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Chapter	1:	Floating	Point	Numbers	

The	Basic	Idea	

Integer	values	are	represented	in	a	computer	with	binary	numbers.	For	example,	in	
many	programming	languages	a	value	of	type	“int”	will	be	represented	in	exactly	32	
bits.	With	only	a	1ixed	number	of	bits,	there	is	a	limit	to	how	many	different	values	
can	be	represented.	

For	example,	the	range	of	values	that	can	be	represented	with	32-bit	integers	is:	

	 -2,147,483,648	…	+2,147,483,647	

To	represent	fractional	values,	humans	often	use	scienti1ic	notation,	such	as:	

	 6.02214076	×	1023	

Floating	point	representation	is	an	attempt	to	represent	numbers	like	this	in	a	1ixed	
and	small	number	of	bits.	Typically,	each	1loating	point	number	will	be	represented	
in	32	bits,	although	some	programs	will	use	64	bits	for	each	number.	

With	integers,	there	is	a	limitation:	very	large	and	very	negative	values	simply	
cannot	be	represented.	

With	1loating	point,	we	have	these	limitations:	

•	The	range	of	the	exponents	is	limited.	
•	The	amount	of	precision	is	limited.	
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For	example:	

18.0	×	102	 ←	can	be	represented	
18.00000000000000001	×	102	 ←	can	NOT	be	represented	

With	scienti1ic	notation,	humans	often	express	the	amount	precision	or	accuracy	of	a	
value,	showing	the	accuracy	by	the	number	of	digits.	Measurements	that	are	more	
accurate	have	more	digits,	and	less	accurate	values	are	rounded	to	values	with	fewer	
digits.	

For	example,	these	two	values	are	exactly	equal,	but	they	suggest	different	
con1idences	in	their	accuracy:	

	 7.25	×	106		
	 7.2500	×	106		

With	1loating	point,	these	two	numbers	are	represented	identically.	After	all,	they	are	
really	the	same	number.	

•	Each	1loating	point	value	is	nothing	more	than	a	value.	There	is	no	information	
about	the	accuracy	of	that	value.	

Since	there	is	a	1inite	number	of	bits	available	for	each	number,	there	are	only	a	1inite	
number	of	values	that	can	be	represented.	As	such:	

•	Many	values	cannot	be	represented.	

Instead,	we	must	make-do	with	numbers	that	are	nearby	and	about	the	same	as	
desired	value.	The	value	that	the	bits	of	a	1loating	point	value	represent	will	be	the	
closest	approximation	to	the	true,	correct	value.	At	least	we	hope	so!	

Floating	point	representation	is	fundamentally	a	binary	representation,	not	a	
decimal	representation.	As	a	consequence:	

•	Many	simple	decimal	values	cannot	be	represented.	
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For	example,	the	following	commonly	used	number	can	be	represented	simply	and	
exactly	in	decimal,	but	cannot	be	represented	exactly	in	1loating	point:	

	 0.3	

The	closest	we	can	come	with	1loating	point	is:	

	 0.300000011920928955078125	

Because	of	the	limitations	of	1loating	point,	almost	every	operation	(such	as	+,	-,	×,	
and	÷)	will	introduce	errors.	And	the	more	operations	that	are	performed,	the	
greater	the	inaccuracy	of	the	1inal	result.	

•	Arithmetic	operations	are	usually	inexact	and	introduce	errors.	
•	Errors	tend	to	get	larger	as	more	operations	are	performed.	

Because	of	these	factors,	you	must	learn	about	1loating	point	point	if	you	wish	to	
write	reliable,	correct	code:	

•	If	accurate	numerical	results	are	required,	the	programmer	must	understand	
1loating	point.	

The	IEEE	754-2008	Standard		

The	IEEE	754-2008	standard	describes	how	1loating	point	numbers	are	to	be	
represented	and	how	1loating	point	operations	are	to	be	executed	by	computers.	

The	standard	is	complicated	and	detailed.	This	document	is	meant	to	be	an	
introduction	and	is	not	an	exhaustive	description.	Most	modern	processor	
Instruction	Set	Architectures	(ISAs)	implement	the	IEEE	754-2008	speci1ication,	but	
the	speci1ication	has	options	and	some	parts	are	not	fully	implemented	on	most	
computers.	

Floating	Point	Numbers	/	Porter	 	 Page	 	of	 	6 65



Chapter	1:	Floating	Point	Numbers	

Single	and	Double	Data	Types		

The	speci1ication	de1ines	two	main	data	types:	

	 Single	Precision	 32-bit	“1loat”	values	
	 Double	Precision	 64-bit	“double”	values	

These	are	the	important	data	types	that	you	need	to	be	aware	of.	You	should	
probably	ignore	the	other	data	types.	

These	two	data	types	are	available	in	most	common	languages,	such	as	C,	C++,	C#,	
Objective	C,	and	Java :	1

	 Data	Type	in	Programming	Language	 Implementation	
	 	 “1loat”	 	 single	precision	(32	bits)	
	 	 “double”	 	 double	precision	(64	bits)	

Some	computers	implement	only	single	precision	in	hardware;	other	computers	
implement	both	single	and	double.	Some	computers	do	not	implement	either.	

For	simpler	processors,	the	implementation	of	1loating	point	occurs	purely	in	
software.	That	is,	1loating	point	is	“emulated”.	This	is	generally	transparent	and	the	
programmer	will	not	be	aware	of	whether	the	processor	is	implementing	the	
1loating	point	operations	in	hardware	(which	is	much	faster)	or	in	software	(which	is	
much	slower).	

In	both	single	and	double	representation,	the	idea	is	to	represent	a	real	rational	
number	in	a	way	similar	to	scienti1ic	notation.	For	example,	the	following	number	is	
given	in	scienti1ic	notation:	

6.022	×	1023				(an	approximation	to	Avogadro’s	constant)	

With	only	32	bits	for	single	(or	64	bits	for	double),	there	are	limits	to	the	amount	of	
precision	and	the	size	of	the	exponents.	The	available	bits	are	used	as	follows:	

	Python	has	a	type	called	“1loat”	which	is	implemented	with	IEEE	double	(64	bit)	representation.	1

KPL	has	a	“double”	type,	but	not	a	“single”	type.

Floating	Point	Numbers	/	Porter	 	 Page	 	of	 	7 65



Chapter	1:	Floating	Point	Numbers	

	 Number	of	bits	used	for…	
	 Single	 Double	
	 Sign	 1	 1	
	 Exponent	 8	 11	
	 Value	 23	 52	
	 			Total	 32	 64	

Fixed	Point	Numbers		

Furthermore,	with	1loating	point	a	numerical	value	is	represented	in	binary	(not	
decimal)	and	this	introduces	some	subtleties	when	going	back	and	forth	between	
the	internal	bit	patterns	and	decimal	representations	which	humans	can	read.	

Every	positive	integer	can	be	represented	with	a	1inite	number	of	digits	and	a	1inite	
number	of	bits.	For	example,	here	is	the	same	number,	represented	both	ways.	Of	
course,	this	number	requires	a	few	more	characters	in	binary,	but	the	represented	
value	is	equal.	

	 2,468		 	 (decimal)	
	 100110100100	 (binary)	

We	commonly	represent	rational	numbers	in	decimal	using	a	“decimal	point”,	as	in:	

	 123.456	

We	can	also	represent	rational	numbers	in	binary	using	a	“binary	point”,	as	in:	

	 101.0101	

With	decimal	numbers,	the	position	of	each	digit	is	important	and	we	talk	about	the	
place	value	of	the	digits.	The	place	values	are	all	powers	of	10:	

	 …	 1000	 100	 10	 1	 1/10	 1/100	1/100	1/1000	…	
	 …	 103	 102	 101	 100	 10-1	 10-2	 10-3	 10-4	 …	

Consider	this	number:	

	 123.456	
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We	can	use	the	place	values	to	compute	the	value	of	a	number,	as	you	learned	in	
primary	school:	

	 …	 1000	 100	 10	 1	 1/10	 1/100	1/100	1/1000	…	
	 …	 	 1	 2	 3	 4	 5	 6	 	 …	

We	can	multiply	this	out	to	determine	the	value:	

	 =	(1	×	102)	 +	(2	×	101)	 +	(3	×	100)	 +	(4	×	10-1)	 +	(5	×	10-2)	 +	(6×	10-3)	
	 =	(1×100)	 +	(2×10)	 +	(3×1)	 +	(4×0.1)	 +	(5×0.01)	 +	(6×0.001)	
	 =	100		+		20		+		3		+		4/10		+		5/100		+		6/1000	
	 =	123.456	

The	same	system	works	with	binary	numbers.	That	is,	the	value	of	each	bit	is	scaled	
according	to	the	place	value	of	the	bit.	However,	with	binary	numbers,	the	place	
values	are	all	powers	of	2:	

	 …	 8	 4	 2	 1	 1/2	 1/4	 1/8	 1/16	 …	
	 …	 23	 22	 21	 20	 2-1	 2-2	 2-3	 2-4	 …	

Consider	this	binary	number:	

	 101.0101	

Using	this,	we	can	convert	binary	numbers	into	decimal	numbers:	

	 …	 8	 4	 2	 1	 1/2	 1/4	 1/8	 1/16	 …	
	 …	 	 1	 0	 1	 0	 1	 0	 1	 …	

	 =	(1	×	22)		+	(0	×	21)	 +	(1	×	20)	 +	(0	×	2-1)	 +	(1	×	2-2)	 +	(0	×	2-3)	 +	(1	×	2-4)	
	 =	(1	×	4)	 +	(0	×	2)	 +	(1	×	1)	 +	(0	×	1/2)	 +	(1	×	1/4)	 +	(0	×	1/8)	 +	(1	×	1/16)	
	 =	4		+		1		+		1/4		+		1/16	
	 =	5.3125	
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Exponents		

With	a	decimal	number,	we	can	multiply	by	a	power	of	10	to	shift	the	position	of	the	
decimal	point.	

71.234		=		7123.4	×	10-2	

Here	are	some	examples	showing	that	the	same	sequence	of	digits	can	represent	
different	numbers,	when	the	base	(10)	is	raised	to	different	powers:	

	 ScientiUic	Notation	 Equal	Value	
	 7.1234	×	10-1	 .71234	
	 7.1234	×	100	 7.1234	
	 7.1234	×	101	 71.234	
	 7.1234	×	102		 712.34	 	 	
	 7.1234	×	103		 7123.4	
	 7.1234	×	104		 71234.

A	number	is	represented	with	two	parts.	The	“mantissa”	is	the	numerical	portion	
and	the	“exponent”	is	the	power	on	the	base.	

For	7.1234	×	103	we	have:	

	 Mantissa:		 7.1234	
	 Exponent:		 3	

The	same	thing	works	with	binary	numbers.	For	example:	

100.111110101		=		10011111.0101	×	2-5	
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Here	are	some	other	examples:	

	 ScientiUic	Notation	 Equal	Value	
	 1.10110	×	2-1	 .110110	
	 1.10110	×	2-0	 1.10110	
	 1.10110	×	2-2	 11.0110	
	 1.10110	×	2-3	 110.110	
	 1.10110	×	2-4	 1101.10	
	 1.10110	×	2-5	 11011.0	
	 1.10110	×	2-6	 110110.	

