaces.	Their	joint	
evolution	made	previously	unreachable	regions	of	the	design	space	accessible.

KPL	syntax	is	much	simpler	than	C++	or	Java	syntax.	Complex	programs	do	not	
require	languages	with	complex	syntax.	Complex	syntax	only	hinders	programming	
and	this	really	matters	for	complex	programs.	Technically,	KPL	is	“LL(k)”	which	
means	that	it	is	much	easier	for	humans	to	deal	with	than	“LR(k)”	grammars	like	C,	
C++,	and	Java.	I	want	to	emphasize	how	important	I	feel	this	is.

The	KPL	language	has	support	for	compile-time	verification	that	stack	usage	
limitation	requirements	are	met.	While	this	feature	would	not	be	needed	by	most	
programs,	some	high-reliability	codes	in	imbedded	systems	with	limited	memory,	
must	guard	against	all	errors,	including	stack	overflow.

Programmers	of	the	languages	Smalltalk	and	Squeak	will	be	familiar	with	keyword	
syntax	for	invoking	methods:

 x.foo (y, z) -- Traditional syntax
 x at: y put: z -- Keyword syntax

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
11 207

Introduction

The	KPL	language	supports	both	styles	and	allows	the	programmer	to	use	
whichever	style	he	or	she	is	most	comfortable	with.

Furthermore,	both	styles	may	be	intermixed	in	the	same	program.	My	thinking	was	
that	in	creating	a	language	that	allows	both	styles,	it	would	be	possible	to	evaluate	
and	understand	the	pros	and	cons	of	each.	My	conclusions	are	(1)	neither	style	is	
clearly	superior	and	both	have	their	advantages,	and	(2)	mixing	the	two	styles	in	a	
single	programming	is	a	disaster.	It	is	difficult	to	remember	which	method	uses	
which	style.

 x.myMethod (y) -- Was the method defined like this...
 x myMethod: y -- or this?

KPL	syntax	has	been	simplified	and	reduced	in	several	ways,	including	the	
elimination	of	the	ubiquitous	semicolon	at	the	end	of	every	statement,	the	
elimination	of	unnecessary	parentheses	in	many	statement	types,	the	replacement	
of	the	braces	{	}	for	statement	grouping	by	descriptive	“end-”	keywords,	and	the	
use	of	a	different	notation	“--”	for	comments.	These	features	will	be	unfamiliar	and	
initially	annoying.	However,	these	are	insignificant	nuances	for	advanced	
programmers	and	the	resulting	simplification	of	program	code	will	be	quickly	
appreciated.

KPL	includes	the	type	double,	but	leaves	out	single	precision	floating	point.	
Certainly	a	language	occasionally	needs	floating	point	capability,	but	with	numerical	
computation	increasingly	being	offloaded	to	specialized	processors,	the	additional	
complexity	of	two	similar	data	types	has	been	avoided. 

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
12 207

About	This	Document

Prerequisite	Background

This	document	introduces	the	KPL	programming	language.	We	assume:

•	No	prior	knowledge	of	KPL	or	the	Blitz-64	project

We	assume	you	are	familiar	with:

•	Programming	and	programming	language	concepts

In	addition,	familiarity	with	the	following	is	desirable:

•	Bitwise	logical	operations	(AND,	OR,	XOR,	NOT)

•	Boolean	logic	(AND,	OR,	IF-THEN-ELSE)

•	Hexadecimal	notation

•	Signed	Numbers	(i.e.,	two’s	complement	binary	number	representation)

•	Sign-extension

Related	Documents

The	following	documents	contain	additional	information:

“KPL	Syntax”

	 The	grammar	of	KPL,	expressed	precisely.	Intended	as	a	handy	reference.	

“Blitz-64:	Software	Reference	Manual”

	 Documents	various	KPL	functions	and	discusses	algorithms	and	design	

decisions.

“Blitz-64:	Summary	of	the	Machine	Architecture”

	 Overview	of	the	Blitz	Architecture.

“Blitz-64:	Instruction	Set	Architecture	Reference	Manual”

	 Describes	the	Blitz-64	core,	including	registers	and	machine	instructions.

“Blitz-64:	Assembler,	Linker,	and	Object	File	Format”

	 Describes	the	Blitz-64	Assembly	Language	and	related	topics.

“Personal	Statement:	The	Goals	of	the	Blitz-64	Project”

	 Motivations	and	objectives	for	the	project.

Blitz-64:	KPL	Introduction	/	Porter	 Page	 	of	13 207

About	This	Document

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
14 207

About	This	Document

Document	Revision	History	/	Permission	to	Copy

Version	numbers	are	not	used	to	identify	revisions	to	this	document.	Instead	the	
date	and	the	author’s	name	are	used.	The	document	history	is:

Date	 Author

13	October	2019	 Harry	H.	Porter	III	 <document	created>

10	November	2019	 Harry	H.	Porter	III	 <initial	version	completed>

17	June	2021	 Harry	H.	Porter	III	 <current	version>

Details	about	updates	to	this	document	are	in	the	appendix	titled	“Recent	Changes”.

	

In	the	spirit	of	the	open-source	and	free	software	movements,	the	author	grants	
permission	to	freely	copy	and/or	modify	this	document,	with	the	following	
requirement:

You	must	not	alter	this	section,	except	to	add	to	the	revision	history.	You	
must	append	your	date/name	to	the	revision	history.

Any	material	lifted	should	be	referenced.

Versioning	System

In	the	Blitz-64	project,	version	numbers	are	not	used	for	programs	and	documents.	
Instead,	dates	are	used.

By	comparing	dates,	you	can	determine	whether	this	document	matches	the	tools	
you	are	using	or,	if	not,	which	is	more	recent.

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
15 207

About	This	Document

Related	Software	Tools

The	following	programs	are	relevant:

Tool												 Description												 Coding	Status

kpl	 KPL	Compiler	 Completed

asm	 Blitz-64	Assembler	 Completed

link	 Blitz-64	Linker		 Completed

createlib	 Blitz-64	Library	Tool		 Completed

blitz	 Blitz-64	Hardware	Emulator		 Completed

Notation	and	Terminology

Syntax	and	Grammar		KPL	has	a	formally	specified	syntax.	However,	we	don’t	want	
to	bog	down	with	it,	so	in	this	document	we	give	the	grammar	informally.

For	repetition,	we	use	“…”	as	in:

 var ID, ID, ..., ID : Type

More	formally,	we	use	{	}*	to	mean	“zero	or	more	repetitions”,	as	in:

 var ID { , ID }* : Type

We	also	use	{	}+	to	mean	“one	or	more	repetitions”,	as	in:

 methods { MethodPrototype }+

In	other	situations,	braces	{	}	are	meant	literally,	not	as	grammar	meta-symbols:

 new array of int {11, 22, 33}

For	optional	constructs,	we	use	brackets	[]	as	in:

 var ID : Type [= Expression]

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
16 207

About	This	Document

We	also	use	brackets	[]	literally	when	we	describe	array	accessing.	In	array	
examples,	the	brackets	do	not	mean	optional.	We	assume	it	will	be	obvious	when	the	
brackets	are	meant	literally	and	when	they	indicate	optional	material.

 a[i] = 123

We	also	leave	out	material,	as	in:

 if Expression
 ... Statements ...
 elseIf Expression
 ... Statements ...
 else
 ... Statements ...
 endIf

Terminology	 	We	use	the	terms	byte,	halfword,	word,	and	doubleword,	to	refer	to	
various	sizes	of	binary	data.

	 number	 number				

		 of	bytes	 of	bits	 example	value	(in	hex)

	 byte	 1	 8 A4

	 halfword	 2	 16	 C4F9

	 word	 4	 32	 AB12CD34

	 doubleword	 8	 64	 0123456789ABCDEF

We	use	the	terms	KiByte,	MiByte,	and	GiByte	instead	of	KByte,	MByte,	and	GByte	to	
mean:

	 							Unit							 							Value																																																	

	 KiByte	 210	 1,024	 ~103

	 MiByte	 220	 1,048,576	 ~106

	 GiByte	 230	 1,073,741,824	 ~109

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
17 207

About	This	Document

The	Hello-World	Program

The	“Hello-World”	program	prints	a	message	and	stops.	The	code	for	every	program	
is	broken	into	two	files.

For	this	example,	the	first	file	is	named	“Hello.h”	and	is	called	the	header	file.	Header	
files	have	an	extension	of	“.h”.

 -- This is the header file for the "Hello-World" program...
 header Hello
 uses System
 functions
 main ()
 endHeader

The	second	file	is	named	“Hello.c”	and	is	called	the	code	file.	Code	files	have	an	
extension	of	“.c”.

 -- This is the code file for the "Hello-World" program...
 code Hello
 function main ()
 printf ("Hello, world\n")
 endFunction
 endCode

We’ll	show	the	keywords	of	the	language	(symbols	like	if,	else,	while,	header,	
endHeader,	etc.)	in	boldface. 

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
18 207

Packages

Each	program	is	broken	into	packages	and	every	package	has	a	name.	In	this	
example,	there	is	one	package	and	it	is	named	“Hello”.	For	each	package,	there	must	
be	one	header	file	and	one	code	file.	The	package	and	its	files	will	have	the	same	
name,	except	for	the	extensions	of	“.h”	and	“.c”.

Within	the	header	file,	there	will	be	exactly	one	instance	of	the	“header”	syntactic	
construct,	which	has	this	general	form:

 header ID ...other things... endHeader

Likewise,	the	code	file	will	contain	a	syntactic	construct	that	has	the	following	form:

 code ID ...other things... endCode

A	package	may	use	other	packages.	In	this	example,	the	“Hello”	package	uses	the	
package	named	“System”.	The	relationship	between	packages	is	made	explicit	in	the	
uses	clause.

The	uses	clause	has	the	following	general	form:

 uses ID, ID, ..., ID

The	uses	clause	appears	only	in	the	header	file	and	appears	directly	after	the	
package	name.

 header Hello
 uses System
 ...
 endHeader

The	code	in	the	Hello	package	calls	a	function	named	“printf”.	This	function	is	
defined	in	the	System	package.	If	the	programmer	had	failed	to	include	“uses	
System”	in	the	header	file,	the	compiler	would	produce	an	error	when	compiling	the	
package,	to	the	effect	that	“The	name	printf	is	undefined”. 

Blitz-64:	KPL	Introduction	/	Porter	 Page	 	of	19 207

Compiling

Let’s	compile	and	run	the	“Hello-World”	program.

The	unit	of	compilation	is	the	package.	In	other	words,	each	package	must	be	
compiled	separately	and	each	compilation	will	process	exactly	one	package.	Here	(in	
pseudo-code)	are	the	steps	we	must	take:

 For each package...
 • Compile the package to produce a “.s” file
 • Assemble the package to produce a “.o” file
 • Link all the object files to produce the “executable” file
 • Execute the program

Versions	of	the	development	tools	to	prepare	a	program	for	execution	can	be	run	on	
a	Unix/Linux/Mac	computer.	If	using	versions	of	the	tools	written	in	KPL	itself,	these	
commands	would	be	run	directly	on	a	Blitz-64	computer.

Regardless	of	where	the	program	is	compiled	and	executed,	we’ll	use	“%”	in	this	
document	to	stand	for	the	shell	prompt.	User-typed	input	will	be	shown	like
this.

First,	let’s	compile	the	“Hello”	package.	The	KPL	compiler	is	named	“kpl”.

 % kpl Hello

This	will	either	print	some	compile-time	error	messages	or	will	produce	a	file	called

 Hello.s

containing	Blitz-64	assembly	code.

During	the	compilation,	the	compiler	will	notice	that	the	Hello	package	uses	the	
System	package.	The	compiler	will	read	and	process	the	header	file	for	System.	The	
compiler	must	have	access	to	the	file	named	“System.h”.

However,	the	code	file	for	System	(i.e.,	the	file	named	“System.c”)	does	not	need	to	be	
accessed	when	compiling	Hello.	In	fact,	the	code	file	may	not	yet	have	been	written.	

Blitz-64:	KPL	Introduction	/	Porter	 Page	 	of	20 207

Compiling

Furthermore,	if	the	System	package	happens	to	use	other	packages,	then	the	header	
files	for	those	packages	would	also	be	read	and	processed	by	the	compiler.

Next,	we	need	to	assemble	the	“.s”	file.	The	Blitz-64	assembler	is	named	“asm”	and	
can	be	run	with	this	command:

 % asm Hello.s

The	assembler	will	produce	an	object	file,	with	the	name	“Hello.o”.

Normally,	the	System	package	will	have	been	compiled	and	assembled	already,	so	
the	files	“System.s”	and	“System.o”	will	already	exist.	The	System	package	is	supplied	
as	part	of	the	KPL	language	and	the	programmer	should	not	modify	it.

Nevertheless,	here	are	the	commands	to	create	these	files:

 % kpl System -unsafe
 % asm System.s

Safe	and	Unsafe

For	the	most	part,	the	KPL	language	is	strongly	and	safely	typed.	Bugs	created	by	the	
programmer	may	cause	erroneous	behavior	or	generate	error	messages,	but	they	
should	not	cause	a	“crash”	(core	dump,	segment	fault,	etc.).	However,	KPL	is	a	
systems	programming	language	and,	like	C	and	C++,	the	programmer	can	use	the	
language	in	ways	that	will	cause	a	crash.	For	example,	the	programmer	can	set	a	
pointer	to	an	arbitrary	value	and	use	it	to	store	arbitrary	data	into	any	location	in	
memory.

In	KPL,	several	constructs	in	the	language	are	considered	“unsafe”.	Their	use	could	
lead	to	a	crash	if	the	programmer	makes	a	mistake.	If	the	KPL	program	never	uses	
any	unsafe	constructs,	all	failures	of	the	program	will	be	tightly	controlled.	Either	
the	program	will	produce	erroneous	results,	or	the	runtime	system	will	catch	the	
bug	and	print	a	nice,	clean	error	message.	So,	if	unsafe	constructs	are	avoided,	the	
programmer	should	not	be	able	to	crash	the	system,	no	matter	how	bad	the	bug.	On	
the	other	hand,	if	the	programmer	uses	unsafe	constructs,	then	it	is	possible	for	a	
bug	to	result	in	a	program	crash.

The	compiler	can	be	used	in	two	modes.	In	“unsafe”	mode,	the	full	language	is	
allowed,	including	unsafe	constructs.	In	the	“safe”	mode,	the	compiler	will	not	allow	

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
21 207

Compiling

any	unsafe	constructs.	If	the	programmer	uses	an	unsafe	operation,	the	compiler	will	
print	an	error	message	saying	that	an	unsafe	operation	appeared	in	the	package.

By	default,	the	compiler	is	in	“safe”	mode.	The	command	line	flag	“-unsafe”	must	be	
used	when	compiling	a	package	that	uses	any	unsafe	constructs.

Linking

Now	that	we	have	compiled	all	the	necessary	packages,	we	need	to	link	them	
together	into	one	executable	file,	which	is	called	the	“a.out”	file.

The	KPL	system	includes	a	collection	of	runtime	support	routines	written	in	
assembly	language.	All	of	this	code	is	included	in	a	single	hand-code	assembly	
language	file	called	“Runtime.s”.	This	file	contains	routines	involved	in	program	
start-up	and	error	handling,	as	well	as	some	basic	character	I/O	routines.	The	
programmer	should	never	modify	the	“Runtime.s”	file.	Normally,	the	runtime	
routines	will	be	assembled	only	once,	producing	a	file	called	“Runtime.o”,	with	a	
command	like	this:

 % asm Runtime.s

The	next	step	is	to	combine	all	of	the	“.o”	object	files	into	an	executable	file.	This	step	
is	called	linking	and	is	done	with	a	program	called	“link”.	Here	is	the	command	line:

 % link System.o Hello.o Runtime.o -o Hello

The	“-o”	option	indicates	that	the	new	file	is	to	be	named	“Hello”;	without	it,	the	file	
would	be	named	“a.out”.

Finally,	we	can	run	the	program	with	the	Blitz-64	virtual	machine	emulator.	This	tool	
is	called	“blitz”	and	here	is	the	command	line	to	invoke	it	on	our	executable,	followed	
by	the	output.	The	“-g”	option	means	to	load	the	executable	file	into	memory	and	
begin	executing	it.

 % blitz -g Hello
 Beginning execution...
 ==================== KPL PROGRAM STARTING ====================
 Hello, world
 %

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
22 207

Compiling

Without	“-g”,	the	emulator	will	enter	a	command	mode,	where	the	user	can	do	things	
like	single-step	the	program,	examine	memory	and	registers,	look	at	variables	in	the	
runtime	stack,	etc.

If	there	are	errors	during	execution,	the	virtual	machine	emulator	will	enter	a	
command	mode,	allowing	the	programmer	to	begin	debugging.

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
23 207

The	Header	and	Code	Files

A	program	is	made	of	several	packages	and	each	package	is	described	by	a	header	
file	and	a	code	file.

The	header	file	is	the	specification	for	the	package.	It	provides	the	external	interface	
to	that	package,	giving	all	information	other	packages	will	need	about	what	is	in	the	
package.	In	the	Hello-World	example,	the	file	“Hello.h”	specifies	the	package	will	
contain	a	function	called	“main”	and	tells	what	parameters	this	function	takes	and	
returns.	(The	main	function	takes	no	parameters	and	returns	no	results.)

The	code	file	contains	the	implementation	details	for	the	package.	All	executable	
code	appears	in	the	code	file.	In	the	Hello-World	example,	the	“Hello.c”	file	contains	
the	actual	code	for	the	main	function.

When	a	package	is	compiled,	its	header	and	code	file	will	be	parsed	and	processed.	
Also,	the	header	files	for	any	packages	that	are	used	will	be	parsed	and	processed.	
This	also	includes	packages	that	are	used	indirectly,	as	for	example	when	package	A	
uses	package	B,	which	uses	package	C	in	turn.	However,	only	one	code	file—the	code	
file	for	the	package	being	compiled—is	parsed	and	processed	during	a	compilation.	
In	fact,	the	code	files	for	the	“used”	packages	may	not	even	have	been	created	yet.

For	example,	assume	that	package	Hello	uses	package	System,	as	in	the	above	
example.	When	compiling	Hello,	the	file	“System.c”	need	not	even	exist.	It	can	be	
created	later	and,	as	long	as	it	implements	the	specification	given	in	“System.h”,	it	
can	be	compiled	and	linked	with	Hello	with	no	risk	of	error.

What	if	a	header	file	is	used	in	one	compilation	and	then	altered	before	being	used	
within	the	compilation	of	another	package?		For	example,	what	if	we	compile	
package	Hello,	then	change	“System.h”	and	compile	the	System	package?		To	prevent	
the	errors	that	such	a	sequence	of	events	might	cause,	the	runtime	system	uses	a	
hash-based	check	at	start-up	time	to	ensure	(with	high	probability)	that	the	object	
files	are	all	consistent.

In	our	example,	we	asked	what	happens	when	System.h	is	changed	after	Hello	has	
been	compiled.	The	resulting	object	files	(System.o	and	Hello.o)	can	still	be	linked.	It	
is	possible	that	the	linking	will	fail,	but	it	may	complete	without	error.	For	example,	

Blitz-64:	KPL	Introduction	/	Porter	 Page	 	of	24 207

Header	and	Code	Files

the	link	step	would	fail	if	the	“print”	function	were	eliminated	altogether	from	the	
System	package,	but	the	link	step	would	complete	if	the	change	only	involved	
altering	the	number	or	types	of	parameters	to	the	print	function.	However,	when	the	
user	tries	to	execute	the	resulting	executable	file	(the	“a.out”	file),	the	runtime	
system	will	detect	the	inconsistency	during	program	start-up	and	initialization.	It	
will	print	an	error	message,	and	terminate	execution.

The	Header	File

The	following	things	can	go	into	a	header	file:

 Constant Definitions
 Global Variable Declarations
 Type Definitions
 Error Declarations
 Enumerations
 Function Prototypes
 Class Specifications
 Interfaces

Below	is	an	example	header	file	containing	examples	of	all	of	these	sorts	of	
components.	These	constructs	are	described	in	detail	in	subsequent	sections.

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
25 207

Header	and	Code	Files

 header MyPack
 uses System
 const
 pi = 3.1415
 MAX = 1000
 var
 x, y: int = -1
 perList: ptr to PERSON_LIST
 type
 PERSON_LIST = struct
 val: Person
 next: ptr to PERSON_LIST
 endStruct
 errors
 MY_ERROR (id: int)
 OTHER_ERROR (a,b,c: byte)
 enum
 NO_ERR = 0, WARNING, NORM_ERR, FATAL_ERR
 functions
 foo (a1: int, a2: byte) returns double
 bar (a1, a2: byte)
 printErrMess (errCode: int)
 class Person
 superclass Object
 fields
 name: ptr to array of byte
 id_num: int
 birthdate: int
 methods
 printID ()
 getAge () returns int
 endClass
 interface Ordered
 messages
 less (other: ptr to Ordered) returns bool
 greater (other: ptr to Ordered) returns bool
 endInterface
 endHeader

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
26 207

Header	and	Code	Files

The	Code	File

The	following	things	can	go	into	a	code	file:

 Constant Definitions
 Global Variable Declarations
 Type Definitions
 Error Declarations
 Enumerations
 Function Definitions
 Class Specifications
 Class Implementations
 Interfaces

Any	construct	that	may	appear	in	a	header	file	may	also	appear	in	a	code	file.	In	
addition,	the	code	file	will	contain	function	definitions	and	class	implementations.	
All	these	things	will	be	discussed	later,	but	here	is	an	example	code	file.	(Some	
material	is	replaced	with	“...”	to	shorten	this	example.)

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
27 207

Header	and	Code	Files

 code MyPack
 var
 privateVar: ptr to PERSON_LIST
 privErr: int = NO_ERR
 function foo (a1: int, a2: byte) returns double
 ...Variable declarations...
 ...Statements...
 endFunction
 function bar (a1, a2: byte)
 ...Variable declarations...
 ...Statements...
 endFunction
 function printErrMess (errCode: int)
 ...Variable declarations...
 ...Statements...
 endFunction
 behavior Person
 method printID ()
 ...Variable declarations...
 ...Statements...
 endMethod
 method getAge () returns int
 ...Variable declarations...
 ...Statements...
 endMethod
 endBehavior
 endCode

Within	the	header	and	code	constructs,	the	various	components	may	appear	in	any	
order;	they	need	not	be	in	the	order	shown	here. 

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
28 207

Syntax	and	Grammar

The	full	grammar	is	given	in	an	appendix.	The	grammar	is	also	repeated	in	the	
document:

“KPL	Syntax”

In	the	present	document,	the	grammar	is	suggested	informally.		For	example,	ellipses	
are	used	for	repetition:

 var ID, ID, ..., ID: Type

We	also	leave	out	information	when	not	relevant.

In	many	places,	the	grammar	makes	use	of	“end…”	keywords.	In	such	cases,	there	are	
two	matching	keywords:	the	first	serves	to	identify	a	syntactic	construct	and	the	
second	serves	to	terminate	the	construct.

For	example,	a	class	definition	has	the	form:

 class ...material describing the class... endClass

Here	are	some	other	examples.

 if ... endIf
 for ... endFor
 while ... endWhile
 switch ... endSwitch
 header ... endHeader
 code ... endCode
 interface ... endInterface
 behavior ... endBehavior
 function ... endFunction
 method ... endMethod
 struct ... endStruct
 union ... endUnion
 try ... endTry

Blitz-64:	KPL	Introduction	/	Porter	 Page	 	of	29 207

Syntax	and	Grammar

As	a	matter	of	style,	please	try	to	place	the	“end…”	keyword	directly	under	the	
keyword	it	matches	and	line	them	up	by	indenting	the	same	amount:

 function (...) returns ...
 ...Statements...
 while Expr
 if Expr
 ...Statements...
 endIf
 ...Statements...
 endWhile
 ...Statements...
 endFunction

Note	that	some	keywords	contain	uppercase	characters,	which	serve	to	make	those	
keywords	more	readable.	KPL	is	case	sensitive,	so	this	makes	the	language	a	little	
more	difficult	to	type.	However,	it	follows	the	general	KPL	philosophy	that	
readability	is	more	important	than	writability.	The	goal	is	a	language	whose	
programs	are	easier	to	read,	comprehend,	and	debug.

Missing	Semicolons

Many	programming	languages	(like	C++	and	Java)	use	the	semicolon	as	a	statement	
terminator.	However,	in	KPL,	there	is	no	statement	terminator.	The	grammar	has	
been	designed	carefully	to	avoid	any	ambiguities	that	might	arise.

Normally,	every	statement	would	be	placed	on	a	different	line,	although	this	is	not	
required.	For	example,	the	following	two	statements:

 a = b + c
 d = e * f

could	be	placed	on	the	same	line:

 a = b + c d = e * f

Although	placing	two	statements	on	one	line	is	not	recommended,	the	compiler	
parses	it	the	same	as	if	they	were	on	separate	lines.	The	lack	of	statement	
terminators	in	the	language	is	intended	to	make	the	resulting	programs	more	
readable	by	reducing	typographic	clutter.

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
30 207

Syntax	and	Grammar

Comments

KPL	uses	two	styles	of	commenting.	In	the	first	style,	everything	after	two	hyphens	
through	end-of-line	is	a	comment.

 x = y - 2 -- Adjust y a little

This	is	similar	to	the	comment	convention	in	C++	and	Java,	which	use	//,	but	KPL	
uses	the	hyphen	since	it	stands	out	more	visually.

The	second	comment	convention	is	/*	through	*/	which	is	also	used	in	C++	and	Java.

 x = y - 2 /* A comment can
 span multiple lines */

The	second	style	of	comments	can	be	nested,	unlike	in	C++	and	Java.	This	makes	it	
easy	to	disable	a	block	of	code	which	itself	contains	comments	or	disabled	code.

 /* Disable this code...
 x = a-2
 y = c*7 /* multiply by seven */
 z = b+5
 */

Lexical	Tokens

The	KPL	grammar	uses	several	types	of	tokens.	Here	are	some	examples	of	the	
different	types	of	tokens.	Lexically,	KPL	is	quite	similar	to	Java	and	C++.

 Examples
 ===============================
 KEYWORD if endFunction int
 INTEGER 42 0x1234abcd 10_000
 DOUBLE 3.1415 6.022e23 1.000_001
 CHAR 'a' '\n' '∉'
 STRING "hello" "\t\n"
 ID x my_var_name yPos
 OPERATOR <= > + -
 MISC PUNCTUATION () : . , ; =

Identifiers	may	contain	letters,	digits,	and	the	underscore.	They	must	begin	with	a	
letter.	Case	is	significant	for	all	identifiers	and	keywords.

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
31 207

Syntax	and	Grammar

Integer	and	double	constants	may	contain	underscores,	which	can	be	used	as	
separators	to	make	lengthy	values	more	readable.	Underscores	are	ignored.

 10000000
 10_000_000 	 —	Identical	value	and	easier	to	read2

Here	is	the	recommended	way	to	write	64	bit	values	in	hex:

 0x1234_5678_9abc_def0

	If	underscores	are	used,	they	must	be	used	correctly,	by	which	we	mean	every	three	digits.2

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
32 207

Statements

The	If	Statement

The	if	statement	in	KPL	differs	from	Java	or	C++	in	that	it	uses	the	“if	...	endIf”	syntax	
instead	of	braces	for	grouping.	Here	is	an	example.

 KPL Java and C++
 ================ ===================
 if x > y if (x > y) {
 max = x max = x;
 min = y min = y;
 else } else {
 max = y max = y;
 min = x min = x;
 endIf }

In	Java	and	C++,	the	conditional	expression	must	be	enclosed	in	parentheses,	but	in	
KPL	the	parentheses	are	not	required.	Of	course,	they	may	be	included	since	all	
expressions	may	be	enclosed	in	parentheses,	like	this:

 if (x > y)
 max = x
 ...

The	preferred	KPL	style	is	to	avoid	parentheses	in	order	to	reduce	syntactic	clutter,	
make	the	code	visually	cleaner,	and	not	obfuscate	the	underlying	algorithm.

If	there	is	only	one	statement	in	the	“then”	or	“else”	part,	the	braces	can	be	omitted	
in	Java	or	C++.	However,	in	KPL,	the	endIf	keyword	is	always	used.

 KPL Java and C++
 ================ ===================
 if x > y if (x > y)
 max = x max = x;
 endIf

In	Java	and	C++,	braces	are	used	to	group	multiple	statements	so	they	can	be	used	in	
contexts	requiring	a	single	statement.	Other	languages	use	“begin...end”.	KPL	is	

Blitz-64:	KPL	Introduction	/	Porter	 Page	 	of	33 207

Statements

different;	it	has	no	such	syntactic	construct	for	grouping	statements.	Instead,	any	
context	where	a	statement	may	be	used	(such	as	the	body	of	an	if	or	while)	may	
contain	a	sequence	of	zero	or	more	statements.	The	proper	grouping	is	always	
determined	by	the	placement	of	keywords	like	endIf,	endWhile,	and	so	on.

KPL	also	has	an	elseIf	keyword,	which	can	be	used	to	make	nested	if	statements	
more	readable:

 Nested if example Equivalent, using elseIf
 ================= ========================
 if x == 1 if x == 1
 z = a z = a
 else elseIf x == 2
 if x == 2 z = b
 z = b elseIf x == 3
 else z = c
 if x == 3 elseIf x == 4
 z = c z = d
 else else
 if x == 4 z = e
 z = d endIf
 else
 z = e
 endIf
 endIf
 endIf
 endIf

The	While	Statement

The	while	statement	in	KPL	looks	similar	to	Java	and	C++.	One	difference	is	that	KPL	
uses	the	while	and	endWhile	keywords	instead	of	braces	to	group	the	statements	of	
the	body.	Also,	the	conditional	expression	does	not	have	to	have	parentheses.

 KPL Java and C++
 ================ ===================
 while n > 0 while (n > 0) {
 y = y*2 y = y*2;

 endWhile }

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
34 207

Statements

In	KPL,	the	break	and	continue	statements	work	the	same	as	in	C,	C++,	and	Java.	
They	can	be	used	in	while,	do-until,	for,	and	switch	statements.	For	example:

 KPL C / C++ / Java
 ================ ===================
 while n > 0 while (n > 0) {

 if ... if (...) {
 break break;
 endIf }

 endWhile }

The	break	and	continue	statements	may	be	used,	just	like	in	C,	C++,	and	Java.	For	
example:

 while true
 ...
 if ...
 break
 endIf
 ...
 endWhile

The	Do-Until	Statement

KPL	has	a	do-until	statement,	which	is	similar	to	the	do-while	statement	in	Java	
and	C++.	(The	difference	is	that	the	termination	condition	in	KPL	is	reversed	from	
Java/C++,	and	KPL	uses	the	keyword	until	instead	of	while.)
3

 KPL Java and C++
 ======================= =========================
 do do {
 n = n-1 n = n-1;

 until n <= 0 } while (n > o);

	It	would	have	been	preferable	to	to	design	KPL	to	use	do-while,	but	because	of	the	syntactic	3

simplicity	of	KPL,	the	keyword	while	would	cause	problems.	Every	design	involves	compromise.

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
35 207

Statements

The	For	Statement

In	KPL,	the	for	statement	looks	similar	to	Java	and	C++,	except	the	endFor	keyword	
is	used	instead	of	braces.

 KPL Java and C++
 ======================= =========================
 for (n=1; n<MAX; n=n*2) for (n=1; n<MAX; n=n*2) {

 endFor }

There	is	a	second	form	of	the	for	statement	which	is	shown	in	the	next	example.	We	
also	give	an	equivalent	in	Java	and	C++.

 KPL Equivalent in Java and C++
 ===================== ==========================
 for i = 1 to 100 by 3 for (i=1; i<=100; i=i+3) {

 endFor }

The	general	form	is:

 for LValue = Expr1 to Expr2 by Expr3
 ...statements...
 endFor

The	“by	Expr3”	clause	is	optional;	if	it’s	missing,	the	default	is	an	increment	of	1.	The	
loop	always	counts	upward.	In	other	words,	the	termination	test	is:

 if LValue > Expr3 then terminate the loop

The	LValue	and	the	3	expressions	should	be	of	type	int.	There	is	also	a	form	where	
LValue,	Expr1,	and	Expr2	have	type	pointer.

This	second	form	of	the	for	loop	is	not	really	necessary	since	the	programmer	can	
always	achieve	the	same	effect	by	using	a	traditional,	C-like	version	of	the	for	
statement.	The	primary	reason	for	including	the	second	form	is	that	it	makes	some	
loops	a	little	easier	for	beginning	programmers	to	read	and	get	right.

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
36 207

Statements

The	break	and	continue	statements	can	be	used	in	both	forms	of	for	statement.

 KPL Equivalent in Java and C++
 ===================== ==========================
 for i = 1 to 100 by 3 for (i=1; i<=100; i=i+3) {

 if ... if (...) {
 continue continue;
 elseIf ... } else if (...) {
 break break;
 endIf }

 endFor }

The	Switch	Statement

The	switch	statement	looks	similar	to	the	switch	statement	in	Java	and	C++.

 KPL Java and C++
 ================ ============================
 switch i switch (i) {
 case 2: case 2:
 case 4: case 4:
 ...statements... ...statements...
 break break;
 case 1: case 1:
 case 3: case 3:
 case 5: case 5:
 ...statements... ...statements...
 break break;
 default: default:
 ...statements... ...statements...
 endSwitch }

Just	as	in	Java	and	C++,	the	break	statement	is	used	to	jump	to	the	end	of	the	switch	
statement;	execution	will	fall	through	to	the	next	group	of	statements	if	there	is	no	
break.

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
37 207

Statements

The	Return	Statement

The	return	statement	can	be	used	to	return	from	within	a	function	or	a	method.

 return

If	the	function	or	method	is	expected	to	return	a	value,	then	it	must	be	provided:

 return Expression

Other	Statements

Assignment	statements	look	the	same	as	in	C,	C++,	and	Java.

 x = y * (z + 4)

Function	invocation	looks	the	same	as	in	C,	C++,	and	Java.

 foo (3, x, "hello")

Method	invocation	is	always	done	with	the	“dot”	syntax:

 personPtr.ComputeTax (0.22, rateTable)

The	“->”	operator	from	C	and	C++	is	not	used	in	KPL

 p->meth (x, y); // This is not KPL  

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
38 207

Basic	Data	Types

Here	are	the	basic	data	types:

 Type Example Values
 ================ =================================
 int 123 -57 0x1234abcd1234abcd
 double 3.1415 -5.2e10
 bool true false
 byte 123 0x7f
 halfword 32767 0x12ab
 word -2147483648 0x1234abcd

The	first	three	of	these	(int,	double,	bool)	are	the	most	important	and	widely	used.	
The	remaining	three	are	not	as	commonly	used.

Values	of	type	int	are	always	represented	as	64-bit	signed	values,	stored	in	two’s	
complement	and	can	be	written	in	either	decimal	or	hex .	The	legal	range	for	int	4

values	is:

 Decimal
 -9,223,372,036,854,775,808 … 9,223,372,036,854,775,807
 Hex
 0x8000,0000,0000,0000 … 0x7FFF,FFFF,FFFF,FFFF

Values	of	type	double	are	always	stored	using	the	IEEE	64-bit	floating-point	
standard.

Values	of	type	bool	are	stored	using	a	single	byte.

In	addition,	KPL	has	3	additional	“representation”	types.	These	types	are	not	widely	
used,	but	are	available	for	situations	where	the	programmer	needs	full	control	over	
data	representation:

 byte
 halfword
 word

	We	use	comma	separators	in	this	document	for	clarity,	but	separators	are	not	allowed	in	KPL	4

code.

