
Blitz-64	

Instruction	Set	Architecture	
Reference	Manual	

	 	 	 	
ISA	Version:	2.0	

Harry	H.	Porter	III	
Portland	State	University	

HHPorter3@gmail.com	

23	April	2023	

This	document	describes	the	Instruction	Set	Architecture	(ISA)	for	the	Blitz-64	
processor	core.	It	documents	all	the	machine	instructions	as	well	as	the	assembly	
code	notation	for	these	instructions.	

	 Available	Online: Blitz64.org/Documentation/Blitz64-ISA.pdf

http://Blitz64.org/Documentation/Blitz64-ISA.pdf

Table	of	Contents	
List	of	Instructions	 	6

Chapter	1:	Introduction	 	11
Quick	Summary	 	11
Instruction	Set	Architectures	 	11
Goals	and	Principles:	Personal	Statements	 	12
Document	Revision	History	/	Permission	to	Copy	 	17
Relevant	Software	Tools	 	17

Chapter	2:	Terminology	and	Notation	 	19
Quick	Summary	 	19
Kilo	and	Mega	PreUixes	 	19
Bits	and	Bytes	 	20
Main	Memory	 	23
Big	Endian	 	23
Alignment	 	26
Signed	Numbers	 	27
Sign-Extension	 	30
Size	Reduction	 	31

Chapter	3:	Architectural	Summary	 	32
Quick	Summary	 	32
Memory,	Addresses,	and	Memory-Mapped	I/O	 	33
The	Processor	State	 	34
The	Registers	 	34
Control	and	Status	Registers	(CSRs)	 	38
Virtual	Memory	 	39

Chapter	4:	Instruction	Formats	 	41
Quick	Summary	 	41
Compressed	and	Full-Sized	Instructions	 	41
Opcode	Encoding	 	42
Instruction	Fields	 	43
Instruction	Formats	 	44
Operand	Syntax	 	46

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	2 344

Table	of	Contents	

Chapter	5:	Instructions	 	48
Machine	Instructions	versus	Synthetic	Instructions	 	48
All	Instructions	-	Summary	Listing	 	49
Machine	Instructions,	Grouped	By	Format	 	55
The	Instruction	Set	 	60
Instruction	Opcodes	 	138
Miscellaneous	Remarks	 	144

Chapter	6:	Privileged	Instructions	and	Kernel	Mode	 	146
Quick	Summary	 	146
Privileged	Instructions	 	146
Control	and	Status	Registers	 	147

Chapter	7:	Exceptions,	Interrupts,	and		Trap	Handling	 	159
Quick	Summary	 	159
Traps,	Exceptions,	and	Interrupts	 	159
Interrupt	Processing	 	164
Description	of	Exceptions	 	166
The	Singlestep	Exception	 	182
Value	of	Saved	PC	 	185
Traps	Related	to	Instruction	Fetching	 	186
Trap	Priority	and	Simultaneous	Exceptions	 	188
Pending	Interrupts	 	194
Delegation	to	User	Mode	Error	Handlers	 	196
Trap	Processing	and	Handler	Startup	 	197
Saving	State	During	Thread	Switching	 	199
Global	Trap	Handler	—	Dispatching	and	Return	 	201

Chapter	8:	Memory,	Address	Spaces,	and	Page	Tables	 	208
Quick	Summary	 	208
Memory	Organization	 	209
Tasks,	Address	Spaces,	and	the	User	Mode	Viewpoint	 	211
Page	Tables	 	214
Virtual	Addresses	 	224
Page	Table	Entries	 	225
MMU:	Basic	Operation	 	227

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	3 344

Table	of	Contents	

TLB:	Translation	Lookaside	Buffer	 	233
Comments	 	237
Shared	Core	Functions	 	241
Private	and	Shared	Memory	 	244
LOAD	/	STORE	Atomicity	 	245
A	Relaxed	Memory-Model	 	246
FENCE	and	Memory	Synchronization	 	248
Invalidating	Data	in	the	Pipeline	 	259
Out-of-Date	TLB	Registers	 	262

Chapter	9:	Power-On-Reset	and	the	Boot	Sequence	 	264
Quick	Summary	 	264
Power-On-Reset	 	264
The	BootLoader	Program	 	265
Security	Issues	Around	Booting	 	270
Simple	Systems	 	273
Multi-Stage	Boot	Processes	 	275
The	Secure	Storage	Area	 	277

Chapter	10:	Memory-Mapped	I/O	 	287
Quick	Summary	 	287
Overview	 	287
Boot	ROM	Area	 	288
Secure	Storage	Area	 	289
Simple	Serial	Communication	 	291
DMA	Controller	 	294
UART	Serial	Comm	 	305
Simple	Disk	 	306
Lock	Controller	 	307
Digital	I/O	Pins	and	LEDs	 	311
HDMI,	USB,	WiFi,	etc.	 	312
MicroSD	Card	Slot	 	312
Adjacent	Core	Links	 	313

Appendix	1:	Assembly	Language	 	316
Assembling	and	Linking	 	316
Assembler	Syntax	 	317

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	4 344

Table	of	Contents	

Pseudo-Ops	 	319
Symbols	 	322
Segments	and	Linking	 	324
The	Global	Pointer	Register,	gp	 	328

Appendix	2:	Implementation	Details	 	331
Example:	The	Emulator	 	332

Appendix	3:	Recent	Changes	 	336

Acronym	List	 	343

About	the	Author	 344

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	5 344

List	of	Instructions	

ADD	RegD,Reg1,Reg2	 	60
ADDI		RegD,Reg1,immed-16	 	60
SUB		RegD,Reg1,Reg2	 	60
*MUL		RegD,Reg1,Reg2	 	60
DIV		RegD,Reg1,Reg2	 	60
REM		RegD,Reg1,Reg2	 	60
AND		RegD,Reg1,Reg2	 	60
ANDI		RegD,Reg1,immed-16	 	60
OR		RegD,Reg1,Reg2	 	60
ORI		RegD,Reg1,immed-16	 	60
XOR		RegD,Reg1,Reg2	 	60
XORI		RegD,Reg1,immed-16	 	60
MULADD	RegD,Reg1,Reg2,Reg3		RegD	←	(Reg1	×	Reg2)	+	Reg3	 	61
MULADDU	RegD,Reg1,Reg2,Reg3		RegD	←	(Reg1	×	Reg2)	+	Reg3	(unsigned)	 	61
*NEG		RegD,Reg1	 	65
*BITNOT		RegD,Reg1	 	65
*NOP		<no	operands>	 	66
*ABS		RegD,Reg1	 	66
*MOV		RegD,Reg1	 	66
*MOVI		RegD,immediate	 	67
SLL		RegD,Reg1,Reg2	Shift	left	logical	 	68
SLLI		RegD,Reg1,immed-6	 	68
SLA		RegD,Reg1,Reg2	Shift	left	arithmetic	 	68
SLAI		RegD,Reg1,immed-6	 	68
SRL		RegD,Reg1,Reg2	Shift	right	logical	 	68
SRLI		RegD,Reg1,immed-6	 	68
SRA		RegD,Reg1,Reg2	Shift	right	arithmetic	 	68
SRAI		RegD,Reg1,immed-6	 	68
ROTR		RegD,Reg1,Reg2		Rotate	right	(circular)	 	68
ROTRI		RegD,Reg1,immed-6	 	68
SEXTB		RegD,Reg1	Sign	extend	byte	to	64	bits	 	69
SEXTH		RegD,Reg1		Sign	extend	16	bits	to	64	bits	 	69
SEXTW		RegD,Reg1		Sign	extend	32	bits	to	64	bits	 	69
NULLTEST		Reg1	Trap	if	reg	contains	NULL	 	70
CHECKB		Reg1	Trap	if	reg	not	within	-128	…	+127	 	70
CHECKH		Reg1	Trap	if	reg	not	within	-32768	…	+32767	 	70
CHECKW		Reg1	Trap	if	reg	not	within	32	bit	range	 	70
ENDIANH		RegD,Reg1	Reorder	bytes	in	all	4	halfwords	 	70
ENDIANW		RegD,Reg1		Reorder	bytes	in	both	words	 	70
ENDIAND		RegD,Reg1		Reorder	bytes	in	a	doubleword	 	71
TESTEQ		RegD,Reg1,Reg2		RegD	←	(Reg1	=	Reg2)	?	1	:	0	 	71
TESTNE		RegD,Reg1,Reg2		RegD	←	(Reg1	≠	Reg2)	?	1	:	0	 	71