For	1.10110	×	2-5	we	have:	

	 Mantissa:		 1.10110	
	 Exponent:		 -5	

In	specifying	a	decimal	number	such	as:	

	 7.1234	×	103	

we	naturally	show	the	mantissa,	the	exponent,	and	the	base	(10)	in	decimal.	

In	specifying	a	binary	number	such	as:	

	 1.10110	×	25	

we	show	the	mantissa	in	binary.	But	we	show	the	exponent	(5)	and	the	base	(2)	in	
decimal.	Note	that	2,	when	written	in	binary,	is	“10”.	Showing	the	base	is	binary	
would	be	especially	confusing!	Consider	how	ambiguous	this	would	be:	

	 1.10110	×	10101	 ←	Avoid	specifying	base	and	exponent	in	binary!!!	

The	basic	ideas	with	1loating	point	representation	are…	

Floating	Point	Numbers	/	Porter	 	 Page	 	of	 	11 65



Chapter	1:	Floating	Point	Numbers	

We	break	the	number	into	mantissa	and	exponent,	such	that	

	 •	The	binary	point	is	at	a	1ixed,	unchanging	position.	
	 •	We	represent	the	mantissa	as	a	binary	value.	
	 •	We	represent	the	exponent	as	a	binary	value.	
	 •	We	pack	the	mantissa	bits	and	the	exponent	bits	and	a	sign	bit	all	together.	

A	single	precision	1loating	point	number	is	represented	with	32	bits.	We	will	we	use	
23	bits	for	the	mantissa	and	8	bits	for	the	exponent.	This	leaves	1	bit	for	the	sign.	

For	double	precision	1loating	point,	we	will	use	52	bits	for	the	mantissa	and	11	bits	
for	the	exponent.	

Differences	Between	Decimal	and	Binary		

Some	rational	numbers	require	an	in1inite	number	of	digits	in	their	decimal	
representation.	For	example:	

	 1/3		=		0.33333…	

There	are	a	couple	of	different	notations	that	mathematicians	use	to	represent	
repeating	decimals:	

	 0.3(3)*	
	 0.3̅	

Likewise,	some	rational	numbers	may	require	an	in1inite	number	of	bits	in	their	
binary	representation.	

But	regardless	of	whether	we	represent	a	rational	number	in	decimal	or	binary,	the	
in1inite	strings	of	digits/bits	will	settle	into	a	simple	repeating	pattern.	This	is	true	
of	all	rational	numbers,	but	irrational	numbers	(e.g.,	𝜋,	√2)	do	not	have	such	simple	
decimal	or	binary	representations.	Neither	their	decimal	nor	their	binary	
expansions	will	ever	exhibit	a	repeating	pattern.	
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Some	numbers	many	have	a	1inite	representation	in	decimal	but	require	an	in1inite	
sequence	in	binary.	For	example,	the	following	number:	

	 4.3	

requires	an	in1inite	binary	expansion	to	represent	it,	namely:	

	 100.01001100110011…		=		100.01(0011)*	

It	turns	out	that	every	binary	number	without	a	repeating	part	can	be	represented	
with	a	1inite	number	of	decimal	digits.	Furthermore,	the	number	of	digits	to	the	right	
of	the	decimal	point	will	never	exceed	the	number	of	places	to	the	right	of	the	binary	
point.	For	example:	

101.1101	(binary)		=		5.8125	(decimal)	

Turning	to	1loating	point	representation,	we	have	limited	number	of	bits	available,	
which	means	we	cannot	accommodate	arbitrary	precision.	Not	every	number	is	
representable,	so	we	must	round	numbers	to	a	nearby	number	that	is	representable.	

For	example,	the	number	6.022		×	1023	can	only	be	represented	approximately,	even	
though	it	appears	not	to	have	a	great	amount	of	precision.	Here	is	the	closest	
number	that	can	be	represented	using	a	single	precision	1loating	point:	

	 6.02200013124147498450944		×	1023	

On	the	other	hand,	it	turns	out	that	this	number:	

	 2.383496609792		×	1012	

can	be	represented	exactly	using	only	32	bit	single	precision.	The	next	largest	value	
that	can	be	represented	exactly	happens	to	be:	

	 2.383496871936		×	1012	

The	underlining	shows	the	commonality	in	these	numbers.	This	example	
demonstrates	that	we	can	represent	numbers	accurately	up	to	about	7	decimal	
digits	with	single	precision	1loating	point.	
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No	number	between	these	two	values	can	be	represented	exactly	with	a	single	
precision	1loating	point	number.	For	such	values,	we’ll	have	to	choose	one	of	these	
two	nearby	numbers.	

The	ideal	thing	to	do	is	“round”	our	desired	value	to	the	nearest	number	that	can	be	
represented,	and	then	use	that.	Of	course,	any	computation	will	be	off	by	a	little,	due	
to	this	rounding.	

Working	with	1loating	point	involves	dealing	with	inaccuracy	and	this	is	very	tricky.	
To	predict	the	expected	accuracy	of	a	computation	is	not	at	all	trivial,	yet	may	be	
crucial.	

Floating	Point	Truths		

We	can	make	the	following	statements	about	IEEE	754-2008	1loating	point	number	
representation:	

•	 Every	1loating	point	numbers	has	a	sign.	Every	number	is	either	positive	or	
negative.	

•	 There	are	two	representations	for	zero:	positive	zero	(i.e.,	+0.0)	and	negative	
zero	(i.e.,	-0.0).	

•	 There	are	two	representations	of	in1inity:	positive	in1inity	(+∞	or	+inf)	and	
negative	in1inity		(-∞	or	-inf)	

•	 The	exponent	may	be	positive	or	negative,	allowing	both	very	large	numbers	
and	very	small	numbers.	

•	 There	is	a	special	representation	called	“not	a	number”	(“NaN”).	This	value	can	
represent	a	missing	value	or	the	result	of	a	unde1ined	operation,	such	as	divide	
by	zero.	In	some	implementations	there	are	two	variations,	called	“quiet	NaN”	
and	“signaling	NaN”.	

•	 Every	32-bit	integer	(i.e.,	every	integer	in	the	range	-2,147,483,648	to	
+2,147,483,647)	can	be	represented	exactly	with	a	64	bit	double	precision	
1loating	point	number,	but	not	with	a	single	precision	1loat.	In	fact,	the	integer	
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range	is	a	little	greater:	every	54-bit	integer	can	be	represented	exactly	in	
double	precision	1loating	point.	Almost	all	larger	integers	will	get	rounded.	

•	 Every	25-bit	integer	(i.e.,	every	integer	in	the	range	-16,777,216	to	
+16,777,215)	can	be	represented	exactly	with	a	32	bit	single	precision	1loating	
point	number.	Almost	all	integers	outside	of	this	range	will	get	rounded.	

As	mentioned	earlier,	not	every	value	in	the	above	ranges	can	be	represented. 	2

Floating	point	arithmetic	is	meant	to	mimic	mathematical	arithmetic,	but	it	must	be	
remembered	that	they	are	only	approximately	the	same:	

•	 The	exact	value	or	result	of	an	operation	is	not	always	representable,	so	the	
computed	answer	is	often	not	mathematically	correct.	

•	 Floating	point	addition	is	not	always	associative,	due	to	rounding	errors.	That	
is,	(x	+	y)	+	z	is	not	always	equal	to	x	+	(y	+	z).	

•	 Floating	point	multiplication	is	not	always	associative.	That	is,	
(x	*	y)	*	z	is	not	always	equal	to	x	*	(y	*	z).	

•	 Floating	point	multiplication	does	not	always	distribute	over	addition	with	the	
exact	same	results.	That	is,	x	*	(y	+	z)	is	not	always	equal	to	(x	*	y)	+	(x	*	z).	

However,	we	can	say	this:	

•	 Floating	point	addition	and	multiplication	are	commutative,	like	math.	For	
example,	x+y	=	y+x,	so	you	don’t	have	to	worry	about	the	order	of	operands	for	
a	single	operation.	

	Recall	there	is	a	countable	in1inity	of	rational	numbers	between	any	two	numbers,	yet	with	only	2

32	or	64	bits,	we	only	have	a	small	number	of	unique	representations.
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A	Nasty	Example	

As	an	example	of	the	dangers	of	not	understanding	1loating	point,	consider	this	“C”	
code	

d1 = 123.0 + 1.0e+57 - 1.0e+57;
printf ("d1 = %g\n", d1);

It	prints	“0”,	while	the	mathematically	correct	value	is	“123.0”.	

Why?	The	computer	performs	the	addition	1irst	and	is	forced	to	round	the	value	to	
1.0e+57	because	the	exact	answer	cannot	be	represented	as	a	double	precision	
1loating	point	number.	

By	simply	inserting	parentheses	to	force	the	subtraction	to	be	done	1irst,	the	
following	results	in	the	mathematically	correct	answer.	

d1 = 123.0 + (1.0e+57 - 1.0e+57);

Range	of	Values		

Here	is	the	range	of	values	that	can	be	represented.	(We	use	decimal	notation	here	
and	approximate	the	exact	values.)			

Single	Precision	
	 Largest	value:	 ~3.40282347	×	10+38	
	 Smallest	normalized	value	above	0:	 ~1.17549440	×	10-38	
	Smallest	denormalized	value	above	0:	 ~1.40129846432	×	10-45	
	 Digits	of	accuracy:	 about	7	

Double	Precision	
	 Largest	value:	 ~1.7976931348623157	×	10+308	
	 Smallest	normalized	value	above	0:	 ~2.2250738585072014	×	10-308	
	Smallest	denormalized	value	above	0:	 ~5	×	10-324	
	 Digits	of	accuracy:	 about	16	
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Special	Values		

Here	are	the	different	types	of	things	that	can	be	represented	in	a	1loating	point	bit	
pattern:	

•	Positive	zero	(+0.0)	
	 •	Negative	zero	(-0.0)	
	 •	Positive	in1inity	(+∞	or	+inf)	
	 •	Negative	in1inity	(-∞	or	-inf)	
	 •	Not-a-number	(NaN)	
	 	 Quiet	Nan	(qNaN)	
	 	 Signaling	Nan	(sNaN)	

•	Normal	numbers	(or	“normalized	numbers”)	
•	Denormalized	numbers	(or	“denormals”)	

Zero	–	Positive	and	Negative	

There	are	exactly	two	ways	to	represent	zero,	one	is	positive	and	the	other	is	
negative.	This	is	unlike	math,	where	there	is	only	a	single	number	called	zero	and	it	
is	unsigned.	

Here	are	some	interesting	behaviors:	

	 1/+0	yields	+∞	
	 1/-0	yields	–∞	
	 +0	will	normally	compare	as	equal	to	-0	(e.g.,	the	==	in	the	“C”	language)	
	 Some	languages	provide	a	way	to	distinguish	+0	and	-0.	