Blitz-64:	KPL	Introduction	/	Porter	 Page	 	of	39 207

Basic	Data	Types

By	default,	all	integer	values	are	of	type	int	and	all	arithmetic	computation	is	
performed	with	64	bits.	To	use	the	types	byte,	halfword,	and	word,	the	data	must	
be	explicitly	moved	and	the	programmer	must	choose	either	range	checking	or	
truncation	when	data	is	downsized.

We	also	mention	the	ptr	data	type	here,	although	it	is	not	considered	a	“basic”	type.

 KPL C / C++

 ================ ========================

 ptr to Type * Type
 ptr to int * int
 ptr to MyClass * MyClass

KPL	uses	the	familiar	operators	*	and	&	to	dereference	pointers	and	to	obtain	the	
address	of	data:

 var p: ptr to int
 p = &x
 *p = 123

Here	are	the	data	sizes:

 Type Representation
 ================ ====================
 bool 8 bits = 1 byte
 byte 8 bits = 1 byte
 halfword 16 bits = 2 bytes
 word 32 bits = 4 bytes
 int 64 bits = 8 bytes
 double 64 bits = 8 bytes
 ptr to ... 64 bits = 8 bytes

Even	though	KPL	was	designed	for	one	particular	CPU	architecture,	the	language	
makes	it	clear	exactly	how	all	values	will	be	represented	in	memory.	The	goal	of	
portability	is	that	a	program	must	execute	predictably	and	identically,	regardless	of	
which	machine	it	runs	on.

There	are	two	values	of	type	bool,	represented	by	the	keywords	true	and	false.	As	in	
C	/	C++,	false	is	represented	with	the	byte	0x00.	Any	other	value	is	interpreted	as	
true,	with	0x01	being	the	usual	value.

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
40 207

Basic	Data	Types

C++	traces	its	roots	back	to	C,	in	which	ints	were	used	for	Boolean	values.	KPL	is	a	
little	more	particular	about	conditional	expressions	than	C	and	C++.	In	KPL,	there	is	
no	implicit	coercion	from	ints	to	bools;	the	programmer	must	make	the	test	explicit.

 KPL C++

 ================ ========================

 if (i != 0) ... if (i) ...

Integer	Constants

An	integer	value	can	be	specified	in	either	decimal	or	hex,	whichever	the	
programmer	finds	most	convenient	or	clear.

 var i: int
 ...
 i = 38
 i = 0x26 -- Equivalent

Sign-extension	of	hex	constants	does	not	occur:

 i = 0xff -- This...
 i = 0x00000000000000ff -- ... is equivalent to this
 i = 0xffffffffffffffff -- ... and not to this

All	integer	constants	are	represented	as	64	bit	signed	values:

 i = -957
 i = -0x3bd -- Equivalent
 i = 0xfffffffffffffc43 -- Also equivalent

Character	Constants

An	individual	character	is	represented	using	an	integer	value.	For	example,	‘a’	is	
stored	as	the	value	97	(hex	0x61).	An	individual	character	is	stored	in	a	variable	of	
type	int;	the	“char”	data	type	is	unnecessary	and	is	not	included	in	KPL.

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
41 207

Basic	Data	Types

KPL	uses	Unicode	and	individual	characters	are	represented	using	their	Unicode	
“codepoint”	values.	In	KPL,	characters	are	stored	in	int	variables.

 var c: int
 c = 'a' -- Same as c = 97
 c = '€' -- Same as c = 8364

 c = '😀 ' -- Same as c = 128512

Escapes	may	be	used;	the	following	are	all	equivalent	and	result	in	the	same	value	
being	stored:

 c = '\n'
 c = 10
 c = 0x0a
 c = '\x0a'

The	usual	backslash	escapes	may	be	used	in	character	and	string	constants.

 message = "Hello, world\n"

Since	the	codepoints	of	all	ASCII	characters	are	within	the	range	0	…	127	(0x00	…	
0x7f)	,	every	ASCII	code	fits	in	a	variable	of	type	byte.

 var c2: byte
 c2 = 'a' -- Same as c2 = 97

In	legacy	code,	programmers	often	store	ASCII	characters	in	an	8-bit	data	type	called	
“char”.	Although	KPL	programmers	can	certainly	use	variables	of	type	byte,	using	an	
int	is	the	way	it	should	be	done	in	KPL.

Floating	Point	Constants

Floating	point	constants	are	coded	in	the	usual	ways.

 var d: double
 ...
 d = 123.456
 d = 1.4999999e-57
 d = 42 -- Integers are converted as necessary

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
42 207

Basic	Data	Types

All	floating	point	constants	are	represented	as	double	precision	numbers	(that	is,	
with	64	bits)	according	to	the	IEEE	standard.	KPL	does	not	support	single	precision	
floating	point	numbers.	This	was	not	an	oversight.

Conversions

Conversions	are	discussed	in	depth	elsewhere	but	we	can	say	this:

Integer	constants	generally	have	type	int.	However,	small	integer	constants	can	be	
used	in	contexts	requiring	byte,	halfword,	or	word	values	if	they	fall	within	the	
range	of	the	type.

All	integer	arithmetic	and	bitwise	logical	operations	will	be	performed	using	64	
signed	values.	When	applied	to	byte,	halfword,	or	word	data,	all	arithmetic	and	
logical	operators	will	produce	a	64	bit	result	of	type	int.

Integer	constants	will	be	converted	to	floating-point	values	whenever	required,	but	
only	if	the	value	can	be	represented	exactly	as	a	double	value. 

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
43 207

Variables

Every	variable	is	either	a	local	variable	or	a	global	variable.	Of	course	data	may	also	
be	placed	in	memory	which	has	been	dynamically	allocated	on	the	heap,	but	this	is	
discussed	in	a	later	section.

All	variables—local	and	global—will	be	initialized.	If	an	initializing	expression	is	
provided,	it	is	used;	if	not,	the	variable	will	be	initialized	to	its	zero	value.

Variable	Declarations

Variables—both	local	and	global—are	declared	using	the	keyword	var:

 KPL Java and C++
 ================ ========================
 var i: int int i;

Several	variables	can	be	declared	at	once,	however	the	var	keyword	must	appear	
only	once.	Also,	variables	may	be	given	initial	values,	if	desired.

 KPL Java and C++
 ================ ========================
 var
 x, y, z: byte char x, y, z;
 a, b: double = 1.5 double a = 1.5, b = 1.5;
 i, j: int = f(a) int i = f(a), j = i;
 isDone: bool = false bool isDone = false;

Any	variable	that	is	not	explicitly	initialized	will	be	set	to	binary	zeros.	Thus,	it	is	
more	difficult	in	KPL	than	in	C++	to	pick	up	random	data	values	from	uninitialized	
memory.

Blitz-64:	KPL	Introduction	/	Porter	 Page	 	of	44 207

Variables

Here	are	the	zero	values	for	the	basic	types:

 Type Default Initial Value
 ================ =====================
 int 0
 double +0.0
 bool false
 ptr to ... null
 byte 0 (= 0x00)
 halfword 0 (= 0x0000)
 word 0 (= 0x00000000)

Variables	of	type	struct	and	union	will	be	initialized	to	zero	values,	which	means	all	
fields	will	be	set	to	their	default	initialization	of	zero	values.

All	objects	and	arrays	contain	hidden	information.	Every	object	contains	a	hidden	
field	which	indicates	the	object’s	class	and	is	used	in	message	dispatching.	Every	
array	contains	an	indication	of	the	current	and	maximum	sizes	of	the	array.

Objects	and	arrays	are	initially	in	an	uninitialized	state.	Every	object	and	array	must	
be	initialized	before	use.	In	the	uninitialized	state,	these	hidden	fields	are	zeros	and	
a	zero	indicates	that	the	object	or	array	is	uninitialized.

Any	attempt	to	access	or	use	an	uninitialized	object	or	array	will	result	in	an	error	
message	saying	as	much.

Local	Variables

Local	variables	are	declared	at	the	beginning	of	functions	and	methods.	Local	
variables	only	exist	while	the	function	or	method	is	being	executed.

When	a	function	or	method	is	executed	(that	is,	when	the	function	is	“called”	or	the	
method	is	“invoked”),	a	stack	frame	is	allocated	on	the	stack.	Local	variables	are	
always	placed	in	such	stack	frames.

Global	Variables

Any	variable	that	is	declared	outside	of	a	function	or	method	is	called	a	“global	
variable”.	Each	global	variable	is	placed	in	a	fixed,	unchanging	memory	location.	
Consequently,	each	global	variable	exists	throughout	the	execution	of	the	program.

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
45 207

Variables

Sometimes	these	variables	are	called	“static	data”,	but	KPL	uses	the	term	“global	
variables.”

Global	variables	may	be	declared	either	in	a	header	file	or	in	a	code	file.	Where	it	is	
declared	determines	the	visibility	of	the	global	variable.

Global	variables	declared	in	a	header	file	can	be	accessed	from	anywhere	in	that	
package	and	anywhere	in	any	package	that	uses	the	package	containing	the	
declaration.	However,	variables	declared	in	a	code	file	are	accessible	only	from	the	
code	portion	of	the	package	containing	the	declaration.

Thus,	there	is	a	facility	for	information	hiding.	A	global	variable	is	either	shared	with	
other	packages	(by	placing	its	declaration	in	the	header	file)	or	the	variable	is	
private	and	local	to	a	single	package	(by	declaring	it	in	the	code	file). 

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
46 207

Complex	Data	Types

A	type	is	said	to	be	complex	if	it	somehow	involves	other	types.	For	example,	an	
array	type	always	involves	a	“base	type”	(e.g.,	double)	which	is	the	type	of	the	
elements.

KPL	has	the	following	complex	data	types:

 Type Example
 ================ ================================
 Arrays array [10] of double
 Pointers ptr to array [10] of double
 Structs struct
 val: double
 next: ptr to MY_STRUCT
 endStruct
 Unions union
 valAsDouble: double
 valAsInt: int
 endUnion
 Functions function (a,b: int) returns bool
 Classes class Person
 ...
 endClass
 Interfaces interface Taxable
 ...
 endInterface

These	will	be	discussed	in	subsequent	sections	of	this	document.

In	addition,	there	are	three	somewhat	unusual	types,	which	are	not	used	as	
frequently	as	other	types:

 anyType
 typeOfNull
 void

The	type	anyType	subsumes	all	other	types.	It	can	only	be	used	in	certain	contexts.	
For	example,	we	cannot	have	a	variable	with	type	anyType,	since	the	compiler	

Blitz-64:	KPL	Introduction	/	Porter	 Page	 	of	47 207

Complex	Data	Types

cannot	know	how	many	bytes	will	be	needed	to	store	the	value.	But	we	might	have	
the	following	type:

 ptr to anyType

The	type	typeOfNull	is	not	normally	used	by	the	programmer.	This	type	has	only	one	
value,	the	null	pointer,	which	is	represented	with	the	keyword	null.	The	null	value	is	
a	pointer	whose	value	is	zero.

The	type	void	is	used	in	only	in	conjunction	with	pointers,	as	in

 ptr to void

Normally,	all	pointer	types	are	type-checked.	The	use	of	void	effectively	turns	off	
type	checking	for	pointers.	A	value	of	type	ptr	to	void	can	be	assigned	to/from	any	
other	pointer	type.	The	use	of	type	ptr	to	void	is	“unsafe”	in	the	sense	discussed	
earlier	in	this	document.

Type	Definitions

KPL	has	a	“type	definition”	construct.	Here	is	an	example:

 type MY_STRUCT = struct
 val: double
 next: ptr to MY_STRUCT
 endStruct

Such	a	definition	then	allows	“MY_STRUCT”	to	be	used	instead	of	having	to	re-type	
the	full	type	everywhere	it	is	needed.

The	general	form	is

 type ID = ...type...
 ID = ...type...
 ...
 ID = ...type...

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
48 207

Complex	Data	Types

Here	is	an	example	showing	that	several	type	definitions	can	follow	the	type	
keyword.

 type
 MY_PTR = ptr to PERSON_LIST -- Used here
 MY_ARRAY = array [100] of PERSON_LIST -- ...and here
 PERSON_LIST = struct ... endStruct -- But, defined here

Notice	that	the	type	PERSON_LIST	is	used	before	it	is	defined.	This	is	okay	and	this	
occurs	in	other	places	as	well.	For	example,	a	class	may	be	used	at	one	point	in	a	
source	code	file	and	defined	at	a	later	point	in	that	file. 

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
49 207

Arrays

Array	types	have	the	following	general	form:

 array [...SizeExpr...] of ...type...

Here	is	an	example	variable	declaration	using	an	array	type:

 var a: array [100] of double

The	SizeExpr	gives	the	number	of	elements	in	the	array	and	must	be	statically	
computable	so	that	the	compiler	can	determine	how	many	bytes	to	allocate	for	this	
variable.

The	numbering	of	the	array	elements	begins	at	zero,	so	this	array	has	elements

 a[0], a[1], ... a[99]

Array	elements	can	be	accessed	(i.e.,	read	and	updated)	using	the	normal	bracket	
notation.	For	example:

 a[i] = x
 y = a[foo(j)+k]

In	KPL,	arrays	always	carry	their	sizes	along	with	them.	Every	attempt	to	access	an	
array	element	will	be	checked	at	runtime	to	ensure	the	index	expression	is	within	
the	bounds	of	the	array.	If	an	attempt	is	made	to	access	an	array	element	that	is	“out	
of	bounds”,	a	runtime	error	will	be	thrown.

Typically,	any	error	will	result	in	a	message	and	execution	will	be	immediately	
terminated.	Therefore,	the	notorious	“buffer	overrun”	errors	from	C	/	C++	cannot	
occur	in	KPL	when	arrays	are	used.

Blitz-64:	KPL	Introduction	/	Porter	 Page	 	of	50 207

Arrays

Creating	Arrays

There	are	two	ways	to	create	an	array:	the	new	expression	and	the	alloc	expression.	
Both	have	a	similar	syntax	differing	only	in	the	keyword	used,	although	each	has	a	
very	different	meaning.

 new ...ArrayType... { ...Initialization... }
 alloc ...ArrayType... { ...Initialization... }

Here	the	braces	are	used	directly,	and	do	not	indicate	multiple	occurrences.	For	
example:

 new array of double { 1.111, 2.222, 3.333, 4.444 }
 new array of double { 100 of 1.111, 500 of 2.222 }

The	new	expression	creates	a	new	array	value	and	returns	it.	For	example,	the	
following	will	initialize	the	variable	“a”	by	setting	all	its	elements	to	the	value	-1.23.

 a = new array of double { 100 of -1.23 }

A	new	expression	is	an	R-Value,	not	an	L-Value .	In	this	way	it	is	similar	to	an	int	5

constant.	For	example,	you	cannot	ask	for	its	address,	although	you	could	ask	for	the	
address	of	variable	“a”.

Note	that	the	SizeExpr	in	the	ArrayType	after	the	new	keyword	is	normally	left	out,	
since	it	is	redundant.

 a = new array of double { 100 of -1.23 }
 a = new array [100] of double { 100 of -1.23 } -- Equivalent

	The	terms	“R-Value”	and	“L-Value”	come	from	compiler	technology.	An	R-Value	is	any	expression	5

that	can	occur	on	the	righthand	side	of	an	assignment.	When	evaluated	at	runtime,	it	yields	a	data	
value	that	can	be	copied	or	used	in	some	way.	An	L-Value	is	any	expression	that	can	appear	on	the	
lefthand	side	of	an	assignment.	When	evaluated,	it	gives	a	location	or	memory	address	into	which	
a	data	value	can	be	stored.

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
51 207

Arrays

The	alloc	expression	allocates	memory	on	the	heap,	initializes	the	array,	and	returns	
a	pointer	to	it.	Here	is	an	example	of	the	alloc	expression:

 var p: ptr to array [5] of int
 ...
 p = alloc array of int { 0, 11, 22, 33, 44 }

Elements	of	an	array	allocated	on	the	heap	may	be	accessed	using	the	bracket	
notation.	Whenever	brackets	are	applied	to	a	pointer	to	an	array—instead	of	to	an	
array	directly—a	pointer	dereferencing	operation	will	be	automatically	inserted	by	
the	compiler.
6

 p[i] = ... -- p is a pointer
 ... = p[j]

Every	element	of	a	newly	created	array	(whether	created	in	a	new	expression	or	an	
alloc	expression)	must	be	given	an	initial	value.	The	values	are	listed	in	order	
between	the	braces.	A	single	value	may	be	copied	many	times	using	the	syntax

 CountExpression of ValueExpression

For	example	“100	of	–1.234”	will	initialize	100	elements	to	the	same	floating	point	
value.	Both	the	CountExpression	and	the	ValueExpression	may	be	complex	
expressions,	evaluated	at	runtime.	Here	are	more	examples	of	array	creation	and	
initialization:

 arr1 = alloc array [13] of double { 1.1, 2.2, 10 of 3.3, 4.4 }
 arr2 = alloc array [n+m] of double { n of 0.0, m of 9.999 }
 arr3 = alloc array [f(k)] of double { f(k) of g(x)*0.5 }

	Generally	speaking	in	KPL,	a	pointer	dereference	will	be	inserted	whenever	necessary.	So	“p[i]”	is	6

equivalent	to	“(*p)[i]”.	The	programmer	can	use	either,	but	the	first	is	the	preferred	style	because	it	
is	shorter	and	simpler.

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
52 207

Arrays

Array	Representation

Each	array	is	stored	along	with	a	8-byte	header	giving	the	number	of	elements.	This	
header	field	precedes	the	first	element.	For	example,	this	array

 var a: array [100] of int

would	require	8	+	100*8	bytes	of	storage	(=	808	bytes),	since	each	int	value	requires	
8	bytes.

The	purpose	of	the	array	header	field	is	to	allow	all	array	accesses	to	be	checked.	If	
an	attempt	is	made	to	fetch	or	modify	an	element	that	is	not	within	the	array,	a	
runtime	error	will	be	thrown.	These	checks	are	inserted	by	the	compiler.
7

The	presence	of	the	array	header	also	makes	it	possible	to	safely	copy	arrays.	For	
example:

 var
 x: array [10] of double = ...
 y: array [5] of double = ...
 ...
 x = y

When	asking	for	the	address	of	arrays	and	array	elements,	note	that	the	address	of	
the	array	is	always	8	bytes	less	than	the	address	of	the	first	element,	since	the	array	
size	is	stored	directly	before	the	first	element.

 &a[0] == &a + 8

	The	Blitz-64	Instruction	Set	Architecture	(ISA)	includes	special	instructions	(INDEX0,	INDEX1,	7

INDEX2,	…	INDEX32)	which	perform	array	index	scaling	and	bounds	checking	in	a	single	
instruction.	Thus,	the	execution	overhead	for	bounds	checking	an	array	access	is	minimal.

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
53 207

Arrays

The	array	header	actually	stores	two	values,	a	MAXIMUM	size	and	a	CURRENT	size.	
The	header	consists	of	8	bytes.	The	first	word	is	the	MAXIMUM	size	and	the	second	
word	is	the	CURRENT	size.
8

One	benefit	of	this	arrangement	is	that	extra	space	can	be	preallocated	for	an	array.	
The	array	can	then	change	size	and	grow	at	runtime,	as	long	as	it	remains	within	its	
preallocated	maximum	size.

In	practice,	the	KPL	approach	to	array	seems	convenient.	If,	however,	the	overhead	
of	the	array	header	is	considered	unacceptable,	the	programmer	can	always	work	
with	pointers	directly.

Array	Sizes

A	header	is	present	on	every	array	and	it	contains	two	integer	values:	the	CURRENT	
size	and	the	MAXIMUM	size	of	the	array.	Both	are	always	element	counts,	not	byte	
counts.

Every	read	and	write	to	the	array	will	be	checked	to	ensure

0 <= index < currentSize

If	this	test	fails,	an	error	will	be	thrown	at	runtime.

	An	array	header	has	this	format:
8

	 Offset	

	 0	 MAX:	word

	 4	 CURR:	word

	 8	 First	element:	…

Both	MAX	and	CURR	count	elements,	not	bytes.	KPL	imposes	a	ceiling	limit	of	2,147,483,647	
elements	for	any	single	array.	For	an	array	of	ints,	this	limits	the	array	size	to	16	GiBytes.

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
54 207

An	array	header	has	the	format:

	 Offset	

	 0	 MAX:	word

	 4	 CURR:	word

	 8	 First	element:	…

Both	MAX	and	CURR	count	elements,	not	bytes.	
KPL	imposes	a	ceiling	limit	of	2,147,483,647	
elements	for	any	single	array.	For	an	array	of	

Arrays

The	CURRENT	size	of	an	array	can	be	determined	with	arraySize:

i = arraySize (arr) -- The argument can be an array variable
i = arraySize (arr_ptr) -- ...or a pointer to an array

The	MAXIMUM	size	of	an	array	can	be	determined	with:

i = arrayMaxSize (arr)
i = arrayMaxSize (arr_ptr)

The	CURRENT	size	of	an	array	can	be	changed	with	setArraySize.	The	new	size	
must	be	within	0	…	MaxSize	or	an	error	will	be	thrown.

setArraySize (arr, 30)
setArraySize (arr_ptr, 30)

The	CURRENT	size	of	an	array	can	be	set	to	the	MAXIMUM	size	with:

setArraySize (arr, arrayMaxSize (arr))
setArraySize (arr_ptr, setArraySize (arr_ptr, 30))

Since	it	is	common	to	deal	with	Strings	and	arrays	of	bytes,	there	is	an	additional	
function:	maximizeString.	This	will	set	the	CURRENT	size	to	the	MAXIMUM	size.

maximizeString (str)

The	argument	(of	type	ptr	to	array	of	byte)	should	have	been	initialized	previously	
or	an	error	will	be	thrown.

Initializing	Arrays

As	previously	mentioned,	every	array	carries	a	hidden	8	byte	header	which	tells	the	
size	of	the	array.	Consequently,	every	array	must	be	initialized	before	use.

When	initial	values	are	given,	the	initialization	of	the	header	is	implicit.	In	the	next	
example,	we	demonstrate	initialization	in	two	ways:	with	new	and	on	the	heap	with	
alloc.

 var
 a: array [100] of double = new array of double { 100 of -1.23 }
 p: ptr to array of double
 ...

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
55 207

Arrays

 p = alloc array of double { 300 of 5.67 }
 
With	both	new	and	alloc,	the	CURRENT	is	initialized	to	the	MAXIMUM	value.

In	some	cases,	it	may	be	desirable	to	initialize	arrays	explicitly	and	the	built-in	
function	initializeArray	can	be	use	for	that,	as	in:

 var
 arr: array [100] of double
 ...
 initializeArray (arr)

This	function	will	only	set	the	header;	it	will	not	alter	the	elements	of	the	array.	The	
programmer	can	rely	on	the	fact	that	all	storage	will	be	set	to	zero	before	use.	Since	
initializeArray	will	set	both	the	CURRENT	and	MAXIMUM	sizes	to	the	same	value,	
this	will	have	the	same	effect	as:

 arr = new array of double { 100 of 0.0 }

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
56 207

Arrays

The	initializeArray	function	can	also	initialize	an	array	using	a	pointer,	as	in:

 var
 arr_ptr: ptr to array [100] of double
 ...
 arr_ptr = ... -- for example: arr_ptr = &arr
 initializeArray (arr_ptr)

In	the	above	example,	“arr_ptr”	had	better	point	to	a	block	of	memory	large	enough	
to	contain	all	the	array	elements,	plus	the	8	byte	header	which	every	array	has.	Since	
the	CURRENT	size	will	be	set	to	the	MAXIMUM	size,	the	new	array	will	pick	up	
whatever	values	were	previously	in	that	memory	region.

Dynamic	Arrays

Often	the	programmer	will	work	with	“dynamic	arrays”,	whose	size	is	not	known	at	
compile	time.	In	such	cases,	pointers	to	arrays	must	be	used	and	the	array	must	be	
placed	on	the	heap.

In	a	dynamic	array	type,	the	SizeExpr,	along	with	the	brackets,	is	left	out:

 array of ...type...

Here	is	an	example:

 var dynArr: ptr to array of double
 ...
 dynArr = alloc array of double { n+m of 0.0 }
 ...
 dynArr [i] = dynArr [j]

The	array	size	will	be	inferred	from	the	number	of	initial	values	in	the	initialization	
part.	When	the	array	is	created	at	runtime,	the	expression	“n+m”	will	be	evaluated	to	
determine	the	amount	of	memory	to	be	allocated.

To	determine	the	size	of	a	dynamic	array	at	runtime,	the	programmer	can	use	the	
built-in	function	arraySize.	This	expression	returns	the	number	of	elements	in	the	
array.

 i = arraySize (dynArr) -- In this example, returns n+m

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
57 207

Arrays

Multidimensional	Arrays

In	the	previous	examples,	the	type	of	the	array	elements	has	been	a	simple	type	like	
int	or	double,	but	the	element	type	can	be	any	type,	even	another	array.	Here	is	an	
example	of	a	2	dimensional	array,	which	is	nothing	more	than	an	array	of	arrays:

 var arr_2D: array [100] of array [500] of double

There	is	a	“syntactic	shorthand”	for	specifying	arrays	of	several	dimensions.	For	
example,	the	previous	example	could	also	be	written	as	follows,	with	no	change	in	
meaning.	The	compiler	will	simply	expand	the	following	code	into	the	code	shown	
directly	above.

 var arr_2D: array [100, 500] of double

For	array	types	with	more	than	one	dimension,	the	programmer	must	specify	all	
sizes,	except	possibly	the	first.	In	other	words,	only	the	first	dimension	may	be	
dynamic.	The	remaining	dimensions	must	be	statically	known	so	that	compiler	can	
create	the	proper	address	calculations.

The	grammar	allows	the	asterisk	to	be	used	for	array	types	of	higher	dimension,	
when	the	first	dimension	is	dynamic.	The	asterisk	may	only	appear	in	the	first	
dimension.	For	example:

 var arr_3D: ptr to array [*, 5, 25] of double

Here	is	some	code	to	initialize	the	array:

 arr_3D = alloc array [*,5,25] of double
 { 100 of new array [5,25] of double
 { 5 of new array of double
 { 25 of -9.999 } } }

To	access	elements	in	a	multi-dimensional	array,	several	index	expressions	must	be	
provided,	separated	by	commas.	For	example:

 d = arr_3D [a, b+3, c]

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
58 207

Arrays

Array	accessing,	as	illustrated	above,	is	also	nothing	more	than	a	syntactic	shorthand	
for	a	more	complex	expression.	For	example,	the	following	expressions	are	
completely	synonymous:

 arr_3D [a, b+3, c]
 arr_3D [a] [b+3] [c]
 ((arr_3D [a]) [b+3]) [c]

In	the	case	of	arrays	with	dimension	greater	than	1,	the	arraySize	expression	
returns	the	size	of	the	first	dimension	only.

 i = arraySize (arr_3D)

Since	each	element	in	a	3	dimensional	array	is	itself	a	2	dimensional	array,	we	could	
always	write	something	like:

 j = arraySize (arr_3D[0]) -- Sets j to 5
 k = arraySize (arr_3D[0,0]) -- Sets k to 25

Array	Equality

Arrays	can	be	compared	using	the	==	and	!=	operators.

In	order	for	two	arrays	to	be	equal,	they	must	have	the	same	CURRENT	size	and	each	
of	their	elements	must	be	pairwise	equal.

The	CURRENT	size	is	used	to	determine	how	many	elements	are	to	be	compared.		
Their	MAXIMUM	sizes	are	ignored.	If	the	MAXIMUM	size	is	larger	than	the	CURRENT	
size,	the	additional	elements	are	ignored.

Two	uninitialized	arrays	are	considered	equal,	since	their	CURRENT	sizes	are	both	
zero.

All	elements	up	to	the	CURRENT	size	are	compared.	Element	comparison	simply	
tests	bit	equality.  9

	Note	that	if	the	array	elements	are	themselves	array	elements,	this	equality	check	will	compare	9

all	bytes	of	each	element,	up	to	the	MAXIMUM	size.	So	the	equality	test	used	on	the	elements	is	not	
“array	equality”	as	defined	in	the	section.	Instead,	the	elements	are	compared	in	their	entirety,	
byte-by-byte.

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
59 207

Strings

Strings	are	represented	as	pointers	to	arrays	of	bytes.	For	example,	the	following	is	
type-correct:

 var str: ptr to array of byte
 ...
 str = "hello"

The	“System”	package	includes	the	following	type	definition:

 type String = ptr to array of byte

Thus,	it	is	more	common	to	define	variables	like	this:

 var str: String

We	can	access	the	elements	of	the	string,	just	as	we	access	any	array:

 var ch: int
 ...
 ch = str [1] -- sets ch to 'e' = 101 = 0x65
 str [3] = 'k' -- now str points to "helko"

We	can	print	the	string	using	the	built-in	printf	statement:

 printf ("str = %s\n", str)

The	printf	function	is	discussed	elsewhere,	but	much	of	the	functionality	comes	
from	C.	Here	are	examples	which	C	programmers	will	understand:

 printf ("My int = %d\n", i) -- Print in decimal
 printf ("%20d", i) -- Pad to field width
 printf ("%-20.5s", str) -- Truncate, left-justify, pad
 printf ("%x", i) -- Print in hex
 printf ("%#016X", i) -- Misc formatting
 printf ("%f", dVal) -- Print a double
 printf ("%-23.8f", dVal) -- Precision, left-justify, pad
 printf ("%d \t %s\n\n %d", i, str, i) -- Print several things
 printf ("\t\"\n\\") -- Escape sequences

Blitz-64:	KPL	Introduction	/	Porter	 Page	 	of	60 207

Strings

The	printf	function	is	understood	by	the	KPL	compiler	and	it	will	check	the	above	
formatting	strings.	The	compiler	will	also	verify	that	all	value	expressions	are	type-
correct.

In	KPL,	arrays	always	carry	their	sizes	with	them.	There	is	no	need	for	a	terminating	
ASCII	“null”	character	and	it	is	not	normally	used.

This	is	a	major	difference	from	how	strings	are	dealt	with	in	C	/	C++,	where	a	
forgotten	terminating	“null”	is	a	familiar	mistake.	Of	course	it	is	certainly	possibly	to	
add	a	terminating	“null”	in	KPL,	if	you	happen	to	encounter	any	reason	to:

 str = "hello\0"

Each	new	string	constant	appearing	in	a	program	will	cause	a	new	array	to	be	
created.		For	example,	the	following	code	will	create	two	arrays,	even	though	the	
string	constants	contain	the	same	characters:

 str1 = "hello"
 str2 = "hello"

All	string	arrays	will	be	placed	in	writable	segments	and	may	therefore	be	updated	
in	place.

String	Equality

Strings	are	represented	as	arrays,	so	comparisons	using	==	and	!=	follow	the	rules	
for	pointer	and	array	comparison:

 var str1, str2: String
 if str1 == str2 … Compare	pointers
 if *str1 == *str2 … Compare	all	characters

Other	comparisons	(such	as	“<”	for	lexicographic	ordering)	are	complex	for	UTF-8	
strings,	so	these	must	be	done	by	calling	specialized	functions.

Unicode	and	UTF-8

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
61 207

Strings

String	constants,	character	constants,	and	comments	may	use	the	full	Unicode	
character	set .
10

 -- Note that ∞ ≠ 😀
 review_4 = "Café of the Naïve (€€€)"
 ch = '𝜋'

However,	all	keywords	and	identifiers	are	restricted	to	the	ASCII	subset.

 var 𝜋: double -- Compile-time error

In	KPL,	a	“String”	is	an	array	of	bytes.	Strings	are	stored	using	the	UTF-8	encoding	
system.	In	UTF-8	encoding,	each	character	requires	between	1	and	4	bytes.

In	UTF-8,	every	ASCII	character	occupies	a	single	byte.	Therefore,	if	a	string	contains	
only	ASCII	characters,	there	is	a	one-to-one	correspondence	between	characters	in	
the	string	and	elements	in	the	array.	The	length	of	the	array	is	exactly	the	number	of	
characters	in	the	string.

If	the	string	contains	characters	beyond	the	ASCII	subset,	then	there	will	be	more	
elements	in	the	array	than	characters	in	the	string.	These	two	assignments	are	
equivalent	and	do	exactly	the	same	thing:

 str = "∞ ≠ 😀 "
 str = "\xe2\x88\x9e\x20\xe2\x89\xa0\x20\xf0\x9f\x98\x80"

This	will	print	“12”:

 printf ("%d", arraySize (str))

This	will	print	“∞	≠	😀 ”:

 printf ("%s", str)

	Unicode	and	UTF-8	encoding	are	introduced	and	described	in	the	document	“Blitz-64:	Assembler,	10

Linker,	and	Object	File	Format”.

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
62 207

The	Struct	and	Union	Types

Struct

A	struct	is	a	collection	of	several	data	items,	bound	together	into	a	record.	Each	data	
item	in	the	struct	is	labeled	with	a	field	name.

In	this	example,	a	new	struct	type	is	defined	and	given	the	name	“MY_STRUCT”.	
Then	a	variable	“r”	is	defined.

 type MY_STRUCT = struct
 val: double
 next: ptr to MY_STRUCT
 endStruct
 var r: MY_STRUCT

The	new	expression	can	be	used	to	create	a	struct	value.	Each	field	of	the	struct	
must	be	initialized	within	the	braces.

 r = new MY_STRUCT { val=1.5, next=null }

To	access	a	field	in	the	struct,	the	infix-dot	operator	is	used:

 x = r.val
 r.val = 2.56

The	alloc	expression	can	be	used	to	allocate	a	struct	and	place	it	in	heap	memory:

 var recPtr: ptr to MY_STRUCT
 ...
 recPtr = alloc MY_STRUCT { val=1.5, next=null }

Blitz-64:	KPL	Introduction	/	Porter	 Page	 	of	63 207

The	Struct	and	Union	Types

Union

A	union	is	similar	to	a	struct	except	that	all	fields	are	placed	on	top	of	one	another.	
The	size	of	a	union	value	is	determined	by	the	length	of	the	longest	field.

In	the	following	example,	the	length	of	the	data	will	be	4	bytes,	since	values	of	type	
word	require	4	bytes,	while	the	others	require	fewer	bytes.

 type MY_UNION = union
 b: byte
 w: word
 h: halfword
 endUnion
 var myUnion: MY_UNION
 ...
 myUnion.w = 0x1234abcd -- change all 4 bytes
 ... = myUnion.b -- retrieve the first byte, 0x12
 myUnion.h = 0x7fff -- change first 2 bytes
 ... = myUnion.w -- retrieves 0x7fffabcd

Data	Representation	and	Alignment

KPL	guarantees	to	the	programmer	exactly	how	all	data	values	(including	structs,	
unions,	arrays,	and	objects)	are	represented	in	memory.	In	the	case	of	structs	and	
objects,	the	fields	are	placed	in	memory	sequentially	in	order,	with	extra	padding	
bytes	inserted	where	necessary	to	ensure	proper	alignment.	Thus,	every	field	value	
will	be	properly	aligned.

The	alignment	requirements	for	the	Blitz-64	core	are	discussed	in	the	ISA	document.	
The	alignment	of	data	in	KPL	is	mandatory	and	is	not	“implementation	dependent”.	
This	is	so	programmers	can	depend	on	how	their	data	is	stored,	regardless	of	
platform.

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
64 207

The	Struct	and	Union	Types

Here	are	the	KPL	alignment	rules.

•	 There	is	no	alignment	requirement	for	byte-sized	data	(byte	and	bool).

•	 halfword	values	must	be	located	on	even	addresses,	i.e.,	halfword	aligned.