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	6 344

List	of	Instructions	

TESTLT		RegD,Reg1,Reg2		RegD	←	(Reg1	<	Reg2)	?	1	:	0	 	71
TESTLE		RegD,Reg1,Reg2		RegD	←	(Reg1	≤	Reg2)	?	1	:	0	 	71
TESTEQI		RegD,Reg1,immed-16	RegD	←	(Reg1	=	immed)	?	1	:	0	 	71
TESTNEI		RegD,Reg1,immed-16		RegD	←	(Reg1	≠	immed)	?	1	:	0	 	71
TESTLTI		RegD,Reg1,immed-16		RegD	←	(Reg1	<	immed)	?	1	:	0	 	71
TESTLEI		RegD,Reg1,immed-16		RegD	←	(Reg1	≤	immed)	?	1	:	0	 	71
TESTGTI		RegD,Reg1,immed-16	RegD	←	(Reg1	>	immed)	?	1	:	0	 	72
TESTGEI		RegD,Reg1,immed-16	RegD	←	(Reg1	≥	immed)	?	1	:	0	 	72
*TESTGT		RegD,Reg1,Reg2		RegD	←	(Reg1	>	Reg2)	?	1	:	0	 	72
*TESTGE		RegD,Reg1,Reg2		RegD	←	(Reg1	≥	Reg2)	?	1	:	0	 	72
*TESTEQZ		RegD,Reg1		RegD	←	(Reg1	=	0)	?	1	:	0,	i.e.,	if	zero	 	72
*TESTNEZ		RegD,Reg1		RegD	←	(Reg1	≠	0)	?	1	:	0,	i.e.,	if	non-zero	 	72
*TESTLTZ		RegD,Reg1		RegD	←	(Reg1	<	0)	?	1	:	0,	i.e.,	if	negative	 	72
*TESTLEZ		RegD,Reg1		RegD	←	(Reg1	≤	0)	?	1	:	0,	i.e.,	if	non-positive	 	72
*TESTGTZ		RegD,Reg1		RegD	←	(Reg1	>	0)	?	1	:	0,	i.e.,	if	positive	 	72
*TESTGEZ		RegD,Reg1		RegD	←	(Reg1	≥	0)	?	1	:	0,	i.e.,	if	non-negative	 	72
*LOGNOT	RegD,Reg1		RegD	←	(Reg1	=	0)	?	1	:	0	 	73
ADDOK	RegD,Reg1,Reg2		RegD	←	(Reg1+Reg2	overUlows)	?	0	:	1	 	73
ADD3	RegD,Reg1,Reg2,Reg3		RegD	←	Reg1+Reg2+Reg3	(unsigned)	 	74
INDEX0	RegD,Reg1,Reg2,Reg3	 	74
INDEX1	RegD,Reg1,Reg2,Reg3	 	74
INDEX2	RegD,Reg1,Reg2,Reg3	 	74
INDEX4	RegD,Reg1,Reg2,Reg3	 	74
INDEX8	RegD,Reg1,Reg2,Reg3	 	75
INDEX16	RegD,Reg1,Reg2,Reg3	 	75
INDEX24	RegD,Reg1,Reg2,Reg3	 	75
INDEX32	RegD,Reg1,Reg2,Reg3	 	75
B.EQ		Reg1,Reg2,immed-16	Branch	if	Reg1	=	Reg2;	Offset	is	PC-relative	 	77
B.NE		Reg1,Reg2,immed-16		Branch	if	Reg1	≠	Reg2;	Offset	is	PC-relative	 	77
B.LT		Reg1,Reg2,immed-16		Branch	if	Reg1	<	Reg2;	Offset	is	PC-relative	 	78
B.LE		Reg1,Reg2,immed-16		Branch	if	Reg1	≤	Reg2;	Offset	is	PC-relative	 	78
*BEQ		Reg1,Reg2,address	Branch	if	Reg1	=	Reg2	 	79
*BNE		Reg1,Reg2,address		Branch	if	Reg1	≠	Reg2	 	79
*BLT		Reg1,Reg2,address		Branch	if	Reg1	<	Reg2	 	79
*BLE		Reg1,Reg2,address		Branch	if	Reg1	≤	Reg2	 	79
*BGT		Reg1,Reg2,address	Branch	if	Reg1	>	Reg2	 	79
*BGE		Reg1,Reg2,address		Branch	if	Reg1	≥	Reg2	 	79
*BEQI		Reg,value,address	Branch	if	Reg	=	immediate	value	 	84
*BNEI		Reg,value,address		Branch	if	Reg	≠	immediate	value	 	84
*BLTI		Reg,value,address	Branch	if	Reg	<	immediate	value	 	84
*BLEI		Reg,value,address	Branch	if	Reg	≤	immediate	value	 	84
*BGTI		Reg,value,address	Branch	if	Reg	>	immediate	value	 	84
*BGEI		Reg,value,address	Branch	if	Reg	≥	immediate	value	 	84
*BEQZ		Reg,address	Branch	if	Reg	=	0	 	85
*BNEZ		Reg,address		Branch	if	Reg	≠	0	 	85

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	7 344

List	of	Instructions	

*BLTZ		Reg,address	Branch	if	Reg	<	0,	i.e.,	if	negative	 	85
*BLEZ		Reg,address	Branch	if	Reg	≤	0,	i.e.,	if	not	positive	 	85
*BGTZ		Reg,address	Branch	if	Reg	>	0,	i.e.,	if	positive	 	85
*BGEZ		Reg,address	Branch	if	Reg	≥	0,	i.e.,	if	not	negative	 	85
*BFALSE		Reg,address	Branch	if	Reg	=	0,	i.e.,	if	“false”	 	85
*BTRUE	Reg,address	Branch	if	Reg	≠	0,	i.e.,	if	“true”	 	85
UPPER20		RegD,immed-20	RegD	←	(immed<<16)	 	86
UPPER16		RegD,Reg1,immed-16	RegD	←	(immed<<16)	+	Reg1	 	86
SHIFT16		RegD,Reg1,immed-16	RegD	←	(Reg1	+	immed-16)	<<	16	 	87
ADDPC		RegD,immed-20	RegD	←	PC+immed	 	87
AUIPC		RegD,immed-20	RegD	←	(immed<<16)	+	PC	 	88
JAL		RegD,immed-20	RegD	←	return	addr;	Target	←	PC+offset	 	88
JALR		RegD,immed-16(Reg1)	RegD	←	return	addr;	Target	←	offset+Reg1	 	89
*CALL		address	Jump	to	address;	save	return	addr	in	“lr”	 	90
*CALLR		Reg1	Jump	to	address;	save	return	addr	in	“lr”	 	90
*JUMP		address	Jump	to	address	 	91
*JR		Reg1	Indirect	jump,	via	register	 	92
*RET		<no	operands>	Return	value	is	in	link	reg	“lr”	 	92
ENTER		immed-16	 	93
EXIT		immed-16	 	93
LOAD.B		RegD,immed-16(Reg1)	 	96
LOAD.H		RegD,immed-16(Reg1)	 	96
LOAD.W		RegD,immed-16(Reg1)	 	96
LOAD.D		RegD,immed-16(Reg1)	 	96
STORE.B		immed-16(Reg1),Reg2	 	96
STORE.H		immed-16(Reg1),Reg2	 	96
STORE.W		immed-16(Reg1),Reg2	 	96
STORE.D		immed-16(Reg1),Reg2	 	96
*LOADB		RegD,address	Where	address	is	any	value	 	99
*LOADH		RegD,address	 	99
*LOADW		RegD,address	 	99
*LOADD		RegD,address	 	99
*LOADB		RegD,offset(Reg1)		Where	offset	is	any	value	 	99
*LOADH		RegD,offset(Reg1)	 	99
*LOADW		RegD,offset(Reg1)	 	99
*LOADD		RegD,offset(Reg1)	 	99
*STOREB		address,Reg2		Where	address	is	any	value	 	101
*STOREH		address,Reg2	 	101
*STOREW		address,Reg2	 	101
*STORED		address,Reg2	 	101
*STOREB		offset(Reg1),Reg2		Where	offset	is	any	value	 	101
*STOREH		offset(Reg1),Reg2	 	101
*STOREW		offset(Reg1),Reg2	 	101
*STORED		offset(Reg1),Reg2	 	101
CAS		RegD,Reg1,Reg2,Reg3			Compare	and	Set	 	102
FENCE		<no	operands>	 	104

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	8 344

List	of	Instructions	

ALIGNH		RegD,Reg1,Reg2,Reg3	Reg3	(unaligned	addr)	gives	shift	amount	 	107
ALIGNW		RegD,Reg1,Reg2,Reg3	Reg3	(unaligned	addr)	gives	shift	amount	 	107
ALIGND		RegD,Reg1,Reg2,Reg3	Reg3	(unaligned	addr)	gives	shift	amount	 	107
INJECT1H		RegD,Reg1,Reg2,Reg3	RegD	←	Reg1;	inject	Reg2	per	addr	in	Reg3	 	112
INJECT2H		RegD,Reg1,Reg2,Reg3	RegD	←	Reg1;	inject	Reg2	per	addr	in	Reg3	 	112
INJECT1W		RegD,Reg1,Reg2,Reg3	RegD	←	Reg1;	inject	Reg2	per	addr	in	Reg3	 	112
INJECT2W		RegD,Reg1,Reg2,Reg3	RegD	←	Reg1;	inject	Reg2	per	addr	in	Reg3	 	112
INJECT1D		RegD,Reg1,Reg2,Reg3	RegD	←	Reg1;	inject	Reg2	per	addr	in	Reg3	 	112
INJECT2D		RegD,Reg1,Reg2,Reg3	RegD	←	Reg1;	inject	Reg2	per	addr	in	Reg3	 	112
ILLEGAL		<no	operands>	 	119
SYSRET		<no	operands>	 	119
SLEEP1		<no	operands>	Enable	interrupts;	enter	light	sleep	state	 	120
SLEEP2		<no	operands>	Enable	interrupts;	enter	deep	sleep	state	 	120
RESTART		<no	operands>	Same	as	Power-On-Reset	 	121
DEBUG		<no	operands>	 	122
BREAKPOINT		<no	operands>	 	122
SYSCALL		immed-10	 	123
CONTROL	RegD,Reg1,immed-16	 	124
CONTROLU	RegD,Reg1,immed-16	 	124
TLBCLEAR	<no	operands>	Invalidate	all	TLBs	for	current	ASID	 	129
TLBFLUSH		Reg1	Invalidate	TLB	for	virtual	address	in	Reg1	 	129
CHECKADDR	RegD,Reg1,immed-3	Reg1	=	virt	addr;	RegD	←	except.	code	or	0	 	130
CSRSWAP		RegD,CSRReg1,Reg2	RegD	←	CSR;	CSR	←	Reg2	 	132
CSRREAD		RegD,CSRReg1	Reg1	encodes	CSR;	RegD	←	CSR	 	132
CSRSET		CSRReg1,immed-16	Set	selected	bits	in	CSR	 	132
CSRCLR		CSRReg1,immed-16		Clear	selected	bits	in	CSR	 	132
*CSRWRITE		CSRReg1,Reg2	Reg1	encodes	CSR;	CSR	←	Reg2	 	133
GETSTAT		RegD	RegD	←	CSR_STATUS	&	0x00000000000003f8	 	133
PUTSTAT		Reg1	CSR_STATUS	[9:3]	←	Reg1	[9:3]	 	133
FADD		RegD,Reg1,Reg2	RegD	←	Reg1	+	Reg2	 	134
FSUB		RegD,Reg1,Reg2	RegD	←	Reg1	-	Reg2	 	134
FMUL		RegD,Reg1,Reg2		RegD	←	Reg1	×	Reg2	 	134
FDIV		RegD,Reg1,Reg2		RegD	←	Reg1	/	Reg2	 	134
FMIN		RegD,Reg1,Reg2		RegD	←	MIN	(Reg1,	Reg2)	 	134
FMAX		RegD,Reg1,Reg2		RegD	←	MAX	(Reg1,	Reg2)	 	134
FNEG		RegD,Reg1		RegD	←	-Reg1	 	134
FABS		RegD,Reg1		RegD	←	ABSOLUTE_VALUE	(Reg1)	 	134
FSQRT		RegD,Reg1		RegD	←	SQUARE_ROOT	(Reg1)	 	134
FEQ		RegD,Reg1,Reg2		RegD	←	(Reg1	=	Reg2)	?	1	:	0	(Uloat	compare)	 	134
FLT		RegD,Reg1,Reg2	RegD	←	(Reg1	<	Reg2)	?	1	:	0	(Uloat	compare)	 	134
FLE		RegD,Reg1,Reg2		RegD	←	(Reg1	≤	Reg2)	?	1	:	0	(Uloat	compare)	 	134
FCVTFI		RegD,Reg1	Convert:	Uloating-point	←	int	 	134
FCVTIF		RegD,Reg1	Convert:	int	←	Uloating-point	 	134
FMADD		RegD,Reg1,Reg2,Reg3	RegD	←	(Reg1	×	Reg2)	+	Reg3	 	134