There	are	additional	behaviors,	such	as:	

	 -0/-∞		yields	+0	

Although	+0	and	-0	may	compare	as	equal,	they	may	also	result	in	different	
outcomes	in	some	computations.	This	challenges	our	understanding	of	the	meaning	
of	“equal”,	to	say	the	least.	
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The	bit	pattern	representation	of	zero	is:	

	 	 single	 double	
	 +0.0	 0x00000000 0x0000000000000000	
	 -0.0	 0x80000000 0x8000000000000000	

Note	that	the	1loating	point	representation	for	+0.0	is	bit-for-bit	identical	to	the	
representation	for	0	in	binary	integer	representation	(both	signed	and	unsigned).	

It	happens	to	be	true	that	-0.0	is	represented	identically	to	the	most	negative	signed	
integer,	but	this	is	less	useful.	

InUinity	

There	are	two	in1inities	which	are	represented	as	follows:	

	 	 single	 double	
	 +in1inity	 0x7F800000 0x7FF0000000000000	
	 -in1inity	 0xFF800000 0xFFF0000000000000	

Not-a-Number	(NaN)		

There	is	a	special	value	called	“not-a-number”,	which	is	often	abbreviated	“NaN”.	
Some	arithmetic	operations	are	considered	to	be	“unde1ined”	and,	when	attempted,	
will	result	in	a	NaN	result,	to	indicate	that	the	result	is	unde1ined.	Here	are	some	
examples	of	operations	that	with	yield	“not-a-number”.	

	 0/0	
	 ∞	/	∞	
	 0	*	∞		

Other	operations	are	mathematically	de1ined	but	give	a	complex	result.	Complex	
numbers	are	not	handled	by	1loating	point,	so	operations	such	as	the	following	will	
return	NaN.	

	 Square	root	of	a	negative	number	
	 Log	of	a	negative	number	
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Another	use	of	NaN	is	to	represent	an	uninitialized	or	missing	value.	If	a	variable	is	
used	before	it	is	initialized,	spurious	incorrect	results	might	occur,	but	this	can	be	
avoided	if	the	variable	contains	NaN.	

The	IEEE	spec	actually	mentions	two	kinds	of	NaN:	“signaling	NaN”	and	“quiet	NaN”.	
But	usually,	we	just	talk	about	NaN	without	making	any	distinction	about	whether	it	
is	signaling	or	quiet.	

A	“signaling	NaN”	is	supposed	to	cause	a	break	in	the	1low	of	execution	when	it	is	
encountered	in	a	computation.	That	is,	a	trap	or	exception	of	some	sort	will	occur,	
and	the	normal	instruction	sequence	will	be	interrupted	immediately.	Signaling	
NaNs	might	reasonably	used	for	uninitialized	values:	their	use	may	represent	a	
program	bug	which	needs	attention.	In	theory,	signaling	NaNs	might	also	be	used	as	
placeholders	for	values	(such	as	complex	numbers)	which	require	special	handling.	

The	idea	with	a	“quiet	NaN”,	is	that	it	can	be	used	as	an	operand	in	arithmetic	
operations	.	Furthermore,	a	quiet	NaN	will	be	propagated.	That	is,	if	one	of	the	
operands	to	some	operation	is	a	quiet	NaN,	the	result	will	also	be	a	quiet	NaN.	This	
allows	a	lengthy	sequence	of	operations	to	be	performed	quickly	with	no	special	
testing	for	problems.	Once	a	NaN	appears,	as	a	result	of	some	error,	it	will	persist	in	
the	chain	of	computations.	Each	subsequent	operation	will	complete	normally,	
without	causing	an	exception	or	trap	even	though	some	sort	of	error	occurred	
earlier	in	the	sequence.		If	any	problems	occur	at	any	step	of	the	computation,	the	
1inal	result	will	be	a	quiet	NaN.	Therefore,	it	is	suf1icient	to	perform	only	a	single	test	
for	NaN	after	the	entire	computation	to	see	if	any	errors	arose	at	any	stage	of	the	
computation.	

The	spec	does	not	require	signaling	NaNs;	they	are	optional.	One	implementation	
approach	is	for	the	hardware	to	interpret	all	NaN	values	identically,	basically	as	quiet	
NaNs.	

What	generally	happens	with	C	is	that	the	“Invalid”	1lag	will	be		set	if	either	operand	
is	“signaling	NaN”.	However,	if	the	operands	are	only	“quiet	NaNs”,	the	result	will	be	a	
NaN	but	the	“Invalid”	1lag	will	not	be	modi1ied.	

There	are	several	bit	patterns	that	can	be	used	to	represent	NaNs,	so	there	is	not	a	
single	bit	pattern	for	NaN.	
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A	value	is	de1ined	to	represent	NaN	if	(1)	the	exponent	1ield	is	all	1’s,	and	(2)	the	bits	
of	the	fraction	1ield	are	not	all	zero.	(If	the	fraction	bits	are	all	zero,	then	the	value	is	
either	+∞	or	–∞.)	The	sign	bit	of	a	NaN	value	is	ignored.	

If	a	distinction	between	quiet	and	signaling	NaN	is	implemented,	then	one	of	the	bits	
in	the	fraction	1ield	will	be	used	to	distinguish	between	quiet	and	signaling.		

The	exact	bit	patterns	for	NaN	are	not	fully	speci1ied	and	can	vary	between	
implementations.	

We	can	say	that	a	value	with	all	bits	set	to	one	(i.e.,	the	representation	for	the	signed	
integer	-1	which	is	0xFFFF	FFFF	or	0xFFFF	FFFF	FFFF	FFFF)	will	de1initely	
represent	a	NaN	and	will	almost	certainly	represent	a	quiet	NaN.	For	example,	the	
all-ones	pattern	will	be	a	quiet	NaN	for	Intel,	AMD,	SPARC,	ARM,	RISC-V,	etc.	

Mixing	Single	and	Double	Precision	Using	NaN	

There	are	many	bits	in	the	fraction	1ield,	and	the	only	requirement	for	NaN	is	that	
they	cannot	all	be	zero.	Thus,	there	is	room	to	store	some	additional	data	within	
the	NaN.	So	a	NaN	can	carry	a	sort	of	“payload”	value	in	the	fraction	bits.	This	
capability	may	or	may	not	be	used	in	a	particular	implementation	of	IEEE	
754-2008.	

For	example,	the	fraction	1ield	in	a	double	is	52	bits.	Assume	that	one	bit	is	
reserved	to	be	always	set	to	indicate	that	this	is	a	NaN,	and	assume	that	a	second	
bit	is	reserved	and	used	to	distinguish	between	a	quiet	NaN	and	a	signaling	NaN.	
This	leaves	50	bits	that	can	be	used	to	store	a	arbitrary	value.	Notice	that	this	is	
enough	room	to	store	an	entire	single	precision	1loating	point	number.	

Imagine	a	machine	that	implements	double	precision	arithmetic	and	uses	64-bit	
registers	to	store	1loating	point	values.	How	might	this	machine	store	32-bit	single	
precision	values	in	these	same	registers?	

Any	64-bit	value	in	which	the	high	order	32	bits	are	set,	will	be	always	recognized	
as	a	NaN.	One	approach	to	storing	a	single	precision	value	in	a	64	bit	register	is	to	
store	the	single	precision	value	in	the	least	signi1icant	bits	32	bits	and	all	1s	in	the	
most	signi1icant	32	bits.	

All	single	precision	operations	will	only	look	at	the	least	signi1icant	32-bits	of	the	
operands	and,	for	the	result	value,	will	always	set	the	most-signi1icant	32	bits	to	1s.	

Floating	Point	Numbers	/	Porter	 	 Page	 	of	 	20 65



Chapter	1:	Floating	Point	Numbers	

Any	accidental	attempt	to	perform	a	double	precision	operation	on	a	register	
containing	a	single	precision	value,	will	interpret	that	operand	as	a	NaN.	

Normalized	and	Denormalized	Numbers	

Not	every	number	is	representable	and	the	representable	numbers	are	spaced	out	
on	the	number	line.	So	each	possible	1loating	point	value	is	separated	by	a	numerical	
distance	from	the	next	smallest	number	and	from	the	next	largest	number.	As	the	
numbers	get	smaller	and	closer	to	zero,	the	spacing	gets	smaller	and	the	numbers	
are	closer	together.	As	the	numbers	get	larger,	the	spacing	is	farther	apart.	

For	example,	the	following	numbers	differ	by	a	very	small	amount:	

	 4.567	×	10-25	
	 4.568	×	10-25	

On	the	other	hand,	these	two	numbers	differ	by	a	very	large	amount:	

	 4.567	×	10+25	
	 4.568	×	10+25	

However	in	both	examples	above,	the	accuracy	is	the	same:	4	digits	of	precision.	

However,	there	is	only	a	limited	number	of	bits	available	to	represent	the	exponents.	
Exponents	cannot	continue	to	get	more	negative	and	we	cannot	represent	smaller	
and	smaller	numbers,	ever	more	close	to	zero.	Therefore,	this	pattern	of	the	1loating	
point	numbers	becoming	spaced	ever	more	closely	as	they	get	closer	and	closer	to	
zero	cannot	continue.	Something	has	to	change	as	the	numbers	get	smaller	and	
approach	zero.	

What	happens	is	that	below	some	size,	the	representable	values	are	simply	spaced	
uniformly	all	the	way	down	to	zero.	This	is	the	role	of	denormalized	numbers.	

Most	1loating	point	numbers	are	“normal”	numbers.	Normal	numbers	have	about	7	
digits	of	accuracy	(for	single	precision)	and	16	digits	of	accuracy	(for	double	
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precision).	In	other	words,	we	can	approximate	any	desired	value	with	about	7	(or	
16)	digits	of	accuracy.	

Another	way	to	look	at	denormalized	numbers	is	this:	For	very	small	values,	we	
cannot	approximate	the	value	with	full	accuracy.	As	we	get	closer	and	closer	to	zero,	
we	can	approximate	the	true	value	with	fewer	and	fewer	places	of	accuracy.	For	
really	tiny	values,	we	may	even	be	forced	to	use	0.0	to	represent	the	value,	
essentially	losing	all	accuracy.	

We	can	make	the	following	statements	about	denormalized	numbers:	

•	 All	denormalized	numbers	are	very	close	to	zero.	
•	 Denormalized	numbers	extend	on	both	the	positive	and	negative	sides	of	
zero.	

•	 +0.0	and	-0.0	are	themselves	represented	as	denormalized	numbers.	
•	 All	denormalized	numbers	are	regularly	and	evenly	spaced.	(Exception:	+0.0	
and	-0.0	have	an	in1initesimal	difference	and	are	considered	equal.)	

•	 The	largest	denormalized	number	is	just	less	than	the	smallest	positive	
normal	number.	

•	 Likewise,	the	most	negative	denormalized	number	is	just	greater	than	the	
least	negative	normal	number.	

•	 It	is	generally	safe	to	ignore	the	distinction	between	normalized	and	
denormalized	numbers	when	using	1loating	point	in	your	applications.	

There	are	rules	for	determining	the	precision	of	the	results	of	an	arithmetic	
calculation	involving	scienti1ic	notation.	But	if	very	small	values	(i.e.,	denormalized	
numbers)	arise	during	a	computation,	then	your	assumptions	about	precision	will	
be	violated	and	the	1inal	results	will	have	reduced	precision.	In	some	cases,	the	1inal	
result	will	be	a	meaningless,	incorrect	value.	