•	 word	values	must	be	on	addresses	divisible	by	4,	i.e.,	word	aligned.

•	 int,	double,	and	ptr	values	must	be	doubleword	aligned,	that	is,	on	addresses	
divisible	by	8.

•	 Objects	and	arrays	will	always	be	a	multiple	of	8	bytes	in	size	and	will	be	
doubleword	aligned.

•	 The	size	of	a	struct	or	union	may	be	as	small	as	1	byte.	The	alignment	of	a	
struct	or	union	is	determined	by	its	size.	If	the	size	is	1,	there	is	no	alignment	
requirement.	If	the	size	is	2,	then	it	must	be	halfword	aligned.	If	the	size	is	3	or	
4,	then	word	alignment	will	be	used;	otherwise	the	struct	or	union	will	be	
doubleword	aligned.
11

Normally	the	compiler	will	take	care	of	alignment	and	the	programmer	can	ignore	
all	alignment	issues.		However,	if	the	programmer	writes	code	like	this,	there	will	be	
an	alignment	error.

 var
 p: ptr to int
 p = asPtrTo (100007, int)
 i = *p

This	code	will	throw	the	error	“ERROR_UnalignedLoadStore”	since	the	address	
100,007	(i.e.,	0x0,0001,86A7)	is	not	divisible	by	8.

	Note	that	this	is	slightly	different	from	saying	that	the	alignment	of	a	struct	or	union	is	11

determined	by	the	alignment	requirement	of	the	largest	field	it	contains.	A	struct	of	size	3	bytes,	
containing	three	fields,	each	of	type	byte,	will	be	loaded	and	stored	using	LOAD.W	and	STORE.W	
and	therefore	must	be	word	aligned.

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
65 207

Pointers

KPL	is	similar	to	C++	in	that	all	pointers	are	explicit	and	the	programmer	can	choose	
whether	to	work	with	data	or	with	pointers	to	data.	In	Java,	the	pointers	are	all	
implicit	and	the	programmer	has	less	control	over	representation.

Consider	these	two	variables:

 var r: MY_STRUCT
 p: ptr to MY_STRUCT

The	variable	“r”	will	require	16	bytes	(the	size	of	a	MY_STRUCT	record,	as	previously	
defined)	while	“p”	will	require	only	8	bytes	since	all	pointer	values	are	8	bytes.

To	get	the	address	of	a	variable,	use	the	&	operator,	which	is	also	used	in	C	and	C++:

 p = &r

To	refer	to	the	data	that	the	pointer	points	to,	the	prefix	operator	*	is	used,	just	as	in	
C	and	C++:

 r = *p

Creating	New	Objects

Objects,	arrays,	structs,	and	unions	may	be	created	using	either	the	new	expression	
or	the	alloc	expression.

The	syntax	of	the	alloc	construct	and	the	new	construct	is	the	same.	The	new	
construct	creates	a	new	value	which	must	be	used	(e.g.,	copied	into	a	variable)	while	
the	alloc	construct	allocates	memory	in	the	heap,	initializes	it,	and	returns	a	pointer	
to	the	allocated	memory.

Blitz-64:	KPL	Introduction	/	Porter	 Page	 	of	66 207

Pointers

For	example,	the	following	alloc expression	will	create	a	new	struct	on	the	heap:

 p = alloc MY_STRUCT { val=1.5, next=null }

To	initialize	variable	“r”,	the	new	expression	would	be	used:

 r = new MY_STRUCT { val=1.5, next=null }

The	syntax	to	chase	pointers	is	the	same	as	in	C	or	C++,	so	we	can	access	the	fields	of	
the	sruct	pointed	to	by	“p”	with	statements	like	these:

 x = (*p).val
 (*p).val = 12.345

C++	uses	a	shorthand	of	“->”	to	make	dereferencing	clearer.	KPL	uses	the	infix-dot	
operator.	The	semantics	of	the	dot	operator	is	“If	the	left	operand	is	a	pointer,	then	
dereference	it	first”.

 KPL Equivalent in C++
 ==================== ===================
 x = p.val x = p->val;
 p.val = 12.345 p->val = 12.345;

The	above	discussion	of	pointers	used	structs	and	pointers	to	structs,	but	pointers	to	
objects	work	the	same	way,	as	illustrated	below.

In	the	next	example,	assume	there	is	a	class	called	“Person”.	This	example	shows	that	
KPL	code	can	look	a	lot	like	Java	code.	(Assume	that	“name”	is	a	field	in	class	Person	
and	that	“computeAge”	is	a	method	from	the	class.)

 KPL Java
 ==================== ===================
 var p: ptr to Person Person p;
 p = new Person {...} p = new Person (...);
 p.name = ... p.name = ...;
 p.computeAge (...) p.computeAge (...);

The	programmer	can	copy	entire	structs,	objects,	or	arrays	with	code	like	this:

 *p = r
 r = *p

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
67 207

Pointers

The	“null”	Pointer

The	null	pointer	is	symbolized	with	the	keyword	null.	The	null	value	is	represented	
as	the	integer	0,	i.e.,	0x0000000000000000.

 if p != null ...

Pointer	expressions	will	automatically	be	coerced	to	bool	values	if	necessary,	so	the	
above	test	could	also	be	coded	in	a	way	that	looks	like	C++.

 if p ...

When	coerced	to	bool	values,	non-null	pointers	are	treated	as	true	and	null	
pointers	are	treated	as	false,	as	in	C.

Whenever	a	pointer	is	dereferenced,	a	runtime	check	will	make	sure	the	pointer	is	
non-null.	For	example,	this	code

 p = null
 ...
 p.name = ... -- Error here

will	result	in	the	runtime	error

 A "NULL ADDRESS" exception has occurred!

When	a	runtime	error	like	this	occurs,	the	Blitz-64	virtual	machine	will	halt	
emulation	and	go	into	command	mode.	The	user	can	then	type	the	“stack”	command	
to	see	the	activation	stack.	Generally	speaking,	the	fifth	line	shows	where	in	the	
source	code	the	program	was	executing	when	the	error	occurred.

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
68 207

Pointers

 Enter a command at the prompt. Type 'quit' to exit or 'help' for info
 about commands.
 > stack
 Function/Method Execution at... File
 ============================ =============== =================
 EmulatorDebuggingRequested KPL_lib/runtime.s
 invokeDebugger CALL line 762 KPL_lib/System.c
 RuntimeErrorNullAddress CALL line 649 KPL_lib/System.c
 _runtimeErrorNullAddress KPL_lib/runtime.s
 AnotherFun ASSIGN line 116 examplePgm.c
 MyClass.myMethod examplePgm.c
 MyFunction SEND line 110 examplePgm.c
 main CALL line 58 examplePgm.c
 _kplEntry examplePgm.c
 _entry KPL_lib/runtime.s

The	programmer	may	also	work	with	pointers	to	other	sorts	of	data,	as	in:

 var p1: ptr to int
 p2: ptr to byte

Pointers	can	be	converted	to	integers	and	vice	versa,	using	the	asInteger	and	
asPtrTo	functions.

 i = asInteger (p1)
 p2 = asPtrTo (i, byte)

Pointers	can	also	be	incremented	and	decremented	directly,	as	in	these	examples:

 p1 = p1 + 4
 p2 = p2 - 1

The	increment	or	decrement	is	always	in	terms	of	bytes.		This	is	a	subtle	difference	
with	C++.		In	C++,	the	expression	“p+1”	may	increment	the	pointer	by	an	amount	
that	is	different	than	1	byte,	and	which	is	in	fact	implementation	dependent.

KPL	provides	the	sizeOf	function	to	determine	the	size	of	a	type	of	value.		Since	each	
class	is	a	type,	the	sizeOf	operator	can	be	applied	to	a	class,	as	in:

 p1 = p1 + sizeOf (Person)

The	use	of	some	of	the	pointer	operations	is	unsafe.

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
69 207

Pointers

In	particular,	asPtrTo,	pointer	increment,	and	pointer	decrement	are	all	unsafe,	
while	the	normal	operations	of	copying,	dereferencing,	and	comparing	pointers	for	
equality	are	safe.	However,	the	sizeOf	and	asInteger	operation	are	safe.

It	is	safe	to	take	the	address	of	a	global	variable	but	unsafe	to	ask	for	the	address	of	a	
parameter	or	local	variable.
12

The	functions	asInteger,	asPtrTo,	and	sizeOf	are	built-in	to	the	KPL	language,	since	
they	take	types	instead	of	values	as	arguments. 

	Note	that	an	assignment	such	as	“*p	=	123”	is	a	safe	operation.	But	what	if	p	is	allowed	to	point	12

to	a	variable	local	to	some	function	and	that	function	has	returned	before	this	assignment?	The	
memory	region	where	the	variable	was	previously	stored	may	have	been	re-used	for	a	completely	
different	stack	frame,	so	the	assignment	could	cause	a	system	crash	by	randomly	overwriting	
memory.	It	is	also	unsafe	to	ask	for	the	address	of	fields	and	array	elements,	since	those	might	be	
within	local	variables.

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
70 207

Functions

The	general	form	of	a	function	is

 function ID (...Parameters...) [returns ...Type...]
 ...Variable declarations...
 ...Statements...
 endFunction

Here	is	an	example	function:

 function foo (a, b: int) returns bool
 var
 c: int
 c = a + b
 return c > 10
 endFunction

The	returns	clause	is	optional.	Here	is	another	example	in	which	there	are	no	
parameters	or	return	value:

 function foo2 ()
 printf ("hello")
 endFunction

Functions	may	be	invoked	(i.e.,	called)	using	syntax	like	Java	or	C++,	except	the	
semicolon	is	not	used.

 myBoolVar = foo (x, y)
 foo2 ()

All	functions	must	appear	in	the	code	portion	of	a	package,	since	they	constitute	
implementation.

Blitz-64:	KPL	Introduction	/	Porter	 Page	 	of	71 207

Functions

Within	the	header	file,	the	programmer	may	optionally	include	a	function	
declaration	(i.e.,	a	function	prototype).	Here	is	an	example:

 header MyPack
 ...
 functions
 foo (a, b: int) returns bool
 foo2 ()
 foo3 (a: int, b: bool, p: ptr to byte, x, y, z: double)
 ...
 endHeader

For	every	function	that	is	declared	in	the	header	file,	there	must	be	a	matching	
function	definition	in	the	code	file.	However,	every	function	in	the	code	file	need	not	
have	a	matching	declaration	in	the	header	file.	Whether	or	not	a	function	has	a	
declaration	in	the	header	file	determines	its	visibility.

For	example,	if	a	function	is	declared	in	the	header	file	of	package	“MyPack”,	then	
that	function	can	be	called	from	code	in	MyPack	and	from	code	in	any	other	package	
that	uses	MyPack.	If	a	function	does	not	have	a	declaration	in	the	header	file,	then	
that	function	is	private.	It	may	only	be	called	from	the	code	file	of	MyPack.

Pointers	to	Functions

Functions	are	defined	with	a	syntax	as	suggested	by	this	example:

 function sqrt (a: double) returns double
 ...Variable declarations...
 ...Statements...
 endFunction

and	invoked	with	syntax	like	this:

 x = sqrt(y)

The	function	definition	defines	a	name,	such	as	“sqrt”,	and	a	function	invocation	uses	
the	name.	If	the	function	returns	a	value,	as	does	sqrt,	then	the	invocation	must	
appear	in	an	expression	and	the	value	must	be	consumed.	If	the	function	does	not	
return	a	value,	the	invocation	occurs	in	a	call	statement.

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
72 207

Functions

In	KPL,	pointers	to	code	may	be	stored	in	variables,	by	using	“function	types”.	In	the	
next	example,	a	variable	“f”	is	defined.	This	variable	will	contain	a	pointer	to	a	
function.

 var f: ptr to function (double) returns double

Function	types	may	only	be	used	in	conjunction	with	ptr	to.	The	syntax	of	a	function	
type	is:

 ptr to function (Type, Type, ..., Type) [returns Type]

Here	are	some	example	function	types:

 ptr to function (int, int, int) returns Person
 ptr to function (double, int, byte)
 ptr to function () returns ptr to Person

A	function	pointer	may	be	assigned	and	compared	like	other	pointers.	In	the	
following	assignment	statement,	the	variable	f	is	set	to	point	to	the	sqrt	function.

 f = sqrt

The	compiler	will	check	to	make	sure	the	type	of	the	sqrt	function	is	compatible	
with	the	type	of	variable	f.	In	particular,	the	compiler	will	ensure	the	number	of	
arguments	is	the	same,	the	types	of	the	arguments	are	pair-wise	equal	and	that,	if	
there	is	a	return	value,	both	sqrt	and	f	have	the	same	return	type.	In	other	words,	
two	function	types	are	incompatible	if	they	differ	in	any	way.

To	invoke	a	function	using	a	function	pointer,	the	same	syntax	as	a	normal	function	
invocation	is	used.	For	example,	we	can	write:

 x = f(y)

A	variable	such	as	“f”	requires	only	8	bytes	and	is	represented	as	a	pointer	to	the	
machine	instructions	for	the	function.	And	like	other	pointers,	it	may	be	null	if	it	has	
not	been	set	to	point	to	any	function.	If	an	attempt	is	made	to	invoke	a	function	using	
a	null	function	pointer,	the	error	will	be	caught	immediately	and	the	runtime	system	
will	print	an	error	message.

Pointers	to	functions	may	be	copied,	stored,	passed	as	arguments	to	methods	and	
other	functions,	and	used	like	any	other	value.	For	example,	we	might	wish	to	store	a	

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
73 207

Functions

number	of	different	function	pointers	in	an	array.	Here	is	the	definition	of	an	array	
called	“a”:

 type MY_FUN = ptr to function (double) returns double
 var a: array [10] of MY_FUN

We	will	need	to	initialize	this	array:

 a = new array of MY_FUN { 10 of null }

Then	we	can	store	pointers	to	various	functions	in	the	array:

 a[4] = sqrt
 a[7] = cos
 ...

The	syntax	for	invoking	functions	is

 ID (arg, arg, ..., arg)

so	to	invoke	one	of	the	functions	in	“a”	we	cannot	write:

 x = a[i] (y)

Instead,	the	code	would	look	like	this:

 f = a[i]
 x = f(y)

When	a	name	such	as	“sqrt”	appears	in	the	program,	how	does	the	compiler	
determine	whether	it	signifies	a	pointer	or	a	function	invocation?

In	the	assignment	statement

 f = sqrt

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
74 207

Functions

the	compiler	will	notice	that	there	are	no	arguments;	therefore,	it	assumes	“sqrt”	
means	a	pointer	to	code	and	it	will	copy	a	pointer.	Contrast	this	to	a	function	
invocation,	such	as	is	shown	next,	in	which	arguments	are	present.
13

The	compiler	will	recognize	that	this	means	the	function	is	to	be	called	and	
executed.

 x = sqrt (2.25)

External	Functions

KPL	also	provides	a	way	to	invoke	functions	written	in	assembly	language.	Consider	
the	function	named	“Fork”	which	is	coded	in	assembly	language.	This	function	must	
be	assembled	separately	and	included	in	the	link	phase.	Within	the	header	file	of	
MyPack,	the	function	“Fork”	must	be	declared	using	the	external	keyword.

 header MyPack
 ...
 functions
 external Fork (x, y: ptr to ThreadControlBlock)
 foo (a, b: int) returns bool
 ...

KPL	does	not	allow	overloading	of	function	names.	All	functions	must	have	distinct	
names.	Furthermore,	the	names	of	external	functions	are	used	as	is,	without	any	
modification,	so	they	must	not	coincide	with	other	identifiers	used	in	assembly	files,	
such	as	the	names	of	machine	instructions,	registers,	etc. 

			The	two	forms	are	syntactically	very	similar	and	the	absence	of	statement	terminators	in	KPL	13

necessitates	an	awkward	syntactic	detail.	Since	the	next	thing	after	any	assignment	statement	may	legally	
begin	with	a	left	parenthesis,	KPL	has	an	additional	syntax	rule:	“The	opening	parenthesis	“(“	must	be	on	
the	same	line	as	the	function	name.”

The	following	function	invocation	is	problematic:

 foo
 (x, y, z)

It	must	be	re-written	somehow	to	move	the	“(“	onto	the	same	line	as	the	function	name:

 foo (
 x, y, z)

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
75 207

Objects	and	Classes

Classes	in	KPL	are	similar	to	the	classes	in	C++	and	Java.	Each	object	is	an	instance	of	
a	class.	The	class	describes	which	fields	the	instances	will	have	and	provides	
methods	for	operating	on	the	instances	of	the	class.

KPL	also	has	interfaces,	which	are	similar	to	the	interfaces	of	Java.	Interfaces	are	
discussed	later.

A	class	is	defined	in	two	parts	or	pieces,	called	the	specification	and	the	
implementation.

The	first	part	specifies	which	fields	will	be	in	the	class	and	which	methods	are	in	the	
class,	but	does	not	supply	the	actual	code	for	the	methods.	The	keyword	class	is	used	
for	the	specification	part.

The	second	part,	which	gives	the	implementation	of	the	class,	includes	only	the	code	
bodies	for	the	methods.	The	keyword	behavior	is	used	for	the	implementation	part.

As	an	example,	consider	an	example	class	we	will	name	“Person”.	Here	is	the	
specification	part	for	Person:

 class Person
 superclass Object
 fields
 name: ptr to array of byte
 id_num: int
 birthdate: int
 methods
 printID ()
 getAge () returns int
 endClass

Blitz-64:	KPL	Introduction	/	Porter	 Page	 	of	76 207

Objects	and	Classes

Here	is	the	implementation	part	of	Person:

 behavior Person

 method printID ()
 ...Variable declarations...
 ...Statements...
 endMethod

 method getAge () returns int
 ...Variable declarations...
 ...Statements...
 endMethod

 endBehavior

For	every	class,	there	must	be	a	corresponding	behavior,	and	vice-versa.	You	may	
not	have	one	without	the	other.

The	specification	part	of	a	class	may	be	placed	in	either	the	header	file	or	the	code	
file.	Where	the	specification	is	placed	determines	the	visibility	of	the	class.

If	the	class	specification	is	placed	in	the	header	file,	then	the	class	may	be	used	by	
any	packages	that	use	this	package.	If	placed	in	the	code	file,	then	the	class	may	only	
be	used	within	that	package.

The	behavior	part	of	a	class	must	always	be	placed	in	the	code	file.

The	general	syntax	for	the	specification	part	of	a	class	is	given	next.

The	notation	[...]	means	“optional”.	The	notation	{…}*	means	“zero	or	more	
repetitions”.	The	notation	{...}+	means	“one	or	more	occurrences”.	(The	actual	
grammar	rule	is	simplified	a	little	here.)

 class ID [...Type Parameters...]
 [implements ID, ID, ...]
 superclass ID
 [fields { FieldDeclaration }+]
 [methods { MethodPrototype }+]
 endClass

Type	parameters	are	discussed	in	a	later	section.

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
77 207

Objects	and	Classes

Here	is	the	syntax	for	the	implementation	part.

 behavior ID
 { Method }*
 endBehavior

Each	class	has	exactly	one	superclass,	which	is	given	following	the	superclass	
keyword.	The	root	superclass	is	called	“Object”.	It	is	included	in	the	“System”	
package	and	does	not	have	a	superclass.

A	class	may	implement	zero	or	more	interfaces.	These	would	be	given	following	the	
implements	keyword.	For	example:

 class MyClass
 implements InterA, InterB, InterC
 superclass Object
 fields
 ...

The	class	specification	lists	the	methods	that	are	implemented	in	the	class.	However,	
the	specification	includes	only	a	prototype	for	each	method.	A	method	prototype	
includes	the	method	name,	parameters,	and	return	type,	but	does	not	include	the	
code	for	the	method.

There	must	be	a	one-to-one	correspondence	between	the	methods	listed	after	the	
methods	keyword	in	the	specification	and	the	methods	provided	in	the	
implementation	part.	In	other	words,	if	the	specification	says	there	is	a	method	
called	“printID”	in	the	class,	then	an	implementation	of	method	“printID”	(with	
matching	parameters	and	return	type)	must	appear	in	the	behavior	construct	for	the	
class.

A	class	will	inherit	any	and	all	methods	from	its	superclass,	and	its	super-superclass,	
and	so	on	up	to	“Object”.

Consider	two	methods,	one	in	a	class	“Person”	and	one	in	a	superclass	of	Person.	
Either	the	methods	have	the	same	name	or	they	have	different	names.	If	the	method	
name	is	the	same,	then	the	subclass	method	will	override	the	method	from	the	
superclass.

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
78 207

Objects	and	Classes

KPL	does	not	allow	“overloading”	of	method	names.	Every	method	in	a	given	class	
must	have	a	unique	name.	Two	methods	may	only	have	the	same	name	if	they	are	in	
different	classes.

Visibility	Control

In	Java	and	C++,	methods	and	fields	have	visibility	control	(private,	public,	etc.).

KPL	does	not	have	this	layer	of	complexity.	Every	field	and	every	method	can	be	
used	wherever	the	class	itself	can	be	used.	In	Java	and	C++,	the	visibility	mechanism	
is	used	to	restrict	and	constrain	what	the	programmer	can	do	with	objects;	in	KPL	it	
is	up	to	the	programmer	to	use	objects	correctly.	For	example,	if	the	programmer	
feels	that	some	field	should	be	accessed	only	from	code	within	the	class,	then	it	is	
the	programmer’s	responsibility	to	discipline	him	or	herself	and	avoid	accessing	the	
field	from	outside	the	class.

If	the	programmer	really	needs	a	mechanism	to	disallow	some	parts	of	a	program	
from	accessing	certain	methods	or	fields,	there	are	three	ways	of	doing	it.

First,	the	class	specification	can	be	placed	in	the	code	file,	making	the	entire	class	
private	to	a	given	package.	With	this	technique,	a	class—including	its	very	existence
—can	be	totally	hidden	from	code	in	alien,	possibly	untrusted	packages.

Second,	the	programmer	can	work	with	interfaces,	which	can	be	used	to	control	
which	methods	may	be	invoked	on	an	object.	With	this	technique,	the	client	code	
uses	pointers	to	interfaces,	rather	than	pointers	to	classes.	The	client	code	can	only	
only	send	messages	present	in	the	interface	specification;	it	cannot	know	exactly	
which	class	is	implementing	the	functionality	and	cannot	access	any	fields	unless	
access	methods	have	been	included	for	that	purpose	in	the	interface.

Finally,	the	programmer	can	create	a	new	“wrapper	class”	to	allow	only	certain	kinds	
of	access	to	an	underlying	object.	Clients	only	have	access	to	(pointers	to)	instances	
of	the	wrapper	class;	to	access	the	protected	objects,	clients	must	send	messages	to	
the	wrapper	class	which	will	control	and	monitor	access	to	the	protected	objects.	
While	this	technique	imposes	execution	overhead,	it	allows	sophisticated	control.	
For	example,	the	wrapper	class	can	require	passwords	and	implement	complex	
authorization	protocols.

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
79 207

Objects	and	Classes

Fields

Classes	may	contain	fields.	For	example:

 class MyClass
 ...
 fields
 myField: int
 ...
 endClass

From	outside	the	class,	the	fields	may	be	accessed	using	the	dot	notation:

 var m: MyClass
 ...
 i = m.myField
 ...
 m.myField = j

The	field	would	also	be	accessed	the	same	way	if	a	pointer	to	the	object	is	used,	
instead	of	the	object	itself.

 var p: ptr to MyClass
 ...
 i = p.myField
 ...
 p.myField = j

From	within	the	class,	the	fields	of	the	class	may	be	accessed	directly.	For	example:

 behavior MyClass
 ...
 method foo (...) returns ...
 ...
 i = myField
 ...
 myField = j
 ...
 endMethod
 ...
 endBehavior

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
80 207

Objects	and	Classes

A	class	will	inherit	any	and	all	fields	from	its	superclass,	and	its	super-superclass,	
and	so	on	up	to	“Object”.

Fields	may	be	added	to	a	class,	but	overriding	or	overloading	of	fields	is	not	allowed.	
When	a	new	field	is	added	to	a	class,	its	name	must	be	distinct	from	the	names	of	all	
inherited	fields.

Java	and	C++	allow	“static”	fields,	but	KPL	does	not	have	static	fields.

A	static	field	is	nothing	more	than	a	global	variable	whose	visibility	is	limited.	KPL	
provides	only	one	concept—the	global	variable—which	is	sufficient.	If	a	
programmer	wants	to	have	a	static	field	called	“x”	in	some	class	“MyClass”,	he	or	she	
can	simply	create	a	global	variable	and	give	it	a	name	that	suggests	that	it	is	related	
to	MyClass.

 var MyClass_x: ...Type...

In	C++,	the	programmer	accesses	a	static	field	by	writing		“MyClass::x”.

In	KPL	the	programmer	simply	accesses	“MyClass_x”.

Methods

A	method	is	declared	in	the	class’s	specification	part.	The	class	construct	includes	a	
list	of	method	prototypes.

 class MyClass
 ...
 methods
 ...
 foo (a,b: int) returns int
 ...
 endClass

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
81 207

Objects	and	Classes

The	method	is	implemented	in	the	class’s	behavior	:

 behavior MyClass
 ...
 method foo (a,b: int) returns int
 var
 x: int
 x = a + b
 return x
 endMethod
 ...
 endBehavior

The	general	form	of	a	method	is

 method ID (...Parameters...) [returns ...Type...]
 ...Variable declarations...
 ...Statements...
 endMethod

If	there	are	no	parameters	and	the	method	does	not	return	a	value,	the	method	looks	
like	this:

 method bar ()
 ...
 endMethod

If	the	method	returns	a	value,	then	the	method	should	contain	at	least	one	return	
statement	with	a	value.	If	the	method	does	not	return	a	value,	then	the	method	may	
contain	a	return	statement	without	a	value	or	may	fall	out	the	bottom.	This	routine	
does	both:

 method printWithNULL (p: ptr to int)
 if p == null
 printf ("NULL!")
 return
 endIf
 printf ("%c", *p)
 endMethod

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
82 207

Objects	and	Classes

That	example	was	illustrative;	it	might	be	clearer	if	coded	as:

 method printWithNULL (p: ptr to int)
 if p
 printf ("%c", *p)
 else
 printf ("NULL!")
 endIf
 endMethod

Within	a	method,	the	keyword	self	may	be	used	to	refer	to	the	receiver	object.	The	
type	of	self	is

 ptr to CLASS

where	“CLASS”	is	the	class	containing	the	method.

In	the	next	example,	“recur”	is	a	recursive	method.

 method recur (...)
 ...
 self.recur (...)
 ...
 endMethod

The	keyword	self	may	also	be	used	in	other	ways.	For	example:

 m.foo (j, self, k)
 ...
 p = self

There	is	also	a	keyword	super,	which	has	exactly	the	same	type	as	self.	However,	
super	can	only	be	used	in	one	way;	it	is	used	to	invoke	an	inherited	and	overridden	
version	of	a	method.

For	example,	assume	class	“Person”	has	a	method	called	“meth”.

 class Person
 ...
 methods
 meth (...)
 ...
 endClass

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
83 207

Objects	and	Classes

Now	assume	that	a	subclass	called	“Student”	overrides	“meth”.

 class Student
 superclass Person
 ...
 methods
 meth (...)
 ...
 endClass

Within	the	implementation	of	“meth”	in	Student,	the	overridden	method	can	be	
invoked	by	using	super	instead	of	self:
14

 behavior Student
 ...
 method meth (...)
 ...
 super.meth (...)
 ...
 endMethod
 ...
 endBehavior

Creating	Objects

Instances	of	classes	can	be	created	in	one	of	two	ways.	The	object	can	be	allocated	in	
the	runtime	heap	or	the	object	can	be	placed	directly	into	a	variable.

To	allocate	and	initialize	an	object	on	the	heap,	the	alloc	expression	is	used.	For	
example:

 var perPtr: ptr to Person
 ...

	In	this	example,	we	are	invoking	an	inherited	implementation	of	“meth”	from	within	the	new,	14

overriding	implementation	of	“meth”.	It	is	common	to	invoke	the	inherited	version	of	a	method	
from	within	the	reimplementation	of	that	same	method,	as	was	done	here.	But	actually,	we	can	use	
“super.meth	(…)”	from	within	any	method	in	Student,	not	just	“meth”.	Regardless	of	where	in	
Student	it	is	used,	the	result	is	the	same:	the	search	for	the	implementation	begins	in	the	
superclass,	i.e.,	in	Person.	In	all	other	method	invocations	(i.e.,	those	not	involving	super),	the	
search	begins	in	the	class	of	the	object	itself	as	determined	at	runtime,	i.e.,	in	Student	or	some	
subclass	of	Student.

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
84 207

Objects	and	Classes

 perPtr = alloc Person { name = "Smith",
 id_num = nextNum+1,
 birthdate = 2003 }

Here	is	an	example	of	creating	an	object	with	the	new	keyword	and	storing	the	
result	directly	into	a	variable.

 var per: Person
 ...
 per = new Person { name = "Smith",
 id_num = nextNum+1,
 birthdate = 2003 }

The	alloc	expression	returns	a	pointer	while	the	new	expression	returns	an	object.

These	examples	assume	that	the	Person	class	has	three	fields,	called	“name”,	
“id_num”,	and	“birthdate”.	After	the	object	is	created,	the	fields	are	given	their	initial	
values,	which	are	listed	between	the	braces.

Whenever	an	object	is	created,	the	programmer	has	two	choices:	either	all	the	fields	
can	be	initialized	explicitly	or	they	can	all	be	set	to	their	zero	values	by	default.

In	the	above	examples,	the	fields	were	initialized.	The	fields	and	their	initializing	
expressions	are	listed	between	the	braces.	The	fields	need	not	be	listed	in	order,	but	
all	fields	must	be	listed,	including	all	inherited	fields.

If	the	programmer	doesn’t	want	to	initialize	the	fields,	then	the	braces	and	
everything	between	them	should	be	omitted.	The	object	will	be	created	and	each	of	
the	fields	will	be	initialized	to	its	zero	value.	For	example:

 perPtr = alloc Person

It	is	often	the	case	that	creating	and	initializing	an	object	should	be	accompanied	by	
some	additional	computation.	Java	and	C++	have	“constructor”	methods	for	this,	but	
KPL	does	not	have	any	special	syntax	for	constructors.

Instead,	the	KPL	convention	is	to	create	a	method—typically	called	“init”—to	
perform	all	necessary	initialization	and	computation	associated	with	object	creation.	
Thus,	the	same	effect	as	constructors	is	achieved	with	features	already	in	the	
language.

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
85 207

Objects	and	Classes

Here	is	an	example	using	an	“init”	function.	To	create	an	object,	the	alloc	or	new	
expression	is	used	with	no	explicit	field	initialization.	Then	the	init	method	is	
immediately	invoked.	The	init	method	can	be	designed	to	take	however	many	
arguments	make	sense	in	the	application.	In	our	example,	we	will	pass	one	
argument	and	initialize	the	remaining	fields	with	computed	or	default	values.

 perPtr = alloc Person.init("Smith")

Here	is	a	possible	definition	of	the	init	method:

 class Person
 ...
 methods
 init (n: ptr to array of byte) returns ptr to Person
 ...
 endClass

 behavior Person
 ...
 method init (n: ptr to array of byte) returns ptr to Person
 name = n
 last = last + 1
 id_num = last
 -- birthdate defaults to zero
 return self
 endMethod
 ...
 endBehavior

In	the	above	example,	the	“init”	method	returned	a	pointer	to	the	object;	this	allows	
us	to	invoke	it	in	the	same	statement	that	creates	the	object:

 perPtr = alloc Person.init(...)

However,	if	the	object	is	not	allocated	on	the	heap	but	is	created	with	a	new	
expression,	we	would	have	to	invoke	“init”	in	a	separate	statement.	Since	KPL	
requires	the	programmer	not	to	ignore	a	returned	value,	we	must	create	a	dummy	
variable	to	absorb	the	value:

 var ignore: ptr to Person

 per = new Person
 ignore = per.init(...)

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
86 207

Objects	and	Classes

Another	approach	is	to	design	“init”	not	to	return	anything.	Here	are	examples	
showing	how	we	would	invoke	the	“init”	method	in	such	a	design:

 perPtr = alloc Person
 perPtr.init(...)
 per = new Person
 per.init(...)

Programmers	are	free	to	choose	whichever	approach	seems	best	for	their	
applications.

Object	Representation	and	Layout

Each	object	is	represented	in	memory	with	a	sequence	of	one	more	doublewords.	
Each	object	contains	a	header	doubleword,	so	the	minimum	object	size	is	8	bytes.	
The	header	word	is	followed	by	the	bytes	for	the	fields.	All	objects	of	the	same	class	
have	the	same	size.

The	address	of	the	object	is	the	address	of	the	header	doubleword.	In	other	words,	a	
pointer	to	the	object	points	to	the	first	byte	of	the	header,	not	to	the	first	field.

The	header	is	a	pointer	to	the	“Dispatch	Table”	and	is	often	called	the	Dispatch	Table	
Pointer	(DPT).
15

The	KPL	compiler	will	lay	out	the	fields	of	a	class	sequentially.	In	other	words,	the	
compiler	will	not	alter	the	order	of	the	fields.	The	compiler	will	also	ensure	that	all	
fields	are	locate	at	properly	aligned	addresses.	This	may	require	the	compiler	to	
insert	“padding	bytes”	between	the	fields.	The	compiler	will	also	insert	padding	
bytes	at	the	end	of	the	object	if	necessary,	to	round	the	size	of	the	object	up	to	a	
multiple	of	8	bytes.

Consider	this	example :
16

 class MyClass_1
 superclass Object
 fields

	For	other	languages,	the	header	is	said	to	contain	a	“class	pointer”,	but	we	make	a	distinction	15

between	the	dispatch	table	and	the	class	descriptor.	This	will	be	discussed	later.

	To	simplify	this	example,	we	assume	that	class	Object	has	no	fields.16

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
87 207

Objects	and	Classes

 f1: word
 f2: int
 f3: byte
 endClass

The	compiler	will	lay	out	the	fields	for	this	class	as	follows:

	 Offset	 Size

	 0	 8	 <	Dispatch	Table	Pointer	>

	 8	 4	 f1

	 12	 4	 …	padding	…

	 16	 8	 f2

	 24	 1	 f3

	 25	 7	 …	padding	…

	 	 Total	size	in	bytes	=	32

If	the	a	subclass	is	created,	the	fields	of	the	subclass	will	be	aded	after	the	fields	of	
the	superclass.	For	the	following	example:

 class MySubClass
 superclass MyClass_1
 fields
 f4: word
 endClass

the	compiler	will	create	the	following	layout:

	 Offset	 Size

	 0	 8	 <	Dispatch	Table	Pointer	>

	 8	 4	 f1

	 12	 4	 …	padding	…

	 16	 8	 f2

	 24	 1	 f3

	 25	 3	 …	padding	…

	 28	 4	 f4

	 	 Total	size	in	bytes	=	32

Note	that	padding	at	the	end	of	the	object	was	reduced	and	the	compiler	was	able	to	
find	a	properly	aligned	offset	for	the	new	field	within	the	area	that	previously	used	
as	padding.	In	this	example,	it	happened	to	be	the	case	that	the	new	class’s	objects	

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
88 207

Objects	and	Classes

have	the	same	size	as	the	superclass,	but	generally	speaking,	the	addition	of	fields	
will	cause	the	objects	to	become	larger.