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	9 344

List	of	Instructions	

FNMADD		RegD,Reg1,Reg2,Reg3	RegD	←	(-(Reg1	×	Reg2))	+	Reg3	 	134
FMSUB		RegD,Reg1,Reg2,Reg3	RegD	←	(Reg1	×	Reg2)	-	Reg3	 	134
FNMSUB		RegD,Reg1,Reg2,Reg3	RegD	←	(-(Reg1	×	Reg2))	-	Reg3	 	134
*FGT		RegD,Reg1,Reg2	RegD	←	(Reg1	>	Reg2)	?	1	:	0	(Uloat	compare)	 	136
*FGE		RegD,Reg1,Reg2		RegD	←	(Reg1	≥	Reg2)	?	1	:	0	(Uloat	compare)	 137

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	10 344

Chapter	1:	Introduction	

What	is	originality?	Undetected	plagiarism.	
	 	 	 —	Dean	William	R.	Inge	

Quick	Summary	

•	Blitz-64	introduces	a	novel	64-bit	“Instruction	Set	Architecture”	(ISA).	
•	The	goals	of	the	Blitz-64	project	are:	
	 —	Create	a	complete	hardware	/	software	system	
	 —	Simple,	small,	easy	to	understand	
	 —	Fully	functional	and	fully	modern	
	 —	Reliability,	security,	and	error	handling	are	emphasized	
•	This	project	is	open,	not	proprietary	
•	Software	and	documents	use	dates	instead	of	version	numbers	

Instruction	Set	Architectures	

An	Instruction	Set	Architecture	(ISA)	deUines,	describes,	and	speciUies	how	a	
particular	computer	processor	core	works.	The	ISA	describes	the	registers	and	all	
the	machine	instructions.	The	ISA	speciUies	exactly	what	each	instruction	does	and	
how	it	is	encoded	into	bits.	

The	ISA	forms	the	interface	between	hardware	and	software.	Hardware	
engineers	design	digital	circuits	to	implement	a	given	ISA	and	software	engineers	
write	code	(operating	systems,	compilers,	etc.)	based	on	a	given	ISA	speciUication.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	11 344

Chapter	1:	Introduction	

There	are	a	number	of	Instruction	Set	Architectures	in	widespread	use,	for	example:	

	 x86-64	(AMD,	Intel)	
	 ARM	(ARM	Holdings)	
	 SPARC	(Sun/Oracle)	
	 RISC-V	(Berkeley/open	source)	

Most	of	these	ISAs	are	proprietary	and	very	complex.	The	details	are	obscured	in	
lengthy	manuals	and	some	details	of	the	ISA	are	not	made	public	at	all.	Furthermore,	
the	widely	used	ISAs	have	been	around	for	years	and	their	designs	carry	baggage	as	
a	result,	e.g.,	for	backward	compatibility.	Since	these	legacy	designs	were	Uirst	
created,	we’ve	learned	more	about	how	to	design	computers.	Changes	in	silicon	
hardware	technology	have	also	had	an	impact	on	which	design	choices	are	now	
optimal.	The	RISC-V	project	attempts	to	address	the	issues	of	open	source	and	
interoperability,	and	heavily	inUluences	Blitz-64.	

In	this	document	we	deUine	and	describe	a	new	ISA	called	Blitz-64.	

Goals	and	Principles:	Personal	Statements	

The	following	are	the	guiding	goals	of	the	Blitz-64	architecture.	

	 •	Simple,	small,	modest	
	 •	Understandable	
	 •	Reliable	
	 •	Good	error	reporting/recovery	
	 •	Secure	against	malware	
	 •	No	desire	to	support	virtualization	/	hypervisors	(due	to	security	concerns)	
	 •	Programmable,	pleasing	design	
	 •	Encourage	assembly	language	and	kernel	programming	and	experimentation	

All	modern	processor	cores	have	become	far	too	complex	for	any	single	individual	to	
understand.	My	primary	goal	is	to	create	a	computer	that	is	simple	enough	for	one	
person	to	understand,	yet	fully	modern	and	practical.	

The	way	I	hope	to	achieve	simplicity	is	to	design	the	entire	system	(the	ISA,	all	the	
system	software,	and	good	documentation)	alone,	myself.	The	resulting	system	
must,	by	necessity,	be	radically	simpler	than	existing	computers.	A	key	aspect	to	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	12 344

Chapter	1:	Introduction	

making	any	design	simpler	is	to	make	it	smaller.	Size	and	complexity	are	strongly	
correlated.	A	system	designed	by	one	person	must	be	fairly	small	and	modest	and,	
as	a	result,	it	will	necessarily	be	simpler	and	easier	to	understand.	

On	the	hardware	side,	modern	computer	cores	(ARM,	x86-64,	etc.)	are	just	too	
complicated	to	be	understood	by	any	single	human	being.	They	are	designed	by	vast	
teams	of	specialists;	they	incorporate	legacy	designs;	their	documentation	
comprises	thousand	of	pages,	and	they	are	proprietary	and	at	least	partially	
shrouded	in	corporate	secrecy.	

On	the	software	side,	modern	operating	systems	contain	millions	of	lines	of	code	
written	over	the	course	of	many	decades,	by	vast	numbers	of	programmers.	Much	of	
the	code	is	written	in	“C”,	which	is	notoriously	difUicult	to	read,	modify,	and	validate.	
This	is	unquestionably	true	of	Apple,	Windows,	and	Linux	software.	Nobody	can	
fully	comprehend	a	million	lines	of	code;	these	large	chunks	of	software	must	
remain	mysterious	black	boxes.	So	instead,	programmers	today	blindly	trust	and	
build	on	top	of	a	gigantic	accumulation	incompletely	understood	software.	It’s	
remarkable	that	today’s	software	works	as	well	as	it	does.	

It	is	easier	to	use,	trust,	and	rely	on	systems	that	we	understand.	A	primary	goal	of	
Blitz-64	is	to	create	a	complete,	modern,	and	functional	computer	ISA	and	collection	
of	system	software	that	is	understandable	by	a	single	person.	

Elegance	of	design	is	always	a	laudable	goal.	Elegance	and	beauty	are	correlated	
with	simplicity	and	size.	By	keeping	the	design	simple	and	small,	I	believe	that	
elegance	of	design	will	follow.	

As	computers	are	growing	more	complex	and	integrated	into	society,	reliability	is	
becoming	ever	more	critical.	The	more	complex	a	system	is,	the	more	difUicult	it	is	to	
verify	correctness	and	repair	bugs.	Making	systems	simpler	contributes	to	greater	
reliability.	But	beyond	simplicity,	many	small	design	decisions	along	the	way	
determine	whether	performance	execution	speed	or	reliability	is	preferred	and	
optimized.	

To	increase	reliability,	more	error	checking	must	be	done	at	runtime.	Furthermore,	
when	errors	occur,	they	must	be	handled	with	more	care,	better	reporting,	and	
reasonable	recovery.	Error	checking	incurs	a	performance	penalty.	Modern	systems	
evolved	from	ancient,	slow	computers	where	performance	was	the	critical	
bottleneck.	The	legacy	systems,	upon	which	the	foundation	of	all	modern	software	is	
built,	often	ignored	the	possibility	of	program	bugs	and	focused	all	effort	on	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	13 344

Chapter	1:	Introduction	

execution	speed.	Back	in	the	day,	when	program	size	was	measured	in	tens	or	
hundreds	of	lines	of	code,	this	was	a	reasonable	choice.	

The	dynamic	has	obviously	shifted,	changing	the	tradeoff	analysis.	Today’s	
computers	are	really	fast.	It	may	now	be	the	case	that	performance	is	being	hurt	by	
complexity	itself.	As	the	size	and	complexity	of	software	grows,	the	reliability	of	
individual	parts	and	components	becomes	ever	more	critical.	(For	example,	a	failure	
rate	of	0.1%	for	each	part	might	be	acceptable	for	a	system	with	100	parts,	but	is	
totally	unacceptable	with	a	million	parts.)	