Warning:	Always	remember	that	numbers	as	represented	in	computers	are	NOT	
true	mathematical	numbers.	Computer	arithmetic	is	NOT	mathematical	arithmetic.	
Remember:	“int”s	are	not	integers	and	“1loats”	are	not	real	or	rational	numbers.	

Computer	values	and	computation	are	mere	approximations	of	mathematically	
pure	ideals.	A	good	programmer	knows	how	important	it	is	to	understand	and	
remember	their	differences	in	creating	reliable	software.	
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Representation	in	32	Bits	

A	single	precision	1loating	point	number	is	represented	with	a	32-bit	word	as	shown	
here:	

	

How	can	we	interpret	the	32	bits	representing	a	1loating	point	number	in	single	
precision?	

Let	“sign”	be	the	most	signi1icant	bit.	Let	“exponent”	be	the	bit	pattern	in	bits	30:23.	
Let	“fraction”	be	the	bit	pattern	in	bits	22:0.	

The	number	represented	is:	

	 (-1)sign		×		1.fraction		×		2exponent	

The	1irst	term	simply	gives	the	sign	of	the	number:	0=positive	and	1=negative.	Note	
that	the	most	signi1icant	bit	holds	the	sign	bit	for	both	1loating	point	numbers	and	
signed	integers. 	3

	If	you	are	considering	using	a	two’s	complement	instruction	to	check	the	sign	bit,	that	will	work	as	long	as	3

the	value	is	not	the	special	“not-a-number”	NaN	value.
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There	are	8	bits	in	the	exponent	1ield.	The	interpretation	of	the	“exponent”	bit	
patterns	is:	

	 Bit	Pattern	 Meaning	of	Exponent	Field	
	 0000 0000	 -126	—	Denormalized	Numbers,	including	zero		
	 0000 0001	 -126	
	   ...	 ...	
	 0111 1110	 -1		
	 0111 1111	 0		
	 1000 0000	 +1		
	   ...	 ...	
	 1111 1110	 +127		
	 1111 1111	 InIinity,	Not-a-Number	

Example		Let’s	convert	1010.111	into	1loating	point	format.	

First,	we	shift	the	binary	point	to	just	after	the	leftmost	1	bit:	
		
	 1.010111	×	23	

Every	number	(except	zero)	will	always	contain	at	least	a	single	1	bit.	Thus,	the	most	
signi1icant	bit	must	be	a	1	and	representing	it	is	redundant.	This	explains	why	we	
pre1ix	the	fractional	part	with	“1.”.	(This	trick	of	making	one	bit	implicit	doesn’t	work	
with	decimal	numbers:	the	leading	digit	can	be	anything	except	0,	so	we	cannot	
make	it	implicit.)	

This	gives	a	mantissa,	which	we	extend	to	23	bits	by	adding	zeros	on	the	right:	

0 1 0 1 1 1 1    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Next,	we	convert	the	exponent	using	the	above	chart	

	 23	 →	 1000 0010	

Putting	sign,	exponent,	and	fraction	together:	

0   1 0 0 0 0 0 0 0   0 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Regrouping	and	converting	to	hex:	

0100 0000 0010 1111 0000 0000 0000 0000
0x402F0000

For	normalized	numbers,	the	exponent	has	an	effective	range	of	-126	..	+127.	

The	smallest	positive	normalized	number	is:	

In	binary:	
	 	 1.00000000000000000000000	×	2-126	 (There	are	23	zeros)	

In	bits:	
	 	 0x00800000		=		0	00000001	00000000000000000000000	

Decimal	approximation:	
	 	 1.17549435	×	10-38	

Exact	value:	
	 	 0.000000000000000000000000000000000000011754943508	
	 	 2228750796873653722224567781866555677208752150875	
	 	 17062784172594547271728515625	

The	largest	normalized	number	is:	

In	binary:	
	 	 1.11111111111111111111111	×	2+127	 (There	are	1+23	ones)	

In	bits:	
	 	 0x7F7FFFFF		=		0	11111110	11111111111111111111111	

Decimal	approximation:	
	 	 3.4028235	×	10+38	

If	the	exponent	is	all	ones	(i.e.,	11111111),	then	the	value	of	the	fraction	matters.	If	
the	fraction	is	all	zeros,	then	the	value	is	+∞	or	–∞	depending	on	the	sign	bit.	

+∞:	
	 	 0x7F800000		=		0	11111111	00000000000000000000000	

-∞:	
	 	 0xFF800000		=		1	11111111	00000000000000000000000	

If	the	exponent	is	all	ones	(i.e.,	11111111)	and	the	value	of	the	fraction	is	not	all	
zeros,	then	NaN	is	represented.	There	are	multiple	representations	that	are	to	be	
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interpreted	as	NaN	values.	The	canonical,	preferred	representation	of	NaN	is	often	
this:	

NaN	(typical):	
	 	 0xFFFFFFFF		=		1	11111111	11111111111111111111111	

If	the	exponent	1ield	is	all	zeros	(i.e.,	00000000),	then	the	value	is	a	denormalized	
number.	The	value	of	the	number	is:	

	 N		=		(-1)sign		×		0.fraction		×		2-126	

Notice	that	the	leading	implicit	“1”	bit	is	no	longer	assumed;	it	is	now	“0”.	Also	the	
exponent	is	always	-126,	which	happens	to	be	the	smallest	exponent	for	normalized	
numbers.	

Here	are	some	sample	numbers	that	may	help	explain	denormalized	numbers:	

	 Smallest	normalized	number:	
	 	 1.00000000000000000000000		×		2-126	 (24	bits	of	precision)	
	 Largest		denormalized	number:	
	 	 0.11111111111111111111111		×		2-126	 (23	bits	of	precision)	
	 					…	
	 Random		denormalized	number:	
	 	 0.00000000001100101110101		×		2-126	 (13	bits	of	precision)	
	 				…	
	 Smallest		denormalized	number:	
	 	 0.00000000000000000000001		×		2-126	 (1	bit	of	precision)	
	 +0.0:	
	 	 0.00000000000000000000000		×		2-126	 (0	bits	of	precision)	

The	word	“precision”	above	may	be	misleading.	Each	1loating	point	value	is	an	exact	
value.	Precision	and	accuracy	are	more	meaningful	when	talking	about	
measurements.	In	that	case,	we	have	the	true	value	and	we	use	the	terms	“precision”	
and	“accuracy”	to	describe	the	relationship	between	the	number	we	obtained	and	
the	unknown	true	value.	
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Exponent	Bias	

Notice	that	the	exponent	is	not	represented	in	standard	“two’s	complement”	fashion.	
Normally,	the	integer	3	is	represented	as	0000	0011.	For	single	precision,	an	
exponent	of	3	is	represented	as	1000	0010,	which	would	be	130	if	interpreted	using	
two’s	complement.	

Sometimes	we	speak	of	a	“bias”	being	added	to	the	exponent.	For	single	precision,	
this	“bias”	value	is	127.	We	can	use	this	number	to	quickly	convert	the	exponent	to/
from	two’s	complement.	

	 Actual	exponent	 	 As	represented	in	a	single	precision	value	
	 -126	 +127	=	 1	 0000 0001	
	 …	
	 0	 +127	=	 127	 0111 1111	
	 …	
	 3	 +127	=	 130	 1000 0010	
	 …	
	 +127	 +127	=	 254	 1111 1110	

When	implementing	the	1loating	point	operations	using	more	primitive	bit-based	
operations,	it	is	important	to	remember	that	we	cannot	simply	add	exponents.	For	
example	

	 23		+		24		=		27	
	 3	+	4	=	7	

The	correct	bit	pattern	of	the	result	is:	

	 7	+	127	=	134	(binary:	10000110)	

But	if	we	simply	added	the	exponent	bits	as	we	1ind	them,	we	get	the	wrong	result.	
In	fact,	the	value	over1lows	our	8	bit	limit:	

	 1000,0010		+		1000,0011	=	1,0000,0101	(=	261)	
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Notice	that	by	subtracting	the	bias	(and	using	enough	bits	to	avoid	over1low	issues),	
we	get	the	correct	result:	

	 261	-	127	=	134	
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Representation	in	64	Bits	

Double	precision	1loating	point	numbers	are	represented	using	an	analogous	
scheme	to	single	precision.	The	only	difference	is	the	number	of	bits	in	the	
“exponent”	and	“fraction”	1ields.	

Here	is	the	representation	of	a	64-bit	double	precision	1loating	point	value:	

	

There	are	11	bits	in	the	exponent	1ield,	instead	of	8	as	in	single	precision.	The	
interpretation	of	the	“exponent”	bit	patterns	is:	

	 Bit	Pattern	 Meaning	of	Exponent	Field	
	 000 0000 0000	 -1022	—	Denormalized	Numbers,	including	zero		
	 000 0000 0001	 -1022	
	   ...	 ...	
	 011 1111 1110	 -1		
	 011 1111 1111	 0		
	 100 0000 0000	 +1		
	   ...	 ...	
	 111 1111 1110	 +1023		
	 111 1111 1111	 InIinity,	Not-a-Number	
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If	the	exponent	is	all	ones	(i.e.,	11111111111),	then	the	value	of	the	fraction	matters.	
If	the	fraction	is	all	zeros,	then	the	value	is	+∞	or	–∞	depending	on	the	sign	bit.	

	 +∞:	
0x7FF0000000000000 =

  0 11111111111 0000000000000000000000000000000000000000000000000000

	 -∞:	
0xFFF0000000000000 =

  1 11111111111 0000000000000000000000000000000000000000000000000000

If	the	exponent	is	all	ones	(i.e.,	111_1111_1111)	and	the	value	of	the	fraction	is	not	
all	zeros,	then	NaN	is	represented.	There	are	multiple	representations	that	are	to	be	
interpreted	as	NaN	values.	Here	are	two	common	representations	for	NaN:	

	 NaN:	
0xFFFFFFFFFFFFFFFF =

  1 11111111111 1111111111111111111111111111111111111111111111111111

0x7FF8000000000000 =
  0 11111111111 1000000000000000000000000000000000000000000000000000

If	the	exponent	1ield	is	all	zeros	(i.e.,	00000000000),	then	the	value	is	a	
denormalized	number.	The	value	of	the	number	is:	

	 N		=		(-1)sign		×		0.fraction		×		2-1022	

Notice	that	the	leading	implicit	“1”	bit	is	no	longer	assumed;	it	is	now	“0”.	Also	the	
exponent	is	always	-1022,	which	happens	to	be	the	smallest	exponent	for	
normalized	numbers.	

For	normalized	numbers,	the	exponent	has	an	effective	range	of	-1022	…	+1023. 	4

The	“bias”	is	+1023.	