In	order	to	reduce	the	amount	of	padding	added	by	the	compiler,	the	programmer	
may	want	to	re-order	the	fields.	One	easy	technique	is	to	order	the	fields	by	their	
alignment	requirements.	The	programmer	should	place	the	fields	in	this	order:

	 All	fields	requiring	doubleword	alignment

	 	 followed	by

	 All	fields	requiring	word	alignment

	 	 followed	by

	 All	fields	requiring	halfword	alignment

	 	 followed	by

	 All	fields	requiring	byte	alignment

For	example,	by	reordering	the	fields	in	“MyClass”,	we	can	eliminate	some	padding:

 class MyClass_REVISED
 superclass Object
 fields
 f2: int
 f1: word
 f3: byte
 endClass

The	compiler	still	inserts	padding	at	the	end	to	increase	the	object’s	size	up	to	a	
multiple	of	8,	but	the	object’s	size	has	been	reduced:

	 Offset	 Size

	 0	 8	 <	Dispatch	Table	Pointer	>

	 8	 8	 f2

	 16	 4	 f1

	 20	 1	 f3

	 21	 3	 …	padding	…

	 	 Total	size	in	bytes	=	24

The	fields	in	a	struct	are	laid	out	following	the	same	rules.	However	with	structs	
and	unions,	there	is	no	header.

Dispatch	Tables	and	Runtime	Class	Representation

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
89 207

Objects	and	Classes

Each	object	contains	a	header	which	points	to	a	dispatch	table.	Each	class	will	have	
exactly	one	dispatch	table.

Consider	these	classes:

 class MyClass
 superclass Object
 methods
 meth_1 ()
 meth_2 ()
 meth_3 ()
 endClass

 class MySubClass
 superclass MyClass
 methods
 meth_4 ()
 meth_2 ()
 endClass

The	compiler	will	create	a	dispatch	table	for	each	class,	as	follows:

MyClass:

	 	 Offset

	 	 0	 Class	Descriptor	for	MyClass

	 meth_1	 8	 MyClass_1	.	 meth_1

	 meth_2	 16	 MyClass_2	.	 meth_2

	 meth_3	 24	 MyClass_3	.	 meth_3

MySubClass:

	 	 Offset

	 	 0	 Class	Descriptor	for	MySubClass

	 meth_1	 8	 MyClass	.	 meth_1

	 meth_2	 16	 MySubClass	.	meth_2

	 meth_3	 24	 MyClass	.	 meth_3

	 meth_4	 32	 MySubClass	.	meth_4

	 _super_meth_2	 40	 MyClass	.	 meth_2

The	initial	field	(offset	=	0)	in	the	dispatch	table	always	points	to	the	“class	
descriptor”	for	the	class.	The	class	descriptor	contains	things	like	the	name	of	the	

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
90 207

Objects	and	Classes

class.	The	class	descriptor	also	contains	information	about	superclasses,	which	is	
needed	for	the	isKindOf	function.

The	remaining	fields	in	the	dispatch	table	each	contain	a	JUMP	to	a	block	of	code.	
When	a	method	is	invoked,	there	will	be	a	jump	directly	to	some	entry	in	the	
dispatch	table	which	will	then	immediately	jump	to	the	first	instruction	of	the	
method.

Each	slot	is	8	bytes.	This	is	enough	space	for	a	long	jump	to	any	location	in	memory,	
although	the	JUMP	instructions	will	often	require	only	a	single	4	byte	instruction.

The	methods	for	a	class	such	as	“MyClass”	are	laid	out	in	the	dispatch	table	one	after	
the	other,	in	the	order	they	are	listed	in	the	class	…	endClass	source	code.

When	subclassing	occurs,	new	entries	are	added	at	the	end	of	the	dispatch.	For	
“MySubClass”,	the	initial	3	entries	are	for	methods	that	were	present	in	the	
superclass.	Since	one	method	“meth_2”	was	overriden,	the	entry	for	the	subclass	
(offset	16)	now	contains	a	jump	to	the	new	method.	The	other	methods	(“meth_1”	
and	“meth_3”)	were	not	overridden,	so	those	entries	point	to	the	method	code	from	
MyClass.

Next,	we	see	the	entires	for	a	new	method	“meth_4”	which	was	not	present	in	the	
superclass.	We	also	see	an	entry	for	“_super_meth_2”,	pointing	to	the	code	that	was	
overridden.	This	entry	is	needed	for	a	“send-to-super”	instruction,	which	will	invoke	
the	method	form	the	superclass.

To	take	it	one	step	further,	let’s	introduce	a	sub-sub	class:

 class MySub_Sub_Class
 superclass MySubClass
 methods
 meth_4 () -- overrides method in MySubClass
 meth_2 () -- overrides methods in MyClass and MySubClass
 meth_5 () -- new
 endClass

Here	is	the	lay	out	for	the	dispatch	table:

MySub_SubClass:

	 	 Offset

	 	 0	 Class	Descriptor	for	MySub_SubClass

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
91 207

Objects	and	Classes

	 meth_1	 8	 MyClass	.	 meth_1

	 meth_2	 16	 MySub_Sub_Class	.	 meth_2

	 meth_3	 24	 MyClass	.	 meth_3

	 meth_4	 32	 MySub_Sub_Class	.	 meth_4

	 _super_meth_2	 40	 MySubClass	.	 meth_2

	 meth_5	 48	 MySub_Sub_Class	.	 meth_5

	 _super_meth_4	 56	 MySubClass	.	 meth_4

	 _super__super_meth_2	 64	 MyClass	.	 meth_2

Consider	a	send-to-super,	such	as:

super.meth2 ()

Assume	it	occurs	in	MySub_SubClass::meth2,	so	the	intent	is	to	invoke	
MySubClass::meth2().
17

With	a	normal	send-to-self,	the	object	is	first	consulted	and	a	pointer	to	the	dispatch	
table	is	retrieved	from	the	object’s	header.	The	code	will	use	an	offset	(16	for	
“meth2”)	into	that	table.	The	actual	dispatch	table	to	be	used	will	depend	on	the	
class	of	the	object	at	runtime.

With	a	send-to-super,	there	is	no	need	to	consult	the	dispatch	table	at	all;	static	
binding	can	be	used.	In	this	example,	the	send-to-super	occurs	in	class	
MySub_SubClass,	so	the	compiler	knows	that	this	is	a	call	to	MySubClass::meth2.	
There	is	no	need	for	dynamic	dispatching.	The	compiler	will	generate	a	direct	call	to	
the	right	method.

Next,	we	consider	“class	descriptors”.

We	have	already	described	the	format	of	the	dispatch	table	and	now	we	describe	the	
format	of	the	class	descriptor.

Dispatch	tables	and	class	descriptors	come	in	pairs.	For	each	class,	there	will	be	
exactly	one	dispatch	table	and	one	class	descriptor	at	runtime.

	Such	a	send-to-super	can	occur	in	any	method	in	MySub_SubClass.	That	is,	an	invocation	of	17

“meth2”	need	not	occur	within	the	“meth2”.	The	only	constraint	is	that	the	method	being	invoked	
(meth2)	must	be	overridden	in	MySub_SubClass.	Otherwise,	you	should	just	use	a	normal	send-to-
self.

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
92 207

Objects	and	Classes

Each	dispatch	tables	contains	a	pointer	to	its	class	descriptor	and	each	class	
descriptor	contains	a	pointer	to	its	dispatch	table.

For	parameterized	classes,	there	is	only	a	single	dispatch	table	/	class	descriptor	
pair.	For	example,	for	“List	[T]”	there	is	only	one	dispatch	table	and	one	class	
descriptor.	This	makes	it	impossible	at	runtime	to	distinguish	between	“List	[int]”	
and	“List	[Person]”,	for	example.
18

The	class	descriptor	contains	this	information:

The	name	of	the	class

The	filename	in	which	the	class	was	defined

The	line	number	in	that	file

The	size	of	instances	of	the	class

A	pointer	back	to	the	dispatch	table

The	superclasses	and	super-interfaces	of	the	class

In	more	detail,	here	is	the	layout	of	a	class	descriptor

	 Offset	 Size

	 0	 8	 Magic	Number

	 8	 8	 Ptr	to	String	(name	of	class)

	 16	 8	 Ptr	to	String	(name	of	source	file)

	 24	 4	 Line	number	in	source	file

	 28	 4	 Size	of	instances,	in	bytes

	 32	 8	 Ptr	to	dispatch	table

	 40	 8	 Ptr	to	super-classes

	 	 	 			(one	ptr	for	each	superclass)	

	 	 8	 Ptr	to	interfaces

	 	 	 			(one	ptr	for	each	superclass)	

	 	 8	 Zero	(to	end	the	list)

The	magic	number	field	contains	the	value	0x434c415353646573,	which	is	the	
ASCII	code	for	the	characters	‘CLASSdes’.	This	field	is	used	to	make	sure	that	class	
pointers	are	valid	and	catch	errors.

The	second	field	(“name	of	class”)	is	a	pointer	to	a	String	(that	is	ptr	to	array	of	
byte).	The	String	will	contain	the	name	of	the	class,	such	as	“MySub_Sub_Class”.

	However,	this	is	not	really	necessary.	W18

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
93 207

Objects	and	Classes

The	third	field	(“name	of	source	file”)	is	a	pointer	to	a	String	containing	the	name	of	
the	source	file	in	which	this	class	was	defined.	For	example,	“tests_il/x36-inherit.c”.

The	fourth	field	is	a	word-sized	integer	giving	the	line	number	within	that	file	on	
which	the	class	definition	begins.

The	fifth	field	(“size	of	instances”)	is	a	word-sized	integer	giving	the	number	of	bytes	
in	instances	of	this	class.

The	sixth	field	(“ptr	to	dispatch	table”)	is	the	address	back	to	the	Dispatch	Table	for	
this	class.

This	is	followed	by	zero	or	more	pointers	to	the	superclasses	of	this	class.	The	class	
Object	has	no	superclasses,	so	it	will	have	zero	pointers	here.	All	other	classes	will	
have	one	pointer	for	each	class	in	the	hierachy,	with	the	final	pointer	pointing	to	
“Object”	In	particular,	these	are	pointers	to	the	dispatch	tables	for	the	other	classes.

These	will	be	followed	by	zero	of	more	pointers	for	to	interfaces.	There	will	be	one	
pointer	for	each	interface	that	this	class	implements.	These	pointers	will	be	the	
address	of	“Interface	Descriptors”,	which	are	described	below.

Finally,	the	class	descriptor	will	end	with	a	zero.

The	vector	of	pointers	in	the	class	description	is	used	to	implement	the	isKindOf	
function.	To	determine	whether	a	class	C	is	a	subclass	of	X	or	implements	X	(where	X	
is	either	a	class	or	an	interface),	it	is	sufficient	to	scan	this	vector	looking	for	a	
match.	Since	all	superclasses	are	included	(not	just	the	direct	superclass),	it	is	not	
necessary	to	visit	other	class	descriptors.	Likewise,	since	the	vector	contains	all	the	
interfaces	that	are	implemented	(not	just	those	directly	implemented),	there	is	no	
need	to	visit	Interface	Descriptors	in	a	recursive	search.

asd

asd

asd

asd

asd

asd

asd

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
94 207

Objects	and	Classes

asd

asd

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
95 207

Interfaces

KPL	has	interfaces,	which	are	similar	to	the	interfaces	of	Java.	Here	is	an	example:

 interface MyInter
 messages
 foo1 (a,b: int) returns int
 foo2 (d: double)
 endInterface

Any	object	that	implements	the	interface	“MyInter”	must	provide	at	least	these	two	
methods,	although	the	class	may	have	other	methods	as	well.	Furthermore,	these	
two	methods	must	have	types	on	their	parameters	and	return	value	that	match	the	
specification	in	the	interface.

Just	as	in	Java,	an	interface	can	extend	zero	or	more	other	interfaces.	Thus,	there	is	
multiple	inheritance	in	the	interface	hierarchy.

The	general	syntax	of	an	interface	is:

 interface ID [...Type Parameters...]
 [extends ID, ID, ...]
 [messages { MethodPrototype }+]
 endInterface

Type	parameters	are	discussed	in	a	later	section.

Note	that	the	keyword	here	is	messages,	not	methods.	Methods	are	chunks	of	
behavior	and	therefore	occur	in	classes;	messages	describe	the	protocol	for	
interacting	with	objects	and	are	therefore	specified	in	interfaces.	Messages	are	
implemented	by	methods.

Blitz-64:	KPL	Introduction	/	Porter	 Page	 	of	96 207

Interfaces

A	class	may	implement	zero	or	more	interfaces,	and	this	is	given	in	the	class	
specification.	For	example:

 class ExampleClass
 implements MyInter, AnotherInterface
 superclass ...
 fields
 ...
 methods
 ...
 endClass

The	implements	clause	is	optional	and	may	list	one	or	more	interfaces.	Of	course	a	
class	will	necessarily	implement	all	the	interfaces	its	superclass	implements.

Here	is	a	variable	declaration	which	uses	an	interface	instead	of	a	class.

 var p: ptr to MyInter

The	constraint	on	“p”	is	that	it	must	point	to	an	object	of	a	class	that	implements	
MyInter.	Any	such	object	must	necessarily	have	two	methods,	called	“foo1”	and	
“foo2”,	with	appropriate	parameter	typings.	Of	course,	the	object’s	class	may	have	
other	methods,	but	these	cannot	be	accessed	through	“p”,	since	they	are	not	part	of	
the	MyInter	interface.

Thus,	the	programmer	may	invoke	those	methods	on	p:

 i = p.foo1 (...)

One	class	that	implements	this	interface	is	“ExampleClass”,	but	there	may	be	other	
completely	unrelated	classes	that	also	implement	this	interface.	The	compiler	
guarantees	that,	at	runtime,	p	will	point	to	an	instance	of	ExampleClass	or	some	
other	class	that	implements	this	interface.

Note	that	the	programmer	cannot	create	a	variable	of	type	“MyInter”	since	the	
compiler	has	no	way	to	know	how	much	space	to	allocate	for	such	a	variable.	The	
programmer	must	use	a	pointer	instead. 

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
97 207

The	Assignment	Statement

Here	are	some	example	assignment	statements:

 i = j * 4
 *p = *q
 p.name = "smith"
 a[k] = foo (b,c)

The	general	form	is

 LValue = Expression

where	LValue	can	have	any	of	the	following	forms :
19

 ID
 * LValue
 LValue . ID
 LValue [Expression]
 (LValue)

The	asterisk	is	used	to	indicate	pointer	dereferencing:

 *p = x

The	dot	is	used	to	indicate	field	accessing	in	objects,	structs,	and	unions:

 myObj.field3 = x

The	brackets	are	used	to	indicate	array	accessing:

 a[k] = x

As	usual,	parentheses	can	be	used	for	grouping:

 (* p) [i] = x -- Parens are required here
 * (p [i]) = x -- Parens are optional; same as *p[i]

	This	is	a	slight	simplification.	For	example,	the	thing	following	the	*	can	be	any	expression,	as	19

long	as	it	has	type	“ptr	to…”.

Blitz-64:	KPL	Introduction	/	Porter	 Page	 	of	98 207

The	Assignment	Statement

The	precedence	of	all	operators	in	KPL	mimics	C,	C++,	and	Java	and	is	documented	
elsewhere	in	this	document.

Confusion	between	=	and	==	by	C++/Java	programmers	has	been	the	source	of	many	
bugs.

 if (i = max) ... // A common C++/Java mistake
 if (i == max) ...

In	KPL,	the	assignment	symbol	(=)	is	not	an	operator,	as	it	is	in	C++	and	Java.	In	
keeping	with	KPL’s	philosophy	of	emphasizing	program	correctness	at	the	expense	
of	conciseness	and	efficiency,	it	was	decided	that	=	would	not	be	usable	as	an	
expression,	which	makes	the	following	illegal:

 if i = max ... -- Syntax error!

Furthermore,	integers	are	not	implicitly	coerced	to	type	bool.	To	achieve	both	an	
assignment	and	a	comparison	against	0,	the	following	KPL	code	would	be	used,	
making	clear	that	two	operations	are	being	performed:

 i = max -- Use this instead
 if i != 0 ...

Operators	+=	and	-=

C,	C++,	and	Java	are	likely	to	be	familiar	with	+=	and	-=	and	they	can	be	used	in	KPL.

 KPL Effect
 ================ ========================
 i += k i = i + k
 i -= k i = i - k

With	+=	and	-=,	the	first	operand	(x)	is	evaluated	only	once.	If	“x”	is	a	simple	
expression,	this	doesn’t	make	any	difference,	but	if	evaluating	“x”	causes	side-effects,	
this	can	be	important .
20

	For	completeness,	we	should	remark	that	in	the	case	of	multiple	threads,	there	is	a	subtle	20

difference.	Consider	“a[i]	+=	1”;	if	there	is	a	possibility	that	“i”	could	be	modified	concurrently	by	
another	thread,	this	statement	could	function	differently	from	“a[i]	=	a[i]	+	1”.	However,	concurrent	
programmers	really	ought	to	follow	a	discipline	of	locking	shared	data	that	precludes	such	race	
condition	sensitivity.

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
99 207

The	Assignment	Statement

Here	is	how	the	+=	statement	is	defined:

 KPL Equivalent
 ================ ========================
 xxx += Expr temp = & xxx
 *temp = *temp + Expr

For	example:

 KPL Equivalent21
 ================ ========================
 *foo(x) += k temp = foo(x)
 *temp = *temp + k

In	C,	C++,	and	Java,	a	number	of	operators	can	be	combined	with	=	to	create	a	new	
assignment	operator.	In	KPL,	this	can	be	done	only	with	+	and	-.	The	assignment	=	
cannot	be	combined	with	any	arbitrary	operator	in	KPL.	However,	this	does	not	
seem	too	common	and	the	same	result	can	be	achieved	easily	enough	in	KPL.

 KPL Java and C++
 ================ ========================
 i = i * k i *= k

It	would	be	unusual	for	the	lefthand	side	expression	to	involve	side-effects,	
especially	from	something	besides	addition	and	subtraction.	However,	if	this	
situation	does	arise,	the	following	KPL	code	may	actually	be	clearer	and	less	error-
prone.

 KPL Java and C++
 ================ ========================
 temp = (complexExpr) (complexExpr) %= k
 temp = temp % k

In	KPL,	+=	and	-=	are	statements,	not	expressions.	Here	are	the	three	forms	of	
assignment	statement	in	KPL:

 LValue = Expression
 LValue += Expression
 LValue -= Expression

	Note	that	“&		(*	foo)”	is	the	same	as	“foo”.21

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
100 207

The	Assignment	Statement

Operators	++	and	--

The	KPL	language	does	not	have	the	++	and	--	operators.	However,	the	same	result	
may	be	achieved	with	+=	and	-=.

 KPL Java and C++
 ================ ========================
 i += 1 i++;
 i -= 1 i--;

In	C,	C++,	and	Java,	the	++	and	--	operators	can	be	used	for	both	their	value	and	for	
their	side-effects.	In	KPL,	these	two	steps	must	be	made	explicit .
22

 KPL Java and C++
 ================ ========================
 i += 1 a[++i] = 0
 a[i] = 0

	Originally,	++	and	--	were	included	in	C	to	take	advantage	of	machine	instructions	that	included	22

incrementing/decrementing	as	side-effects.	In	modern	RISC	processors,	this	sort	of	instruction	
complexity	is	generally	avoided	in	an	effort	to	keep	each	instruction	simple.

Given	the	best	contemporary	compiler	technology,	there	is	usually	no	efficiency	to	be	gained	from	
these	operators.	If	the	target	machine	includes	instructions	that	have	implicit	incrementing/
decrementing,	the	compiler	will	likely	select	these	instructions	regardless	of	how	the	programmer	
codes	it.

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
101 207

Type	Checking	and	Subtypes

Type	Conversions

KPL	provides	several	built-in,	predefined	functions	to	convert	between	the	basic	
data	types.

These	functions	use	the	standard	function	invocation	syntax,	but	they	are	
recognized	by	the	compiler	as	special.	The	compiler	will	generate	machine	
instructions	to	perform	the	operation	and	will	insert	this	code	directly	inline.	There	
are	no	corresponding	function	prototypes	or	definitions	for	these	functions.

Here	are	the	built-in	conversion	functions:

 Built-in Function Argument Type Result Type
 ================= ====================== ==============
 upcastToHalfword byte/halfword halfword
 upcastToWord byte/halfword/word word
 upcastToInt byte/halfword/word/int int
 upcastToDouble byte/halfword/word double

 asByte int byte
 asHalfword int halfword
 asWord int word

 forceToByte int byte
 forceToHalfword int halfword
 forceToWord int word

 forceToDouble int double
 forceToInt double int
 copyBitsToDouble int double
 copyBitsToInt double int

 asInteger ptr int
 asPtrTo int/ptr , Type ptr to Type
 ptrToBool ptr bool

Blitz-64:	KPL	Introduction	/	Porter	 Page	 	of	102 207

Type	Checking	and	Subtypes

The	following	functions	are	inserted	automatically	whenever	necessary	and	would	
not	normally	be	used	by	the	programmer.	Although	the	representation	is	changed,	
the	underlying	numerical	value	remains	exactly	the	same.

 upcastToHalfword byte/halfword halfword
 upcastToWord byte/halfword/word word
 upcastToInt byte/halfword/word/int int
 upcastToDouble byte/halfword/word double

Integers	are	extended	by	sign-extension.	Since	sign-extension	is	automatic	with	the	
Blitz-64	machine	instructions	LOADB,	LOADH,	and	LOADW,	and	since	values	in	
registers	are	kept	in	sign-extended	form,	there	is	typically	zero	overhead	for	the	
sign-extension	of	integers.	(The	Blitz-64	machine	instructions	SEXTB,	SEXTH,	and	
SEXTW	are	not	normally	needed.)

In	the	following	examples,	we’ll	use	these	variables:

 var
 d: double
 i: int
 w: word
 p: ptr to ...

Here	are	some	example	in	which	automatic	conversions	are	inserted.	The	first	
demonstrates	that	integer	constants	can	be	used	in	contexts	requiring	8,	16,	or	32	
bits,	as	long	as	they	lie	within	the	representable	ranges.

 w = -1 -- Sign extend 8 bit value 0xff to 0xffffffff
 i = 'A' -- Set i to 65, i.e., 0x0000000000000041
 d = 123 -- Set d to 123.0

The	general	principle	is	that	any	conversion	in	which	the	value	is	guaranteed	to	be	
preserved	will	be	inserted	automatically	and	implicitly.	However,	whenever	there	is	
a	possibility	the	value	will	not	fit	into	the	smaller	type,	the	programmer	must	
explicitly	use	a	conversion	function.

 i = w -- OK: numerical value will always be unchanged
 w = i -- Error: need to use 'asWord' or 'forceToWord'

The	following	functions	will	downsize	an	integer	from	64	bits	to	8,	16,	or	32	bits.	
This	is	a	checked	operation:	the	original	value	must	lie	within	the	legal	range	of	the	

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
103 207

Type	Checking	and	Subtypes

smaller	representation.	If	it	does	not,	a	runtime	error	will	be	thrown.	The	Blitz-64	
machine	instructions	CHECKB,	CHECKH,	and	CHECKW	are	used.

 asByte int byte
 asHalfword int halfword
 asWord int word

For	example,	the	following	will	throw	an	error	if	“i”	is	not	within	the	range	
representable	in	a	byte.	Otherwise,	the	data	will	be	copied	with	no	change	in	value.

 b = asByte (i) -- Throw error if not within -128...+127

The	following	functions	will	downsize	an	integer	from	64	bits	to	8,	16,	or	32	bits.	If	
the	original	value	lies	outside	the	range	of	the	smaller	representation,	the	
conversion	will	change	the	numerical	value	to	fit	within	the	smaller	range.	An	error	
will	never	be	thrown.

 forceToByte int byte
 forceToHalfword int halfword
 forceToWord int word

In	the	functions	above,	the	upper	bits	are	simply	discarded.	There	is	no	execution	
overhead.

Any	8,	16,	or	32	bit	integer	can	be	transformed	into	a	double	precision	floating	point	
representation	without	losing	accuracy	or	changing	its	value.	The	upcastToDouble	
operation	is	done	using	the	Blitz-64	machine	instruction	CVTFI.	For	example,	the	
following	are	legal	and	will	never	change	the	numeric	value:

 d = 123 -- Implicitly converts 123 to 123.0
 d = upcastToDouble (w) -- No loss of accuracy is possible
 d = w -- Same (upcastToDouble is implied)

However	loss	of	accuracy	is	possible	whenever	converting	a	64	bit	integer	into	a	
double;	some	extremal	values	cannot	be	represented	with	100%	accuracy	as	
double	values,	since	doubles	have	limited	precision:

 i = d -- Compile-time error
 i = forceToInt (d) -- Use this instead
 i = copyBitsToInt (d) -- ... or this, if you want

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
104 207

Type	Checking	and	Subtypes

To	convert	between	64	bit	integers	and	floating	point	double	representation,	use	
these	functions.		These	use	the	Blitz-64	machine	instructions	FCVTFI	and	FCVTIF.

 forceToDouble int double
 forceToInt double int

In	the	case	of	the	int→double	conversion,	small	integers	can	be	converted	and	the	
exact	value	will	be	preserved.	However,	for	integers	outside	the	range

 -9,007,199,254,740,992 ... +9,007,199,254,740,992

accuracy	will	be	lost.

In	the	case	of	the	double→int	conversion,	accuracy	will	be	lost	for	any	fractional	
value	or	any	integral	value	beyond	the	range

 -9,223,372,036,854,775,808 ... +9,223,372,036,854,775,807

You	may	also	copy	the	bits	between	an	int	and	a	double	with	the	following	
functions.	The	bits	are	copied	directly,	with	no	conversion.	The	value	will	be	totally	
changed	(except	for	+0.0,	which	happens	to	be	represented	as	0x0).

 copyBitsToDouble int double
 copyBitsToInt double int

Elsewhere	we	will	discuss	the	following	functions.	Both	copy	the	bits	with	no	
change.	The	asPtrTo	function	requires	a	second	argument,	which	is	a	type.	It	is	
unsafe	and	requires	the	“-unsafe”	command	line	option	when	compiling.

 asInteger ptr int
 asPtrTo int/ptr, Type ptr to Type

The	ptrToBool	function	is	inserted	automatically	as	needed.	The	null	pointer	is	
converted	to	false	and	all	other	addresses	are	converted	to	true.

 ptrToBool ptr bool

Here’s	a	very	typical	example	which	makes	use	of	the	implicit	conversion	of	pointers	
to	bool:

 while p -- Walk a linked list

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
105 207

Type	Checking	and	Subtypes

 ...
 p = p.next
 endWhile

Object-Oriented	Type	Checking

Next,	we	consider	type	checking	when	objects	and	classes	are	involved.	For	the	
following	examples,	assume	that	we	have	two	classes	called	“Person”	and	“Student”.	
Assume	Student	is	a	subclass	of	Person.

Here	are	two	variables:

 var per: Person
 st: Student

Each	of	these	variables	holds	the	entire	object,	not	a	pointer	to	the	object.	Even	
though	Student	is	a	subclass	of	Person,	the	following	assignments	are	not	allowed:

 per = st -- Compile-time error!
 st = per -- Compile-time error!

The	reason	that	these	assignments	are	not	allowed	is	that,	in	general,	the	variables	
will	have	different	sizes.	In	order	to	perform	the	assignments,	data	would	need	to	be	
discarded	or	added.	If	this	is	what	is	desired,	the	programmer	must	code	it	explicitly.

Next,	consider	using	pointers	to	the	objects:

 var perPtr: ptr to Person
 stPtr: ptr to Student

The	following	assignment	is	legal:

 perPtr = stPtr -- Okay

In	KPL,	any	pointer	that	is	declared	to	have	type	“ptr	to	C”,	where	C	is	a	class,	will	be	
guaranteed	to	point	at	runtime	to	an	instance	of	C	or	one	of	C’s	subclasses.

Likewise,	any	pointer	that	is	declared	to	have	type	“ptr	to	I”,	where	I	is	an	interface,	
will	be	guaranteed	to	point	at	runtime	to	an	instance	of	some	class	that	implements	
interface	I.

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
106 207

Type	Checking	and	Subtypes

This	is	the	same	type	rule	as	in	Java.

This	guarantee	is	made	as	long	as	only	safe	constructs	are	used.	The	programmer	
can	use	constructs	(such	as	asPtrTo,	described	below)	to	violate	this	invariant.

If	perPtr	points	to	an	instance	of	class	Person	and	we	send	a	message	using	perPtr,	
we	will	invoke	a	method	defined	in	class	Person.

 perPtr.meth (...Arguments...)

However,	perPtr	might	point	to	an	instance	of	one	of	Person’s	subclasses,	like	
Student	(or	even	to	an	instance	of	a	subclass	of	a	subclass	of	Person,	and	so	on).	
Assume	perPtr	points	to	an	instance	of	class	Student	and	we	send	the	same	message.	
If	“meth”	has	been	overridden	and	redefined	in	Student,	then	we	will	invoke	the	new	
method.	Otherwise,	if	meth	is	inherited	without	being	overridden,	we	will	invoke	the	
method	defined	in	Person.

The	following	assignment	is	not	allowed.	While	perPtr	might	point	to	a	Student	at	
runtime,	the	compiler	cannot	guarantee	this.

 stPtr = perPtr -- Compile-time error!

This	assignment	can	be	done	by	explicitly	casting	it,	using	the	asPtrTo	function.	This	
is	discussed	later.

Dynamic	Type	Checking

KPL	provides	two	built-in	functions	to	determine	what	sort	of	object	are	pointed	to	
at	runtime:	isInstanceOf	and	isKindOf.

With	the	isInstanceOf	function	the	first	argument	points	to	an	object	and	the	
second	argument	names	a	class.	It	returns	a	bool	value.	In	the	next	example,	
isInstanceOf	is	used	to	determine	whether	perPtr	points	to	an	instance	of	class	
Student.

 var perPtr: ptr to Person
 ...
 if isInstanceOf (perPtr, Student)
 print ("Got a Student!")
 endIf

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
107 207

Type	Checking	and	Subtypes

The	isInstanceOf	function	returns	true	if	the	first	operand	points	to	an	instance	of	
the	named	class.	If	perPtr	points	to	an	instance	of	some	subclass	of	Student,	the	
isInstanceOf	function	will	return	false.

To	perform	the	more	inclusive	test,	KPL	has	another	function	named	isKindOf,	
whose	first	argument	points	to	an	object	and	whose	second	argument	is	a	class	or	
interface.	In	the	next	example,	assume	that	“PartTimeStudent”	is	a	subclass	of	
Student.

 if isKindOf (perPtr, Student)
 print ("Got a Student or PartTimeStudent!")
 endIf

Note	that	the	isInstanceOf	function	in	KPL	is	different	from	the	“instanceof”	
operator	in	Java.	The	isKindOf	function	in	KPL	behaves	the	way	Java’s	“instanceof”	
behaves.

Pointer	Casting

KPL	provides	a	built-in	function	called	asInteger,	which	can	be	used	to	convert	any	
pointer	into	an	integer.

 i = asInteger (p)
 j = asInteger (p.next) + 8

To	convert	an	integer	into	a	pointer,	the	asPtrTo	function	is	used.	The	first	argument	
is	an	integer	expression	and	the	second	argument	is	a	type.

 asPtrTo (Expression, Type)

For	example:

 asPtrTo (i+20, array of double)

The	asPtrTo	function	will	simply	copy	the	64-bit	value,	without	any	runtime	type	
checking.

 var p1: ptr to Person
 ...
 p1 = asPtrTo (i, Person)

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
108 207

Type	Checking	and	Subtypes

Of	course,	the	static	type	checking	still	occurs.	

 var p2: ptr to Person
 ...
 p2 = asPtrTo (i, Person) -- Okay
 ...
 p2 = asPtrTo (i, double) -- Compile-time type error

The	asPtrTo	function	may	also	be	used	to	cast	a	pointer	from	one	type	to	a	pointer	
of	another	type.

A	typical	use	of	pointer	casting	is	shown	in	the	next	example.	Assume	that	“perPtr”	
may	point	to	any	kind	of	Person,	including	a	Student	object.	Given	a	pointer,	the	
programmer	may	wish	to	determine	if	the	pointer	points	to	a	Student	and,	if	so,	do	
something	with	it.

 var perPtr: ptr to Person
 stPtr: ptr to Student
 ...
 if isKindOf (perPtr, Student)
 stPtr = asPtrTo (perPtr, Student)
 ...Do something using stPtr...
 endIf

This	sort	of	operation	is	so	common	that	KPL	provides	the	switchOnClass	
statement,	which	is	discussed	is	a	separate	section	of	this	document.

Pointers	can	also	be	incremented	and	decremented	directly.	Pointer	casting	is	not	
necessary:

 p = p + 8 -- Increment a pointer
 p = p - 8 -- Decrement a pointer

In	KPL,	the	manipulation	of	pointers	is	always	in	terms	of	bytes.	This	is	different	
than	in	C	/	C++,	in	which	an	increment	of	1	depends	on	the	exact	type	of	the	pointer:

	

 KPL:
 p = p + 1 Always increments by 1 byte

 C / C++:
 p = p + 1 Increments by 1 byte for “char * p”
 p = p + 1 Increments by 8 bytes for “double * p”
 p = p + 1 Implementation dependent for “int * p”

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
109 207

Type	Checking	and	Subtypes

While	the	sizes	of	basic	types	is	known	and	fixed,	the	sizes	of	objects,	structs,	and	
unions	will	depend	of	the	fields	they	contain.	The	built-in	function	sizeOf	can	be	
used	to	determine	the	size	of	values	of	a	particular	type.

 perPtr = perPtr + sizeOf (Person)

Pointers	may	also	be	subtracted	from	one	another,	resulting	in	an	integer.

 i = p - q -- The difference between two pointers is an int

However,	pointers	may	not	be	added:

 i = p + q -- Compile-time error

The	asInteger	and	sizeOf	functions	are	always	safe,	but	the	asPtrTo	function	is	
considered	unsafe	since	an	error	in	its	use	may	lead	to	a	system	crash.

Subtyping	Among	Array	and	Struct	Types

One	array	may	be	copied	to	another.	In	the	following	example,	all	10	elements	will	
be	copied.

 var arr1, arr2: array [10] of Person
 ...
 arr1 = arr2

To	make	the	assignment,	the	arrays	must	have	the	same	type.	There	is	no	subtype	
relationship	between	array	types,	even	when	pointers	are	used.	For	example:

 var p1: ptr to array [10] of Person
 p2: ptr to array [10] of Student
 ...
 p1 = p2 -- Compile-time error!
 p2 = p1 -- Compile-time error!

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
110 207

Type	Checking	and	Subtypes

Likewise,	there	is	no	subtype	relationship	between	struct	or	union	types.	Two	
structs	are	equal	if	and	only	if	they	have	the	same	fields,	with	the	same	names	in	the	
same	order,	and	the	fields	have	pair-wise	types	that	are	equal.	Likewise,	for	union	
types.

 var r1: struct
 f1: ptr to Person
 endStruct
 r2: struct
 f1: ptr to Person
 endStruct
 r3: struct
 f1: ptr to Student
 endStruct
 ...
 r1 = r2 -- Okay
 r1 = r3 -- Compile-time error!

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
111 207

The	SwitchOnClass	Statement

KPL	introduces	a	new	kind	of	statement	called	“switch-on-class”,	which	I	have	not	
previously	encountered,	but	which	seems	particularly	useful.

To	motivate	this	statement,	imagine	a	program	with	a	complex	data	structure	
involving	a	number	of	classes.	Imagine	a	pointer	where	it	is	not	known	exactly	what	
sort	of	an	object	it	points	to.	Now	imagine	that	we	wish	to	write	a	function	that,	
passed	a	such	a	pointer,	will	print	out	information	about	the	object	pointed	to.	This	
function	must	print	something	different	for	each	class	of	object	it	might	be	passed.