I	recognize	that	performance	is	very,	very	important,	but	I	reject	the	“performance	at	
all	costs”	mentality.	One	of	my	goals	is	to	perform	greater	runtime	error	checking	
and	improved	error	recovery,	even	at	the	cost	of	performance.	The	radical	choice	I	
make	is	to	sacriUice	performance	for	increased	reliability,	whenever	there	is	a	choice.	

As	an	example,	the	Blitz-64	architecture	speciUies	overUlow	detection	and	exception	
processing	on	standard	arithmetic	computations,	like	the	ADD	instruction.	In	the	“C”	
language,	an	overUlow	results	in	no	error	processing	and	the	program	proceeds	
using	incorrect	values.	In	other	words,	the	program	fails	silently.	For	any	program	
that	has	not	undergone	a	thorough	numerical	analysis	(in	other	words,	almost	every	
program),	this	approach	is	abominable.	

Simplicity	also	impacts	physical	reliability.	In	order	to	increase	the	reliability	of	
computer	circuits	in	the	face	of	physical	insults	(e.g.,	radiation,	temperature	
extremes,	and	other	environmental	problems)	simplicity	of	the	ISA	has	several	
beneUits.	First,	simpler	designs	can	be	implemented	with	fewer	transistors.	Given	a	
Uixed	die	size,	this	allows	the	individual	transistors	and	wires	to	be	made	physically	
larger.	Bigger	transistors	are	more	fault	tolerant,	which	increases	the	circuit’s	
reliability.	Second,	the	small	size	of	an	implementation	allows	more	space	for	
redundancy,	and	duplication	is	another	important	approach	to	fault	tolerance.	A	
simple	computer	with	a	small	footprint	can	be	replicated	several	times	to	increase	
reliability.	

Modern	computer	systems	are	increasingly	susceptible	to	malware,	intrusion,	and	
hacking.	In	addition	to	guarding	against	physical	insults,	the	threats	of	intentional	
attack	require	careful	attention	in	ISA	designs.	

The	approach	with	current	systems	seems	to	be	the	“whack-a-mole”	strategy:	when	
a	security	hole	is	uncovered,	the	hole	is	patched.	Then,	wait	and	repeat.	With	a	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	14 344

Chapter	1:	Introduction	

gigantic	body	of	legacy	software	—	millions	of	lines	of	code,	which	nobody	really	
understands	—	the	“whack-a-mole”	approach	seems	to	be	the	only	viable	strategy.	

My	approach	to	increased	security	includes	creating	a	smaller,	simpler	design,	
improving	error	detection,	and	assuming	the	presence	of	“black	hat”	players	(bad	
guys)	in	all	domains,	at	all	times.	

The	goal	of	creating	software	that	is	secure,	reliable,	and	bug-free	is	obviously	both	
worthy	and	elusive.	A	key	approach	to	making	a	system	secure	is	to	make	it	reliable	
and	bug-free.	So	my	focus	on	simplicity	and	reliability	is,	implicitly,	a	focus	on	
security.	

In	order	to	verify	a	computer	system,	to	Uind	and	patch	security	holes,	it	is	necessary	
to	thoroughly	review	and	analyze	the	system	design.	With	complex	ISAs	and	millions	
of	lines	of	code,	the	task	of	veriUication	is	problematic.	Simplicity	and	smallness	help	
a	lot.	

Another	security	threat	involves	embedding	spyware	or	malware	within	system	
software.	Such	software	remains	present	during	normal	operation	and	can	act	as	a	
backdoor	for	black	hat	access	to	private	data	at	any	time.	Embedded	backdoor	
software	can	also	perform	secret	surveillance	of	behavior	and	activity	on	the	
computer,	compromising	the	trust	and	security	of	the	system.	

Spyware	can	be	injected	into	the	system	software	at	many	levels.	My	approach	to	
shutting	out	spyware	and	embedded	malware	involves:	

	 •	Designing	and	implementing	all	the	software	from	scratch	
	 •	Completely	reimplementing	the	boot	process	
	 •	Banning	dynamically	alterable	Uirmware	
	 •	Securely	controlling	kernel	updates	
	 •	Keeping	the	software	small	enough	that	it	can	be	entirely	reviewed	
	 •	Performing	system	design	and	implementation	in	a	sort	of	clean-room	isolation	

In	particular,	hypervisors	and	emulated	systems	are	considered	to	be	a	threat	to	
security.	It	is	difUicult	for	kernel	software	to	be	certain	that	it	is	running	on	a	bare	
machine,	but	it	is	critical	to	security.	For	example,	a	kernel	is	intended	to	prevent	
security	leaks,	but	if	that	kernel	is	being	emulated	or	run	in	a	hypervisor	context,	all	
the	actions	of	the	kernel	are	subject	to	surveillance	and	manipulation.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	15 344

Chapter	1:	Introduction	

There	is	currently	a	trend	toward	increased	use	of	hypervisors.	Typically,	a	user	
wants	to	own	a	single	computer,	but	be	able	to	run	software	developed	for	the	Mac,	
Windows,	Linux,	etc.	operating	systems.	The	clever	approach	is	to	run	multiple	
operating	systems	on	top	of	hypervisor	software.	As	a	result,	modern	ISAs	are	
designed	with	an	eye	to	supporting	hypervisor-like	software,	to	make	the	hosted	
OSes	run	faster.	

The	Blitz-64	system	takes	the	opposite	approach.	While	there	seems	to	be	little	we	
can	do	to	prevent	software	from	being	executed	in	an	emulated	environment,	the	
emulation	of	kernels	should	be	discouraged	due	to	security	issues.	The	Blitz-64	
architecture	makes	no	concessions	and	no	special	instructions	are	added	to	support	
the	emulation	of	“kernel	mode”	software.	This	is	an	intentional	design	decision,	not	
an	oversight.	

A	Uinal	goal	of	the	Blitz-64	project	is	to	support	programming	for	fun	and,	in	
particular,	to	support	assembly	language	and	kernel	programming.	

Programming	on	“bare	metal”	is	an	acquired	taste	and	certainly	does	not	appeal	to	
the	mass	of	average	programmers	because	of	the	high	level	of	skill	and	attention	to	
detail	it	requires.	But	there	may	be	a	small	group	of	highly	proUicient	hobbyists	who	
want	this	experience.	

I	feel	that	modern	computers	are	simply	too	complex	for	programming	to	be	fun.	
Kernel	programming	is	pretty	much	impossible.	I	want	to	create	a	computer	system	
that	is	more	than	a	one-off,	home-brew	computer.	My	goal	is	to	design	a	computer	
that	is	small	and	simple,	yet	roughly	as	functional	as	an	ARM	or	x86-64	machine.	
Basically,	I	want	to	create	a	computer	that	programmers	will	enjoy	—	that	I	will	
enjoy	programming.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	16 344

Chapter	1:	Introduction	

Document	Revision	History	/	Permission	to	Copy	

Version	numbers	are	not	used	to	identify	revisions	to	this	document.	Instead	the	
date	and	the	author’s	name	are	used.	The	document	history	is:	

Date	 Author	
23	May	2018	 Harry	H.	Porter	III		<initial	version>	
28	May	2019	 Harry	H.	Porter	III		<document	mostly	completed>	
24	May	2021	 Harry	H.	Porter	III		<new	instructions	added>	
18	October	2022	 Harry	H.	Porter	III		<version	2.0	of	ISA>	
23	April	2023	 Harry	H.	Porter	III		<changes	to	csr_pgtable>	

	 	
For	details,	consult	the	appendix	titled	“Recent	Changes”.	

In	the	spirit	of	the	open-source	and	free	software	movements,	the	author	grants	
permission	to	freely	copy	and/or	modify	this	document,	with	the	following	
requirement:	

You	must	not	alter	this	section,	except	to	add	to	the	revision	history.	You	
must	append	your	date/name	to	the	revision	history.	

Any	material	lifted	should	be	referenced.	

Relevant	Software	Tools	

The	primary	software	tools	relevant	to	this	document	are:	

	 •	The	Blitz-64	virtual	machine	—	a	“C”	program	called	“blitz”	
	 •	The	Blitz-64	assembler	—	a	“C”	program	called	“asm”	
	 •	The	Blitz-64	linker	—	a	“C”	program	called	“link”	

	For	our	purposes,	the	terms	“emulator”	and	“virtual	machine”	are	synonymous.	

Tool												 Version	Described	Here												 Coding	Status	
blitz	 <	same	date	as	this	document	>	 Completed	
asm	 <	same	date	as	this	document	>	 Completed	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	17 344

Chapter	1:	Introduction	

link	 <	same	date	as	this	document	>	 Completed	

Instead	of	version	numbers,	the	Blitz-64	project	uses	dates	to	identify	versions	of	
both	programs	and	documents.	By	comparing	dates,	you	can	determine	whether	this	
document	matches	the	version	of	the	tools	you	are	using	or,	if	not,	which	is	more	
recent.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	18 344

Chapter	2:	Terminology	and	Notation	

If	you	can’t	convince	them,	confuse	them.	
	 	 	 —	Harry	S	Truman	

Quick	Summary	

•		“Halfword”	=	16	bits	=	2	bytes.	
•		“Word”	=	32	bits	=	4	bytes.	
•		“Doubleword"	=	64	bits	=	8	bytes.	
•		Main	memory	is	byte	addressable.	
•		Main	memory	is	Big	Endian.	
•		The	notation	[n:m]	is	used	to	identify	bits.	
•		For	example,	[63:60]	means	the	most	signiUicant	(MSB)	4	bits	in	a	doubleword.	
•		We	use	KiByte,	MiByte,	GiByte…	instead	of	KByte,	MByte,	GByte…	
•		Alignment	(e.g.,	halfword,	word,	doubleword)	is	deUined.	
•		Proper	alignment	for	sizes	8,	16,	32,	and	64	bits	is	deUined.	
•		Properly	aligned	doublewords	are	at	addresses	divisible	by	8	(ending	in	bits	000).	
•		Integers	are	represented	with	signed,	two’s	complement	values.	
•		All	arithmetic	is	done	using	64	bits.	
•		Sign-extension	enlarges	an	integer	represented	in	signed	two’s	complement	
binary.	