The	largest	normalized	number	is:	

In	binary:	
	 	 1.111111111...11111111111	×	2+1023	 (There	are	1+52	ones)	

Representation:	

	The	following	names	are	used:	emin	=-1022,	emax	=	+10234
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	 	 0x7FEF FFFF FFFF FFFF	
Decimal	approximation:	

	 	 1.7976931348623157	×	10+308	

The	smallest	positive	normalized	number	is:	

In	binary:	
	 	 1.000000000...00000000000	×	2-1022	 (There	are	52	zeros)	

Representation:	
	 	 0x0010 0000 0000 0000	

Decimal	approximation:	
	 	 2.2250738585072014	×	10-308	

The	largest	denormalized	number	is:	

In	binary:	
	 	 0.111111111...11111111111	×	2-1022	

Representation:	
	 	 0x000F FFFF FFFF FFFF	

Decimal	approximation:	
	 	 2.2250738585072009	×	10-308	

The	smallest	positive	denormalized	number	is:	

In	binary:	
	 	 0.000000000...00000000001	×	2-1022	

Representation:	
	 	 0x0000 0000 0000 0001	

Decimal	approximation:	
	 	 4.9406564584124654	×	10-324	

Other	Sizes	Beyond	Single	and	Double		

In	addition	to	the	well	known	single	precision	(32-bit)	and	double	precision	(64-bit)	
sizes,	the	IEEE	754-2008	standard	also	describes	these	1loating	point	sizes.	They	are	
much	less	common.	
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	 16	bits	(half	precision)	
	 128	bits	(quadruple	precision)	
	 256	bits	(octuple	precision)	

There	is	also	mention	of	decimal-based	representations.	
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Introduction		

Rounding	is	necessary	when	an	exact	value	requires	too	many	bits	and	we	need	to	
alter	the	representation	(and	value)	of	the	number	to	1it	into	some	desired	format	
with	fewer	bits.	

Rounding	is	necessary	after	1loating	point	operations	such	as	addition	and	
multiplication.	The	exact	answer	almost	always	requires	more	bits	than	the	
operands	required.	The	result	of	a	computation	will	almost	always	be	a	number	that	
is	not	precisely	representable.	

For	example,	the	addition	of	two	double	numbers	may	not	be	exactly	representable	
as	a	double.	

To	see	why	this	can	happen,	look	at	the	following	simple	addition.	We’ll	use	decimal	
numbers,	but	the	same	effect	happens	with	binary	numbers.	

Here	are	two	numbers	with	5	digits	of	precision.	Their	sum	requires	8	digits	to	
represent.	

	   12.345	 =	1.2345	×	101	
	 +   .067891	 =	6.7891	×	10-2	
	   12.412891	 =	1.2412891	×	101	

The	IEEE	spec	says	that	the	exact	result	should	be	“rounded”	to	a	number	that	can	
be	represented.	For	example,	when	two	doubles	are	added,	their	result	will	be	some	
double	value.	
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In	the	above	example,	to	bring	the	result	back	down	to	5	digits	of	precision,	some	
accuracy	must	be	sacri1iced.	

Just	as	in	this	example,	when	1loating	point	operations	are	performed,	there	may	be	
a	loss	of	accuracy	as	a	result	of	rounding.	

The	IEEE	spec	lists	several	ways	that	a	value	can	be	rounded	to	something	that	can	
be	represented:	

	 •	Round	to	the	nearest	number	
	 	 (For	a	tie,	the	value	with	a	zero	in	the	least	signi1icant	bit	is	chosen.)	
	 •	Round	toward	zero	(i.e.,	truncate)	
	 •	Round	toward	positive	in1inity	(i.e.,	round	up)	
	 •	Round	toward	negative	in1inity	(i.e.,	round	down)	

In	order	to	perform	rounding	correctly,	a	computer	may	need	to	perform	
calculations	(e.g.,	multiplication)	with	greater	precision	to	1irst	compute	the	correct	
value.	Then,	as	the	1inal	step	in	the	calculation,	the	value	must	be	properly	rounded	
to	1it	into	the	available	1loating	point	bits.	

Here	is	another	example,	showing	that	the	entire	effect	of	an	operation	can	be	lost	as	
the	result	of	rounding.	
		
	   12.345	 =	1.2345	×	101	
	 +   .00000067891	 =	6.7891	×	10-7	
	   12.34500067891	 =	1.234500067891	×	101	

Rounding	to	a	value	with	the	same	precision	(either	rounding	down,	rounding	
toward	zero,	or	rounding	to	the	nearest)	gives	the	initial	operand,	unchanged.	Here	
is	the	rounded	result:	

	   12.345	 =	1.2345	×	101	

Rounding	up	or	rounding	away	from	zero	would	give	a	different	result:	

	   12.346	
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By	the	way,	in	common	speaking,	the	term	“rounding”	usually	means	“round-to-the-
nearest”.	In	the	1loating	point	world,	“rounding”	is	a	more	general	term	that	also	
includes	“round-toward-zero”,	“round-up”,	and	“round-down”.	

Rounding	Toward	Zero	(Truncation)	

With	signed	integers	(that	is,	“two’s	complement”	representation),	truncation	will	
round	the	value	down,	toward	-in1inity.	In	this	example,	we’ll	round	down	the	last	3	
bits,	effectively	going	to	the	nearest	multiple	of	23	=	8.	The	bits	being	eliminated	are	
underlined:	

	 Binary	 Decimal	 	 Rounded	 Decimal	
	 00001001 +9 → 00001000 +8	
	 11101001 -23 → 11101000 -24	

The	implementation	is	simple:	we	just	clear	the	underlined	bits.	

With	regards	to	sign,	truncation	works	differently	with	1loating	point	numbers.	
Floats	are	represented	as	a	magnitude	and	a	sign	bit.	Truncation	affects	the	
magnitude	only.	For	example	+7.125	and	-7.125		have	the	same	magnitude.	
Truncation	works	only	on	the	magnitude.	So	truncation	takes	the	magnitude	from	
7.125	to	7.000,	regardless	of	sign.	

So	for	1loating	point,	“truncation"	and	“rounding	toward	zero”	mean	the	same	
thing.	

This	form	of	rounding	is	the	easiest	to	implement,	since	all	we	do	is	change	the	
unwanted	bits	to	zero.	

Truncation	can	never	result	in	over1low.	

Rounding	Away	from	Zero	

Rounding	away	from	zero	is	more	complicated	to	implement.	
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As	an	example,	imagine	that	we	want	to	round	off	the	last	3	bits,	that	is,	round	to	a	
multiple	of	8.	For	integers	that	are	already	a	multiple	of	8,	this	is	easy;	there	is	no	
change:	

	 Binary	 Decimal	 	 Rounded	 Decimal	
	 00001000 +8 → 00001000 +8	
	 00101000 +40 → 00101000 +40	

But	for	numbers	that	have	“1”s	in	the	underlined	area,	we	need	to	clear	the	last	three	
bits	and	then	add	“1000”:	

	 Binary	 Decimal	 	 Rounded	 Decimal	
	 00001001 +9 → 00010000 +16	
	 00101011 +43 → 00110000 +48	

Rounding	away	from	zero	can	result	in	over1low.	

For	example,	consider	rounding	the	following	value	to	5	bits	and	adjusting	the	
exponent	to	account	for	the	lost	bits.	

	 Binary	 Decimal	 	 Rounded	 Decimal	
	 11111001 +249 → 100000000 +256	

The	resulting	rounded	value	now	contains	6	bits,	which	will	now	be	larger	than	5	
bits.	To	get	the	value	to	1it	into	5	bits,	we	need	to	round	again	and	adjust	the	
exponent	by	1.	Fortunately,	the	bit	we	must	remove	(shown	in	red)	will	always	be	
zero.	

Thus,	whenever	we	have	an	over1low	like	this,	we	simply	the	rounded	value	right	by	
1	bit	and	adjust	the	exponent.	Of	course,	the	adjustment	to	the	exponent	can	also	
over1low,	in	which	case	we	have	an	over1low	situation.	

Rounding	Up	and	Rounding	Down	

By	“rounding	up”,	we	mean	rounding	numbers	in	the	direction	of	+in1inity.	By	
“rounding	down”,	we	mean	in	the	direction	of	-in1inity.	
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Assuming	we	can	round	a	number	towards	zero	or	away	from	zero,	we	can	
implement	“rounding	up”	and	“rounding	down”	simply.	But	we	have	to	look	at	the	
sign	to	know	what	to	do.	

We	implement	“rounding	up”	as	follows:	

	 If	the	number	is	>	0	
	 	 Round		the	number	away	from	zero	
	 If	the	number	is	<	0	
	 	 Round		the	number	toward	zero	

We	implement	“rounding	down”	as	follows:	

	 If	the	number	is	>	0	
	 	 Round		the	number	toward	zero	
	 If	the	number	is	<	0	
	 	 Round		the	number	away	from	zero	

Round-to-Nearest	

Next,	look	at	how	we	round	a	number	“to	the	nearest”.	With	decimal,	there	are	three	
cases:	

If	the	dropped	digit	is	<	5	
	 83.2	→	83.	 Drop	the	digit	

If	the	dropped	digit	is	=	5	
	 83.5	→	83.	/	84.	 Exactly	in	the	middle;	could	go	either	way.	

If	the	dropped	digit	is	>	5	
	 83.9	→	84.	 Drop	the	digit	and	add	1	in	the	next	place	

Let’s	ignore	the	location	of	the	decimal	point	and	just	talk	about	rounding	to	a	given	
place.	We	show	the	digits	we	want	to	eliminate	with	underlining,	as	in:	

	 83284	→	83	
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In	the	case	of	“5”,	we	need	to	look	at	the	digits	to	the	right	of	the	“5”.	

Here	are	the	cases:		

If	the	1irst	dropped	digit	is	<	5	
	 Drop	the	digits	
	 	 83284	→	83
Otherwise,	if	the	dropped	digits	are	“500000…”	

	 Exactly	in	the	middle;	could	go	either	way.	
	 	 83500	→	83	/	84
Otherwise	

	 Drop	the	digits	and	add	1	
	 	 83501	→	84
	 	 83989	→	84

With	binary,	we	only	have	two	bits,	“0”	and	“1”.	The	“1”	bit	functions	like	decimal	“5”.	
Note	that:	

110.0 = 6.0
110.1 = 6.5

Each	successive	bit	divides	by	1/2:	

110.00 = 6.00
110.01 = 6.25

110.000 = 6.000
110.001 = 6.125

110.0000 = 6.0000
110.0001 = 6.0625

So	if	the	number	ends	with	“1”	it	is	exactly	halfway	between	the	next	shorter	
numbers:	

110.00 = 110.000 = 6.0
         110.001 = 6.125	 ←	Halfway	between	6.0	and	6.25
110.01 = 110.010 = 6.25
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Here	are	the	cases	for	binary:		

If	the	1irst	dropped	bit	is	=	0	
	 Drop	the	bits	
	 	 1100110101	→	110	
Otherwise,	if	the	dropped	bits	are	“100000…”	

	 Exactly	in	the	middle;	it	could	go	either	way.	
	 	 1101000000	→	110/111	
Otherwise	

	 Drop	the	bits	and	add	1	
	 	 1101000010	→	111

Example		Let’s	look	at	this	number	and	round	it	to	6	bits.	The	1irst	dropped	bit	is	
shown	in	red.	

1.000110011

Since	it	is	zero	in	this	example,	we	round	down.	We	drop	bits,	giving:	

1.00011

Example		Here	the	key	bit	is	“1”	and	there	are	other	dropped	bits	that	are	“1”.	