Of	course	this	could	be	done	using	the	isInstanceOf	and	asPtrTo	functions	and	a	
series	of	if-then-else	tests.	Since	every	class	would	need	to	be	tested,	this	series	of	
tests	would	be	linear	in	the	number	of	classes.	In	short,	the	code	would	be	ugly	and	
slow.

The	syntax	of	the	switchOnClass	statement	is	similar	to	the	switch	statement,	as	it	
appears	in	C,	C++,	Java,	and	KPL	itself.

In	the	following	example,	assume	that	a	class	“Student”	is	a	subclass	of	“Person”.	
Every	Person	has	a	“name”	field	and	Students	inherit	this	field.	In	addition,	assume	
Students	have	a	“grade”	field.	Also	assume	a	class	“Vehicle”,	which	is	unrelated	to	
Person	and	Student,	has	a	“model”	field.

Here	is	an	example	of	the	switchOnClass	statement:

 var p: ptr to Object
 ...
 switchOnClass p
 case Person:
 printf ("Person: name = %s\n", p.name)
 case Student:
 printf ("Student: name = %s\n", p.name)
 printf (" grade = %d\n", p.grade)
 case Vehicle:
 printf ("Vehicle: model = %s\n", p.model)
 default:
 printf ("Unknown class\n")
 endSwitchOnClass

Blitz-64:	KPL	Introduction	/	Porter	 Page	 	of	112 207

The	SwitchOnClass	Statement

There	are	several	things	to	notice.

First,	the	keywords	are	switchOnClass	/	endSwitchOnClass	instead	of	switch	/	
endSwitch.	However,	the	case	and	default	keywords	are	the	same.

Second,	the	break	instruction	is	not	used	and	is	not	allowed.	There	is	an	implicit	
break	at	the	end	of	every	case	statement	block.

Third,	the	expression	following	the	switchOnClass	keyword	is	restricted	to	be	an	ID,	
not	a	complex	expression.	This	identifier	must	have	type	“ptr	to	Class”	or	“ptr	to	
Interface”.

Fourth,	after	each	case	keyword	there	must	be	a	class	name.	In	a	traditional	switch	
statement,	a	value	will	follow	each	case	keyword;	here	a	class	name	follows	the	case	
keyword.

Finally,	within	each	case	block,	the	identifier—in	this	example,	“p”—can	be	used	as	if	
it	had	the	more	specific	type.

For	example,	in	the	“case	Student”	statement	block,	variable	“p”	has	type	“ptr	to	
Student”.	Because	“p”	has	this	type,	the	accesses	to	the	“name”	and	“grade”	fields,	
which	only	Students	have,	are	allowable.

At	runtime,	the	object	pointed	by	“p”	is	checked	and,	depending	on	its	actual	class,	a	
jump	is	made	to	the	corresponding	case	block.	If	the	object	is	a	class	that	is	not	
included	among	the	options,	the	jump	is	made	to	the	default	block.	If	the	pointer	is	
null,	the	jump	is	made	to	the	default	block.

The	test	used	is	equivalent	to	isInstanceOf,	not	isKindOf.	If,	for	example,	there	is	a	
subclass	of	Vehicle	(say	“Bicycle”)	and	“p”	happens	to	point	to	an	instance	of	Bicycle,	
then	the	jump	will	be	made	to	the	default	block,	since	the	class	Bicycle	is	not	among	
the	cases	listed.	It	doesn’t	matter	that	Vehicle	appears	and	that	every	Bicycle	is	a	
kind	of	Vehicle,	in	the	sense	of	being	a	subclass.

Implementation

In	the	initial	KPL	compiler,	the	switchOnClass	statement	is	implemented	efficiently.	
The	dispatch	is	performed	in	constant	time,	with	only	a	few	instructions.	Every	
object’s	header	points	to	a	dispatch	table	and	this	is	followed	to	get	a	hash	value	

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
113 207

The	SwitchOnClass	Statement

associated	with	the	class.	(The	compiler	computes	a	hash	values	based	on	the	
spelling	of	the	class	name	and	stores	this	at	runtime	as	a	constant	in	memory.)	This	
hash	value	is	then	used	to	jump	through	a	hash-based	jump	table,	to	go	directly	to	
the	right	code	block.	The	result	is	that,	even	if	there	are	1,000	cases	in	the	
switchOnClass	statement,	the	dispatch	to	the	correct	case	block	is	quick	and	
efficient.

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
114 207

Operators	and	Expression	Syntax

KPL	has	many	of	the	same	operators	as	C++	and	Java.	Furthermore,	the	syntax	of	
expressions	is	very	similar,	so	the	operators	from	C++	and	Java	are	parsed	using	the	
same	precedence	and	associativity	rules	as	in	C++	and	Java.

The	operators	are	grouped	and	listed	from	lowest	precedence	to	highest	precedence.	
Operators	with	the	same	precedence	are	left-associative.

Lowest	Precedence

 All keyword messages, e.g., x at:y put:z

 All infix operators not mentioned below

 || Short-circuit for bool operands

 && Short-circuit for bool operands

 | Bitwise OR for int operands

 ^ Bitwise XOR for int operands

 & Bitwise AND for int operands

 == Can compare basic types, pointers, and
 != objects, but not structs, unions or arrays

 < Can compare byte, halfword, word, int,
 <= double, and ptr operands
 >
 >=

 << Shift int operand left logical
 >> Shift int operand right logical
 <<< Shift int operand left arithmetic
 >>> Shift int operand right arithmetic

 + Can also add ptr+int
 - Can also subtract ptr-int and ptr-ptr

 *
 /
 % Modulo operator for ints

Blitz-64:	KPL	Introduction	/	Porter	 Page	 	of	115 207

Operators	and	Expression	Syntax

 Prefix - For int and double operands
 Prefix + For int and double operands (nop)
 Prefix ! For int and bool operands
 Prefix * Pointer dereference
 Prefix & Address-of
 All other prefix methods

 . Message Sending: x.foo(y,z)
 . Field Accessing: x.name
 [] Array Accessing: a[i,j]

 () Parenthesized expressions: x*(y+z)
 constants e.g., 123, "hello", 34.998e-23
 keywords e.g., true, false, null, self, super
 nameless funct e.g., function (...) ... endFunction
 variables e.g., x
 function call e.g., foo(4)
 built-ins e.g., forceToDouble (4)
 function e.g., function (...) ... endFunction
 new e.g., new Person { name="smith" }
 alloc e.g., alloc Person { name="smith" }
 sizeOf e.g., sizeOf (Person) ... in bytes
 asPtrTo e.g., asPtrTo (i, double)
 asInteger e.g., asInteger (ptr)
 arraySize e.g., arraySize (array/arrayPtr)
 arrayMaxSize e.g., arrayMaxSize (array/arrayPtr)
 isInstanceOf e.g., isInstanceOf (p,ClassName)
 isKindOf e.g., isKindOf (p,ClassOrInterfaceName)

Highest	Precedence

Operators	that	are	grouped	together	at	the	same	precedence	level	are	parsed	left-to-
right	with	the	normal	left	associativity.

For	example:

 x - y + z
 (x - y) + z -- Same meaning; parens are not needed.

and

 x - y * z
 x - (y * z) -- Same meaning; parens are not needed.

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
116 207

Operators	and	Expression	Syntax

64	Bit	Signed	Arithmetic

All	integer	arithmetic	operations	are	performed	using	64	bit	signed	arithmetic	and	
result	in	a	64	bit	signed	result.	Likewise,	all	logical	operations	are	performed	using	
64	bits.

If	the	operands	are	smaller	(e.g.,	byte,	halfword,	or	word),	they	will	automatically	
be	upcast	with	sign	extension	to	64	bits.	This	sign-extension	will	occur	for	both	
arithmetic	and	logical	operations.

 var i, j: int, b: byte
 ...
 i = j ^ -1 -- Flips all bits: "j XOR 0xffff_ffff_ffff_ffff”
 i = j ^ 0xff -- Flips 8 bits: "j XOR 0x0000_0000_0000_00ff”
 i = j ^ 255 -- Same as previous since 0xff = 255
 b = asByte (0xff) -- Error; 255 is not within -128...127
 b = asByte (0xffff_ffff_ffff_ffdc) -- No error; this is -36

If	the	result	is	to	be	stored	in	a	smaller	variable,	the	programmer	must	specify	
whether	or	not	to	ignore	overflow	errors.

 var x, y, z: byte
 ...
 x = y + z -- Compile-time error
 x = asByte (y + z) -- Throw error if problems
 x = forceToByte (y + z) -- Truncate if necessary

Integer	Division

Integer	division	and	modulo	(/	and	%)	will	throw	an	“arithmetic	exception”	error	if	
the	divisor	is	0.	They	also	throw	the	error	if	overflow	occurs.	This	can	only	happen	if	
the	dividend	(top	number)	is	the	most	negative	value	(-9,223,372,036,854,775,808)	
and	the	divisor	(bottom	number)	is	-1.

With	integer	division,	there	is	a	question	about	what	happens	when	the	operands	
are	negative.	If	the	top	number	is	positive,	the	division	is	rounded	to	the	nearest	
integer	in	the	positive	direction	and	the	modulo	result	will	always	positive	(or	zero,	
of	course).

 7 / 3 = 2 7 % 3 = 1
 7 / -3 = -2 7 % -3 = 1

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
117 207

Operators	and	Expression	Syntax

If	the	top	number	is	negative,	the	results	are	implementation	dependent.	Division	
might	follow	“truncated	division”,	which	is	often	the	case	in	C,	C++,	and	Java:

 -7 / 3 = -2 -7 % 3 = -1
 -7 / -3 = 2 -7 % -3 = -1

Or	it	might	follow	“floored	division”:

 -7 / 3 = -3 -7 % 3 = 2
 -7 / -3 = 2 -7 % -3 = -1

Or	it	might	follow	Euclidean	division,	which	is	perhaps	more	mathematically	
justifiable:

 -7 / 3 = -3 -7 % 3 = 2
 -7 / -3 = 3 -7 % -3 = 2

Arithmetic	Shifting

KPL	uses	the	symbols	<<	and	>>	for	logical	(i.e.,	bitwise)	shifting.	KPL	uses	the	
symbols	<<<	and	>>>	for	arithmetic	shifting.

Arithmetic	right	shift	(>>>)	will	perform	sign-extension.	It	can	be	used	to	perform	
division	by	a	power	of	two	(2,	4,	8,	…).	If	the	dividend	is	positive,	it	always	works	
correctly.	However,	if	the	dividend	is	negative,	care	must	be	taken.	Right	shifting	
implements	Euclidean	and	floored	division	correctly,	but	does	not	implement	
truncated	division.

KPL	introduces	a	new	operator	“left	shift	arithmetic”	(<<<).	It	works	exactly	like	a	
logical	left	shift	except	that	it	will	throw	an	error	if	there	is	overflow,	that	is	if	
significant	bits	are	shifted	off	the	left	end.	Thus,	<<<	can	be	used	to	correctly	
implement	multiplication	by	any	positive	power	of	two,	with	exactly	the	same	
behavior	in	the	event	of	overflow	errors.

Mnemonic	Hint		We	use	the	symbols	<<	and	>>	for	“logical”	because	both	are	
“simpler”.	We	use	<<<	and	>>>	for	“arithmetic”	because	this	is	a	more	“complex”	
operation.	The	extra	character	can	be	thought	of	as	standing	for	the	extra	work	of	
error	checking.	Furthermore,	“left	shift	arithmetic”	is	an	unusual,	new	operation.	
Likewise	“<<<”		is	an	unusual	symbol,	not	normally	used.

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
118 207

Operators	and	Expression	Syntax

Syntax	Exception	Regarding	‘*’

The	goal	of	making	the	syntax	of	KPL	simple	has	not	been	entirely	achieved.	There	is	
an	ambiguity	in	the	Context	Free	Grammar	that	requires	an	exceptional	rule.

Any	operator,	such	as	“*”,	may	be	interpreted	as	infix	or	prefix.	Here	are	two	
examples	showing	that	an	identical	sequence	of	tokens	can	be	interpreted	two	ways:

x = 123 * p.foo()	 The	“*”	is	a	binary	operator

x = 123
p.foo() 	 The	“”	is	a	prefix	operator

However,	the	last	statement	is	not	actually	legal.	Recall	that	prefix	binds	more	
loosely	than	message-send-dot,	so	it	would	be	interpreted	as

*(p.foo())

But	this	violates	another	rule:	Prefix	expressions	always	returns	values,	so	they	
cannot	be	used	at	the	statement	level.		If	you	want	the	second	interpretation,	you	
would	have	to	add	parentheses	anyway,	so	it	would	look	like	this:

x = 123
(*p).foo()

And	the	parentheses	would	preclude	the	interpretation	of	“*”	as	a	binary	operator.

This	applies	to	all	operator	symbols,	such	as	“+”,	“-”	and	“*”.	

However,	there	is	a	second	use	of	“*”	that	causes	parsing	problems.		It	is	the	use	of	
“*”	as	the	predefined	dereference	operator	in	an	assignment	statement.	Consider	
this	sequence	of	tokens;	what	is	allowable	next?

x = 123 * p ...

This	could	have	two	interpretations,	as	shown	by	these	examples:

x = 123
	 p = 456 The	“”	is	the	beginning	of	an	assignment	statement

or

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
119 207

Operators	and	Expression	Syntax

	 x = 123 * p	 The	“*”	is	a	binary	operator,	continuing	the	expression

Since	“p”	could	be	an	arbitrary	expression,	the	parser	must	distinguish	the	cases	
before	parsing	“p”.		This	requires	arbitrary	lookahead,	which	the	parser	avoids.

For	this	situation,	we	add	the	following	(non-CFG)	restrictions:

(1)	 If	t	“*”	is	preceded	by	a	newline,	it	is	assumed	to	be	a	prefix	operator.

(2)	 If	a	“*”	occurs	on	the	same	line	as	the	previous	token,	it	is	assumed	to	be	an	

infix	operator.

In	the	rare	case	when	the	programmer	wants	two	statements	on	the	same	line,	he	or	
she	would	have	to	use	parentheses	to	force	the	desired	interpretation,	as	in:

x = 123 (*p) = 456

With	a	long	infix	expression	involving	“*”	which	must	be	spread	over	several	lines,	
the	programmer	must	code	it	like	this:

x = aaaaaa *
 bbbbbb *
 cccccc

and	not	this:

x = aaaaaa
 * bbbbbb
 * cccccc

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
120 207

Constants	and	Enumerations

Constants

The	programmer	may	associate	names	with	constant	values,	using	the	const	
construct.	Here	is	an	example:

 const
 MAX = 1000
 HALF_MAX = MAX / 2
 PI = 3.14159265358979
 DEBUG = false
 NEWLINE = '\n'
 MESSAGE = "Hello, world!"
 EMPTY_LIST = null

The	compiler	must	be	able	to	evaluate	all	of	the	expressions	in	const	definitions	at	
compile-time.

Note	that	the	value	of	“HALF_MAX”	is	an	expression,	but	this	is	okay	since	it	can	be	
evaluated	at	compile-time.	The	expressions	in	const	definitions	may	involve	only	
immediate	values	and	other	const	definitions,	even	though	they	may	use	a	const	
definition	that	occurs	later	in	the	file.	For	example:

 header
 ...
 const
 A = 100
 ...
 const
 B = C*3
 ...
 const
 C = A-9
 ...
 endHeader

Blitz-64:	KPL	Introduction	/	Porter	 Page	 	of	121 207

Constants	and	Enumerations

That	example	illustrated	that	const	definitions	may	be	grouped	or	may	be	
independent.	For	example

 const MY_CON = 500
 const ANOTHER_CONSTANT = 30000

is	equivalent	to

 const
 MY_CON = 500
 ANOTHER_CONSTANT = 30000

and	the	programmer	can	code	it	whichever	way	seems	clearest.

The	expression	after	the	“=”	must	have	one	of	the	following	types:

 int
 double
 bool
 ptr to array of byte -- i.e., a string constant
 null

The	compiler	will	make	an	effort	to	evaluate	all	expressions	in	the	program	at	
compile-time.	For	example,	the	following	statement

 i = HALF_MAX + 3

will	be	simplified	and	compiled	identically	to

 i = 503

Enumerations

KPL	also	includes	an	enum	construct.	Here	is	an	example:

 enum NO_ERR, WARNING, NORMAL_ERR, FATAL_ERR

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
122 207

Constants	and	Enumerations

The	enum	is	shorthand	for	a	sequence	of	const	definitions,	defining	sequential	
integer	constants.	In	this	example,	the	above	enum	is	equivalent	to	the	following:

 const
 NO_ERR = 1
 WARNING = 2
 NORMAL_ERR = 3
 FATAL_ERR = 4

The	default	starting	value	is	1,	but	you	may	specify	a	different	starting	value.	The	
general	form	is:

 enum ID [= ...Expression...] { , ID }*

The	Expression	must	be	an	integer	expression	which	can	be	evaluated	at	compile-
time.	For	example:

 enum A = (183 % ONE_HUNDRED), B, C, D, E
 const ONE_HUNDRED = 100

is	equivalent	to

 const
 ONE_HUNDRED = 100
 A = 83
 B = 84
 C = 85
 D = 86
 E = 87

Both	const	and	enum	constructs	may	appear	in	either	the	header	file	or	the	code	file.	
The	placement	of	a	const	or	enum	determines	the	visibility	of	the	names	it	defines.	
They	follow	the	same	visibility	rules	used	by	global	variables,	functions,	type	
definitions,	classes,	interfaces,	and	error	declarations.

To	repeat	the	KPL	visibility	rule:

“If	something	is	placed	in	a	code	file,	then	it	is	private	and	may	only	be	used	
within	that	package.	If	it	is	placed	in	the	header	file,	then	it	is	shared	and	can	be	
accessed	by	any	package	the	uses	the	package	where	it	was	defined.”

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
123 207

Constants	and	Enumerations

Both	const	and	enum	constructs	must	appear	at	the	top	level	in	the	header	or	code	
file.	In	other	words,	they	cannot	appear	within	a	function,	class,	or	method.

The	recommendation	is	that	the	names	defined	const	and	enum	definitions	be	fully	
capitalized,	as	in	the	above	examples.	They	need	not	appear	near	the	top	of	the	file—
although	this	is	recommended—and	their	exact	location	in	the	header	of	code	file	is	
has	no	impact	on	the	compiler. 

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
124 207

Errors	and	Try-Throw-Catch

The	Try	and	Throw	Statements

KPL	has	a	“try-throw-catch”	mechanism	like	Java,	but	with	significantly	simpler	
semantics.

The	try	statement	includes	a	“body”	of	statements	and	a	number	of	“catch	clauses”.	
Here	is	an	example:

 try
 ...Body Statements...
 catch MY_ERROR (i: int):
 ...Statements...
 catch error2 (a,b: String):
 ...Statements...
 catch FATAL_ERR ():
 ...Statements...
 endTry

Here	is	the	grammar	for	the	try	statement.	The	body	consists	of	sequence	of	
statements,	followed	by	one	or	more	catch	clauses.	Each	catch	clause	names	an	
error—error	names	are	simple	identifiers—which	is	followed	by	a	parameter	list,	
which	has	the	same	syntax	as	a	function	or	method	parameter	list.	This	header	is	
followed	by	a	colon	and	a	sequence	of	statements	known	as	the	“catch	clause	
statements”.

 try
 { Statement }*
 { catch ID (Parameters) : { Statement }* }+
 endTry

Errors	are	said	to	be	“thrown”.	When	an	error	condition	arises,	some	particular	error	
will	be	thrown.	For	example,	an	attempt	to	divide	by	zero	will	result	in	an	
“arithmetic	error	being	thrown.	The	precise	name	of	this	error	is:

 ERROR_ArithmeticException

Blitz-64:	KPL	Introduction	/	Porter	 Page	 	of	125 207

Errors	and	Try-Throw-Catch

An	attempt	to	use	a	null	pointer	will	cause	this	error	to	be	thrown:

 ERROR_NullAddress

As	in	Java,	the	body	statements	are	executed	first.	If	no	error	is	thrown,	none	of	the	
catch	clauses	is	executed.	Execution	will	continue	with	the	statement	following	the	
endTry	keyword.

However,	if	an	error	is	thrown	during	the	execution	of	the	body	statements,	then	a	
matching	catch	is	searched	for.

If	a	matching	catch	clause	is	found	in	the	try	statement,	the	corresponding	error	
handling	statements	are	executed.	The	body	statements	are	never	re-entered	or	
returned	to.	Whichever	catch	clause	was	selected	will	execute	to	completion	and	
then	execution	will	continue	with	the	statement	after	the	endTry.

If	no	matching	catch	clause	is	found,	then	the	try	statement	itself	terminates	and	the	
error	is	propagated	upward	and	outward.

The	try	statements	may	be	lexically	nested,	like	while	or	for	loops.	Also,	code	within	
the	body	of	a	try	statement	may	call	functions	or	invoke	methods.	The	catch	clauses	
that	are	active	for	the	try	statement	will	remain	active	until	these	functions	and	
methods	return	and	execution	reaches	the	end	of	the	body	statements,	or	until	an	
error	is	thrown.
23

The	only	ways	to	leave	the	body	statements	of	a	try	statement	are:

	The	best	way	to	understand	the	try-throw-catch	mechanism	is	to	know	that	it	is	implemented	23

using	a	stack.	This	“catch	stack”	is	separate	from	the	runtime	stack	of	activation	frames.

Each	element	on	the	catch	stack	represents	an	active	catch	clause.	Whenever	a	try	statement	is	
executed,	a	record	is	pushed	onto	the	stack	for	each	catch	clause,	before	the	body	statements	are	
attempted.	When	the	body	statements	complete	without	error,	those	records	are	popped	off	the	
catch	stack.

There	is	one	global	catch	stack	(per	thread),	so	if	several	try	statements	have	begun	but	not	
finished,	the	catch	stack	will	contain	a	number	of	records,	with	the	records	for	the	most	recently	
entered	try	statement	near	at	the	stack	top.	When	an	error	is	thrown,	the	catch	stack	is	search	
from	top	to	bottom	for	the	first	catch	clause	that	applies.	Thus,	the	most	recently	entered	try	
statement	with	a	matching	catch	clause	is	the	catch	clause	that	is	selected	for	execution.	Just	prior	
to	executing	the	catch	clause,	both	the	catch	stack	and	the	runtime	stack	of	activation	frames	are	
popped	back	to	where	they	were	when	the	original	try	statement	was	entered.

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
126 207

Errors	and	Try-Throw-Catch

	 •	Throw	an	error

	 •	Complete	execution	and	reach	the	end	of	the	body	statements

	 •	Execute	a	return	statement

The	break	and	continue	statements	cannot	be	used	to	jump	out	of	the	body	
statements	and	their	use	is	restricted	accordingly.

The	error	handling	statements	in	a	catch	clause	may	contain	a	return	or	throw	
statement,	which	will	cause	execution	to	leave	the	try	statement.	Since	the	catch	
stack	will	have	been	fully	popped	upon	entry	to	the	catch	clause,	the	above-
mentioned	restrictions	on	the	break	and	continue	statements	are	lifted	and	they	
are	usable	as	normal	within	the	catch	clause	statements.	

An	error	can	be	thrown	explicitly	by	executing	a	throw	statement.	Here	is	an	
example	throw	statement:

 throw MY_ERROR (5)

An	error	may	also	be	thrown	by	the	runtime	system	during	the	course	of	program	
execution,	as	mentioned	above.

Argument	values	may	be	passed	to	the	error	handling	statements.	In	KPL,	the	throw-
catch	process	is	similar	to	a	function	invocation	since	argument	values	are	copied	to	
parameter	variables.	However,	unlike	Java,	there	is	no	“error	object”	and	errors	are	
not	related	in	any	hierarchy.

Declaring	Errors

In	KPL,	each	error	must	be	declared.	Here	is	an	error	declaration:

 errors
 MY_ERROR (i: int)
 error2 (a,b: String)
 FATAL_ERR ()

The	error	declaration	tells	the	compiler	how	many	and	what	types	of	arguments	are	
expected	when	a	given	error	is	thrown	or	caught.	The	compiler	then	checks	the	
throw	statements	and	catch	clauses,	much	like	it	checks	function	definitions	and	call	
statements.

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
127 207

Errors	and	Try-Throw-Catch

An	error	declaration	may	occur	in	either	a	header	or	code	file,	and	follow	the	KPL	
visibility	rule.	If	an	error	is	declared	in	the	code	file,	it	may	only	be	thrown	and	
caught	by	code	in	that	package.	If	declared	in	the	header	file,	the	error	can	be	
thrown	and/or	caught	in	any	package	that	uses	that	package.	Each	error	must	be	
declared	exactly	once.

In	Java,	the	try	statement	has	a	“finally”	clause,	with	rather	complex	semantics.	KPL	
does	not	have	a	“finally”	clause.

In	Java,	each	method	must	say	which	errors	it	might	throw.	These	are	listed	in	the	
method	header	after	the	“throws”	keyword	and	the	Java	compiler	ensures	that	all	
errors	will	be	caught	by	some	try	statement.	There	is	no	corresponding	construct	in	
KPL.

Uncaught	Errors	and	Debugging

It	is	possible	for	a	method	or	function	to	throw	an	error	that	is	uncaught.	When	this	
occurs,	the	runtime	system	will	abandon	the	initial	error	and	throw	a	second	
general-purpose	error:

 UncaughtThrowError

If	this	too	is	not	caught,	a	fatal	runtime	error	will	occur	and	execution	will	halt.

This	mechanism	works	quite	well	for	handling	runtime	errors	in	KPL	code.	When	an	
error	condition	occurs	a	specific	error	is	thrown.	If	user	code	has	chosen	to	catch	
that	particular	error,	then	the	user	code	will	continue	running	and	perhaps	recover	
in	some	fashion	from	the	error	condition.	If	the	programmer	has	ignored	that	sort	of	
error,	then	an	“UncaughtThrowError”	will	occur.	The	user	code	made	have	a	way	to	
handle	all	errors	and	may	catch	handle	this	new	error.	But	if	the	program	again	
ignores	the	error,	the	default	behavior	is	to	halt	program	execution,	print	a	
descriptive	error	message,	and	invoke	a	debugger.

Most	simple	programs,	where	fault	tolerance	and	high	reliability	are	not	great	
concerns,	will	not	bother	with	catching	errors.

Next,	we	show	what	happens	when	the	“uncaught	error”	occurs.	This	was	taken	
from	a	KPL	program	running	on	the	Blitz-64	virtual	machine	emulator	(with	some	
minor	editing).

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
128 207

Errors	and	Try-Throw-Catch

You	can	see	that	the	following	information	is	included:

	 •	The	problem:

	 	 “Arithmetic	Exception”	was	thrown,	but	not	caught.

	 •	The	current	catch	stack:

	 	 Which	errors	are	being	actively	caught.

	 •	Where	the	error	occurred:

	 	 An	ASSIGN	statement	on	line	60	in	function	“main"			[examplePgm.c]

	 •	Which	functions	and	methods	were	in	execution	at	the	time

	 	 (Highlighted	in	grey	below)

	 •	The	machine	instruction	causing	the	exception:

	 	 ADDI

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
129 207

Errors	and	Try-Throw-Catch

==================== KPL PROGRAM STARTING ====================
...
"System: ERROR_ArithmeticException" was thrown but not caught within thread "Main
Thread"

Here is the CATCH STACK:
 TestProgram: MY_ERROR
 address of catch record: 0x000000000FFFFF00
 catchCodeAddr: 0x000000000000BE8C
 prevSP: 0x000000000FFFFDE8
 source file: examplePgm.c (line 60)
===

***** RUNTIME ERROR: An "ARITHMETIC EXCEPTION" has occurred! *****
 Offending Instruction = 0x0000000001000177

***** EMULATOR DEBUGGING: Type 'stack' for more info. *****

Execution is stopped at ASSIGN on line 60 in function "main" [examplePgm.c]
 00000C574: 01000177 addi r7,r7,1
Done!

Entering machine-level debugger...

Enter a command at the prompt. Type 'quit' to exit or 'help' for info about
commands.
> stack
 Function/Method Execution at... File
 ============================== ================= ========================
 EmulatorDebuggingRequested KPL_lib/runtime.s
 invokeDebugger CALL line 762 KPL_lib/System.c
 RuntimeErrorArithmeticExceptio CALL line 649 KPL_lib/System.c
 _runtimeErrorArithmeticExcepti KPL_lib/runtime.s
 AnotherFun ASSIGN line 116 examplePgm.c
 MyClass.myMethod examplePgm.c
 MyFunction SEND line 110 examplePgm.c
 main CALL line 58 examplePgm.c
 _kplEntry examplePgm.c
 _entry KPL_lib/runtime.s

Other	systems	may	deal	with	uncaught	errors	differently.	For	example,	an	embedded	
system	may	simply	turn	on	a	red	LED	and	freeze	up. 

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
130 207

Naming	and	Scope	Rules

The	Unique	Name	Rule

Many	programming	languages	allow	lexical	scoping	of	variable	declarations:	
variables	in	inner	scopes	will	hide	variables	declared	in	outer	scopes.	For	example:

 begin -- This is not KPL
 var x: int
 ...
 begin
 var x: int
 ...
 end
 end

KPL	adopts	the	exact	opposite	philosophy:

In	KPL,	name	hiding	is	not	allowed	and	everything	must	have	a	unique	name.

This	includes:

	 •	local	variables

	 •	parameters	to	functions,	method,	and	errors

	 •	constants

	 •	types

	 •	global	variables

	 •	functions

	 •	classes

	 •	interfaces

	 •	errors

Even	if	two	things	are	fundamentally	different—such	as	a	class	and	a	parameter—
they	must	be	given	different	names.

Blitz-64:	KPL	Introduction	/	Porter	 Page	 	of	131 207

Naming	and	Scope	Rules

For	example,	a	type	definition	and	a	global	variable	may	not	have	the	same	name:

 type t = struct ... endStruct
 var t: int -- Compile-time error

Here	is	another	example,	showing	that	local	names	may	not	collide	with	or	hide	
global	variable	names.

 var i: int
 ...
 function foo (...)
 var i: int -- Compile-time error
 ...
 endFunction

While	this	might	seem	overly	restrictive,	the	KPL	scoping	rules	are	intended	to	make	
programs	clearer	and	more	reliable.	Having	multiple	entities	with	the	same	name	
may	introduce	confusion	and	increase	opportunities	for	bugs.	In	KPL,	the	
programmer	has	to	do	a	little	more	work	when	writing	programs,	but	the	resulting	
programs	are	easier	to	read	and	understand.

After	all,	it	is	not	hard	to	ensure	that	all	variables	have	different	names.	A	variable	
name	can	easily	be	made	unique	by	adding	a	character	or	two	to	its	name.

 var i2: int

The	Renaming	Clause

One	package	may	be	“used”	by	other	packages.	In	its	header	file,	the	package	may	
define	and	export	variables	and	other	things	for	use	in	other	packages.

A	package’s	header	file	may	define	the	following	kinds	of	things.	Any	entity	defined	
in	the	header	file	of	one	package	is	automatically	exported	for	use	in	other	packages	
that	choose	to	use	that	package.

 constants
 types
 global variables
 functions
 classes
 interfaces
 errors

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
132 207

Naming	and	Scope	Rules

Within	any	single	package,	all	of	the	above	entities	must	have	unique	names,	
regardless	of	whether	they	are	defined	in	that	package	or	inherited	from	another	
package. 

It	doesn’t	matter	whether	any	reference	to	the	entity	actually	occurs	in	the	package;	
every	entity	must	have	a	unique	name.

The	renaming	clause	can	be	used	to	rename	any	of	these,	as	necessary,	to	avoid	
name	collisions.

When	some	package	uses	several	other	packages,	it	is	possible	that	two	of	the	used	
packages	both	contain	variables	with	the	same	name.	In	such	case	a	“name	collision”	
occurs.

For	example,	assume	that	package	X	uses	packages	A	and	B.	Assume	that	package	A	
defines	a	variable	called	“myVar”	and	package	B	defines	another	variable,	by	
coincidence	also	called	“myVar”.	Within	package	X,	a	problem	arises:	what	does	
“myVar”	refer	to?

In	KPL,	name	collisions	are	not	allowed.	Within	each	package,	each	different	entity	
must	have	a	different	name.

Since	it	is	not	always	practical	to	modify	any	package	at	will,	the	uses	clause	has	
additional	syntax	that	allows	entities	from	another	package	to	be	renamed.	The	
renaming	clause	is	used	to	avoid	name	collisions.

In	this	example,	package	X	could	be	coded	like	this:

 package X
 uses
 A renaming myVar to myVarA,
 B renaming myVar to myVarB
 ...
 endPackage

Within	package	X,	the	variable	from	A	will	be	referred	to	using	the	name	“myVarA”	
and	the	variable	from	B	will	be	called	“myVarB”.

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
133 207

Naming	and	Scope	Rules

The	general	form	of	the	uses	clause	is	this:

 uses OtherPackage { , OtherPackage }*

Where	OtherPackage	has	this	form:

 ID [renaming ID to ID { , ID to ID }*]  

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
134 207

Parameterized	Classes

Classes	may	be	parameterized. 	Here	is	an	example	with	two	parameterized	24

classes:

 class List [T:anyType]
 superclass Object
 fields
 first: ptr to ListItem [T]
 last: ptr to ListItem [T]
 methods
 Prepend (p: ptr to T)
 Append (p: ptr to T)
 Remove () returns ptr to T
 IsEmpty () returns bool
 ApplyToEach (f: ptr to function (ptr to T))
 endClass

 class ListItem [T:anyType]
 superclass Object
 fields
 elementPtr: ptr to T
 next: ptr to ListItem [T]
 endClass

The	idea	is	that	instances	of	class	“List”	will	contain	a	number	of	elements	of	type	T,	
where	the	type	of	the	elements	can	be	any	type.	We	can	have	lists	of	integers,	lists	of	
Person	objects,	and	so	on.

Each	list	will	be	represented	with	a	single	instance	of	class	“List”	which	will	contain	
pointers	to	the	first	and	last	elements	in	a	linked	list	of	instances	of	class	“ListItem”.	

	C++	has	a	similar	construct,	called	“template	classes”.	Java	also	has	a	similar	construct,	called	24

“generic	classes”.	KPL	doesn’t	use	the	“template”	terminology,	since	“template”	implies	copying	and	
KPL	avoids	copying	code.	KPL	doesn’t	use	the	“generic”	terminology	because	“generic”	implies	lack	
of	specificity.	KPL’s	“parameterized”	terminology	seems	more	appropriate,	since	the	type	
parameters	in	KPL	are	associated	with	constraints,	which	act	to	specify	which	types	can	be	used	in	
instantiations.	Furthermore,	this	terminology	makes	it	natural	to	talk	about	“type	parameters”	and	
“type	arguments”,	which	we	need	to	differentiate.	Also,	the	“parameterized	type”	terminology	is	
analogous	to	function	parameters	and	function	arguments.	We	considered	using	the	<>	notation	
from	C++	and	Java	or	possibly	«»	or	<<>>,	but	elected	to	go	with	the	[]	notation.

Blitz-64:	KPL	Introduction	/	Porter	 Page	 	of	135 207

Parameterized	Classes

Each	time	an	element	is	added	to	the	list,	we	will	create	a	new	ListItem	object	and	
link	it	into	the	list.	We	want	to	be	able	to	place	any	kind	of	thing	in	the	list,	so	this	
program	stores	and	manipulates	pointers	to	the	elements,	not	the	elements	
themselves.	Each	ListItem	will	point	to	a	single	element	and	also	to	the	next	ListItem	
in	the	list.