•		Size	reduction	(e.g.,	from	64	to	32	bits)	may	result	in	an	“overUlow”	error.	

Kilo	and	Mega	Pre]ixes	

There	 has	 been	 some	 confusion	 in	 computer	 science	 documentation	 regarding	
abbreviations	for	large	numbers.	For	example:	

	 4K	=	?	
	 	 4,000		
	 	 4,096		

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	19 344

Chapter	2:	Terminology	and	Notation	

We	use	the	following	preUix	notation	for	large	numbers,	which	is	becoming	common	
in	the	context	of	computer	architecture:	

	 						Pre]ix							 Example			 Value																																																																				
	 Ki	 kibi	 KiByte	 210	 1,024	 ~103	
	 Mi	 mebi	 MiByte	 220	 1,048,576	 ~106	
	 Gi	 gibi	 GiByte	 230	 1,073,741,824	 ~109	
	 Ti	 tebi	 TiByte	 240	 1,099,511,627,776	 ~1012	
	 Pi	 pebi	 PiByte	 250	 1,125,899,906,842,624	 ~1015	
	 Ei	 exbi	 EiByte	 260	 1,152,921,504,606,846,976	~1018	

Contrast	this	to	the	standard	metric	preUixes,	which	we	avoid:	

	 						Pre]ix							 Example			 Value																																																																				
	 K	 kilo	 KByte	 103	 1,000	
	 M	 mega	 MByte	 106	 1,000,000	
	 G	 giga	 GByte	 109	 1,000,000,000	
	 T	 tera	 TByte	 1012	 1,000,000,000,000	
	 P	 peta	 PByte	 1015	 1,000,000,000,000,000	
	 E	 exa	 EByte	 1018	 1,000,000,000,000,000,000	

Bits	and	Bytes	

We	use	the	terms	“byte”,	“halfword”,	“word”,	and	“doubleword”,	to	refer	to	various	
sizes	of	binary	data.	

	 number	 number					
		 of	bytes	 of	bits	 example	value	(in	hex)	
	 byte	 1	 8 A4	
	 halfword	 2	 16	 C4F9	
	 word	 4	 32	 AB12CD34	
	 doubleword	 8	 64	 0123456789ABCDEF	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	20 344

Chapter	2:	Terminology	and	Notation	

A	single	hex	digit	can	be	used	to	represent	4	bits:	

	 Binary	 Hex	
0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9
1010 A
1011 B
1100 C
1101 D
1110 E
1111 F

The	 8	 bits	 within	 a	 byte	 are	 conveniently	 expressed	 with	 two	 hex	 digits.	 For	
example:	

	 8	bit	byte	 In	Hex	
1010 0100 A4

The	32	bits	in	a	word	are	given	with	8	hex	digits.	For	example:	

	 																																												32	bit	word																																															 			In	Hex				
1010 1011 0001 0010 1100 1101 0011 0100 AB12CD34	

Sometimes	we	insert	spaces	or	commas	to	make	long	hex	values	more	readable.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	21 344

Chapter	2:	Terminology	and	Notation	

These	examples	show	different	ways	of	representing	the	same	doubleword:	

 0123456789ABCDEF
 0123_4567_89AB_CDEF
 0123,4567,89AB,CDEF
 0123 4567 89AB CDEF
 01234567 89ABCDEF

Often	we	preUix	hex	values	with	“0x”	to	make	it	clear	they	are	hex	values	and	not	
decimal:	

 0x1234

The	bits	within	an	8-bit	byte	are	numbered	from	0	(lower,	least	signiUicant)	to	7	
(upper,	most	signiUicant).	
	

7 6 5 4 3 2 1 0
0 0 0 0 0 0 0 0

The	bits	within	a	16	bit	halfword	are	numbered	from	0	to	15.	

The	bits	within	a	32	bit	word	are	numbered	from	0	to	31.	

The	bits	within	a	64	bit	doubleword	are	numbered	from	0	to	63.	
	
	 63 56 48 40 32 24 16 8 0	

 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

We	use	the	following	notation	to	represent	a	range	of	bits:	

								Example																		Meaning											
	 [7:0]	 All	bits	in	a	byte	
	 [63:0]	 All	bits	in	a	doubleword	
	 [31:28]	 The	upper	4	bits	in	a	word	
	 [5]	 The	6th	bit	from	the	right	end	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	22 344

Chapter	2:	Terminology	and	Notation	

Main	Memory	

Main	memory	is	byte	addressable.	

Main	addresses	are	36	bits.	We	generally	express	addresses	in	hex.	Here	are	two	
equivalent	notations	we	use:	

 8_ABCD_1234
 0x8ABCD1234	

Memory	can	be	viewed	as	a	sequence	of	bytes:	

	 address	 data	
	 						(in	hex)							 				(in	hex)					
 0_0000_0000 89
 0_0000_0001 AB
 0_0000_0002 CD
 0_0000_0003 EF
 0_0000_0004 01
 0_0000_0005 23
 0_0000_0006 45
 0_0000_0007 67

 F_FFFF_FFFC E0
 F_FFFF_FFFD E1
 F_FFFF_FFFE E2
 F_FFFF_FFFF E3

“Low”	memory	refers	to	smaller	addresses,	closer	to	0_0000_0000.	“High”	addresses	
are	numerically	greater.	

Big	Endian	

Blitz-64	is	a	big	endian	architecture.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	23 344

Chapter	2:	Terminology	and	Notation	

As	an	example,	assume	that	main	memory	holds	the	following	bytes:	

	 address	 data	
	 						(in	hex)							 				(in	hex)					

 E_5000_0004 1A
 E_5000_0005 2B
 E_5000_0006 3C
 E_5000_0007 4D
 E_5000_0008 5E
 E_5000_0009 6F
 E_5000_000A 70
 E_5000_000B 81
 E_5000_000C 92
 E_5000_000D A3
 E_5000_000E B4
 E_5000_000F C5

In	Blitz-64,	the	registers	are	64	bits	(8	bytes)	wide.	There	are	several	LOAD	and	
STORE	instructions,	which	can	move	either	a	byte,	halfword,	word	or	doubleword	
between	memory	and	a	register.	

Consider	a	LOADB	instruction	that	loads	a	byte	from	address	0xE_5000_0004.	After	
execution,	the	register	will	contain:	

 0x0000_0000_0000_001A

Consider	a	LOADW	instruction	which	loads	a	word	from	address	0xE_5000_0004.	
After	execution,	the	register	will	contain:	

 0x0000_0000_1A2B_3C4D

Commentary	In	a	little	endian	architecture,	the	order	of	the	bytes	is	changed	
whenever	data	is	copied	from	memory	to	a	register	or	stored	from	a	register	into	
memory.	This	can	be	a	source	of	confusion,	particularly	when	humans	look	at	a	
printout	of	memory	contents.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	24 344

Chapter	2:	Terminology	and	Notation	

As	an	example,	consider	this	memory:	

	 					address	 	 											data	
	 						(in	hex)							 							(in	hex)					

 E_5000_0004 1A
 E_5000_0005 2B
 E_5000_0006 3C
 E_5000_0007 4D
 E_5000_0008 5E
 E_5000_0009 6F
 E_5000_000A 70
 E_5000_000B 81
 E_5000_000C 92
 E_5000_000D A3
 E_5000_000E B4
 E_5000_000F C5

Memory	can	be	viewed	either	as	a	series	of	bytes,	or	as	a	series	of	larger	units,	such	
as	words	or	doublewords.	

With	a	“big	endian”	computer,	this	memory	is	interpreted	as:	

	 					address	 	 												data	
	 						(in	hex)							 								(in	hex)					

 E_5000_0004 1A2B3C4D
 E_5000_0008 5E6F7081
 E_5000_000C 92A3B4C5

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	25 344

Chapter	2:	Terminology	and	Notation	

With	a	“little	endian”	computer,	this	memory	is	interpreted	as:	

	 					address	 	 												data	
	 						(in	hex)							 								(in	hex)					

 E_5000_0004 4D3C2B1A
 E_5000_0008 81706F5E
 E_5000_000C C5B4A392

Big	endian	architectures	are	simpler	to	understand	since	the	bytes	are	not	reordered	
during	loads	and	stores.	

The	primary	argument	for	choosing	little	endian	is	legacy	compatibility.	The	two	
approaches	are	similar	in	terms	of	circuit	complexity.	

Alignment	

A	“halfword	aligned”	address	is	an	address	that	is	a	multiple	of	2.	The	last	bit	of	a	
halfword-aligned	address	will	always	be	0.	Likewise,	a	“word	aligned”	address	is	a	
multiple	of	4,	and	ends	with	the	bits	00.	And	Uinally,	a	“doubleword	aligned”	
address	will	be	evenly	divisible	by	8	and	will	end	with	bits	000.	

A	halfword-sized	value	is	said	to	be	“properly	aligned”	if	it	is	stored	at	a	halfword	
aligned	address.	Likewise,	a	word-sized	value	is	properly	aligned	if	it	is	stored	at	a	
word	aligned	address.	And	similarly,	a	doubleword-sized	value	is	properly	aligned	if	
it	is	stored	at	a	doubleword	aligned	address.	

Blitz-64	requires	data	to	be	properly	aligned	for	the	LOAD	and	STORE	instructions.	