1.000111011

In	this	case,	we	must	round	up.	This	means	we	add	1	to	the	least	signi1icant	position:	

  1.00011
+       1
  1.00100

Example		Here	the	key	bit	is	“1”	but	all	the	other	dropped	bits	are	“0”.	

1.000111000

We	could	either	round	up	or	truncate	the	bits.	

Rounding	Ties	
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In	the	case	where	we	are	right	in	the	middle,	which	way	do	we	go?	We	can	refer	to	
this	as	“the	problem	of	rounding	.5”	or	“rounding	ties”:	

Decimal:	
	 83.50000	→	83	or	84?	
Binary:	
	 11010000	→	110	or	111?	

Here	are	the	choices:	

	 •	Always	round	up.	
	 •	Always	round	down.	
	 •	Sometimes	up,	sometimes	down.	

“Rounding	ties	up”	is	the	easiest.	We	always	add	1	in	the	next	place.	

	 83.50000	→	84.	

Note	that	this	option	allows	us	to	avoid	looking	at	all	other	digits.	We	simply	look	at	
the	key	digit	and	ignore	everything	to	the	right	of	it.	

	 83.50000	→	84.	
	 83.50073	→	84.	

Here	it	is	in	binary.	We	can	ignore	all	bits	to	the	right	of	the	key	bit.	

	 11010000	→	111	
	 11010001	→	111	

“Rounding	ties	down”	is	next	the	easiest.	We	still	need	to	examine	all	bits	to	right	of	
the	key	bit	to	determine	whether	we	round	down	or	up.	

	 11010000	→	110 If	all	zeros,	round	down	
	 11010001	→	111	 Otherwise,	round	up	

Rounding	Ties	to	Even	(or	Odd)	

The	1inal	implementation	is	to	determine	whether	to	round	up	or	down	based	on	the	
previous	digit	position.	
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Decimal	digits	are	either	odd	or	even.	Likewise,	bits	are	either	odd	or	even.	By	
looking	at	the	next	digit	or	bit,	we	are	essentially	doing	a	“coin	toss”	and	using	that	
digit/bit	to	determine	which	way	to	round.	Assuming	that	digits/bits	are	randomly	
distributed,	we’ll	round	ties	up	half	the	time	and	down	the	other	half	of	the	time.	

Let’s	look	at	“round	to	even”	with	decimal.	Here,	we’ll	look	at	the	digit	in	blue	to	
decide	the	tie.	If	odd,	we	round	up.	If	even,	we	round	down.	This	results	in	the	blue	
digit	always	becoming	even.	

	 83.5000	→	84.	 Odd	→	round	up	
	 86.5000	→	86.	 Even	→	round	down	

With	binary,	“round	to	even”	always	results	in	a	value	where	the	last	bit	is	zero.	
Whenever	there	is	a	tie,	we	get	a	number	with	a	“0”	in	the	least	signi1icant	bit.	

	 10000.1000	→	10000.	 Even	→	round	down	
	 10001.1000	→	10010.	 Odd	→	round	up	
	 10010.1000	→	10010.	 Even	→	round	down	
	 10011.1000	→	10100.	 Odd	→	round	up	
	 10100.1000	→	10100.	 Even	→	round	down	
	 10101.1000	→	10110.	 Odd	→	round	up	

With	binary,	there	is	also	a	“round	to	odd”,	which	is	similar.	Whenever	there	is	a	tie,	
we	get	a	number	with	a	“1”	in	the	least	signi1icant	bit.	

	 10000.1000	→	10001.	 Even	→	round	up	
	 10001.1000	→	10001.	 Odd	→	round	down	
	 10010.1000	→	10011.	 Even	→	round	up	
	 10011.1000	→	10011.	 Odd	→	round	down	
	 10100.1000	→	10101.	 Even	→	round	up	
	 10101.1000	→	10101.	 Odd	→	round	down	
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Not-A-Number	

If	there	is	a	problem	with	some	1loating	point	operation,	the	result	will	be	not-a-
number	(NaN).	

There	are	three	general	reasons	for	such	an	error:	

•	One	of	the	operands	was	non-a-number	to	start	with.	
•	The	result	is	mathematically	unde1ined.	For	example,	0/0.	
•	The	result	is	a	complex	number.	For	example,	“square	root	of	a	negative”.	

Whenever	a	NaN	is	is	1irst	encountered	—	that	is,	when	a	result	is	NaN	although	the	
arguments	were	themselves	okay	—	the	IEEE	spec	requires	that	the	“invalid	
operation”	1lag	be	set.	

However,	when	one	argument	is	already	NaN,	we	need	to	determine	whether	the	
NaN	is	a	“signaling	NaN”	or	“quiet	NaN”.	If	signaling,	then	the	“invalid	operation”	
1lag	will	be	set.	If	quiet,	then	the	“invalid	operation”	1lag	will	not	be	set.	

	Much	of	the	information	in	this	document	comes	from	Wikipedia.5
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When	the	Result	is	UndeUined	

The	following	operations	will	result	in	NaN	and	the	“invalid	operation”	1lag	will	be	
set.	

•	 +∞		+		−∞	
•	 −∞		+		+∞	
•	 +∞		−		+∞	
•	 −∞		−		−∞	
•	 ±0		×		±∞	
•	 ±∞		×		±0	
•	 ±0		/		±0	
•	 ±∞		/		±∞	
•	 ±∞		%		y	(remainder	function)	
•	 x		%		±0	
•	 The	standard	has	alternative	requirements	for	the	“power”	function:	

•	The	standard	pow	function	and	the	integer	exponent	pown	function	de1ine	
00,		1∞,		and		∞0		as	1.	

•	The	powr	function	de1ines		00,		1∞,		and		∞0		as	NaN.	

When	the	Result	is	a	Complex	Number	

Here	are	some	operations	that	result	in	a	complex	number.	The	IEEE	spec	says	that	
these	operations	will	raise	an	error.	That	is,	the	result	will	be	NaN	and	the	“invalid	
operation”	1lag	will	be	set.	

•	The	square	root	of	a	negative	number	
•	The	logarithm	of	a	negative	number	
•	The	inverse	sine	or	cosine	of	a	number	that	is	less	than	−1	or	greater	than	1	

Some	hardware	ISAs	may	implement	SQUARE	ROOT	in	hardware,	but	it	is	probable	
that	some	or	all	of	these	operations	will	be	implemented	in	software,	not	hardware.	
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Conversion	Between	Integers	and	Floating	Point	

Floating	Point	→	Integer	

Any	computer	architecture	that	supports	1loating	point	generally	includes	an	
instruction	to	convert	from	1loating	point	to	integer.	For	example,	the	Blitz-64	
machine	instruction	converts	from	double	precision	to	a	64-bit	integer:	

fcvtif   r4,r5     # Floating ConVerT to Integer from Floating

What	if	the	argument	is	NaN?	The	general	rule	that	“NaNs	are	always	propagated”	
cannot	be	followed	since	the	result	—	a	64-bit	signed,	twos	complement	integer	—	
cannot	represent	a	NaN	value.	

Typically,	the	machine	architecture	will	set	the	“invalid	operation”	1lag.	The	integer	
result	might	be	speci1ied	as	“0”	or	left	“unde1ined”.	

There	is	also	the	question	of	what	happens	when	the	1loating	point	number	exceeds	
the	range	of	the	integers:	Is	this	an	error,	or	over1low,	or	treated	by	just	setting	the	
result	integer	to	the	maximal	value.	

Note	that	the	integer	9,223,372,036,854,775,808	is	representable	exactly	as	a	
double	precision	1loat	since	it	is	1.0	×		263.	This	integer	can	be	expressed	as	the	
unsigned	number	0x8000,0000,0000,0000,	which	is	one	greater	than	we	can	
represent	as	a	signed	64	bit	integer.	(Of	course,	we	can	represented	its	negation	
-9,223,372,036,854,775,808	exactly	as	a	signed	integer	as	0x8000,0000,0000,0000.)	

Using	double	precision	1loats,	the	adjacent	values	to	this	large	number	differ	by	a	
substantial	amount,	due	to	the	loss	of	precision	at	this	magnitude.	The	integer	
representation	has	63	zero	bits	while	the	double	precision	representation	has	only	
52	zero	bits.	We	lost	11	bits.	Note	that	211	=	2,048	and	binary	1000_0000_0000	is	
decimal	2,048.	Thus,	going	to	the	next	greatest	number,	will	add	2,048	to	the	value.	
Going	down	instead,	we	must	decrement	the	exponent	and	go	to:	

	 1.1111111111111111111111111111111111111111111111111111	×	262	

which	is	1,024	less.	
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Here	are	the	values	around	the	largest	signed	integer	(	0x7FFF,FFFF,FFFF,FFFF	=	
9,223,372,036,854,775,807)	that	we	can	represent	exactly	with	double	precision	
1loats:	

	 +9,223,372,036,854,774,784.0	
	 +9,223,372,036,854,775,808.0	
	 +9,223,372,036,854,777,856.0	

For	Blitz-64,	the	exact	test	for	over1low	for	FCVTIF	is	this:		

If	the	1loating	value	is	greater	than	+9,223,372,036,854,775,808.0	then	the	
“overUlow	Ulag”	(OV)	will	be	set	and	+9,223,372,036,854,775,807	(i.e.,	
0x7FFF,FFFF,FFFF,FFFF)	will	be	placed	in	RegD.	We	intentionally	use	>	and	not	≥	
because	it	is	reasonable	to	round	+9,223,372,036,854,775,808.0	to	
+9,223,372,036,854,775,807	(i.e.,	to	0x7FFF,FFFF,FFFF,FFFF).	

Integer	→	Floating	Point	

The	computer	will	also	have	an	instruction	for	converting	in	the	other	direction,	i.e.,	
from	integer	to	1loating	point.	

For	example,	the	following	Blitz-64	machine	instruction	converts	from	64-bit	signed	
integer	to	double	precision	1loating	point:	

fcvtfi   r4,r5     # Floating ConVerT to Floating from Integer

With	this	conversion,	the	range	of	1loating	point	numbers	is	much	greater	than	
integers,	so	there	is	no	possibility	of	over1low.	However,	not	all	integers	can	be	
represented	exactly.	In	some	cases,	the	value	must	be	rounded	to	the	nearest	1loating	
point	value.	

All	integers	in	this	range	can	be	represented	exactly	as	1loating	point	numbers:	

Decimal																																			 64-bit	Integer													 Double	Precision						
-253	 -9,007,199,254,740,992	 0xFFE0,0000,0000,0000	 0xC340,0000,0000,0000	
	 												…	
+253	 +9,007,199,254,740,992	 0x0020,0000,0000,0000	 0x4340,0000,0000,0000	

Most	integers	outside	this	range	must	be	rounded,	and	the	rounding	rules	will	be	
used.	
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(	Note	that	253	is	represented	as	a	binary	integer	as	a	“1”	followed	by	53	“0”s.	In	
other	words,	it	requires	54	bits	to	represent.	Recall	that	double	precision	1loating	
point	accommodates	only	52	bits	after	the	leading	“1”;	how	can	we	accommodate	54	
bit	numbers?	But	notice	This:	253	can	be	represented	exactly,	since	it	is	an	even	
power	of	2.	Although	we	can	represent	this	number	exactly,	we	cannot	represent	all	
54	bit	numbers	exactly.	And	all	numbers	smaller	than	253	can	be	represented	with	
only	53	bits.	In	a	double	precision	number	,	the	leading	“1”	bit	is	implicit	and	there	is	
enough	room	for	up	to	52	additional	bits.	)	

For	other	conversions,	we	have:	

	 From	 To	
	 32	bit	integer	 Single	Precision	 May	round	
	 32	bit	integer	 Double	Precision	 Always	exact	
	 64	bit	integer	 Single	Precision	 May	round	
	 64	bit	integer	 Double	Precision	 May	round	

When	converting	from	a	32	bit	integer	to	a	double	precision	1loating	point,	there	will	
never	be	any	rounding.	The	52	bits	of	mantissa	are	more	than	enough	to	represent	
all	possible	32	bit	integers	with	perfect	accuracy.	