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
136 207

Parameterized	Classes

Whenever	we	use	the	List	type,	we	must	provide	a	“type	argument”	for	the	
parameter	T.	For	example,	we	can	define	a	list	of	Persons,	where	Person	is	a	class	
defined	elsewhere:

 var perList: List [Person]

We	can	also	use	other	kinds	of	lists:

 var intList: List [int]
 boolList: List [bool]
 otherList: List [AnotherClass]
 listOfLists: List [List [anyType]]

Every	item	on	“perList”	list	will	be	a	Person,	or	a	subclass	of	Person.	Every	item	on	
“intList”	will	be	an	int,	and	so	on.

We	can	create	new	instances	of	a	parameterized	class	using	either	new	or	alloc,	just	
as	with	any	non-parameterized	class.

 perList= new List[Person] {first = null, last = null}

We	can	manipulate	the	instances	of	parameterized	classes	in	the	same	ways	as	non-
parameterized	classes.	For	example,	we	can	send	messages	to	the	List	object	to	add	
and	remove	elements	from	the	list.	Assume	“perPtr”points	to	a	Person	object;	we	
can	add	it	to	the	list	with	this	code:

 var perPtr: ptr to Person = ...
 ...
 perList.Append (perPtr)

Likewise,	we	can	add	elements	to	the	“intList”.

 var i: int = 12345
 ...
 intList.Append (&i)

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
137 207

Parameterized	Classes

Here	is	the	code	for	the	Append	method:

 behavior List
 ...
 method Append (p: ptr to T)
 var item: ptr to ListItem [T]
 item = alloc ListItem [T] { next = null, elementPtr = p }
 if self.IsEmpty ()
 first = item
 last = item
 else
 last.next = item
 last = item
 endIf
 endMethod
 ...
 endBehavior

Within	the	implementation	part	of	a	parameterized	class	(i.e.,	within	the	behavior	
construct),	we	can	use	type	parameters.	In	the	above	example,	we	see	“T”	being	used	
as	a	type	in	the	implementation	of	the	List	methods.

The	List	class	also	has	a	method	called	“ApplyToEach”.	This	method	is	passed	a	
function.	It	runs	through	the	list	and	invokes	that	function	once	on	each	element	in	
the	list.	Assume	that	we	have	a	function	that	prints	a	Person	object.

 function printPerson (p: ptr to Person)
 printf ("A Person with name = %s\n", p.name)
 endFunction

In	the	next	statement,	this	function	is	invoked	for	each	Person	in	the	list,	thereby	
printing	all	their	names.

 perList.ApplyToEach (printPerson)

Here	is	the	code	for	method	“ApplyToEach”:

 method ApplyToEach (f: ptr to function (ptr to T))
 var p: ptr to ListItem [T]
 for (p = first; p; p = p.next)
 f (p.elementPtr)
 endFor
 endMethod

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
138 207

Parameterized	Classes

The	compiler	will	type-check	all	expressions	involving	parameterized	types.	If	the	
programmer	makes	a	type	error,	it	will	be	caught	at	compile	time.	For	example,	an	
attempt	to	add	a	Person	to	a	list	of	integers	will	be	caught:

 intList.Append (perPtr) -- Compile-time error!

Likewise,	an	attempt	to	apply	“printPerson”	to	the	elements	of	“intList”	is	in	error:

 intList.ApplyToEach (printPerson) -- Compile-time error!

The	general	form	of	a	class	specification	was	given	earlier	as:

 class ID [...Type Parameters...]
 ...
 endClass

The	TypeParameters	are	optional.	If	present,	they	are	enclosed	in	brackets.	In	more	
detail,	here	is	how	a	class	definition	begins:

 class ID ['[' ID: type, ID: type, ... ID: type ']']
 ...
 endClass

Within	the	brackets	is	a	list	of	one	or	more	type	parameters.	Each	type	parameter	
has	an	associated	“constraint	type”	which	follows	the	colon. 	Here	are	examples:
25

 class List [T:anyType] ... endClass
 class TaxableList [Txbl:Taxable] ... endClass
 class Mapping [Key:Hashable, Value:anyType] ... endClass

Whenever	a	parameterized	class	is	instantiated,	the	type	argument	must	be	a	
subtype	of	the	constraint	type.	In	this	example,	“Taxable”	and	“Hashable”	must	be	
interfaces	or	classes	defined	elsewhere.	The	keyword	anyType	signifies	a	predefined	

	The	constraint	type	C	for	a	type	parameter	(as	in	[T:C])	may	be	either	(1)	a	class,	(2)	an	25

interface,	(3)	the	anyType	type,	or	(4)	a	function	type.	The	actual	type	provided	when	the	class	or	
interface	is	used	must	be	a	subtype	of	the	constraint	type.	For	example,	the	class	“List	[T:	Person]”	
may	be	used,	as	in	“var	myStuLi:	List	[Student]”	since	Student	is	a	subclass	of	Person.	Likewise,	if	
the	class	had	been	defined	instead	as	“List	[T:	anyType]”,	then	“var	myIntLi:	List	[int]”	would	be	
allowable.

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
139 207

Parameterized	Classes

type	that	is	the	supertype	of	all	other	types.	When	used	as	a	constraint	type,	it	
allows	any	type	to	be	used	when	the	parameterized	class	is	instantiated.

Let	us	assume	that	“Taxable”	is	an	interface.	Whenever	“TaxableList”	is	instantiated,	
the	type	argument	must	be	a	class	or	interface	that	implements	the	“Taxable”	
interface.	Assume	that	“Company”	is	a	class	that	implements	the	Taxable	interface	
and	that	“Vehicle”	is	a	class	that	does	not	implement	the	Taxable	interface.	Then	a	
TaxableList	of	“Company”s	is	okay,	but	a	TaxableList	of	“Vehicle”s	would	be	in	error.

 var listA: TaxableList [Company]
 listB: TaxableList [Vehicle] -- Compile-time error!

Now	assume	that	the	Taxable	interface	includes	a	“ComputeTaxes”	message.	All	
classes	that	implement	the	Taxable	interface	will	have	to	provide	a	method	for	
ComputeTaxes,	although	different	classes	may	implement	ComputeTaxes	differently.	
Within	the	implementation	of	TaxableList,	the	message	ComputeTaxes	may	be	sent	
to	any	variable	with	type	“Txbl”,	since	whatever	kind	of	object	it	is,	it	must	
implement	the	Taxable	interface.	Therefore,	it	must	understand	the	message.

The	KPL	compiler	implements	parameterized	classes	using	shared	code.	In	other	
words,	there	will	be	only	one	copy	of	the	code	for	methods	like	Append	and	
ApplyToEach.	This	code	will	be	shared	and	used	by	all	lists,	whether	they	are	lists	of	
Persons,	list	of	integers,	or	whatever.

Parameterized	Interfaces

Parameterized	interfaces	can	also	be	defined,	in	much	the	same	way	as	
parameterized	classes.	For	example:

 interface Collection [T:anyType]
 messages
 Append (p: ptr to T)
 Size () returns int
 IsEmpty () returns bool
 endInterface

Given	the	above	definition	of	Collection,	we	could	alter	the	definition	of	List	to	make	
it	implement	Collection:

 class List [T:anyType]
 implements Collection [T]

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
140 207

Parameterized	Classes

 superclass Object
 fields
 ...
 methods
 ...
 endClass

The	Collection	interface	requires	a	method	called	“Size”,	which	was	not	in	our	
original	definition	of	List.	The	compiler	will	produce	an	error,	unless	we	add	a	Size	
method	to	class	List.

Parameterized	classes	and	interfaces	are	most	useful	in	the	implementation	of	
general-purpose	data	structures	such	as	sets,	lists,	look-up	tables,	and	so	on.	
Without	parameterized	classes,	these	sorts	of	classes,	which	must	handle	arbitrary	
types	of	data,	must	work	around	the	compiler’s	type-checking	system.	While	this	can	
be	done	in	KPL	(with	features	like	ptr to void	and	asPtrTo),	any	program	bugs	may	
cause	the	program	to	crash	catastrophically.	However,	if	parameterized	classes	are	
used,	the	compiler	can	type-check	much	more	of	the	program	and	thereby	increase	
the	reliability	of	the	program. 

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
141 207

Conclusion

As	its	name	reflects,	the	primary	and	initial	application	for	KPL	is	writing	OS	kernel	
code.	The	features	which	have	been	included	in	the	language	have	been	selected	
with	this	in	mind.

No	programming	language	is	perfect	and	no	programming	language	can	address	all	
potential	applications	with	equal	facility.	KPL	is	the	embodiment	of	my	opinions	and	
biases	about	programming	language	design.

The	KPL	philosophy	emphasizes	reliability	of	the	resulting	programs	at	the	expense	
of	all	other	considerations.	When	reliability	is	emphasized,	one	effect	is	that	overall	
coding	time	should	be	reduced.

One	way	this	philosophy	is	manifested	is	in	the	greater	degree	of	runtime	checking.	
For	example,	all	pointer	and	array	operations	are	checked	at	runtime	and	errors	are	
caught	and	reported	immediately.	Another	manifestation	is	that	the	language	was	
designed	with	the	explicit	aim	of	encouraging	program	readability,	even	if	this	seems	
to	make	the	language	more	difficult	to	write.

Simplicity	in	programming	languages	is	always	a	good	thing,	leading	to	better	
compilers,	easier	programming,	greater	efficiency,	and	increased	program	reliability.	
The	overall	goal	of	the	Blitz-64	project	is	to	create	a	practical	and	usable	computer	
system.	It	is	the	hope	that	the	KPL	programming	language	is	simple	enough	to	be	
both	useable	and	fun	to	code	in,	while	being	complete	enough	for	the	real	work	of	
implementing	operating	system	kernel	code. 

Blitz-64:	KPL	Introduction	/	Porter	 Page	 	of	142 207

Appendix	1:	Predefined	Functions

In	this	section	we	list	and	describe	all	the	functions	that	are	part	of	the	KPL	language	
core.

Some	of	these	functions	are	recognized	by	the	compiler	either	for	efficiency	reasons	
or	because	something	about	them	requires	special	attention	from	the	compiler.	For	
example,	consider	the	first	argument	to	the	function	asPtrTo,	which	can	be	either	an	
integer	or	a	pointer.	Since	a	normal	function	must	have	only	a	single	type	for	each	
argument,	the	asPtrTo	function	must	be	handled	specially	by	the	compiler.

As	another	example,	consider	the	second	argument	to	asPtrTo,	which	is	a	Type.	In	
KPL,	types	are	not	values	and	an	attempt	to	pass	a	type	(rather	than	a	value)	would	
be	flagged	by	the	compiler	as	a	syntax	error.	So	again,	asPtrTo	must	be	handled	by	
the	compiler.

Other	functions	are	not	treated	specially	by	the	compiler	and	many	are	not	even	
recognized	by	the	compiler.	Instead,	these	functions	are	implemented	directly,	either	
in	assembly	code	or	in	KPL.

 Built-in Function Argument Type Result Type
 ================= ====================== ==============
 upcastToHalfword byte/halfword halfword
 upcastToWord byte/halfword/word word
 upcastToInt byte/halfword/word/int int
 upcastToDouble byte/halfword/word double

 asByte int byte
 asHalfword int halfword
 asWord int word

 forceToByte int byte
 forceToHalfword int halfword
 forceToWord int word

 forceToDouble int double
 forceToInt double int
 copyBitsToDouble int double
 copyBitsToInt double int

Blitz-64:	KPL	Introduction	/	Porter	 Page	 	of	143 207

Appendix	1:	Predefined	Functions

 asInteger ptr int
 asPtrTo int/ptr , Type ptr to Type
 ptrToBool ptr bool
 isKindOf x , Type bool
 isInstanceOf x , Type bool
 sizeOf Type int
 initializeObject ObjExpr < Statement >

 initializeArray ArrExpr < Statement >
 setArraySize ArrExpr, int < Statement >
 arrayMaxSize ArrExpr int
 arraySize ArrExpr int

 CPUControl int, constant int
 CPUControlUserMode int, constant int

 cas ptr to int, int, int int
 fence () < Statement >

 isnan double bool
 isNegZero double bool

 unsignedAdd int, int int
 unsignedSub int, int int
 addOk int, int bool

 initializeThreadPtr ptr < Statement >
 threadPtr () int
 remainingStackSpace () int

 endianSwapH int halfword
 endianSwapW int word
 endianSwapD int int

 setFloatingRound (int) < Statement >
 resetFloatingStatus () < Statement >
 floatingInexact () bool
 floatingUnderflow () bool
 floatingOverflow () bool
 floatingZeroDivide () bool
 floatingInvalid () bool
 floatingClass double int

 MemoryCopy8
 MemoryZero8

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
144 207

Appendix	1:	Predefined	Functions

Important	Definitions	(implemented	in	runtime.s	or	System/Utility):

 ThreadData < A class >
 CatchRecord < A struct >

upcastToHalfword,	upcastToWord,	upcastToInt

These	functions	are	not	normally	used	by	the	programmer,	but	they	can	be	used	if	it	
makes	the	program	easier	to	understand.	Instead,	they	are	inserted	implicitly	and	
automatically	as	needed	to	change	integer	values	from	a	smaller	type	to	a	larger	
type.	The	value	is	sign-extended	as	necessary.	Therefore,	there	is	never	a	change	in	
the	numerical	value.	There	are	no	error	conditions	and	errors	will	never	be	thrown.

upcastToDouble

This	function	is	not	normally	used	by	the	programmer,	but	it	can	be	used	if	it	makes	
the	program	easier	to	understand.	Instead,	it	is	inserted	implicitly	and	automatically	
as	needed	to	change	an	integer	value	into	a	floating	point	value.	There	is	never	a	
change	in	the	numerical	value.	Since	all	32	bit	integer	values	can	be	represented	
exactly	as	double	precision	floating	point	values,	this	function	may	be	used	to	
convert	them	without	possibility	of	error.

 var d: double
 d = 123 -- Same as d = 123.0

However,	there	are	some	64	bit	integer	values	which	cannot	be	represented	exactly	
as	a	double	value.	Therefore,	this	function	may	not	be	applied	to	arbitrary	ints.	See	
forceToDouble.

 var i: int
 d = i -- Compile-time error
 d = 9_223_372_036_854_775_807 -- Compile-time error

asByte,	asHalfword,	asWord

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
145 207

Appendix	1:	Predefined	Functions

These	functions	may	be	used	to	change	an	integer	value	from	a	larger	representation	
to	a	smaller	representation.	For	example,	an	int	value	(e.g.,	the	result	of	a	
computation)	can	be	“downsized”,	as	in:

 var b: byte
 b = asByte (i+j) -- May cause a runtime error

The	value	will	be	checked	at	runtime	and	if	it	is	not	within	range,	i.e.,	if	it	cannot	be	
represented	by	the	target	type,	an	“Arithmetic	Exception”	will	occur.	Here	are	the	
ranges	that	can	be	represented:

	 	 				Size	

	 			Type						 		in	bits			 Range	of	values	 	

	 byte	 8		 -128	…	127

	 halfword	 16	 -32,768	…	32,767

	 word	 32	 -2,147,483,648	…	2,147,483,647

	 int	 64	 -9,223,372,036,854,775,808	…	9,223,372,036,854,775,807	

forceToByte,	forceToHalfword,	forceToWord

Similarly	to	asByte,	asHalfword,	and	asWord,	these	functions	may	be	used	to	
change	an	integer	value	from	a	larger	representation	to	a	smaller	representation.	
For	example,	an	int	value	(e.g.,	the	result	of	a	computation)	can	be	“downsized”,	as	
in:

 var b: byte
 b = forceToByte (i+j) -- Never an error, but value may change

The	difference	is	how	values	that	are	out-of-range	are	treated.	These	functions	will	
never	throw	an	error;	instead	the	upper	bits	will	simply	be	discarded.	This	may	
result	is	a	change	in	value.	

 var
 i: int
 b: byte
 i = 1234567 -- 0x0000_0000_0012_D687
 b = forceToByte (i) -- 0x87 = 0xffff_ffff_ffff_ff87 = -121
 b = -121 -- Equivalent

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
146 207

Appendix	1:	Predefined	Functions

forceToDouble,	forceToInt

The	forceToDouble	function	may	be	used	to	change	an	integer	value	into	a	double	
representation.	The	forceToInt	function	be	used	to	change	a	double	value	into	a	64	
bit	integer	int	representation.	In	many	cases,	the	conversion	will	be	exact	and	the	
value	will	be	unchanged.

 var
 i: int
 d: double
 i = 1234567
 d = forceToDouble (i) -- No problem; yields 1.234567e+6

In	the	case	of	forceToDouble	,	if	there	is	no	double	value	that	represents	the	
integer	value	exactly,	then	forceToDouble	will	yield	an	approximate	value.	That	is,	
the	value	will	be	rounded	to	a	nearby	value	that	can	be	represented.

Any	integer	within	the	following	range	can	be	represented	as	a	double	with	no	loss	
of	accuracy:

 -9,007,199,254,740,992 ... +9,007,199,254,740,992

In	the	case	of	forceToInt	,	if	the	double	value	is	outside	the	range	of	values	
representable	as	a	64	bit	signed	integer,	then	forceToInt	will	set	the	floating	point	
“overflow”	(OV)	flag.	No	error	will	be	thrown.	For	positive	values,	the	result	of	the	
function	will	be	the	largest	int	value,	and	for	negative	values,	the	result	of	the	
function	will	be	the	most	negative	int	value.	Any	value	outside	the	following	range	
will	cause	this	overflow	behavior:

 -9,223,372,036,854,775,808 ... +9,223,372,036,854,775,807

If	the	argument	is	not	an	integer	within	the	above	range,	this	function	will	return	a	
nearby	value	and	will	set	the	“inexact”	(NX)	floating	point	status	bit.

copyBitsToDouble,	copyBitsToInt

Like	forceToDouble	and	forceToInt,	these	functions	are	used	to	copy	data	from	int	
variables	to	double	variables	and	vice	versa.	However	these	functions	do	no	
conversion.	The	bits	are	simply	copied.	This	will	result	in	a	completely	different	
numerical	value	(except	in	the	case	of	the	double	value	+0.0	and	the	int	value	0,	

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
147 207

Appendix	1:	Predefined	Functions

which	just	happen	to	be	represented	identically	as	0x0000000000000000).	These	
functions	will	never	throw	an	error.

 i = copyBitToInt (1.75)
 i = 0x3ffc_0000_0000_0000 -- Equivalent

 d = copyBitToDouble (0x3ffc_0000_0000_0000)
 d = 1.75 -- Equivalent

asInteger

The	asInteger	function	takes	a	single	argument	of	type	ptr	to	anyType	and	returns	
an	int.	The	bits	are	unchanged	and,	since	every	address	is	limited	to	36	bits,	the	
result	will	be	in	the	range

 0x0,0000,0000 ... 0xF,FFFF,FFFF
 (decimal 0 ... 68,719,476,735)

This	function	is	“safe”.	However,	this	function	can	be	used	to	make	a	program	
implementation-dependent	and	it	can	cause	different	executions	to	produce	
different	results	since	addresses	may	change	from	execution	to	execution	for	various	
reasons.

The	identifier	“asInteger”	is	actually	a	keyword	and	this	function	is	included	
directly	into	the	syntax	of	KPL.

asPtrTo

The	asPtrTo	function	takes	two	arguments.	The	first	argument	can	be	either	an	
integer	or	a	pointer.	The	second	argument	is	a	type	“T”.	The	function	returns	a	result	
which	is	of	type	“ptr	to	T”.

The	result	of	this	function	is	exactly	the	same	as	the	first	argument;	the	bits	are	
identical.	The	only	difference	is	that	the	type	of	the	result	is	altered.

This	function	is	“unsafe”	since	an	error	in	using	it	can	lead	to	a	crash	or	
unpredictable	behavior	in	code	that	would	otherwise	be	able	to	handle	errors	
properly.

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
148 207

Appendix	1:	Predefined	Functions

The	identifier	“asPtrTo”	is	actually	a	keyword	and	this	function	is	included	directly	
into	the	syntax	of	KPL.

ptrToBool

This	function	takes	a	pointer	as	an	argument	and	returns	true	if	the	pointer	is	not	
null.	It	return	false	if	the	pointer	is	null.

 if p ...
 if p != null ... -- Equivalent

isKindOf

This	function	takes	two	arguments,	as	in	

 if isKindOf (p, Person) ...

The	first	argument	(p)	must	be	either	an	object	or	a	pointer	to	an	object.	Here	are	
examples	that	would	work:

 var p: Student
 var p: ptr to Student
 var p: ptr to MyInterface

The	second	argument	must	name	a	class	or	interface.

If	the	second	argument	is	a	class	and	the	object	is	an	instance	of	that	class,	or	an	
instance	of	a	subclass	of	that	class,	or	a	sub-sub	class	(and	so	on)	of	that	class,	this	
function	will	return	true.	Otherwise,	it	returns	false.

Likewise,	if	the	second	argument	is	an	interface	and	the	object	is	an	instance	of	a	
class	that	implements	that	interface,	then	this	function	returns	true.	Otherwise,	it	
returns	false.	The	class	may	implement	the	interface	directly	or	indirectly	through	
the	extends	hierarchy	that	relates	interfaces	and	the	subclass	hierarchy	that	relates	
classes.

The	isKindOf	function	is	implemented	with	an	assembly	coded	function	which	
performs	a	search.	The	compiler	places	data	in	the	read-only	memory	segment	
which	includes	information	about	the	subclass,	implements,	and	extends	

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
149 207

Appendix	1:	Predefined	Functions

hierarchies.	For	each	occurrence	of	isKindOf,	the	compiler	generates	a	call	to	this	
function,	which	uses	that	information.
26

isInstanceOf

This	function	takes	two	arguments,	as	in	

 if isInstanceOf (p, Person) ...

The	first	argument	(p)	must	be	either	an	object	or	a	pointer	to	an	object.	Here	are	
examples	that	would	work:

 var p: Student
 var p: ptr to Student
 var p: ptr to MyInterface

The	second	argument	must	name	a	class.

If	the	object	is	an	instance	of	that	class,	this	function	will	return	true.	Otherwise,	it	
returns	false.	This	function	does	not	look	at	superclasses.

If	the	pointer	is	null,	then	this	function	throws	ERROR_NullAddress.	If	the	object	is	
uninitialized,	this	function	returns	false.

This	function	is	implemented	directly	in	assembly	code	produced	by	the	compiler	
(no	KPL	function	is	called)	so	it	is	fast.

The	class	name	must	be	given	without	any	type	arguments,	even	if	the	class	itself	is	
parameterized.	For	example,	assume	the	“List”	is	a	parameterized	class	in	the	
following:

 isInstanceOf (p, List [Person]) Error

	The	compiler	will	insert	a	call	to	a	separate	function	to	perform	this	operation.	Initially,	this	26

function	was	implemented	as	an	upcall	to	a	function	in	the	System	package.	For	efficiency,	it	was	
reimplemented	in	assembly	code.	The	assembly	function	requires	approximately	11	+	5×n	
instructions	to	perform	the	search,	where	n	is	the	number	of	superclasses	and	super-interfaces	of	
the	object’s	class.

The	two	versions	differ	slightly	in	how	errors	are	handled.	The	main	errors	are	(1)	the	pointer	is	
null	and	(2)	the	object	pointed	to	is	uninitialized.	The	assembly	version	will	cause	a	Null	Pointer	
Exception	in	both	cases.

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
150 207

Appendix	1:	Predefined	Functions

 isInstanceOf (p, List) OK

sizeOf

This	function	takes	a	single	argument,	which	must	be	a	type,	and	returns	an	integer:

 var i: int
 i = sizeOf (Person)
 i = sizeOf (double) -- Will set i to 8
 i = sizeOf (ptr to Person) -- Will set i to 8

Note	that	in	KPL	“sizeOf”	has	different	capitalization	from	C	/	C++,	which	use	
“sizeof”.

The	compiler	will	process	this	function	and	no	code	is	actually	generated.	Thus,	
there	are	no	possible	runtime	errors.

initializeArray

Every	array	must	be	initialized	before	use,	as	in:

 var a: array [10] of int
 initializeArray (a)

The	argument	may	also	be	a	pointer,	as	in:

 var arrPtr: ptr to array [10] of int
 initializeArray (arrPtr)

Recall	that	every	array	has	two	values	stored	in	a	hidden	header	word.	Each	array	
contains	a	64	bit	header,	located	directly	before	the	first	element.	Any	pointer	to	an	
array	will	point	to	this	header	word,	not	to	the	first	element.	This	header	word	
contains	two	values,	and	each	is	a	32	bit	signed	number.	Thus,	the	maximum	number	
of	elements	in	any	array	is	2,147,483,647.

•	The	MAXIMUM	number	of	elements

•	The	CURRENT	number	of	elements

This	function	sets	both	the	MAXIMUM	and	the	CURRENT	to	N,	where	N	is	
determined	by	the	compiler	based	on	the	type	of	the	argument.

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
151 207

Appendix	1:	Predefined	Functions

If	the	programmer	wants	a	different	CURRENT	size,	he	or	she	can	use	setArraySize.	
This	is	a	common	pattern:

 initializeArray (a) -- Set MAX size
 setArraySize (a, 0) -- Set CURRENT size; empty the array

If	the	array	has	been	initialized	previously	and	this	operation	is	repeated,	it	is	not	a	
problem.	Calling	initializeArray	is	a	good	way	to	“maximize”	the	array,	i.e.,	to	
increase	the	CURRENT	size	to	the	maximum	value.

Since	this	function	will	set	the	CURRENT	size	to	the	maximum	value,	it	will	
effectively	pick	up	anything	currently	in	memory.	All	variables	are	initialized	to	zero	
values	so	this	is	no	problem	when	the	array	is	first	initialized.	But	whenever	an	array	
is	initialized	a	second	time,	the	programmer	is	responsible	for	clearing	out	old	
values.

The	argument	may	not	be	a	pointer	to	a	dynamic	array,	since	the	compiler	cannot	
determine	the	array	size.

If	the	argument	is	a	simple	variable,	then	this	is	a	safe	operation.

However,	if	the	argument	is	a	pointer,	then	this	is	not	safe.	To	understand	why,	
consider	this	example.

 var
 p: ptr to array [23] of int
 myArr: array [7] of int
 p = & myArr
 initializeArray (*p) -- Will set size of myArr to 23!!!

This	code	will	set	the	MAX	size	of	myArr	to	an	erroneous	value,	allowing	the	
overwriting	of	whatever	follows	myArr.	(Although	the	assignment	to	p	would	be	
flagged	as	an	error,	there	are	other	ways	to	do	the	same	thing.)

This	function	will	throw	ERROR_InitializingArray	if	the	previous	array	MAX	size	
was	not	0	(uninitialized)	or	the	correct	MAX	size	(initialized).	This	function	will	also	
check	that	the	previous	CURRENT	value	was	within	range	and	throw	this	error	if	
not.

This	function	is	predefined	and	built	in	to	KPL.	It	is	impossible	to	implement	this	
function	in	KPL	since	there	is	no	single	type	that	will	subsume	all	arrays.

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
152 207

Appendix	1:	Predefined	Functions

setArraySize

Every	array	has	a	CURRENT	size,	which	can	be	adjusted	with	this	function:

 var
 a: array [10] of int = ...
 setArraySize (a, 7)

The	first	argument	is	any	expression	which	evaluates	to	either	an	array	or	a	pointer	
to	an	array.	The	second	argument	must	be	an	integer.

The	array	must	be	initialized	before	this	function	is	called	and,	if	not,	the	error	
ERROR_SetArraySize	will	be	thrown.

Every	array	also	has	a	MAXIMUM	size.	The	new	current	size	must	be	within	the	
range

 0 ... MAX-1

If	not,	ERROR_SetArraySize	will	be	thrown.

arrayMaxSize

Every	array	has	a	MAXIMUM	size	and	a	CURRENT	size.	This	function	returns	the	
MAXIMUM	size.

 var
 a: array [10] of int = ...
 i = arrayMaxSize (a)

This	function	returns	the	value	stored	in	memory,	not	the	compiler	determined	size.

The	argument	is	any	expression	which	evaluates	to	either	an	array	or	a	pointer	to	an	
array.

If	the	array	is	uninitialized,	this	function	will	return	0.	If	the	array	is	a	pointer	and	
that	pointer	is	null,	a	Null	Pointer	Exception	will	occur.

arraySize

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
153 207

Appendix	1:	Predefined	Functions

Every	array	has	a	CURRENT	size	and	a	MAXIMUM	size.	This	function	returns	the	
CURRENT	size.

 var
 a: array [10] of int = ...
 i = arraySize (a)

The	argument	is	any	expression	which	evaluates	to	either	an	array	or	a	pointer	to	an	
array.

If	the	array	is	uninitialized,	this	function	will	return	0.	If	the	array	is	a	pointer	and	
that	pointer	is	null,	a	Null	Pointer	Exception	will	occur.

initializeObject

Every	object	must	be	initialized	before	use.	Normally	this	is	done	with	either:

 var x: Person = new Person

or:

 var p: ptr to Person = alloc Person

In	a	few	situations,	these	methods	cannot	be	used.	An	alternative	is	to	use	this	
function:

 var p: ptr to Person
 initializeObject (p)

The	argument	must	be	a	pointer	which	must	point	to	an	area	of	memory	large	
enough	to	accommodate	the	object.	Furthermore,	the	memory	really	should	be	zero-
filled,	since	all	other	code	assumes	that	the	object’s	fields	will	be	initialized	to	their	
zero	values.

This	function	will	simply	set	the	object’s	header	word	to	point	to	the	dispatch	table.	
it	will	not	modify	any	other	fields.

NOTE:	If	the	memory	is	the	result	of	a	call	to	MemoryAlloc,	there	is	no	guarantee	
that	it	will	be	zeroed.	The	programmer	is	warned:	initializeObject	will	not	zero	the	

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
154 207

Appendix	1:	Predefined	Functions

object’s	fields.		Since	memory	returned	by	MemoryAlloc	will	almost	always	
contains	zeros,	this	bug	will	be	difficult	to	spot.

The	argument	is	an	address	which	must	be	doubleword	aligned.	The	compiler	will	
use	the	type	of	the	argument	to	determine	the	class	to	use.

This	function	is	predefined	and	built	in	to	KPL.	It	is	not	safe.

CPUControl	and	CPUControlUserMode

The	Blitz-64	hardware	contains	two	machine	instructions	which	are	intentionally	
left	“undefined”.	Individual	implementations	of	the	Blitz-64	core	will	elect	to	use	
these	instructions	differently.	In	some	implementations,	these	instructions	may	not	
be	used	at	all.

Here	is	the	form	of	the	machine	instructions:

 CPUControl RegDest,RegSource,Value16
 CPUControlUserMode RegDest,RegSource,Value16

The	“Value16”	field	is	a	16	bit	operation	code	which	indicates	which	operation	is	to	
be	performed.	Its	precise	meaning	is	left	as	“implementation	dependent”	and	up	to	
individual	core	designers.	Consult

	 Blitz-64	Instruction	Set	Architecture	Reference	Manual

for	details	and	examples	of	how	these	instructions	might	be	used.

These	CPUControl	and	CPUControlUserMode	functions	are	provided	in	order	to	
allow	programmers	to	use	these	instructions.	For	example:

 var i: int
 i = CPUControl (x, 23)
 i = CPUControlUserMode (x, 23)

The	first	argument	may	be	any	integer-valued	expression.	The	second	argument	
must	be	a	constant	integer	expression.	In	other	words,	the	compiler	must	be	able	to	
determine	the	value	of	the	second	argument;	it	may	not	be	a	variable.	Furthermore,	

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
155 207

Appendix	1:	Predefined	Functions

the	second	argument	must	be	within	-32,768	…	+32,767.	This	integer	will	be	used	as	
the	“Value16”	operation	code	in	the	instruction.

These	functions	are	implemented	by	the	compiler.	The	16	bit	operation	code	is	not	
in	a	register:	it	must	be	statically	determined	at	compile-time.	Since	the	operation	
code	must	be	known	before	runtime,	it	cannot	be	passed	and	plugged	in	at	runtime.	
Therefore	these	functions	cannot	be	implemented	as	external	assembly	routines.

CAS:	Compare	and	Swap

To	access	the	CAS	(compare-and-swap)	machine	instruction,	a	builtin	function	
named	cas	is	provided.

The	cas	function	behaves	as	if	it	has	the	following	definition,	with	the	proviso	that	
the	entire	operation	is	executed	atomically.

function cas (p: ptr to int, old: int, new: int) returns bool
 if *p == old
 *p = new
 return true
 endIf
 return false
endFunction

When	cas	is	used,	the	compiler	inserts	the	CAS	machine	instruction	inline,	avoiding	
the	procedure	call	overhead.

The	cas	function	can	be	used	to	implement	a	spin	lock.

For	example,	assume	myLock	is	a	doubleword	which	is	used	to	represent	a	mutex	
lock	where	0=unlocked	and	1=locked.	The	following	code	spins	if	the	lock	is	
unavailable:

Acquire	the	lock…

 while !cas (&myLock, 0, 1) endWhile
Execute	critical	section…

 ...code...
Release	the	lock…

 myLock = 0

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
156 207

Appendix	1:	Predefined	Functions

In	KPL,	the	store	operation	is	atomic	since	all	variables	are	aligned.	Thus,	the	lock	
can	be	released	with	a	simple	assignment	statement.

The	“fence”	Memory	Barrier

To	access	the	FENCE	machine	instruction,	a	builtin	function	named	fence	is	
provided,	but	the	function	does	more	than	just	that.

Programmers	naturally	and	implicitly	assume	that	expressions	and	statements	in	a	
programming	language	are	evaluated	and	executed	in	the	order	they	appear	in	the	
program.

To	increase	performance,	modern	processors	often	execute	instructions	out	of	
sequence.	Any	“out-of-order”	execution	is	considered	acceptable	and	correct	as	long	
as	the	effect	is	identical	to	executing	them	in	the	sequence	they	appear.

The	correctness	definition	just	given	makes	the	implicit	assumption	that	there	are	
no	other	processors.	However,	in	a	multiprocessor	system	with	shared	memory,	this	
is	not	true	and,	in	some	situations,	the	results	can	be	unexpected,	counterintuitive,	
and	incorrect.	Programmers	generally	assume	the	operations	in	their	code	will	be	
executed	in	the	sequence	written	and	this	is	normally	not	a	problem.	But	with	
concurrent	algorithms	and	out-of-order	execution,	subtle	and	difficult	race	bugs	can	
arise	if	this	issue	is	ignored.

For	example,	in	the	code	snippet	given	above	for	the	cas	built-in	function,	we	used	a	
STORE	operation	to	release	a	mutex	lock.	If	this	instruction	is	executed	out-of-order	
and	before	some	statements	in	the	critical	section	are	completed,	a	race	bug	occurs.

The	built-in	fence	function	does	two	things.

First,	it	causes	the	insertion	of	a	FENCE	machine	instruction.	The	FENCE	machine	
instruction	forces	critical	instructions	to	complete	before	other	instructions	begin.	
Therefore,	FENCE	constrains	and	limits	out-of-order	execution	in	the	processor	

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
157 207

Appendix	1:	Predefined	Functions

core. 	In	particular,	the	FENCE	instruction	affects	instructions	that	LOAD	from	or	27

STORE	to	memory,	including	the	CAS	instruction.

Second,	the	fence	function	tells	the	compiler	to	avoid	keeping	shared	variables	in	
registers.	Instead,	the	function	will	cause	the	compiler	to	write	all	shared	variables	
that	are	in	registers	back	to	memory	before	the	fence.	It	will	also	cause	the	compiler	
to	reload	all	shared	variables	it	needs	from	memory	after	the	fence.	In	other	words,	
the	fence	prevents	the	compiler	from	keeping	shared	variables	in	registers	across	
the	invocation	fence.