Full-sized	instructions	are	32	bits	in	length.	Compressed	instructions	are	16	bits	in	
length.	All	instructions	are	required	to	be	halfword	aligned.	The	LSBit	of	the	PC	is	
hardwired	to	0,	so	there	can	be	never	be	an	exception	when	an	instruction	is	fetched.	
When	the	PC	is	loaded	—	for	example	during	a	BRANCH	or	CALL	instruction	—	the	
LSBit	is	simply	ignored;	no	exception	will	be	generated.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	26 344

Chapter	2:	Terminology	and	Notation	

Commentary	BRANCH	and	CALL	instructions	are	normally	generated	by	a	
compiler	or	assembler,	which	will	always	place	the	target	instruction	on	a	properly	
aligned	address.	Therefore,	there	is	little	possibility	that	an	error	will	be	made.	

However,	with	LOADs	and	STOREs,	the	address	may	come	from	a	programmer	
computed	pointer,	which	may	easily	be	in	error.	Rather	than	silently	ignoring	the	
last	1,	2,	or	3	bits	and	loading/storing	from	an	incorrect	location,	an	“Unaligned	
LOAD/STORE	Exception”	will	be	signaled.	

Signed	Numbers	

Integers	are	represented	in	binary.	

With	unsigned	number	representation,	only	zero	and	positive	integers	can	be	
represented.	The	maximum	possible	value	is	determined	by	the	number	of	bits	
available	and	is	always	2N-1,	where	N	is	the	number	of	bits.	

	 	 				Size	 	
	 	 		in	bits			 Range	of	values	 	 	
	 byte	 8		 0	…	255	
	 halfword	 16	 0	…	65,535	
	 word	 32	 0	…	4,294,967,295	
	 doubleword	 64	 0	…	18,446,744,073,709,551,615	(≈	2	×	1019)	

Signed	numbers	are	represented	using	“two’s	complement”	representation.	The	
most	signiUicant	bit	gives	the	sign	(1=negative;	0=zero	or	positive).	

	 	 				Size	 	
	 	 		in	bits			 Range	of	values	 	 	
	 byte	 8		 -128	…	127	
	 halfword	 16	 -32,768	…	32,767	
	 word	 32	 -2,147,483,648	…	2,147,483,647	
	 doubleword	 64	 -9,223,372,036,854,775,808	…	9,223,372,036,854,775,807		

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	27 344

Chapter	2:	Terminology	and	Notation	

To	make	things	simpler,	we	deUine	the	following	constants:	

	 Name																									 																																							Decimal	 											Hex	(64	bits)																																														
	 MIN_8	 -128	 FFFF_FFFF_FFFF_FF80	 	
	 MAX_8		 127	 0000_0000_0000_007F	
	 MAX_UNSIGNED_8		 255	 0000_0000_0000_00FF	
	 MIN_16		 -32,768	 FFFF_FFFF_FFFF_8000	
	 MAX_16		 32,767	 0000_0000_0000_7FFF	
	 MAX_UNSIGNED_16		 65,535	 0000_0000_0000_FFFF	
	 MIN_32		 -2,147,483,648	 FFFF_FFFF_8000_0000	
	 MAX_32		 2,147,483,647	 0000_0000_7FFF_FFFF	
	 MAX_UNSIGNED_32		 4,294,967,295	 0000_0000_FFFF_FFFF	
	 MIN_64		 -9,223,372,036,854,775,808	 8000_0000_0000_0000	
	 MAX_64		 9,223,372,036,854,775,807	 7FFF_FFFF_FFFF_FFFF	

The	Blitz-64	architecture	relies	entirely	on	64	bit	signed	integers.	There	is	only	one	
type	for	integers.	

Arithmetic	on	32	bit	quantities	is	not	supported,	although	there	are	instructions	to	
enlarge	and	shrink	values	between	8,	16,	32,	and	64	bits.	

Note	that	the	range	of	signed	doublewords	is	sufUicient	to	represent	every	byte,	
halfword,	and	word	value	regardless	of	whether	it	is	signed	or	unsigned.	

Commentary	Signed	64	bit	integers	seem	both	necessary	and	sufUicient	for	
computer	arithmetic.	There	seems	to	be	no	good	reason	to	include	support	for	
“unsigned	64	bit	integer”	operations.		

The	range	of	signed	doublewords	is	adequate	for	expressing	quantities	such	as	an	
“astronomical	unit”	in	microns,	the	number	of	seconds	since	the	big	bang,	or	the	
world	GDP	in	hundredths	of	a	cent.	Unfortunately,	the	range	of	32	bit	words	is	
inadequate	for	many	things,	such	as	counting	humans,	the	US	federal	debt	in	dollars,	
the	number	milliseconds	since	January	1,	1970	(widely	used	by	computers),	or	the	
number	of	bytes	of	main	memory	in	typical	smartphones.	Any	programmer	who	
uses	32	bit	integers	needs	to	think	very,	very	carefully	about	overUlow	conditions.	

The	use	of	unsigned	data	types	made	sense	in	the	past,	when	the	word	sizes	were	
smaller.	In	some	applications,	the	difference	between	a	maximum	value	of	127	and	
255	(for	byte-sized	data),	or	between	32,767	and	65,535	(for	16	bit	data)	was	
important	and	critical,	and	worth	sacriUicing	the	ability	to	represent	negative	values.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	28 344

Chapter	2:	Terminology	and	Notation	

It	is	even	conceivable	that	some	applications	needed	numbers	between	
2,147,483,647	and	4,294,967	295	(for	32-bit	data),	while	at	the	same	time,	never	
needing	negative	values.	

However,	it’s	virtually	impossible	to	imagine	an	application	for	which	unsigned	64	
bit	numbers	are	appropriate.	For	such	an	application,	the	expected	values	would	be	
expected	to	exceed	9,223,372,036,854,775,807,	and	yet	be	guaranteed	to	never	
exceed	18,446,744,073,709,551,615,	and	also	be	guaranteed	to	never	be	negative!	

Commentary	The	cost	of	using	“unsigned”	binary	numbers	is	that	negative	values	
must	be	thrown	out.	Negative	numbers	are	obviously	useful	and	shouldn’t	be	
ignored	or	excluded.	Throwing	out	the	negative	numbers	is	a	bad,	anti-mathematical	
idea.	It’s	dangerous	because	we	know	it	causes	all	sorts	of	program	bugs;	it	makes	
the	discrepancy	between	“computer	integers”	and	“mathematical	integers”	vastly	
greater;	and	a	proliferation	of	different	datatypes	complicates	programming.	

In	Blitz-64,	if	the	programmer	wishes	to	force	some	number	into	one	of	the	limited,	
legacy	ranges,	he/she	can	easily	write	tests	such	as:	

if (x<0 || x>MAX_UNSIGNED_32) …

Commentary	In	any	core	processor,	the	speed	of	addition	is	critical	since	addition	is	
involved	in:	

	 •	Incrementing	the	PC.	
	 •	Performing	address	calculations	in	LOAD,	STORE,	BRANCH,	…	instructions.	
	 •	Implementing	the	ADD	and	SUB	instructions,	for	loop	control,	arrays,	etc.		

The	Blitz-64	architecture	does	not	support	arithmetic	on	integer	data	of	size	byte,	
halfword,	or	word.	How	much	of	a	performance	penalty	does	this	radical	decision	
incur?	

In	modern	cores,	we	can	assume	that	addition	is	implemented	with	carry	lookahead	
units	(CLA),	each	with	4	inputs.	Thus,	the	carry	lookahead	tree	has	a	branching	
factor	of	4	and	the	depth	of	the	tree	determines	the	gate	delay	for	the	adder	unit.	A	
16	bit	adder	will	require	2	CLA	levels	(4	×	4)	to	add	16	bits.	A	32	bit	adder	will	
require	3	levels,	since	4	×	4	is	not	enough.	However,	a	3	level	tree	will	also	be	
sufUicient	for	a	64	bit	adder,	since	4	×	4	×	4	=	64.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	29 344

Chapter	2:	Terminology	and	Notation	

Therefore,	64-bit	addition	incurs	no	performance	penalty	over	32	bit	addition.	
This	holds	for	subtraction,	as	well.	

Concerning	multiplication,	the	execution	time	is	constrained	by	the	time	to	add	a	
column	of	numbers.	The	setup	and	sign-adjustment	logic	incurs	a	constant	delay	
which	does	not	depend	on	word	size.	

For	32	bit	multiplication,	a	set	of	32	numbers	must	be	added.	For	a	64	bit	
multiplication,	a	set	of	64	numbers	must	be	added.	Many	of	the	additions	can	be	
done	in	parallel,	and	the	Uinal	result	sum	can	be	determined	in	log	time.	A	set	of	32	
numbers	can	be	added	using	a	tree	of	adders	of	depth	5.	A	set	of	64	numbers	can	be	
added	using	a	tree	of	adders	of	depth	6.	Therefore,	the	time	required	to	multiply	64	
bit	values	will	be	no	more	than	20%	greater	than	the	time	required	to	multiply	32	
bit	values.	

Thus,	our	(perhaps	counterintuitive)	conclusions	are:	

•	There	is	no	signiUicant	performance	penalty	to	pay	for	performing	all	arithmetic	
using	64	bits.	

•	The	simplicity	to	be	gained	by	eliminating	legacy	data	types	(i.e.,	“unsigned”,	
“byte”,	“halfword”,	and	“word”)	is	well	worth	any	small	performance	cost.	

Sign-Extension	

A	value	of	one	size	can	be	“sign-extended”	to	a	larger	size.	For	example,	a	32	bit	
word	can	be	sign-extended	to	64	bits.	

The	sign-extension	operation	does	not	change	the	integer	value	of	the	number.	