Relational	Operations	with	NaN	

There	are	some	strange	and	unexpected	behaviors	when	one	of	the	operands	to	a	
relational	comparison	is	NaN.	

Normally,	an	operation	in	which	one	operand	is	NaN	is	required	to	yield	NaN	as	a	
result.	For	relational	operations,	the	result	is	normally	a	“boolean”	or	a	branch,	so	it	
is	not	possible	to	yield	a	NaN.	

So	what	happens?	Here	is	the	rule:	

Every	NaN	shall	compare	unordered	with	everything,	including	itself.	
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In	particular,	we	have:	

	 			Operation					 			Result						 		Invalid	Operation	
	 NaN	 <	 x	 false	 yes	
	 NaN	 <=		 x	 false		 yes	
	 NaN	 >	 x	 false		 yes	
	 NaN	 >=	 x	 false		 yes	
	 NaN	 ==	 x	 false		 no	
	 NaN	 !=	 x	 true		 no	

Note	that	this	implies	the	following	very	unexpected	results:	

	 			Operation					 			Result						 		Invalid	Operation	
	 NaN	 ==	 NaN	 false		 no	
	 NaN	 !=	 NaN	 true		 no	

Normally,	we	accept	these	equivalences:	

	 This:		 is	the	same	as:	
	 x	<	y	 NOT	(x	>=	y)	
	 x	<=	y	 NOT	(x	>	y)	
	 x	>	y	 NOT	(x	<=	y)	
	 x	>=	y	 NOT	(x	<	y)	

However,	these	are	not	true	when	one	of	the	operands	is	NaN!	
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How	to	Add	Floating	Point	Numbers	

Let’s	make	the	assumption	that	the	two	numbers	we	want	to	add	are	positive.	If	we	
have	two	numbers	of	different	signs,	we	will	actually	use	a	subtraction	algorithm.	If	
we	have	two	numbers	that	are	negative,	then	we’ll	add	and	then	mark	the	result	
negative.	

It	may	be	that	one	of	the	numbers	we	are	adding	is	one	of	the	following	values.	We	
will	assume	these	special	cases	are	dealt	with	separately.	

	 +0.0	
	 -0.0	
	 NaN	
	 +in1inity	
	 -in1inity	

In	particular,	we	assume	that	neither	“x”	nor	“y”	is	zero,	which	means	that	they	will	
have	at	least	one	“1”	bit.	

The	answer	will	need	to	be	rounded	and	we	have	these	possible	ways	to	round:	

	 round-down	
	 round-up	
	 rounding-towards-nearest	

If	we	require	“round	toward	+in1inity”	or	“round	toward	-in1inity”,	we’ll	have	to	look	
at	the	signs	of	the	numbers	we	are	adding:	
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	 round	toward	+inUinity	 round	toward	-inUinity	
x,	y	are	positive	 use	“round-up”	 use	“round-down”	
x,	y	are	negative	 use	“round-down”	 use	“round-up”	

Let’s	assume	we	are	implementing	single	precision	and	are	given	two	non-zero	
numbers	“x”	and	“y”.	Singe	precision	has	1	implicit	bit	and	23	bits	of	fractional	
mantissa.	

To	shorten	our	examples,	we’ll	use	1	implicit	bit	and	23	bits	of	fractional	mantissa.	

Here	is	an	example.	We	make	the	implicit	1	bit	explicit:	

	 x:	  1.10110		×	217	
	 y:	  1.00111		×	214	

If	we	happen	to	have	a	denormalized	number,	we’ll	make	the	implicit	0	bit	explicit:	

	 denorm	example:	  0.00010		×	2-126	

First,	we	can	shift	the	second	number	left	or	right	to	make	the	exponents	equal:	

	 y:	  1.00111		×	214	
	 y	(shifted):	  0.00100111		×	217	

Now	we	can	add	them:	

	 x:	  1.10110		×	217	
	 y	(shifted):	  0.00100111		×	217	
	 sum:	 01.11010111		×	217	

Whenever	we	add	two	binary	numbers,	the	result	may	require	a	single	additional	bit	
for	a	carry.	

In	this	example,	there	was	no	carry.	If	we	are	truncating	(rounding	positives	toward	
zero),	then	there	is	nothing	more	to	do.	We	just	grab	the	bits	relevant	bits:	

	 sum:	 01.11010111		×	217	
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If	there	had	been	a	carry,	then	we	just	shift	the	bits	right	one	bit	and	increase	the	
exponent.	For	example:	

	 x:	  1.10001		×	217	
	 y:	  1.01011		×	217	
	 sum:	 10.11100		×	217	
	 sum	(shifted):	  1.011100		×	218	

If	the	exponent	was	+127	and	is	incremented	to	+128,	then	we	have	to	signal	
over1low.	

In	previous	examples,	the	numbers	had	similar	exponents,	but	consider	this	
example:	

	 x:	   1.10110		×	217	
	 y:	   1.00111		×	26	

Shifting	“y”,	we	get:	

	 x:	   1.10110		×	217	
	 y(	shifted):	   0.0000000000100111		×	217	
	 sum:	  01.1011000000100111		×	217	
	 sum	(rounded):	  01.10110		×	217	

After	rounding	(either	down	or	to	nearest),	we	see	that	the	sum	is	just	“x”	itself.	In	
other	words,	when	the	exponents	are	very	different,	the	answer	is	simply	the	largest	
of	the	two	values.	

How	different	must	the	exponents	be	for	us	to	ignore	the	smaller	number?	It	
depends	on	how	we	will	be	rounding.	
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Here	is	the	limiting	case	for	rounding	down.	

	 x:	  1.10110		×	217	
	 y:	  1.00111		×	211	
	 y(	shifted):	  0.00000100111		×	217	
	 sum:	  1.10110100111		×	217	
	 sum	(rounded):	  1.10110		×	217	

The	difference	in	exponents	is	just	6	bits,	i.e.,	5+1.	With	single	precision,	the	required	
difference	is	1+23	=	24.	If	the	difference	in	exponents	is	equal	or	greater	than	this,	
the	answer	is	just	the	largest	number.	

If	the	difference	in	exponents	is	less	than	this,	then	the	numbers	will	overlap.	

In	this	next	example,	the	bits	will	overlap.	We	will	shift	the	smaller	number	to	the	
right	until	the	exponents	are	the	same.	

If	we	are	rounding	down	toward	zero,	we	do	not	need	to	keep	the	bits	we	are	
shifting	out.	

	 x:	  1.10110		×	217	
	 y:	  1.00111		×	214	
	 	  0.100111		×	215	
	 	  0.0100111		×	216	
	 	  0.00100111		×	217	

	 x:	  1.10110		×	217	
	 y:	  0.00100		×	217	
	 sum:	  1.11010		×	217	

If	we	are	rounding	up,	the	case	is	similar.	If	the	exponents	differ	by	24	(for	single	
precision),	then	the	answer	is	just	the	largest,	EXCEPT…	We	must	add	1	in	the	least	
signi1icant	place	to	the	larger	number.	Since	we	have	assumed	that	both	numbers	
are	non-zero,	we	must	round	the	result	up.	

This	rounding	up	may	cause	a	bit	of	a	problem,	and	may	result	in	a	carry.	So,	perhaps	
it	is	simplest	if	—	when	rounding	up	—	we	substitute	a	1ixed	value	for	the	smaller	
number.	So	we	replace	the	smaller	number	“y”	by	“0.00001”:	
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	 y:	  1.00111		×	211	
	 y	(shifted):	  0.00000100111		×	217	
	 substituted	incr:	  0.00001

	 x:	  1.10110		×	217	
	 substituted	incr:	  0.00001
	 sum:	  1.10111		×	217	
	 sum	(rounded):	  1.10111		×	217	

Another	way	we	can	think	of	this	is	that	we	are	shifting	“y”	to	the	right,	but	we	
summarize	all	the	bits	shifted	to	the	right.	We	show	in	red	the	bits	shifted	out.	We	
can	lose	them	altogether;	the	summary	bit	is	all	we	will	need.	The	summary	bit	is	a	
sticky	bit,	initialized	to	the	rightmost	bit	of	“y”.	

	 y:	  1.00100		×	211	
	 	  0.100100		×	212	
	 	  0.0100100		×	213	
	 	  0.00101100		×	214	
	 	  0.000110100		×	215	
	 	  0.0000100100	×	216	
	 	  0.00001100100		×	217	

Here	is	an	example	in	which	the	exponent	is	not	so	extreme.	We	will	just	shift	until	
the	exponents	are	equal.	In	this	example,	we	only	lose	part	of	the	number:	

	 y:	  1.00100		×	214	
	 	  0.100100		×	215	
	 	  0.0100100		×	216	
	 	  0.00101100		×	217	

With	“round-to-nearest”,	things	are	trickier.	We	need	to	remember	whether	any	of	
the	bits	shifted	out	to	the	right	were	non-zero.	
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Addition,	Subtraction,	and	Signs	

Addition	and	subtraction	are	closely	related	when	the	values	can	be	either	positive	
or	negative.	For	example,	we	can	use	addition	when	we	are	subtracting	a	negative	
number.	Likewise,	the	operation	of	subtraction	can	be	used	when	we	are	adding	a	
positive	number	to	a	negative	number.	

	 x			-			-y			=			x			+			y	
	 x			+			-y			=			x			-			y	

Here	are	the	cases.	(In	this	table,	“+x”	and	“-x”	represent	positive	and	negative	
numbers,	respectively.)	

	 					Input								 Sign	of	Result	 Operation	to	Perform	
	 +x	 +	 +y	 +	 addition	
	 +x	 +	 -y	 +	or	-	 subtraction	
	 -x	 +	 +y	 +	or	-	 subtraction	
	 -x	 +	 -y	 -	 addition	

	 +x	 -	 +y	 +	or	-	 subtraction	
	 +x	 -	 -y	 +	 addition	
	 -x	 -	 +y	 -	 addition	
	 -x	 -	 -y	 +	or	-	 subtraction	

The	1irst	step	is	obviously	to	sort	out	which	case	we	have	and	determine	whether	we	
will	use	the	addition	or	subtraction	operation 	6

	In	hardware,	to	speed	things	up,	we	might	perform	both	the	addition	and	subtraction	operations	6

in	parallel.	While	these	operations	are	being	performed,	other	circuitry	can	determine	which	of	
these	cases	applies	and	then	select	which	answer	to	return.
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With	subtraction,	we	must	look	at	the	magnitudes	of	“x”	and	“y”	to	determine	the	
sign	of	the	result.	