By	“shared	variables”	we	mean	any	global	variable	(i.e.,	variables	that	are	declared	
outside	any	function	or	method)	as	well	as	any	data	pointed	to.	Local	variables	and	
parameters	are	not	affected	unless	the	address-of	operator	(&)	is	applied	to	them	at	
some	point. 	Thus,	it	is	permissible	for	the	compiler	to	keep	local	variables	and	28

parameters	in	registers	across	the	use	of	fence.
29

Perhaps	you	might	suggest	that	the	fence	operation	could	be	implemented	as	an	
external	function.	The	idea	is	that	the	function	would	be	coded	in	assembly	and	
would	simply	execute	the	FENCE	machine	instruction	and	return.	However,	the	
fence	operation	may	be	used	in	spin-locks	and	other	performance-critical	code	so	
we	do	not	use	a	separate	function.	Instead,	the	FENCE	instruction	is	inserted	inline. 

	Using	FENCE	may	introduce	delays	and	pipeline	bubbles	but—since	it	is	a	question	of	27

correctness	and	is	rarely	used	anyway—this	is	irrelevant.

	If	the	address-of	operator	is	never	applied	to	a	local	variable,	the	program	will	never	have	a	28

pointer	to	that	variable.	This	means	the	local	variable	can	only	be	accessed	within	one	invocation	
of	the	function	in	which	it	appears.	It	cannot	be	accessed	by	multiple	concurrent	threads.

	I	believe	the	combination	of	these	functions	into	one	operation	is	my	invention.	In	other	29

languages	multiple	mechanisms	are	used,	including	“volatile”	variables	and	incantations	like	
“__asm__	__volatile__	(""	:::	“memory");”	and	“void	_mm_mfence(void)”.

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
158 207

Appendix	2:	Printing	with	“printf”

Introduction

KPL	provides	an	output	system	similar	to	C	/	C++.	The	following	two	functions	are	
built	in	to	the	language:

 printf
 sprintf

In	order	to	use	these	functions	in	a	package,	the	package	must	use	“PrintPackage”:
30

 header MyPack
 uses System, PrintPackage
 ...
 endHeader

This	section	provides	an	overview	of	printf	and	sprintf.	Their	full	functionality	is	
described	in:

“Blitz-64:	Software	Reference	Manual”

Examples

The	following	KPL	statements	show	that	many	features	familiar	from	C	/	C++	are	the	
same	in	KPL:

 printf ("int value = %d\n", i)
 printf ("double = %g %.6e %.6f\n", d, d, d)
 printf ("%s %10d \n\t %016.16x\n", str, i, i)

 sprintf (str, "Hello %s\n", userName)

	If	a	package	doesn’t	invoke	printf	or	sprintf,	then	there	is	no	need	to	use	PrintPackage.30

Blitz-64:	KPL	Introduction	/	Porter	 Page	 	of	159 207

Appendix	2:	Printing	with	“printf”

KPL	does	not	use	fprintf.	Instead,	the	printf	function	can	optionally	begin	with	a	
FileID,	as	in:

 printf (stdout, "int value = %d\n", i)
 printf (stderr, "int value = %d\n", i)
 printf (myFile, "int value = %d\n", i)

Format	Codes

The	printf	and	sprintf	functions	are	unusual	in	that	they	can	take	a	variable	number	
of	arguments.	All	other	KPL	functions	have	a	fixed	number	of	arguments.

The	two	forms	of	the	printf	statements	are:

 printf (FileID, FormatString, arg1, arg2, arg3, ...)
 printf (FormatString, arg1, arg2, arg3, ...)

The	general	form	of	sprintf	is:

 sprintf (ID, FormatString, arg1, arg2, arg3, ...)

The	following	format	codes	are	recognized:

 %d print an int in decimal
 %s print a String
 %c print a single character
 %x print an int in hex
 %e print a double number
 %f print a double number
 %g print a double number
 %b print a bool value
 %h print a halfword value in binary
 %w print a word value in binary
 %i print a int value in binary
 %o print an object’s class name
 %% print %
 %(print (

For	details,	see:

“Blitz-64:	Software	Reference	Manual”

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
160 207

Appendix	2:	Printing	with	“printf”

The	compiler	will	check	the	FormatString	and	each	of	the	format	codes.	For	each,	it	
will	verify	that	the	format	code	is	specified	correctly.	The	compiler	will	also	verify	
that	for	each	format	code,	there	is	a	corresponding	argument	of	the	correct	type.

The	general	form	of	a	format	code	is:

 % [Flags] [Width] [. Precision] FormatCharacter

For	example

 printf (" %d %-#20.8x ", i, j)

The	following	Flag	characters	are	recognized:

 - 0 #

The	Flag	characters	are	optional.	They	may	be	specified	in	any	order,	but	there	must	
be	at	most	one	occurrence	of	each.	The	meaning	of	“-”	is	“left-justify	within	the	field”.	
The	meaning	of	the	other	characters	depends	on	the	FormatCharacter.

The	Width	is	an	integer.	More	precisely,	the	Width	is	a	sequence	of	decimal	digits	and	
it	may	not	begin	with	a	0.	This	integer	specifies	the	field	width	in	which	the	data	
will	be	printed.	Generally	speaking,	padding	bytes	are	added	as	necessary	to	fill	out	
to	the	full	field	width.

The	Precision	is	an	integer,	i.e.,	a	sequence	of	decimal	digits.	The	meaning	of	
Precision	is	dependent	on	the	FormatCharacter.

	

Just	as	in	C	/	C++,	for	each	format	code	(such	as	“%d”)	there	must	be	exactly	one	
argument.	The	arguments	following	the	FormatString	are	matched	up,	in	order,	with	
the	format	code.

KPL	also	allows	a	second	form,	which	may	be	unfamiliar	to	C	/	C++	programmers.	If	
the	argument	is	a	simple	identifier,	then	the	argument	may	be	embedded	directly	in	
the	FormatString. 	Parentheses	are	used	for	this.
31

The	following	two	are	equivalent:

	Between	the	parentheses	only	a	simple	ID	is	allowed;	full	expression	syntax	is	not	allowed.31

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
161 207

Appendix	2:	Printing	with	“printf”

 printf ("val1 = %d val2 = %d\n", xxx, yyy)
 printf ("val1 = %d(xxx) val2 = %d(yyy)\n")

Differences	With	C	/	C++

The	#	flag	can	be	used	with	%d	to	insert	separators.	For	example:

 printf ("val = %d = %#d", 1000000000, 1000000000)

will	print

 val = 1000000000 = 1,000,000,000

The	character	to	be	used	defaults	to	comma	(,)	but	this	can	be	changed	in	
PrintPreferences.

The	#	flag	can	be	used	with	%x	to	prefix	a	hex	number	with	“0x”.	For	example:

 printf ("hex = %x = %#x", 1000000000, 1000000000)

will	print

 hex = 3b9aca00 = 0x3b9aca00

With	%c,	the	value	to	be	printed	is	a	character,	and	in	KPL	this	includes	any	Unicode	
codepoint.	For	example:

 var i: int
 i = 'a'
 printf ("%d = %c\n", i, i)
 i = '€'
 printf ("%d = %c\n", i, i)

will	print

 97 = a
 8364 = €

With	%x,	the	Precision	value	can	be	used	to	truncate	a	hex	value.	For	example:

 printf ("%0.4x", 0x0000000000007fff)

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
162 207

Appendix	2:	Printing	with	“printf”

will	print:

 7fff

However,	only	sign	extension	bits	can	be	removed	this	way.	For	example:

 printf ("%0.4x", 0x0000000000008003)

will	cause	an	error.	However,	the	programmer	might	write	this	instead:

 printf ("%0.4x", forceToHalfword (0x0000000000008003))

This	will	change	the	value	to	0xffff_ffff_ffff_8003	and	then	print:

 8003

With	%e,	%f,	and	%g	there	are	some	subtle	differences	with	C/C++	but	nothing	too	
disturbing.

The	following	are	controlled	by	PrintPreferences,	and	are	used	for	%e,	%f,	and	
%g.	These	can	be	changed	if	desired.

	 value	 default	output

	 +inf	 <pos infinity>

	 -inf	 <neg infinity>

	 nan	 <not-a-number>

	 +0.0	 0.0

	 -0.0	 -0.0

	 positive	numbers	 do	not	print	“+”

	 decimal	point	 .	(i.e.,	the	period	character)

	 separator	 ,	(i.e.,	the	comma	character)

With	%f,	the	value	is	always	printed	in	the	form

	 	digits			.			digits	

The	Precision	is	the	number	of	digits	to	the	right	of	the	decimal	point.	For	example:

 printf ("%f %.6f", d, d)

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
163 207

Appendix	2:	Printing	with	“printf”

might	print:

 1000.3 1000.333333

With	%e,	the	value	is	always	printed	in	“exponential	form”.	The	Precision	is	the	
number	of	significant	digits	to	be	printed,	defaulting	to	17.	For	example:

 printf ("%e %.6e", d, d)

might	print:

 1.0003333333333334e+3 (inexact) 1.00033e+3 (inexact)

The	postfix	of	“(inexact)”	is	added	whenever	the	value	printed	is	not	exactly	equal	to	
the	double	value.
32

The	%g	format	will	choose	to	print	in	exponential	form	sometimes,	and	sometimes	
not,	in	an	effort	to	display	the	value	in	the	most	human-friendly	way.	For	example:

 printf ("%g %.6g\n", d, d)

might	print:

 1000.333333333333 1000.33

Here	is	an	example	that	shows	the	benefit	of	using	%g	over	%e:

 printf ("e = %e\n", d)
 printf ("g = %g\n", d)

Here	is	the	output	for	some	value	of	d:

 e = 1.234567e+6
 g = 1234567.0

And	here	is	the	output	for	a	different	value	of	d :
33

 e = 3.9999999999999996e+0 (inexact)

	This	is	the	default,	but	it	can	be	changed	with	PrintPreferences.32

	Both	lines	are	applied	to	the	same	value,	and	neither	is	a	perfectly	accurate	representation.33

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
164 207

Appendix	2:	Printing	with	“printf”

 g = 4.0

As	illustrated	here,	%g	does	not	add	the	“(inexact)”	postfix.

With	%e,	%f,	and	%g,	separators	will	be	printed	if	the	#	flag	is	present.	For	
example:

 printf ("e = %#e\n", d)
 printf ("f = %#f\n", d)
 printf ("g = %#g\n", d)

might	print:

 e = 1.234_567_89e+8
 f = 123,456,789.0
 g = 123,456,789.0

By	changing	PrintPreferences,	we	can	get	the	following	output	instead,	which	is	
more	in	the	European	style:

 e = 1,234 567 89e+8
 f = 123.456.789,0
 g = 123.456.789,0  

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
165 207

Appendix	3:	Alternate	Method	Syntax

Infix	and	Prefix	Methods

The	traditional	method	syntax	involves	parentheses	with	comma-separated	
arguments.

 w = x.foo (y, z)

KPL	also	allows	methods	to	use	a	“binary	operator	syntax”.	Here	is	the	invocation	of	
a	method	named	“**”	on	receiver	“x”.	There	is	one	argument,	indicated	by	“y”.

 w = x ** y

While	this	looks	different	than	the	invocation	of	“foo”,	it	is	essentially	the	same.	The	
method	“**”	is	invoked	on	the	object	“x”	and	a	result	is	returned.

There	is	also	a	“unary	operator	syntax”.	In	the	next	example,	the	prefix	method	“~”	is	
invoked	on	the	object	named	“x”.	Here,	a	method	with	no	arguments	is	invoked	on	
object	“x”.

 w = ~x

In	the	binary	operator	syntax,	there	is	always	one	argument,	while	in	the	unary	
operator	syntax,	there	is	no	argument.	In	both	cases,	a	result	is	always	returned.

For	each	operator,	the	class	must	contain	a	corresponding	method.	For	the	above	
examples,	let’s	assume	that	“x”	has	type	“MyClass”;	then	the	definition	of	“MyClass”	
will	need	to	contain	methods	for	“foo”,	“**”,	and	“~”	as	in:

 class MyClass
 ...
 methods
 foo (p1, p2: MyClass) returns MyClass
 infix ** (p1: MyClass) returns MyClass
 prefix ~ () returns MyClass
 ...
 endClass

Blitz-64:	KPL	Introduction	/	Porter	 Page	 	of	166 207

Appendix	3:	Alternate	Method	Syntax

The	types	of	the	arguments	and	returned	values	in	this	example	all	happen	to	be	the	
same	“MyClass”,	but	in	other	programs,	they	could	be	any	type.

The	name	of	a	binary	or	unary	method	may	be	any	sequence	of	the	following	
characters:

 + - * / \ ! @ # $ % ^ & ~ ` | ? < > =

with	the	exception	that	the	following	character	sequences	may	not	be	defined	as	
methods:

 /* */ -- += -= =
 == != && || + - * & !

Keyword	Methods

In	addition	to	the	normal	method	syntax	and	the	infix	and	prefix	operator	syntax,	
KPL	has	another	method	syntax	which	is	unlike	anything	in	Java	or	C++.	It	is	called	
“keyword	syntax”	and	it	was	introduced	in	the	Smalltalk	language.

With	keyword	methods,	the	name	of	the	method	contains	colons.	Consider	the	
method	named

 at:put:

For	each	colon,	there	is	a	single	argument.	Therefore,	we	can	tell	that	“at:put:”	takes	
two	arguments.	Here	is	an	example	where	this	method	is	invoked	on	receiver	“x”	
with	arguments	“y”	and	“z”.

 x at: y put: z

This	is	functionally	equivalent	to	invoking	a	method	with	the	standard	syntax,	if	
function	names	were	allowed	to	contain	colons.	However,	it	seems	unusual	because	
the	method	name	is	split	apart	after	each	colon.

 x.atPut (y, z) -- Same functionality, using traditional syntax

Keyword	methods	may	or	may	not	return	a	result.	They	may	be	used	in	expressions	
and	mixed	with	the	other	methods	forms,	as	shown	in	the	next	example:

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
167 207

Appendix	3:	Alternate	Method	Syntax

 myTable at: (myTable lookup: (x ** y)) put: ~z

For	each	keyword	method,	the	class	must	contain	a	corresponding	method.	Here	is	a	
class	with	methods	for	“lookup:”	and	“at:put:”.

 class MyClass
 ...
 methods
 lookup: (p: MyClass) returns MyClass
 at: (p1: MyClass) put: (p2: MyClass)
 ...
 endClass

One	advantage	of	keyword	syntax	over	the	traditional	syntax	is	that	it	can	be	
employed	to	identify	arguments.

As	an	example,	contrast	the	following	two	method	invocations.	Both	methods	are	
intended	to	do	the	same	thing;	the	only	difference	is	that	in	one	case	the	
programmer	has	chosen	to	use	the	traditional	syntax	while,	in	the	other,	the	
keyword	syntax	has	been	used	and	the	method	renamed	accordingly.

 a.compile (b, c, d, e)
 a compile: b withEnvironment: c outputTo: d optimizations: e

In	the	first,	no	clue	is	given	about	the	identity	and	meaning	of	the	arguments,	but	in	
the	second,	the	reader	can	make	some	guesses	about	the	meanings	of	the	
arguments.	This	sort	of	intuitive	help	can	make	some	programs	vastly	easier	to	read	
and	understand.

Keyword	syntax	may	seem	rather	strange	at	first,	but	the	experience	of	Smalltalk	
shows	that	it	works	well	in	practice.	It	can	be	learned	easily	and	is	quickly	accepted	
by	novice	programmers.	KPL	provides	the	keyword	syntax,	but	if	desired,	the	
programmer	can	simply	ignore	it	and	continue	to	program	in	the	Java	/	C++	style. 

Blitz-64:	KPL	Introduction	/	Porter	 	 Page	 	of	
168 207

Appendix	4:	Style	Recommendations

This	appendix	includes	recommendations	on	how	to	write	KPL	code	in	a	
standardized	way.	Following	these	recommendations	makes	your	code	easier	to	read	
by	both	you	and	others.

It	is	important	to	form	style	habits	early	in	the	use	of	any	new	programming	
language.

As	with	any	style	guide,	we	include	the	advice	to	follow	these	rules	as	much	as	
possible	but	only	when	they	make	sense.	When	you	can	do	better,	do	so	and	don’t	be	
a	slave	to	the	rules.	But	also	remember	that—for	programs—clarity,	simplicity,	and	
readability	are	paramount;	creativity	and	originality	for	their	own	sake	are	bad.

Write	and	edit	your	code	using	a	fixed-width	font,	such	as

Courier: abcdeABCDEF012345
Courier New: abcdeABCDEF012345

Monaco: abcdeABCDEF012345
Menlo: abcdeABCDEF012345

Align	all	“end…”	keywords	directly	under	the	corresponding	opening	keyword.	
Indent	everything	between	the	opening	keyword	and	the	“end…”	keyword	by	two	
additional	spaces.

 if Condition
 if Condition
 Statements
 elseIf Condition
 Statements
 else
 Statements
 endIf
 else
 Statements
 for (…)
 Statements
 endFor
 Statements
 endIf

Blitz-64:	KPL	Introduction	/	Porter	 Page	 	of	169 207

Appendix	4:	Style	Recommendations

Always	indent	in	increments	of	two	spaces.
34

Do	not	use	tabs	for	indentation.	In	fact,	do	not	use	the	tab	“\t”	any	where	in	your	
code.

Place	the	following	keywords	in	column	1:

 header
 endHeader
 code
 endCode

Indent	two	spaces	and	place	the	following	keywords	in	column	3:

 uses
 const
 type
 var
 functions
 errors
 class
 endClass
 interface
 endInterface
 function
 endFunction

For	example:

 header MyPackage
 uses System
 const
 MAX = ...
 var
 x: ...
 functions
 foo ...
 bar ...
 endHeader

	We	prefer	two	spaces	because	it	is	enough	to	be	clearly	visible,	yet	small	enough	to	prevent	34

highly	indented	material	from	disappearing	off	the	right	side	of	the	display.

Blitz-64:	KPL	Introduction/	Porter	 	 Page	 	of	
170 207

Appendix	4:	Style	Recommendations

Put	every	statement	on	a	different	line.

Indent	the	switch	statement	like	this:

 switch Expr
 case Value:
 Statements
 case Value:
 Statements
 default:
 Statements
 endSwitch

Indent	the	try	statement	like	this:

 try
 Statements
 catch ERROR (…):
 Statements
 catch ERROR (…):
 Statements
 endTry

Use	“--”	for	all	comments.

Do	not	“/*	…	*/”	comments,	except	for	disabling	larger	blocks	of	code.

Begin	all	variables	with	a	lowercase	letter.	Use	“camel	case”	for	capitalization.

 Right Wrong
 ======================= =======================
 anExampleVariableName an_example
 personCount personcount

Blitz-64:	KPL	Introduction/	Porter	 	 Page	 	of	
171 207

Appendix	4:	Style	Recommendations

For	boolean	variables,	make	the	variable	name	resemble	a	true/false	statement.	
Name	boolean	variables	so	that	they	make	sense	within	an	IF	statement.	Using	the	
word	“is”	often	works	well.

 Right Wrong
 ======================= =======================
 moreLeft terminate
 fileIsEmpty fileStatus
 isArrayFull arrayCondition

This	makes	your	code	more	readable.

 Easy to read Hard to read
 ======================= =======================
 while moreLeft while terminate
 … …
 endWhile endWhile
 if fileIsEmpty if fileStatus
 … …
 endIf endIf
 isArrayFull = true arrayCondition = true

Choosing	good	names	for	things	is	critically	important.	Do	not	hesitate	to	rename	
your	variables,	functions,	classes,	and	methods	if	you	can	think	of	a	more	descriptive	
name.

Do	not	worry	about	the	length	of	names;	long	names	are	not	a	problem.

 Difficult to read and understand:
 =================================
 pcnt = numM + numW + numUn

 Much better:
 ============
 personCount = numberOfMen + numberOfWomen + numberUnknown

Begin	all	type	and	constant	names	with	an	uppercase	letter:

 MyClass
 MyType

Blitz-64:	KPL	Introduction/	Porter	 	 Page	 	of	
172 207

Appendix	4:	Style	Recommendations

Write	all	constants	and	error	IDs	in	all	uppercase,	using	underscore	to	separate	
words.

 MAX_SIZE

Function	names	and	method	names	can	begin	with	an	uppercase	letter	or	not,	as	you	
choose.

 ComputeTaxes
 computeTaxes

Make	all	identifiers	a	sequence	of	properly	spelled	words.

 Right
 =======================
 sizeOfArray
 vehicleCount

 Wrong
 =======================
 x45j -- Avoid non-words
 vehicCnt -- Avoid abbreviations; Spell words out

Use	small	names	for	variables	that	are	only	used	locally	in	one	small	region	of	code.

 for i = 0 to MAX_SIZE-1
 a[i] = 999
 endFor

For	the	local	variables	in	a	function	or	method,	indent	each	line	by	two	spaces.

 var
 i, j: int
 sum, average: double
 personPtr: ptr to Person

Exception:	If	all	variables	can	be	put	on	one	line,	then	it	is	okay	to	just	use	one	line.

 var i, j: int

Blitz-64:	KPL	Introduction/	Porter	 	 Page	 	of	
173 207

Appendix	4:	Style	Recommendations

Follow	every	comma	by	a	single	space.

 Right Wrong
 ======================= =======================
 var i, j, k: int var i,j,k: int
 foo (x, y, z) foo (x,y,z)

Precede	each	opening	parenthesis	by	a	single	space,	unless	it	is	another	opening	
parenthesis.	Do	not	follow	the	opening	parenthesis	with	a	space.	Same	for	closing	
parentheses.

 Right Wrong
 ======================= =======================
 foo ((x + y) * z)) foo((x+y)*z))

Surround	every	operator	by	a	single	space.

 Right Wrong
 ======================= =======================
 foo ((x + y) * z)) foo ((x+y)*z))
 i = 0 i=0

Use	the	same	style	for	braces	{	}	and	brackets	[].

Concerning	the	dot	operator,	do	not	surround	it	with	spaces.

 Right Wrong
 ======================= =======================
 p.myMeth (x) p . myMeth (x)
 p.myfield = x p . myfield = x

Concerning	the	dereference	(*)	and	address-of	(&)	operators,	add	spaces	at	your	
discretion.

 *p = &x -- Okay
 * foo (i) = & bar (j) -- Also okay

Each	function	should	be	commented	in	the	same	way.	Same	for	methods.	See	the	
example	below.

Blitz-64:	KPL	Introduction/	Porter	 	 Page	 	of	
174 207

Appendix	4:	Style	Recommendations

To	aid	scanning,	insert	three	blank	lines	between	functions.	Then	place	a	single	line	
with	the	function	name	surrounded	by	a	bunch	of	horizontal	dashes	like	this:

 ------------------------ foo ------------------------

This	makes	it	much	easier	to	find	a	function	and	to	scan	large	blocks	of	code	quickly.

Follow	this	with	the	function	header.	After	the	header,	insert	a	“block	comment”	to	
describe	the	function.

The	block	comment	is	primarily	meant	to	be	read	by	someone	wanting	to	use	or	call	
the	function.	It	is	intended	for	someone	who	is	completely	unfamiliar	with	the	
function.	Write	the	block	comment	at	a	level	of	detail	that	makes	sense	for	the	
function’s	user.	Begin	with	very	basic	information	about	the	function.	The	block	
comment	is	a	summary.	Imagine	that	the	reader	wants	to	use	the	function	but	
doesn’t	want	to	read	to	function’s	code.

This	block	comment	should	include	this	information:

•	What	the	arguments	are	and	what	they	mean	/	represent.

•	What	the	function	does;	what	it	computes.

•	If	the	function	returns	anything,	describe	what	it	returns.

•	Discuss	all	error	conditions	that	might	arise.

•	Describe	any	application-specific	errors	it	might	throw	and	why.

If	the	algorithm	is	complex,	describe	it.	But	put	this	description	after	the	
introductory	material.	Generally	speaking,	the	function’s	user	wants	to	know	what	
the	function	does,	not	how	it	does	it.	But	some	functions	involve	complex	algorithms	
which	need	to	be	explained.	Furthermore,	the	algorithm	employed	may	be	
important	to	the	user	of	the	function.

Indent	the	block	comment	as	shown,	so	the	function	header	stands	out.	If	the	
function	is	lengthy,	add	the	function	name	to	the	endFunction	line.

Blitz-64:	KPL	Introduction/	Porter	 	 Page	 	of	
175 207

Appendix	4:	Style	Recommendations

Here	is	an	example	of	the	recommended	style:

 code
 …

 ------------------------ foo ------------------------

 function foo (x, y: int) returns int
 --
 -- This function is passed "x", which is… and "y"…
 -- It computes … and returns …
 -- In the case of the … error, it returns …
 -- If … is true, this function will throw error …
 --
 -- The algorithm used by this function is …
 --
 var
 i, j, …
 if …
 return …
 endFunction -- foo

 ------------------------ bar ------------------------

 function bar (...) …
 ...
 endFunction

 endCode

Within	a	function	or	method,	comments	are	used	for	two	things.	First,	a	comment	
may	be	necessary	to	include	information	that	is	important	but	not	obvious	from	the	
code.	Second,	a	comment	is	used	to	make	the	code	easier	to	read	and	to	help	the	
reader	to	find	whatever	he	or	she	is	looking	for.

These	functions	are	very	different	and	should	be	commented	in	different	ways.

Blitz-64:	KPL	Introduction/	Porter	 	 Page	 	of	
176 207

Appendix	4:	Style	Recommendations

First,	consider	a	comment	that	is	needed	to	add	important	information.	Generally,	
this	is	a	short	comment	that	can	be	added	directly	to	the	statement	it	applies	to.

 i = person.age()
 j = person.computeTax (r) -- r is the tax rate
 sum = sum + j

The	second	function	is	to	support	the	reader	who	is	scanning	the	code	looking	for	
something,	or	trying	to	get	an	understanding	of	the	algorithm	it	implements.	To	aid	
the	reader,	these	comments	need	to	be	spread	even	throughout	the	entire	function	
or	method.

The	recommendation	is	to	add	comments	inline,	indented	exactly	the	same	as	the	
statements	they	apply	to.	Each	comment	should	apply	to	one	or	a	few	statements	
following	it.

 -- Initialize the …
 for i = 0 to MAX-1
 a [i] = -1
 endFor
 sum = 0

 -- Perform the calculation …
 for i = 0 to MAX-1
 a [i] = b [i] + sum
 sum += a [i]
 endFor

Some	functions	and	methods	are	so	short	and	simple	that	they	don’t	need	inline	
comments.	They	still	need	a	block	comment.

 ------------------------ foo ------------------------

 function foo (x, y: int) returns int
 --
 -- Passed x = … and y = …
 -- Compute … and return it.
 --
 var i: int
 i = (x + 3) * (y + 4)
 return i * i
 endFunction

Blitz-64:	KPL	Introduction/	Porter	 	 Page	 	of	
177 207

Appendix	4:	Style	Recommendations

However,	if	you	are	commenting	blocks	of	statements,	always	follow	these	rules:

•	Make	the	comment	apply	to	all	statements	after	it.

•	Comment	everything	at	the	same	degree	of	detail.

Below	is	an	example	of	what	not	to	do.	The	comment	doesn’t	completely	describe	
the	statements	that	follow	it.	It	only	applies	to	the	first	part.	A	comment	describing	
the	second	part	is	missing.

 Wrong
 =======================
 -- Initialize the …
 for i = 0 to MAX
 a [i] = -1
 endFor
 sum = 0
 for i = 0 to MAX
 a [i] = b [i] + sum
 sum += a [i]
 endFor

The	important	thing	is	the	calculation.	Since	the	initialization	is	really	a	part	of	that,	
it	is	acceptable	to	leave	the	comment	about	it	out.

 Right
 =======================
 -- Calculate the …
 for i = 0 to MAX
 a [i] = -1
 endFor
 sum = 0
 for i = 0 to MAX
 a [i] = b [i] + sum
 sum += a [i]
 endFor

Don’t	comment	what	is	obvious.

 Wrong
 =======================
 -- Add 3 to i
 i = i + 3

Blitz-64:	KPL	Introduction/	Porter	 	 Page	 	of	
178 207

Appendix	4:	Style	Recommendations

Keep	all	source	code	lines	short.	By	short,	I	mean	under	80	characters.	This	is	so	
every	line	will	be	displayed	properly,	regardless	of	the	width	of	the	screen	window.	
Note	that	long	strings	can	be	broken	into	pieces.

 Wrong
 =======================
 printf ("Now is the time for all good men to come to the aid of
 their party.\n”)

 Right
 =======================
 printf ("Now is the time for all good men "
 "to come to the aid of their party.\n”)

Try	to	line	up	things	so	the	addition	of	new	elements	will	not	require	adjustment.	
Try	to	line	up	things	so	that	the	change	of	spelling	will	not	require	adjustment.

 Good examples
 =======================
 xxx = foo (xxx, yyy, zzz)
 xxx = foo (
 xxx,
 yyy)
 xxx =
 foo (
 xxx,
 yyy)

The	following	style	is	problematic:

 Not recommended
 =======================
 xxx = foo (xxx,
 yyy,
 zzz)

If	we	change	the	spelling	of	some	identifiers,	it	destroys	the	alignment	of	the	
subsequent	material:

 Inconsistent alignment
 =======================
 xxx_2 = foo_2 (xxx,
 yyy,
 zzz)

Blitz-64:	KPL	Introduction/	Porter	 	 Page	 	of	
179 207

Appendix	4:	Style	Recommendations

KPL	does	not	require	parentheses	for	statements	such	as	if,	while,	and	switch.	Don’t	
use	unnecessary	parentheses.

 Right Wrong
 ======================= =======================
 while p while (p)
 … …
 p = p.next p = p.next
 endWhile endWhile

 if i == j if (i == j)
 … …
 endIf endIf

 return i + j return (i + j)

Within	an	expression	involving	several	operators,	it’s	okay	to	use	extra	parentheses	
to	make	it	clear	which	operators	are	done	first,	even	if	they	are	not	strictly	
necessary.

 i = (*x.meth()) + y
 i = *x.meth() + y -- Equivalent; either is okay

 if (a && b) || ((!c) && (!d))
 if a && b || !c && !d -- Equivalent; either is okay  

Blitz-64:	KPL	Introduction/	Porter	 	 Page	 	of	
180 207

Appendix	5:	Memory	Management

Stack	Usage

Like	many	languages,	KPL	utilizes	a	runtime	stack.	Whenever	a	function	or	method 	35

is	invoked,	a	stack	frame	is	allocated.	Stack	frames	are	sometimes	called	
“activation	records”.

The	stack	frame	is	where	the	local	variables	and	temporary	variables	of	the	function	
are	stored.	Often,	parameters	must	be	stored	in	memory	and	these	are	also	placed	in	
stack	frames.	The	return	address	is	stored	in	the	stack	frame	as	well.

A	stack	frame	is	created	when	a	function	is	invoked	(i.e.,	when	the	function	is	called).	
The	stack	frame	is	destroyed	and	deallocated	when	the	function	returns.	Stack	
frames	are	allocated	by	pushing	onto	the	stack	and	they	are	deallocated	by	popping	
off	the	stack.

KPL	and	the	Blitz-64	architecture	have	been	carefully	designed	so	that	simple	
functions	can	often	avoid	allocating	a	stack	frame.	A	leaf	function	is	a	function	that	
does	not	invoke	any	other	functions.	A	leaf	function	that	requires	no	temporary	
storage	can	often	avoid	creating	a	stack	frame	and,	in	many	cases,	can	avoid	touching	
memory	altogether.	Since	this	discussion	is	about	stack	space,	we	will	not	mention	
leaf	functions	any	further.

The	stack	frame	is	created	by	the	initial	code	in	the	function,	which	is	called	the	
function	prologue.	This	code	will	also	zero	out	all	the	local	variables,	as	required	by	
KPL.	The	stack	top	is	pointed	to	by	the	stack	top	pointer,	which	is	kept	in	register	
r15	(“sp”).	The	stack	grows	downward	from	high	memory	so	allocating	a	stack	
frame	is	achieved	by	subtracting	the	frame	size	from	sp.	Deallocating	a	frame	is	
achieved	by	adding	that	same	value	back	to	sp.

Many	programs	also	require	dynamically	allocated	memory	on	a	heap.	We	
discuss	heap	strategy	elsewhere,	but	in	the	simplest	approach,	the	heap	and	the	
stack	share	a	region	of	the	virtual	address	space.	The	stack	grows	downward	from	

	In	this	discussion,	functions	and	methods	are	treated	the	same.	To	keep	it	simple,	we’ll	discuss	35

functions,	but	everything	we	say	also	applies	to	methods.

Blitz-64:	KPL	Introduction	/	Porter	 Page	 	of	181 207

Appendix	5:	Memory	Management

the	top	of	the	space	(i.e.,	from	higher	addresses)	and	the	heap	grows	upward	from	
the	bottom	of	the	space	(i.e.,	from	lower	addresses).	This	way,	the	available	space	
may	be	used	for	either	stack	or	heap,	as	needed	by	the	program.	When	the	stack	and	
the	heap	meet,	then	the	program	has	run	out	of	memory.

The	memory	space	required	for	the	stack	will	depend	on

•	How	large	the	stack	frames	are

•	The	calling	pattern	of	the	functions

A	function	is	said	to	be	recursive	if	it	can	be	invoked	a	second	time	before	the	
previous	invocation	has	returned.

For	example,	if	a	function	“f”	can	be	invoked	recursively	and	there	can	be	1,000	
invocations	active	at	once,	and	the	stack	frame	for	“f”	requires	200	bytes,	the	stack	
will	need	at	least	200,000	bytes.	

In	general,	the	compiler	cannot	determine	ahead	of	time	how	many	bytes	are	
required	for	stack	space.	This	is	not	a	human	failure;	it	is	a	theoretical	limitation	that	

Blitz-64:	KPL	Introduction/	Porter	 	 Page	 	of	
182 207

Appendix	5:	Memory	Management

cannot	be	overcome	in	all	cases.	For	recursive	programs,	the	amount	of	stack	space	
required	may	be	determined	as	a	result	of	computation	performed	at	runtime,	which	
is	impossible	to	compute	at	compile-time.	For	most	recursive	programs,	any	analysis	
of	stack	space	usage	is	not	practical	and	we	will	not	discuss	recursive	programs	
here.

However,	programs	that	are	not	recursive	can	be	analyzed	and	a	maximum	stack	
space	usage	can	be	determined	before	runtime.	This	can	be	useful	in	programs	
requiring	high-reliability,	since	we	can	preallocate	a	fixed	amount	of	stack	space	
while	guaranteeing	that	the	stack	can	never	overflow	this	region.	It	it	also	required	
for	programs	that	must	run	in	severely	limited	memory	systems.
36

For	a	program	that	has	no	recursion,	we	can	compute	the	stack	frame	sizes	for	each	
function .	By	analyzing	which	functions	call	which	functions,	we	can	compute	a	37

total	stack	size	limit.	The	program	will	never	require	any	more	storage	than	this,	
allowing	us	to	put	a	bound	on	how	much	stack	space	is	required	for	many	useful	
programs.	Many	useful	programs	are	not	recursive	and	the	stack	bound	for	non-
recursive	programs	is	usually	quite	small.