The	sign-extension	operation	looks	at	the	sign	bit	(i.e.,	the	most	signiUicant	bit)	of	the	
smaller	number.	Then,	that	bit	value	is	replicated	as	necessary	to	Uill	additional	bits	
on	the	left,	most	signiUicant	end	of	the	smaller	value,	until	it	is	the	required	larger	
size.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	30 344

Chapter	2:	Terminology	and	Notation	

For	example,	sign-extending	a	16	bit	value	to	64	bits	will	look	at	bit	[15]	of	the	input	
value.	If	it	is	“1”,	the	number	is	negative.	To	sign-extend	it	to	64	bits,	the	uppermost	
48	bits,	i.e.,	bits	[63:16],	will	be	Uilled	with	“1”.	Otherwise,	the	uppermost	bits	will	be	
Uilled	with	“0”.	

Many	Blitz-64	instructions	include	a	16	bit	“immediate”	value,	which	is	encoded	
directly	within	the	instruction.	This	immediate	value	is	sign-extended	to	64	bits	
before	being	used.	

Size	Reduction	

Often	it	is	necessary	to	take	a	larger	value	and	reduce	its	size.	For	example,	a	register	
may	contain	a	doubleword	value	(i.e.,	64	bits)	and	we	may	want	to	reduce	it	to	a		
halfword	(i.e.,	16	bits).	

A	size	reduction	can	be	performed	by	simply	cutting	off	(i.e.,	ignoring,	eliminating)	
the	uppermost	bits.	

If	the	original	value	happens	to	lie	within	the	range	representable	by	the	smaller	
size,	then	there	is	no	problem.	The	value	remains	unchanged	by	the	operation.	

If	the	original	value	does	not	lie	within	the	range	representable	by	the	smaller	size,	
then	the	new	value	will	be	numerically	different.	This	is	considered	a	form	of	
“overUlow”,	in	the	sense	that	the	operation	has	resulted	in	a	mathematically	incorrect	
result.	

Looking	at	a	value,	we	can	easily	determine	whether	a	size	reduction	will	result	in	
overUlow	or	not.	For	example,	if	we	are	reducing	a	64	bit	value	to	16	bits,	we	ask	
whether	the	upper	48	bits	(i.e.,	bits	[63:16]),	which	will	be	discarded,	are	all	equal	to	
the	sign	bit	(i.e.,	bit	[15])	of	the	new,	smaller	result.	If	so,	there	is	no	problem.	In	
other	words,	we	ask	whether	bits	[63:15]	are	either	all	0s	or	all	1s.	If	the	uppermost	
49	bits	are	all	equal,	there	is	no	problem,	but	if	both	0s	and	1as	are	present,	the	size	
reduction	operations	will	cause	an	overUlow	error.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	31 344

Chapter	3:	Architectural	Summary	

A	doctor	can	bury	his	mistakes	but	an	architect	can	
only	advise	his	clients	to	plant	trees.	

	 	 	 —	Frank	Lloyd	Wright	

Quick	Summary	

•	Register	size:	64	bits.	
•	Number	of	general	purpose	registers:	16.	
•	Zero	register:	r0	always	reads	as	zero	and	acts	as	a	destination	for	unneeded	
results.	
•	All	remaining	registers	(r1,	r2,	…	r15)	are	general	purpose	and	equally	functional.	
•	Natural	data	size:	64	bits	(i.e.,	doubleword)	
	 —	Integer	overUlow	is	never	ignored;	an	exception	is	always	generated.	
	 —	All	arithmetic	is	done	using	64	bit	signed	integers.	
•	Floating	Point:	
	 —	No	separate	Uloating-point	regs.	General	purpose	regs	are	used.	
	 —	Floating	point	precision:	Double	only;	there	is	no	single	precision.	
•	Main	memory	is	Big	Endian.	
•	Instructions	are	32	bits	in	size.	
•	Compressed	instructions	are	multiples	of	8	bits	in	size.	
•	Number	of	privilege	modes:	2	(Kernel	and	User).	
•	Number	of	Control	and	Status	Registers	(CSRs):	16.	
•	Size	of	Control	and	Status	Registers	(CSRs):	64	bits.	
•	Program-generated	addresses:	36	bits.	
•	Maximum	Physical	Memory:	16	GiBytes.	
•	Memory-Mapped	Address	Range:	16	GiBytes.	
•	Maximum	Virtual	Address	Space:	32	GiBytes.	
•	Page	size:	16	KiBytes.	
•	Virtual	Memory	System:	Page	tables	are	supported.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	32 344

Chapter	3:	Architectural	Summary	

Memory,	Addresses,	and	Memory-Mapped	I/O	

The	maximum	physical	memory	is	16	GiBytes.	

There	is	an	additional	16	GiBytes	of	physical	address	space	allocated	for	memory-
mapped	I/O.	

Physical	addresses	(for	physical	memory	and	memory-mapped	I/O)	are	35	bit	
addresses.	Note	that	235	=	32	Gi.	

All	program-generated	addresses	are	36	bits.	

The	maximum	address	space	size	is	64	Gi.	Note	that	236	=	64	Gi.	

Supporting	Larger	Main	Memory	

Using	virtual	memory	and	page	tables,	up	to	16	TiBytes	of	physical	memory	is	
supported.	

In	the	basic	conUiguration,	up	to	16	GiBytes	of	physical	memory	is	supported	in	a	
simple,	uniform,	linear	address	space.	This	should	sufUice	for	many	applications.	
Larger	memory	sizes	can	be	supported,	but	these	can	only	be	accessed	via	virtual	
addresses	and	the	page	table	mapping.	

Virtual	memory	and	the	memory	mapping	scheme	are	discussed	in	a	later	chapter.	

The	limitation	on	addresses	to	36	bits	might	seem	naïve	and	overly	restrictive,	but	
this	is	an	important	design	choice	and	was	not	made	lightly.	ISA	design	involves	a	
trade-off	between	(1)	a	large	number	of	registers,	(2)	a	small	instruction	size,	(3)	
long	addresses,	and	(4)	the	number	of	instructions	required	to	load	arbitrary	
addresses.	Since	you	can’t	have	it	all,	our	design	decisions	involve	a	compromise	on	
these	issues.	

Remember	that	main	memory	is	only	one	tier	in	a	memory	hierarchy	ranging	from	
terabytes	of	solid	state	stable	memory	to	megabytes	of	fast	cache.	Main	memory	is	
properly	viewed	as	a	staging	ground	in	which	programs	and	data	are	held,	in	order	
to	supply	the	core	with	grist	for	computation.	It	is	nothing	more	than	a	form	of	per-
core	cache	between	a	processing	unit	and	shared	data	sources.	We	predict	that	the	
bandwidth	between	main	memory	and	the	core/	fast-cache	circuitry	will	remain	a	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	33 344

Chapter	3:	Architectural	Summary	

performance	bottleneck;	16	GiBytes	seems	more	than	adequate	to	keep	a	single	core	
busy.	Since	Blitz-64	cores	may	be	deployed	in	multicore	systems	with	100s	or	1000s	
of	cores,	the	per-core	limit	of	16	GiBytes	is	properly	understood	as	imposing	a	
limitation	on	the	entire	core	array	measured	in	terabytes	or	exabytes.	

The	Processor	State	

The	entire	state	of	a	running	Blitz-64	core	consists	of:	

	 •	The	general	purpose	registers	(r0,	…	r15)	
	 •	The	Program	Counter	(PC)	
	 •	A	set	of	16	“Control	and	Status	Registers”	(CSRs)	

(Here	we	mean	the	directly	visible	state	of	the	core,	observable	by	software;	
additional	state,	such	as	related	to	pipeline	stages,	cache	contents,	etc.	should	not	
affect	software	functionality	or	correctness.)	

The	Registers	

The	general	purpose	registers	are	64	bits	(a	doubleword,	8	bytes)	in	width.	

There	are	16	registers.	
		
The	registers	are	named	r0,	r1,	r2,	…	r15.	

Register	r0	is	a	special	“zero	register”.	When	read,	its	value	is	always	
0x0000_0000_0000_0000.	Whenever	there	is	an	attempt	to	write	to	r0,	the	data	is	
simply	discarded.	

All	other	registers	are	treated	identically	by	the	ISA;	there	is	nothing	special	about	
any	register.	

By	convention,	several	registers	have	special	functions	and	these	registers	are	given	
alternate	names.	The	assembler	will	accept	either	name.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	34 344

Chapter	3:	Architectural	Summary	

	 	 Alternate	
	 	 				Name					 Function																			
	 r0	 	 Zero	
	 r1	 	 Argument	1	/	Return	Value	
	 r2	 	 Argument	2	
	 r3	 	 Argument	3	
	 r4	 	 Argument	4	
	 r5	 	 Argument	5	
	 r6	 	 Argument	6	
	 r7	 	 Argument	7	
	 r8	 t	 Temp	register,	used	by	assembler/linker	
	 r9	 s0	 Work	reg	(caller-saved)	
	 r10	 s1	 Work	reg	(caller-saved)	
	 r11	 s2	 Work	reg	(caller-saved)	
	 r12	 tp	 Thread	data	pointer	
	 r13	 gp	 Global	data	pointer	
	 r14	 lr	 Link	register	
	 r15	 sp	 Stack	pointer	

All	registers	are	treated	equally	by	the	ISA,	with	the	exception	of	r0.	Their	special	
functions	arise	solely	in	how	the	programmer	uses	them	in	instructions.	