With	signed	integers	represented	in	two’s	complement,	the	subtraction	operation	is	
simple	and	the	sign	of	the	result	does	not	require	special-casing.	With	1loating	point	
representation,	we	must	evaluate	the	magnitude	to	determine	which	way	to	
subtract.		

In	other	words,	the	subtraction	operation	must	compute	the	difference.	With	the	
mantissas,	we	are	not	working	with	two’s	complement	representations.	This	means	
we	must	determine	which	number	is	larger	and	either	compute	“x-y”	or	“y-x”.	

	 					Input								 Sign	of	Result	 Order	of	Subtraction	
	 5	 -	 2	 +	 x			-			y	
	 2	 -	 5	 -	 y			-			x	

Our	approach	will	be	to	determine	which	value	is	larger.	First,	we	compare	the	
exponents.	If	one	exponent	is	larger	than	the	other,	then	that	1loating	point	value	is	
larger.	But	if	the	exponents	happen	to	be	equal,	we	must	look	at	the	mantissas.	

To	compare	two	integers	“a”	and	“b",	we	can	compute	“a-b”	and	use	the	sign	of	the	
result	to	tell	us	which	was	larger.	If	we	want	the	difference	between	two	numbers	
without	knowing	which	is	larger,	then	we	can	compute	both	“a-b”	and	“b-a”	in	
parallel,	and	then	use	the	sign	bit	to	select	which	result	to	deliver.	

Other	than	the	above	comments	above,	subtracting	1loating	point	numbers	is	similar	
to	adding	them.	The	binary	points	must	be	shifted,	the	exponents	must	be	adjusted,	
and	the	result	must	be	rounded.	

To	subtract	one	positive	binary	number	from	another,	addition	can	be	used.	To	
compute	

	 x	-	y	

we	negate	“y”	and	perform	addition.	To	negate	“y”,	we	1lip	the	bits	at	add	1.	We	can	
1lip	the	bits	of	a	binary	number	easily	and	quickly.	We	can	add	1	at	the	same	time	we	
perform	the	main	add	by	asserting	a	“carry-in”	to	the	least	signi1icant	bit.	
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Overview	

Multiplication	of	two	1loating	point	numbers	is	fairly	straightforward.	

First,	we	can	deal	with	special	cases	separately.	These	include	all	cases	when	an	
argument	is:	

	 NaN	
	 ±	0.0	
	 ±	in1inity	

Next,	we	can	compute	the	sign	of	the	result:	

	 signOfResult			←			signOfX				XOR				signOfY	

We	will	also	consider	the	rounding	mode.	We	will	need	to	know	how	to	round	the	
result:	

	 round	to	nearest	
	 round	toward	negative	in1inity	
	 round	toward	positive	in1inity	
	 round	up	
	 round	down	

At	this	stage	we	can	choose	one	of	the	following	rounding	modes,	which	will	be	
applied	to	the	1inal	result.	

	 round	to	nearest	
	 round	up	
	 round	down	
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For	the	cases	of	rounding-toward-in1inity,	we	can	choose	either	round-up	or	round-
down	based	on	the	sign	of	the	result.	

Recall	that	when	you	multiply	two	N	bit	numbers,	the	result	will	have	at	most	2N	
bits:	

	 x:	        000011	
	 y:	 ×      000010	
	 product:	  000000000110	

	 x:	        111111	
	 y:	 ×      111111	
	 product:	  111110000001	

With	1loating	point,	we	have	the	exponents,	which	will	be	added.	

We	will	1irst	move	the	arguments	and	shift	them	so	that	all	have	the	binary	point	to	
the	right	of	the	1irst	“1”	bit.	

For	normalized	numbers,	there	will	be	no	change.	But	we	will	make	the	missing	“1”	
explicit.	In	our	examples,	we’ll	show	the	binary	point,	although	a	hardware	
implementation	would	obviously	not	represent	it.	

	 input:	    01011		×	257	
	 adjusted:	  1.01011		×	257	

For	denormalized	numbers,	we’ll	add	in	zeros	on	the	right.	As	we	shift	the	point,	
we’ll	increment	the	exponent,	causing	the	exponent	to	go	below	the	-126	limit.	

	 input:	  0.00001		×	2-126	 smallest	denormalized	
	 adjusted:	  1.00000		×	2-131	

	 input:	  0.00101		×	2-126	 typical	
	 adjusted:	  1.01000		×	2-129	

	 input:	  0.11111		×	2-126	 largest	denormalized	
	 adjusted:	  1.11110		×	2-127	
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Now	consider	we	can	perform	the	multiplication:	

	 x:	  1.00111		×	2-11	
	 y:	  1.01001		×	2+37	
	 product:	 01.1000111111		×	2+26	

After	computing	the	product,	we	need	to	possibly	shift	the	binary	point	(adjusting	
the	exponent),	round	the	value,	deal	with	denormalized	results,	and	detect	over1low	
and	under1low.	

Examples	

Let’s	look	at	some	different	examples.	We’ll	use	“round-down”.	

Case	1:	
	 x:	  1.00111      		×	2-11	
	 y:	  1.01001      		×	2+37	
	 product:	 01.1000111111 		×	2+26	
	 rounding:	  1.10001      		×	2+26	

Case	2:	
	 x:	  1.11111      		×	212	
	 y:	  1.11111      		×	234	
	 product:	 11.1110000001 		×	246	
	 shifting	right:	  1.11110000001		×	247	
	 rounding:	  1.11110      		×	247	

Case	3:	
	 x:	  1.11111      		×	2127	
	 y:	  1.11111      		×	2127	
	 product:	 11.1110000001 		×	2254	
	 shifting	right:	  1.11110000001		×	2255	
	 result:	 …over1low…	
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Case	4:	
	 x:	  0.00001      		×	2-126	 smallest	denormalized	
	 y:	  1.00000      		×	2-126	 smallest	normalized	
	 product:	 00.0000100000 		×	2-252	
	 shifting	left:	  1.00000000000		×	2-252	
	 result:	 	…under1low…	

Case	5:	
	 x:	  0.00001      		×	2-126	
	 y:	  0.00001      		×	2-126	
	 product:	 00.0000000001 		×	2-252	
	 shifting	left:	  1.00000000000		×	2-262	
	 result:	 …under1low…	

Case	6:	
	 x:	  1.11111      		×	2127	
	 y:	  0.00001      		×	2-126	
	 product:	 00.0000111111 		×	21	
	 shifting	left:	 01.1111100000 		×	2-4	
	 rounding:	  1.11111      		×	2-4	

Detecting	Denormalized	Results	

In	all	cases,	we	need	to	normalize	the	result,	which	means:	

•	Shift	the	binary	point	to	just	to	the	right	of	the	leftmost	1	bit,	adjusting	the	
exponent.	
•	Detect	over1low	/	under1low	

After	shifting	the	binary	point,	we	must	detect	when	the	result	must	be	turned	into	a	
denormalized	number.	We	can	do	this	by	looking	at	the	exponent.	If	it	is	less	than	
-126	(but	-131	or	more),	then	we	shift	right,	incrementing	the	exponent,	until	it	is	
-126.	

Floating	Point	Numbers	/	Porter	 	 Page	 	of	 	59 65



Chapter	8:	Implementing	Multiplication	

After	shifting	the	binary	point,	we	must	round	the	number	appropriately	as	required	
by	the	current	rounding	mode,	e.g.,	round-to-nearest,	round-up,	round-down,	to	
eliminate	the	bits	on	the	right	end.	

In	this	example,	the	result	is	the	largest	denormalized	number.	

	 x: x.xxxxx		×	2-xx	
	 y: y.yyyyy		×	2-yy	
	 product: 0.00011111zz		×	2-131	
	 shifting	left: 1.1111zz0000		×	2-127	 	
	 as	a	denormal: 0.11111zz0000		×	2-126	 	
	 after	rounding: 0.11111		×	2-126	

In	this	example,	the	result	is	the	smallest	denormalized	number.	

	 x: x.xxxxx		×	2-xx	
	 y: y.yyyyy		×	2-yy	
	 product: 0.100000zzzz		×	2-130	
	 shifting	left: 1.00000zzzz0		×	2-131	 	
	 as	a	denormal: 0.0000100000		×	2-126	 	
	 after	rounding: 0.00001		×	2-126	

In	the	last	case,	note	that	we	shifted	several	bits	out	during	the	denormalizing	
process.	These	bits	are	underlined	and	represented	as	zzzz.	If	the	rounding	mode	is	
round-to-nearest	or	round-up,	these	bits	can	affect	the	rounding	result,	so	they	must	
not	be	ignored.	
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Named	Values	

The	standard	speci1ies	several	prede1ined	names:	

The	“machine	epsilon”	(eps)	is	the	distance	from	1.0	to	the	next	larger	1loating	
point	number.	

The	smallest	positive	normalized	1loating	point	number	is	called	“realmin”.	

The	largest	1loating	point	number	is	called	“realmax”.		

For	double	precision:	

	 Name	 Value	 Approx	value					
	 eps	 2-52	 2.2204	×	10-16	
	 realmin	 2-1022	 2.2251	×	10-308	
	 realmax	 (2-eps)1023	 1.7977	×	10+308	
	 emin	 -1022	 	
	 emax	 1023	 	
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Exceptions	

The	1ive	possible	exceptions	are :	7

Invalid	operation	
The	result	is	mathematically	unde1ined,	e.g.,	the	square	root	of	a	negative	
number.	By	default,	returns	qNaN.	

Division	by	zero	
An	operation	on	1inite	operands	gives	an	exact	in1inite	result,	e.g.,	1/0	or	
log(0).	By	default,	returns	±in1inity.	

OverUlow	
A	result	is	too	large	to	be	represented	correctly	(i.e.,	its	exponent	with	an	
unbounded	exponent	range	would	be	larger	than	emax).	By	default,	returns	
±in1inity	for	the	round-to-nearest	mode	(and	follows	the	rounding	rules	for	
the	directed	rounding	modes).	

UnderUlow	
A	result	is	very	small	(outside	the	normal	range)	and	is	inexact.	By	default,	
returns	a	subnormal	or	zero	(following	the	rounding	rules).	

Inexact	
The	exact	(i.e.,	unrounded)	result	is	not	representable	exactly.	By	default,	
returns	the	correctly	rounded	result.	

Conversion	to	Decimal 	8

Conversions	to	and	from	a	decimal	character	format	are	required	for	all	formats.	

Conversion	to	an	external	character	sequence	must	be	such	that	conversion	back	
using	round	to	even	will	recover	the	original	number.	There	is	no	requirement	to	
preserve	the	payload	of	a	NaN	or	signaling	NaN,	and	conversion	from	the	external	
character	sequence	may	turn	a	signaling	NaN	into	a	quiet	NaN.	

	Source:	Wikipedia7

	Source:	Wikipedia8
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The	original	binary	value	will	be	preserved	by	converting	to	decimal	and	back	again	
using:	

5	decimal	digits	for	half	precision	(16	bits)	
9	decimal	digits	for	single	precision	
17	decimal	digits	for	double	precision	
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