The	Max_Stack_Usage	Clause

	

KPL	contains	a	syntactic	mechanism	by	which	the	programmer	can	specify	and	limit	
the	maximum	stack	usage	for	each	function	and	method.	For	example:

 function foo (x, y: int) returns int [Max_Stack_Usage = 100]
 ...
 endFunction

Unlike	other	keywords,	Max_Stack_Usage	is	capitalized	and	contains	underscores.	

	At	this	date,	we	are	putting	Linux	in	toys	and	low	cost	appliances	so	it	would	seem	that	this	36

concern	is	becoming	outdated.	But	for	systems	with	large	numbers	of	cores,	the	space	used	for	
memory	will	necessarily	reduce	the	space	available	for	processing,	so	the	prediction	is	that	
memory	economy	will	remain	important	in	the	future.

	A	clever	compiler	can	easily	determine	whether	a	program	contains	recursion.	A	compiler	can	37

determine	the	size	of	every	stack	frame	for	KPL	functions	and	methods,	although	this	is	not	
possible	in	some	languages.

Blitz-64:	KPL	Introduction/	Porter	 	 Page	 	of	
183 207

Appendix	5:	Memory	Management

The	brackets	[]	are	literal,	i.e.,	they	are	included,	although	the	entire	clause	is	
optional.	The	general	syntax	is:

 function ID (Args) [returns Type] ['[' Max_Stack_Usage = Expr ']']

Normally	the	Expr	is	an	integer	constant.	In	any	case,	it	must	be	possible	for	the	
compiler	to	evaluate	it.

If	the	Max_Stack_Usage	clause	is	used,	it	must	appear	on	both	the	function	
prototype	and	the	function	itself	and	the	values	must	be	equal.

 functions
 foo (x, y: int) returns int [Max_Stack_Usage = 100]

 function foo (x, y: int) returns int [Max_Stack_Usage = 100]
 ...
 endFunction

The	Max_Stack_Usage	clause	may	also	be	used	on	methods.	If	it	is	used	on	a	
method,	the	clause	must	appear	only	on	the	prototype,	not	the	method	itself:

 class ...
 methods
 myMeth (x, y: int) returns int [Max_Stack_Usage = 100]
 ...
 behavior ...
 method myMeth (x, y: int) returns int
 ...
 endMethod
 ...

The	Max_Stack_Usage	clause	may	also	appear	on	function	types,	as	in:

 ptr to function (int, int) returns int [Max_Stack_Usage = 100]

If	a	Max_Stack_Usage	clause	appears,	the	compiler	will	enforce	it.	In	other	words,	
the	compiler	will	ensure	that	the	function	meets	the	specified	stack	usage	and	
cannot	possibly	exceed	the	limit.	The	compiler	will	print	an	error	message	if	it	
cannot	guarantee	the	limit.	This	requires	that	any	method	or	function	with	a	
Max_Stack_Usage	clause	may	only	invoke	methods	and	functions	that	also	have	
Max_Stack_Usage	clauses	attached	to	them.

Blitz-64:	KPL	Introduction/	Porter	 	 Page	 	of	
184 207

Appendix	5:	Memory	Management

Stack	management	and	the	Max_Stack_Usage	clause	are	discussed	more	fully	in	the	
document:

	 “Blitz-64:	Software	Reference	Manual”

The	Memory	Heap

A	memory	heap	is	a	region	of	memory	that	can	be	allocated	dynamically	at	runtime,	
as	needed.	In	KPL	there	are	two	ways	to	allocate	memory	on	the	heap.

First,	the	alloc	clause	can	be	executed,	as	in:

 objPtr = alloc MyClass { ... }
 arrPtr = alloc array of int { k of -1 }

The	alloc	clause	can	be	used	to	allocate	space	on	the	heap	for	objects,	arrays,	structs,	
and	unions.

Second,	the	program	can	explicitly	call	the	function	MemoryAlloc:

 var p: ptr to byte
 p = MemoryAlloc (n) -- n = number of bytes to allocate

The	MemoryAlloc	simply	returns	a	pointer	to	the	new	memory	region.	Any	memory	
allocated	on	the	heap	is	not	guaranteed	to	be	zeroed	before	use.	The	alloc	construct	
allows	for	additional	type-specific	initialization	and	the	allocated	data	is	guaranteed	
to	be	initialized	with	zero	values	if	no	initialization	is	present.

If	the	heap	is	full	and	no	more	memory	remains,	the	error	ERROR_HeapFull	will	be	
thrown.

To	deallocate	the	space,	the	free	statement	can	be	used,	or	the	function	
MemoryFree	may	be	called:

 free objPtr
 free arrPtr
 ...
 MemoryFree (p)

Blitz-64:	KPL	Introduction/	Porter	 	 Page	 	of	
185 207

Appendix	5:	Memory	Management

The	free	statement	simply	invokes	MemoryFree.	Either	technique	can	be	used	to	
return	memory	to	the	heap.

Since	prematurely	freeing	objects	that	are	in	use	can	cause	bugs	and	behavior	that	is	
impossible	to	specify,	the	use	of	free	statement	requires	the	program	to	be	compiled	
with	the	-unsafe	option.	Calling	functions	like	MemoryFree	does	not	require	the	
-unsafe	option,	although	it	is	exactly	equivalent	and	can	cause	the	same	bugs.

The	recommendation	is	to	always	use	the	free	statement	and	avoid	explicitly	calling	
MemoryFree.

As	in	C	/	C++	there	are	no	checks	on	pointers	in	KPL,	beyond	the	ever-present	
checking	for	null	and	for	proper	alignment.	As	in	C	/	C++,	objects	in	the	KPL	heap	
will	not	be	moved	around	in	memory	and	the	actual	memory	addresses	are	visible	to	
the	code.

For	example,	the	following	sort	of	thing	is	allowed	in	KPL,	and	can	be	useful,	for	
example,	in	accessing	memory	mapped	I/O	registers.

 i = * asPtrTo (0x4_0000_4f00, int)

In	contrast,	languages	like	Java	hide	the	actual	memory	addresses	from	the	
programmer.	In	fact,	the	automatic	garbage	collector	in	languages	like	Java	will	move	
objects	around	in	memory,	adjusting	all	pointers	as	necessary,	in	such	a	way	that	the	
program’s	behavior	will	be	unaffected.

Heap	management	and	related	algorithms	are	discussed	more	fully	in	the	document:

	 “Blitz-64:	Software	Reference	Manual” 

Blitz-64:	KPL	Introduction/	Porter	 	 Page	 	of	
186 207

Appendix	6:	KPL	Syntax

This	appendix	provides	a	Context-Free	Grammar	(CFG)	for	the	KPL	language. 	This	38

grammar	is	meant	to	be	exactly	identical	to	the	grammar	the	document

“KPL	Syntax”

The	Notation	Used	in	this	Grammar

To	make	the	grammar	easier	to	read	and	understand,	we	use	an	extended	CFG	
notation,	which	is	described	here.

Non-terminal Symbols are shown like this:
HeaderFile Type Expr Statement etc…

Terminal Symbols:

Keywords are shown in boldface, like this:
if while int endWhile etc…

	 The following lexical tokens appear in the grammar:
 Examples

	 	 INTEGER	 42 0x1234ABCD 10_000

	 	 DOUBLE	 3.1415 6.022e23 1.000_001

	 	 CHAR	 'a' '\n'

	 	 STRING	 "hello" "\t\n"
	 	 ID	 myName MAX_SIZE
	 	 OPERATOR	 <= < > >= != + - * etc…

	Technically,	the	KPL	grammar	is	“LL(k)”	and	in	most	cases	can	be	parsed	with	only	a	single	token	look-38

ahead,	which	makes	it	much	easier	for	humans	to	understand	than	“LR(k)”	grammars.

Blitz-64:	KPL	Introduction	/	Porter	 Page	 	of	187 207

Appendix	6:	KPL	Syntax

Punctuation Symbols
The following characters are particularly important in KPL’s grammar:

	 { } [] | : , . = () ;
Of these, the following punctuation symbols conflict with grammar meta-symbols:

{ } [] |
	 	 When used as grammar meta-symbols, they are shown without quotes:

{ } [] |
	 	 When used as terminals, i.e., when meant literally, they are quoted:

'{' '}' '[' ']' '|'
	 The remaining punctuation symbols are only used as terminals and are not quoted:

: , . = () ;

Comments are not included in this grammar. There are two forms of commenting:
-- through end-of-line
/* through */

Blitz-64:	KPL	Introduction/	Porter	 	 Page	 	of	
188 207

Appendix	6:	KPL	Syntax

A	Context	Free	Grammar	of	KPL

HeaderFile --> header ID
 [Uses]
 { Constants |
 Errors |
 VarDecls |
 Enum |
 TypeDefs |
 FunctionProtos |
 Interface |
 Class }
 endHeader
CodeFile --> code ID
 { Constants |
 Errors |
 VarDecls |
 Enum |
 TypeDefs |
 Function |
 Interface |
 Class |
 Behavior }
 endCode
Interface --> interface ID [TypeParms]
 [extends TypeList]
 [messages { MethProto }+]
 endInterface
Class --> class ID [TypeParms]
 [implements TypeList]
 [superclass NamedType]
 [fields { Decl }+]
 [methods { MethProto }+]
 endClass
Behavior --> behavior ID
 { Method }
 endBehavior
Uses --> uses OtherPackage { , OtherPackage }
OtherPackage --> ID [renaming Rename { , Rename }]
 --> STRING [renaming Rename { , Rename }]
Rename --> ID to ID
TypeParms --> '[' ID : Type { , ID : Type } ']'
Constants --> const { ID = Expr }+
Decl --> ID { , ID } : Type
VarDecl --> Decl [= Expr2]
VarDecls --> var { VarDecl }+
Errors --> errors { ID ParmList }+
TypeDefs --> type { ID = Type }+
Enum --> enum ID [= Expr] { , ID }
IdList --> ID { , ID }

Blitz-64:	KPL	Introduction/	Porter	 	 Page	 	of	
189 207

Appendix	6:	KPL	Syntax

ArgList --> ()
 --> (Expr { , Expr })
ParmList --> ()
 --> (Decl { , Decl })
FunctionProtos --> functions { FunProto }+
FunProto --> [external] ID ParmList [returns Type] [StackUsage]
Function --> function ID ParmList [returns Type] [StackUsage]
 [VarDecls]
 StmtList
 endFunction
StackUsage --> '[' maxStackUsage = Expr ']'
NamelessFunction --> function ParmList [returns Type]
 [VarDecls]
 StmtList
 endFunction
MethProto --> ID ParmList [returns Type] [StackUsage]
 --> infix OPERATOR (ID : Type) returns Type
 --> prefix OPERATOR () returns Type
 --> { ID : (ID : Type) }+ [returns Type]
Method --> method MethProto
 [VarDecls]
 StmtList
 endMethod
StmtList --> { Statement }
Statement --> if Expr StmtList
 { elseIf Expr StmtList }
 [else StmtList]
 endIf
 --> LValue = Expr
 --> LValue += Expr
 --> LValue -= Expr
 --> ID ArgList
 --> Expr { ID : Expr }+
 --> Expr . ID ArgList
 --> while Expr
 StmtList
 endWhile
 --> do
 StmtList
 until Expr
 --> break
 --> continue
 --> return [Expr]
 --> for LValue = Expr to Expr [by Expr]
 StmtList
 endFor
 --> for (StmtList ; [Expr] ; StmtList)
 StmtList
 endFor

Blitz-64:	KPL	Introduction/	Porter	 	 Page	 	of	
190 207

Appendix	6:	KPL	Syntax

 --> switch Expr
 { case Expr : StmtList }
 [default : StmtList]
 endSwitch
 --> switchOnClass Expr
 { case Expr : StmtList }
 [default : StmtList]
 endSwitchOnClass
 --> try StmtList
 { catch ID ParmList : StmtList }+
 endTry
 --> throw ID ArgList
 --> free Expr
 --> debug [STRING]
 --> printf ([ID ,] STRING { , Expr })
 --> sprintf (ID , STRING { , Expr })
 --> initializeArray (Expr)
 --> setArraySize (Expr , Expr)
Type --> byte
 --> halfword
 --> word
 --> int
 --> double
 --> bool
 --> void
 --> typeOfNull
 --> anyType
 --> ptr to Type
 --> struct { Decl }+ endStruct
 --> union { Decl }+ endUnion
 --> array ['[' Dimension { , Dimension } ']'] of Type
 --> function ([Type { , Type }])
 [returns Type]
 --> NamedType
NamedType --> ID ['[' Type { , Type } ']']
TypeList --> NamedType { , NamedType }
Dimension --> * | Expr
Constructor --> Type ClassStructInit
 --> Type ArrayInit
 --> Type
ClassStructInit --> ID '{' ID = Expr { , ID = Expr } '}'
ArrayInit --> ID '{' [Expr of] Expr
 { , [Expr of] Expr } '}'
LValue --> Expr
Expr --> Expr2 { ID : Expr2 }
Expr2 --> Expr3 { OPERATOR Expr3 }
Expr3 --> Expr5 { '||' Expr5 }
Expr5 --> Expr6 { && Expr6 }
Expr6 --> Expr7 { '|' Expr7 }
Expr7 --> Expr8 { ^ Expr8 }
Expr8 --> Expr9 { & Expr9 }

Blitz-64:	KPL	Introduction/	Porter	 	 Page	 	of	
191 207

Appendix	6:	KPL	Syntax

Expr9 --> Expr10 { == Expr10
 | != Expr10 }
Expr10 --> Expr11 { < Expr11
 | <= Expr11
 | > Expr11
 | >= Expr11 }
Expr11 --> Expr12 { << Expr12
 | >> Expr12
 | <<< Expr12
 | >>> Expr12 }
Expr12 --> Expr13 { + Expr13
 | - Expr13 }
Expr13 --> Expr15 { * Expr15
 | / Expr15
 | % Expr15 }
Expr15 --> OPERATOR Expr15
 --> Expr16
Expr16 --> Expr17 { . ID ArgList
 | . ID
 | '[' Expr { , Expr } ']' }
Expr17 --> (Expr)
 --> null
 --> true
 --> false
 --> self
 --> super
 --> INTEGER
 --> DOUBLE
 --> CHAR
 --> STRING
 --> NamelessFunction
 --> ID
 --> ID ArgList
 --> new Constructor
 --> alloc Constructor
 --> sizeOf (Type)
 --> asPtrTo (Expr , Type)
 --> asInteger (Expr)
 --> arraySize (Expr)
 --> arrayMaxSize (Expr)
 --> isInstanceOf (Expr , Type)
 --> isKindOf (Expr , Type) 

Blitz-64:	KPL	Introduction/	Porter	 	 Page	 	of	
192 207

Appendix	7:	Lexical	Details

Source	File	Encoding

The	KPL	compiler	expects	the	header	and	code	files	to	be	encoded	in	UTF-8.	Since	
UTF-8	subsumes	ASCII,	any	ASCII	text	file	is	acceptable.

Comments

KPL	supports	two	comments	styles	and	they	can	be	freely	intermixed	in	any	
program.

In	the	first	style,	the	comment	begins	with	/*	and	ends	with	*/.	These	comments	
may	be	nested.

 /* Disable this code...
 x = a-2
 y = c*7 /* multiply by seven */
 z = b+5
 */

In	the	second	style,	everything	after	two	hyphens	through	end-of-line	is	a	comment.

 x = y + 2 -- Adjust y a little

The	second	style	also	nests.

 -- Disable this code...
 -- x = y + 2 -- Adjust y a little

Comments	are	not	restricted	to	ASCII;	they	may	utilize	the	full	Unicode	character	set.

Blitz-64:	KPL	Introduction	/	Porter	 Page	 	of	193 207

Appendix	7:	Lexical	Details

White	Space

“White	space”	is	defined	as	a	sequence	of	one	or	more	of	these	characters:

 Space
 Tab
 Newline39
 Byte-Order-Mark40

Newlines	are	not	significant	beyond	being	white	space,	except	for	comments.	A	“--”	
comment	runs	until	the	next	newline.
41

As	usual,	two	tokens	must	be	separated	by	white	space	if	they	would	otherwise	be	
interpreted	as	a	single	token.

myIdent 123 White	space	required
myIdent123 …	or	else	it	becomes	one	long	identifier

124 e14 White	space	required
124e14 …	or	else	it	becomes	a	floating	point	constant

Identifiers

An	ID	is	a	sequence	of	letters,	digits,	and	underscores.	It	must	begin	with	a	letter.	
Only	ASCII	characters	are	allowed.	Case	is	significant.

	To	handle	different	OS	conventions,	the	compiler	will	treat	either	\n	(ASCII	0x0a)	or	\r	(ASCII	39

0x0D)	as	a	“newline”	character.

	The	Byte-Order-Mark	(BOM)	is	a	special	Unicode	character	(codepoint	=	0xFEFF)	which	is	40

occasionally	included	in	files	that	are	encoded	in	UTF-16,	where	byte-order	matters.	However,	the	
BOM	is	legal	in	any	Unicode	file	and	Unicode	requires	that	it	be	ignored.	If	the	BOM	is	present—
and	it	usually	is	not—it	should	be	the	first	character	in	the	text	file.	The	compiler	treats	the	BOM	as	
white	space,	effectively	ignoring	it.

	Also,	see	an	earlier	footnote	concerning	the	disambiguation	of	function	calls	and	pointers	to	41

functions	for	a	minor	exception.

Blitz-64:	KPL	Introduction/	Porter	 	 Page	 	of	
194 207

Appendix	7:	Lexical	Details

Integers

An	INTEGER	can	be	expressed	either	in	decimal	or	in	hex:

 12345
 0x01b5f3b

It	makes	no	difference	whether	the	integer	is	expressed	in	decimal	or	hex.

Every	decimal	integer	token	must	be	within	the	range

 0 … 9,223,372,036,854,775,807

Expressed	in	hex,	this	range	is	0x0	…	0x7FFF,FFFF,FFFF,FFFF,	so	every	positive	64	bit	
value	can	be	expressed	in	decimal.

Any	integer	token	may	be	expressed	in	hex.	There	must	be	16	or	fewer	hex	
characters.		The	hex	characters	(a,	b,	…,	f)	may	be	capitalized	or	lowercase	or	a	mix,	
but	the	“0x”	must	be	lowercase.	Any	64	bit	value	can	be	expressed.

Values	specified	in	hex	with	fewer	than	16	digits	are	not	sign-extended.

 0xffff_ffff -- Equal to +4,294,967,295

The	negative	sign	is	interpreted	as	a	separate	token.	The	following	are	legal	
Expressions	within	the	grammar,	and	all	representing	the	same	value:

 -1_793_851
 -0x01b_5f3b
 0xFFFF_FFFF_FFE4_A0C5

Notice	that	the	most	negative	64	bit	value	cannot	be	expressed	in	decimal,	since	
9,223,372,036,854,775,808	lies	just	beyond	the	range	of	legal	decimal	integer	
tokens.

 -9_223_372_036_854_775_808 -- Compile-time error!

However,	this	value	may	be	expressed	in	hex	as	follows,	which	is	clearer	and	less	
error-prone.

 0x8000_0000_0000_0000

Blitz-64:	KPL	Introduction/	Porter	 	 Page	 	of	
195 207

Appendix	7:	Lexical	Details

The	grammar	also	accommodates	a	unary	plus	sign,	which	is	ignored.

To	increase	readability	for	numbers	with	many	digits,	humans	often	break	them	up	
with	commas.	In	KPL	code,	the	programmer	may	use	the	underscore	as	a	separator	
within	decimal	and	hex	constants.	This	is	recommended,	but	not	mandatory.

For	example,	the	following	tokens	are	legal	and	all	express	the	identical	value:
42

 0x12345678_9abcdef0 two	chunks	of		32	bits
 0x12_34_56_78_9a_bc_de_f0 as	8	bytes
 1_311_768_467_463_790_320 decimal

Floating	Point	Constants

A	DOUBLE	number	must	contain	either	a	decimal	point	or	the	“e”	for	the	exponent.

 12.345
 123e-45

For	both	INTEGERs	and	DOUBLEs,	a	leading	minus/negative	sign	“-“	will	be	parsed	
as	a	separate	token	and	used	to	form	an	expression,	such	as	-(123).	The	compiler	
will	evaluate	such	expressions	at	compile-time,	so	effectively	any	INTEGER	or	
DOUBLE	may	be	negated.

 -1.5 -- Preferred
 -(1.5) -- Equivalent

To	increase	readability,	the	programmer	may	use	the	underscore	as	a	separator	
either	before	or	after	the	decimal	point. 	For	example:
43

 57.000_000_001
 1.234_56

	An	underscore	may	not	appear	before	the	first	digit	or	after	the	last	digit.	If	the	value	is	given	in	42

decimal	and	underscores	are	used,	they	must	follow	the	standard	placement	at	every	third	place.	
With	hex	values,	there	are	no	constraints;	“0x123___4”	is	legal.

	If	used	in	a	double	constant,	underscores	must	be	spaced	at	every	third	digit.	Using	underscores	43

before	the	decimal	point	does	not	mandate	their	use	after	the	decimal	point.	Likewise,	using	
underscores	after	the	decimal	point	does	not	mandate	their	use	before.	So	“12345.000_001”	and	
“12_345.000001”	are	both	acceptable,	although	“12_345.000_001”	is	preferred.

Blitz-64:	KPL	Introduction/	Porter	 	 Page	 	of	
196 207

Appendix	7:	Lexical	Details

 12_000.5e-23

The	following	KPL	keywords	can	be	used:

 inf Positive	infinity
 nan The	canonical	representation	of	not-a-number	(NaN)

Positive	infinity	is	represented	as	0x7FF0,0000,0000,0000.

 d = inf
 d = copyBitsToDouble (0x7FF0_0000_0000_0000) -- Equivalent

To	indicate	negative	infinity,	use	the	expression	“-inf”.

Negative	infinity	is	represented	as	0xFFF0,0000,0000,0000.

 d = -inf
 d = copyBitsToDouble (0xFFF0_0000_0000_0000) -- Equivalent

It	is	safe	to	test	“if	d	==	inf…”	or	“if	d	==	-inf…”.

Be	aware	that	there	are	multiple	representations	of	“not-a-number”.	Also,	any	value	
tested	against	NaN	will	false,	so	testing	“if	d	==	nan…”	will	always	be	false.	For	these	
reasons,	you	should	use	the	built-in	function	isnan()	to	perform	this	test.

There	are	two	different	zero	values,	which	can	be	written	as:

 +0.0 -- Equivalent to “0.0”.
 -0.0

Note	that	for	the	purposes	of	testing	floating	point	values,	these	values	—	although	
distinct	—	will	test	as	equal.

 if d == 0.0 ... Tests	for	either	value
 if (d == 0.0) && !isNegZero(d) ... Test	for	+0.0	only

Character	Constants

A	CHAR	constant	is	enclosed	in	single	quotes.	Any	Unicode	character	may	be	
included,	with	a	couple	of	provisos.

Blitz-64:	KPL	Introduction/	Porter	 	 Page	 	of	
197 207

Appendix	7:	Lexical	Details

'A'
'∉'
'😀 ' -- This happens to be a legal Unicode character

The	newline	(0x0a)	and	return	(0x0d)	characters	may	not	appear	and	must	be	
escaped	instead,	for	example:

'\n' -- Use this for NEWLINE 0x0a

Other	common	control	character	may	be	escaped.	Here	is	the	list	of	the	escape	
sequences	that	may	be	used:

 Hex Decimal ASCII Code Name
 ===== ======= ========================
 \0 00 0 control-@ NUL null
 \a 07 7 control-G BEL alert
 \b 08 8 control-H BS backspace
 \t 09 9 control-I HT tab
 \n 0A 10 control-J NL/LF newline/linefeed
 \v 0B 11 control-K VT vertical tab
 \f 0C 12 control-L FF form feed
 \r 0D 13 control-M CR return
 \e 1B 27 control-[ESC escape
 \d 7f 127 DEL delete
 \" 22 34 " double quote
 \' 27 39 ' single quote
 \\ 5C 92 \ backslash
 \xHH HH < any hex value >

Blitz-64:	KPL	Introduction/	Porter	 	 Page	 	of	
198 207

Appendix	7:	Lexical	Details

Except	for	\,	\n,	and	\r,	the	ASCII	control	characters	do	not	need	to	be	escaped:

 ''' -- The single quote character is allowed
 ' ' -- The \t character
 '' -- The \0 character! See it?

Of	course,	the	recommendation	is	to	use	the	escape	sequence:

 '/'' -- We prefer these
 '/t'
 '/0'

In	the	case	of	individual	bytes,	there	must	be	exactly	2	hex	characters.	The	byte	value	
is	sign	extended.

 var ch: int

 ch = '\xff'
 ch = -1 -- Equivalent
 ch = 0xffffffffffffffff -- Equivalent

The	source	code	file	is	assumed	to	be	encoded	in	UTF-8	and	any	Unicode	character	
may	appear	between	the	quotes.	This	allows	for	any	codepoint	up	to	the	maximum	
of	221-1	=	2,097,151.

Note	that	the	value	-1	=	0xFFFFFFFFFFFFFFFF	is	not	a	valid	Unicode	codepoint.	This	
value	is	the	preferred	representation	of	conditions	such	as	end-of-file	(EOF).

String	Constants

A	string	constant	consists	of	a	sequence	of	zero	of	more	characters	enclosed	in	
double	quotes:

 "Here is an example string constant\n"

The	string	constant	may	use	the	same	escape	sequences	as	character	constants,	
which	were	listed	directly	above.

String	constants	may	contain	any	byte,	but	there	are	limitations	on	the	way	a	string	
must	be	written.

Blitz-64:	KPL	Introduction/	Porter	 	 Page	 	of	
199 207

Appendix	7:	Lexical	Details

Character	constants	may	not	contain	a	newline	directly,	but	this	is	allowed	within	a	
string	constant.	String	constant	may	contain	newline	(0x0a)	and	return	(0x0d)	
characters	directly.

 ch = '
 ' -- Not allowed

 str = "hello
 world" -- But this is okay

Other	than	the	newline	(0x0a)	and	return	(0x0d)	characters,	string	constants	may	
not	contain	ASCII	control	codes	directly.	Instead	you	must	use	the	escape	sequences.

 str = "hello world" -- TAB is not allowed
 str = “hello\tworld" -- You must use this instead

Otherwise,	a	string	constant	may	contain	any	Unicode	character.

 str = "Café of the Näive: ∞ ∉ 😀 £ ⇒ € 𝜋 ≠ ÷"

Blitz-64:	KPL	Introduction/	Porter	 	 Page	 	of	
200 207

Appendix	7:	Lexical	Details

A	string	constant	may	contain	any	byte.	In	particular,	there	is	nothing	special	about	
the	NUL	byte	(0x00).	This	is	a	significant	difference	with	C	/	C++.

 var str: String
 ...
 str = "All bytes: \x00\x01\x02 ... \xfe \xff"

Each	string	constant	will	be	translated	into	an	array	of	bytes.	In	an	assignment	such	
as	this,	the	variable	will	be	set	to	a	pointer	to	this	array.	In	other	words,	the	type	of	a	
string	constant	is	“String	=	ptr	to	array	of	byte”.

The	size	of	this	array	(both	the	maximum	and	the	current	size)	will	be	initialized	to	
the	number	of	bytes	in	the	constant.

This	array	will	be	stored	in	writable	memory.	Bytes	in	the	array	may	be	altered	and	
the	array	may	be	shortened	if	the	programmer	chooses	to	write	such	code.	Each	
string	constant	will	result	in	the	allocation	of	a	new	and	unique	array;	string	
constants	are	not	shared.

 str1 = "hello"
 str2 = "hello"
 str2 [3] = 'm'
 printf ("%s %s", str1, str2) -- Prints "hello helmo"

String	constants	are	stored	using	the	UTF-8	encoding.	If	the	string	contains	only	
ASCII	characters,	the	number	of	bytes	will	be	identical	to	the	number	of	characters.	
However,	for	Unicode	code	points	above	0x7f,	the	UTF-8	encoding	will	require	two	
or	more	bytes	per	character.	So	for	strings	containing	unusual	characters,	the	length	
of	the	array	will	be	different	from	the	number	of	bytes.

A	particular	UTF-8	encoding	can	be	entered	as	a	sequence	of	bytes,	as	the	examples	
below	will	show.

A	codepoint	may	also	be	entered	directly	in	hex,	using	the	\U	escape	sequence.	Note	
that	the	“U”	is	capitalized.	The	“\U”	must	be	followed	by	exactly	8	hex	characters	
giving	the	Unicode	codepoint.	(The	relationship	between	UTF-8	encoding	and	
codepoint	is	complex	and	described	elsewhere.)

Blitz-64:	KPL	Introduction/	Porter	 	 Page	 	of	
201 207

Appendix	7:	Lexical	Details

The	following	are	equivalent	and	create	the	exact	same	string.

 str = "𝜋" -- MATHEMATICAL ITALIC SMALL PI
 str = "\xf0\x9d\x9c\x8b" -- The UTF-8 encoding
 str = "\U0001d70b" -- The codepoint (decimal: 120,587)

Note	that	many	characters	may	look	the	same	(or	similar,	depending	on	font)	but	
have	significantly	different	encodings:

 str = "π" -- GREEK SMALL LETTER PI
 str = "\xcf\x80" -- Equivalent to above
 str = "\U000003c0" -- The codepoint (decimal: 960)

If	the	codepoint	is	0xFFFF	or	less,	then	the	code	point	can	be	entered	in	hex	with	the	
“\u”	escape.	Note	that	“u”	is	lowercase.	The	hex	characters	can	be	upper	or	lower	
case,	or	any	mix.	These	are	all	equivalent:

 str = "\U000003c0"
 str = "\u03c0"
 str = "\u03C0" -- Hex digits can be upper or lower

String	constants	are	often	have	may	characters.	Long	lines	reduce	program	
readability.	To	make	programs	more	readable,	a	string	constant	may	be	broken	into	
pieces.	For	example,	this:

 str = "A long string example: hello world"

is	exactly	equivalent	to:

 str = "A long string example: " "hello " "world"

and	to	this:

 str = "A long string example: "
 "hello "
 "world"

Breaking	long	string	constants	into	smaller	pieces	and	spreading	them	over	several	
lines	can	make	programs	easier	to	read.	Whenever	two	strings	appear	together,	the	
compiler	will	immediately	concatenate	them	into	a	single	string	constant	whose	
length	is	the	sum	of	the	original	pieces.

Blitz-64:	KPL	Introduction/	Porter	 	 Page	 	of	
202 207

Appendix	7:	Lexical	Details

At	least	one	character	of	white	space	is	required	between	the	pieces:

 str = "hello ""world" -- Not allowed

A	string	constant	may	not	include	a	double	quote	or	a	backslash.	They	must	be	
escaped.

 str = "abc"def\ghi" -- Not allowed
 str = "abc\"def\\ghi" -- Use this instead

Single	quotes	are	allowed.

 str = "3 o'clock"
	

Regular	Expressions	for	Token

In	the	regular	expressions	below,	the	following	notation	is	used:

	 |	 Alternation

	 {	}*	 Repetition	of	zero	or	more

	 {	}+	 Repetition	of	one	or	more

	 ()	 Grouping

	 -	 Set	difference,	e.g.,

	 	 	 Letter - (x | y | z)

	 𝜀	 Epsilon

Blitz-64:	KPL	Introduction/	Porter	 	 Page	 	of	
203 207

Appendix	7:	Lexical	Details

The	KPL	grammar	makes	use	of	the	following	lexical	tokens:

ID, CHAR, STRING, INTEGER, DOUBLE, OPERATOR

These	are	defined	as	follows:

 ID = Letter { Letter | Digit | Underscore }*
 CHAR = Apostrophe OneChar Apostrophe
 STRING = { StringPart }+
 INTEGER = { Digit }+ | 0 x { Hex }+44

 DOUBLE = { Digit }+ . { Digit }+ [Exponent]45

 | { Digit }+ Exponent
 OPERATOR = { OpChar }+

where

 StringPart = DoubleQuote { StringChar }* DoubleQuote
 OneChar = (Unicode - Forbidden1) | EscapeSeq | CodePoint
 StringChar = (Unicode - Forbidden2) | EscapeSeq | CodePoint
 EscapeSeq = \ EscCode | \ x Hex Hex
 Exponent = (e | E) (Plus | Minus | 𝜀) { Digit }+
 Letter = a | b | … | z | A | B | … | Z
 Digit = 0 | 1 | … | 9
 HexLetter = a | b | c | d | e | f | A | B | C | D | E | F
 Hex = Digit | HexLetter
 EscCode = \ | ' | " | 0 | a | b | t | n | f | r | e | d
 OpChar = \ | / | ! | @ | # | $ | % | ^ | & | ~ | ` |
 ? | < | > | = | Plus | Minus | Bar | Star
 Unicode = <	any	single	Unicode	character	>

 Forbidden1 = \ | NewLine
 Forbidden2 = \ | ControlCode | "
 CodePoint = CodePoint4 | CodePoint8

 CodePoint4 = \ u Hex Hex Hex Hex

 CodePoint8 = \ U Hex Hex Hex Hex Hex Hex Hex Hex

 NewLine = <	character	0x0A	(NL)	> | <	character	0x0D	(CR)	>

 ControlCode = <	characters	in	the	range	0x00	…	0x1F	>

 Underscore = "_"
 Apostrophe = "'"
 DoubleQuote = """
 Plus = "+"

	This	rule	is	incomplete;	underscore	characters	may	also	appear	with	the	sequence	of	Digits	or	44

Hex	digits.

	This	rule	is	incomplete;	underscore	characters	may	also	appear	with	the	sequence	of	Digits.45

Blitz-64:	KPL	Introduction/	Porter	 	 Page	 	of	
204 207

Appendix	7:	Lexical	Details

 Minus = "-"
 Bar = "|"
 Star = "*"

Blitz-64:	KPL	Introduction/	Porter	 	 Page	 	of	
205 207

Appendix	8:	Recent	Changes

This	appendix	lists	recent	changes	to	this	document.

20	October	2020

Section	titled	“Syntax	Exception	Regarding	‘*’”	was	added.

8	March	2021

Built-in	function	isNaN	was	renamed	to	isnan.	Built-in	functions	posInf,	negInf,	
NaN,	and	negZero	were	removed.	New	built-in	function	isNegZero	is	added.	New	
keywords	introduced:	inf,	nan.

Blitz-64:	KPL	Introduction	/	Porter	 Page	 	of	206 207

About	the	Author	

Professor	Harry	H.	Porter	III	teaches	in	the	Department	of	Computer	Science	at	
Portland	State	University.	He	has	produced	several	video	courses,	notably	on	the	
Theory	of	Computation.	Recently	he	built	a	complete	computer	using	the	relay	
technology	of	the	1940s,	which	has	eight	general	purpose	8	bit	registers,	a	16	bit	
program	counter,	and	a	complete	instruction	set,	all	housed	in	mahogany	cabinets	as	
shown.	His	technical	focus	and	research	interests	have	included	AI	and	neural	
networks;	parsing	and	natural	language	processing;	logic,	object-oriented,	and	
functional	programming;	compilers,	operating	systems,	interpreters,	and	system	
software;	and	discrete	math	and	computational	theory.	He	has	programmed	in	many	
high-level	languages	and	written	assembly	code	for	a	variety	of	machines,	dating	
back	to	the	IBM	360/67	and	Intel	8080.

Porter	lives	in	Portland,	Oregon.	When	not	trying	to	figure	out	how	his	computer	
actually	works,	he	skis,	hikes,	travels,	and	spends	time	with	his	children	building	
things.

Porter	holds	an	Sc.B.	from	Brown	University	and	a	Ph.D.	from	the	Oregon	Graduate	
Center.

Blitz-64:	KPL	Introduction	/	Porter	 Page	 	of	
207 207