Register	Usage	Conventions	

The	registers	r1	…	r7	are	used	to	pass	arguments	to	functions	and	methods	and	r1	
is	used	to	return	results.	Registers	r1	…	r7	are	also	used	as	general	working	registers	
to	hold	local	variables	and	intermediate	results	within	a	function	or	method.	The	
compiler	or	assembly	language	programmer	is	free	to	use	them	as	desired	within	
functions	or	methods.	If	fewer	than	7	arguments	are	passed,	then	the	remaining	
registers	can	be	used	as	general	work	registers	in	the	function/method.	If	more	than	
7	arguments	are	passed,	or	if	any	argument	is	larger	than	a	doubleword,	then	those	
arguments	will	be	passed	on	the	stack.	If	most	of	the	registers	are	taken	up	with	
argument	passing	and	the	function/method	has	immediate	need	for	some	
temporary	work	registers,	then	the	function/method	may,	at	its	discretion,	
immediately	upon	entry,	store	the	less	urgently	needed	arguments	in	the	stack	
frame,	thereby	freeing	up	registers	for	other	uses.	

The	Blitz-64	calling	convention	sets	aside	a	fairly	large	number	of	registers	for	
argument	passing.	Each	argument	must	be	collected	by	the	calling	code	and	moved	
into	a	known,	agreed-upon	location	by	the	caller’s	code.	Even	if	the	argument	were	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	35 344

Chapter	3:	Architectural	Summary	

to	be	placed	on	the	stack,	the	caller	would	at	least	need	to	move	the	argument	into	a	
register	temporarily	to	do	this.	

When	the	compiler	is	compiling	a	function,	it	cannot	know	whether	it	is	best	for	the	
value	to	be	placed	in	a	register	or	written	to	the	stack.	Only	the	called	function	can	
make	an	informed	decision	about	this.	Therefore,	the	Blitz	convention	is	to	place	a	
large	number	of	arguments	(up	to	7)	in	registers	and	let	the	called	function	store	
some	of	all	of	them	to	memory,	at	its	discretion.	Ideally,	the	called	function	can	avoid	
moving	any	arguments	to	memory.	

We	considered	allocating	all	available	registers	to	carry	arguments,	but	there	are	
rarely	functions	with	more	than	7	arguments	and	it	may	be	convenient	for	a	function	
to	have	some	registers	free	upon	entry.	We	can	assume	a	function	with	more	than	7	
arguments	is	big	and	complex;	having	three	work	registers	available	may	allow	the	
function	to	achieve	much	of	its	task	without	having	to	spill	registers	to	the	stack	
frame	just	to	have	some	work	registers	to	work	with.	Placing	all	arguments	in	
registers	and	therefore	leaving	no	work	registers	available	means	that	some	spills	
must	occur	immediately	upon	entry	into	the	function.	

Therefore,	we	allocate	three	additional	registers	called	s0,	s1,	and	s2	(i.e.,	r9,	r10,	
and	r11)	as	work	registers.	

The	“temporary	register”	(register	t,	i.e.,	r8)	is	used	by	the	assembler	for	some	
synthetic	instructions.	When	describing	the	synthetic	instructions,	this	document	
indicates	whether	and	how	register	t	will	be	used.	The	use	of	register	t	is	
“clandestine”,	in	the	sense	that	t	is	not	explicitly	named	in	the	synthetic	instructions.	
The	programmer	and	compiler	are	free	to	use	register	t	in	a	function/method,	as	
long	as	they	realize	that	some	synthetic	instructions	may	alter	t.	

The	“caller”	of	a	function/method	should	assume	that	registers	r1…r7,	t,	and	s0…s2	
will	trashed	(i.e.,	altered	or	arbitrarily	modiUied)	by	the	“called”	function/method.		If	
the	contents	are	important,	the	caller	should	save	their	contents	before	calling	the	
function/method.	In	that	sense,	r1…r7,	t,	and	s0…s2	are	said	to	be	“caller-saved”.	

A	“callee-saved”	register	is	one	in	which	the	caller	can	assume	that	the	called	
function	will	not	modify	the	value.	Or	more	accurately,	if	the	called	function	needs	to	
use	a	callee-saved	register,	it	will	save	it	Uirst	and	then	restore	it	before	returning.	

In	some	sense,	the	registers	tp,	gp,	and	sp	are	callee-saved,	since	the	convention	
states	that	they	are	to	have	the	same	value	upon	return	that	they	had	before	the	call.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	36 344

Chapter	3:	Architectural	Summary	

We	considered	setting	aside	some	registers	as	“callee-saved”. 	1

In	a	program	with	multiple	threads,	each	thread	may	have	a	block	of	data	speciUic	to	
that	thread.	The	“thread	pointer	register”	(register	tp,	i.e.,	r12)	points	to	this	block	
of	data,	making	it	easy	for	the	thread	to	access	its	private	data.	Typically,	this	register	
does	not	change	and	stays	constant	during	the	entire	life	of	the	thread. 	2

The	“global	pointer	register”	(register	gp,	i.e.,	r13)	points	to	a	block	of	memory	
containing	static	global	variables	shared	by	all	functions/methods	in	all	threads,	
making	it	easy	for	the	code	to	access	these	variables	with	a	single	LOAD/STORE	
instruction	using	a	small	offset.	The	16	bit	immediate	offset	in	LOAD/STORE	
instructions	makes	it	easy	to	access	data	within	a	4	page	(i.e.,	64	KiByte)	range	by	
using	offsets	up	to	±32	KiBytes.	

Typically,	the	global	data	will	be	placed	at	the	beginning	of	the	virtual	address	space,	
i.e.,	at	address	0x8_0000_0000.	Therefore,	register	gp	will	contain	0x8_0000_8000	
which	is	the	start	of	virtual	memory,	plus	2	pages	(i.e.,	plus	32	KiBytes),	allowing	
access	to	the	Uirst	4	pages	of	virtual	memory.	Register	gp	will	remain	constant	during	
the	execution	of	the	program.	

The	“link	register”	(register	lr,	i.e.,	r14)	is	used	in	function/method	invocation.	The	
CALL	instruction	will	store	the	return	address	in	register	“lr”	and	the	RET	
instruction	will	jump	back	to	that	address.	If	the	function/method	is	a	leaf	routine	
(i.e.,	if	it	doesn’t	invoke	other	functions/methods)	then	the	return	address	can	
remain	in	lr	until	the	RET	instruction	causes	the	return.	Otherwise,	the	value	of	lr	
must	be	saved	somewhere,	typically	on	the	stack,	and	retrieved	before	the	return.	

The	“stack	pointer	register”	or	“stack	top”	(register	sp,	i.e.,	r15)	points	to	the	
runtime	stack.	By	convention,	the	stack	grows	downward	from	high	memory	(larger	
addresses)	toward	low	memory	(smaller	addresses).	By	convention,	sp	will	point	to	
the	Uirst	byte	of	the	stack,	i.e.,	the	most	signiUicant	byte	of	the	doubleword	sitting	at	
the	top	of	the	stack.	By	convention,	the	stack	will	always	grow	in	multiples	of	8.	In	
other	words,	sp	will	always	contain	a	doubleword	aligned	address.	

		In	fact,	s0…s2	were	originally	callee-saved	with	the	“s”	standing	for	“saved”.1

	In	programs	which	have	only	a	single	thread	and	no	need	for	a	thread	pointer,	this	register	might	2

instead	be	used	as	a	callee-saved	register.	But	beware	that	called	functions	will	likely	use	this	
register	to	locate	various	parameters;	using	register	tp	as	a	callee-saved	register	is	not	practical.

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	37 344

Chapter	3:	Architectural	Summary	

Although	Uloating	point	instructions	are	deUined,	there	are	no	separate]loating	
point	registers.	Instead,	Uloating	point	data	is	kept	and	manipulated	in	the	general	
purpose	registers.	

There	is	a	program	counter	(PC)	whose	size	is	36	bits.	

Thus,	the	PC	can	contain	any	number	within	0x0_0000_0000	...	0xF_FFFF_FFFF.	Any	
attempt	to	load	the	PC	with	a	number	outside	this	range	is	legal:	bits	[63:36]	will	be	
ignored	with	no	overUlow	exception	signaled.	

Commentary	Many	processor	ISAs	include	a	“condition	code	register.”	Such	a	
register	usually	contains	bits	such	as:	

	 •	Sign	/	Negative	Value	
	 •	Zero	/	Equal	
	 •	Carry	Bit	
	 •	OverUlow	

In	such	ISAs,	there	is	usually	a	COMPARE	instruction	(which	will	set	bits	in	the	
status	register)	and	several	BRANCH	instructions	(which	will	test	the	status	register	
bits	and	conditionally	jump).	

The	normal	pattern	of	most	code	is	to	execute	a	COMPARE	instruction	and,	
immediately	afterward,	execute	a	BRANCH	instruction.	They	go	together	and	
effectively	perform	a	single	“test-and-jump”	operation.	

Blitz-64	does	not	include	a	“condition	code	register.”	Instead,	the	BRANCH	
instructions	will	perform	both	the	test	and	the	conditional	jump.	By	combining	them	
into	a	single	instruction,	greater	performance	efUiciency	can	be	achieved	whenever	
this	“test-and-jump”	operation	must	be	performed.	

Control	and	Status	Registers	(CSRs)	

The	“Control	and	Status	Registers”	(CSRs)	are	used	by	the	protection	and	privilege	
system.	The	privilege	system	is	used	by	the	OS	kernel	to	protect	itself	and	manage	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	38 344

Chapter	3:	Architectural	Summary	

user-level	processes.	The	CSRs	are	also	used	for	interrupt	processing,	thread	
switching,	and	virtual	memory	manipulation.	

At	any	moment,	the	processor	will	be	executing	either	in	“user	mode”	or	in	“kernel	
mode”.	OS	kernel	code	is	executed	in	kernel	mode	and	application	programs	are	
executed	in	user	mode.	

Each	instruction	is	either	“privileged”	or	“non-privileged”.	When	the	core	is	
running	in	user	mode,	only	non-privileged	instructions	may	be	executed.	When	
running	in	kernel	mode,	all	instructions	are	usable.	

Changing	the	privilege	mode	is	accomplished	by	writing	to	a	CSR.	A	single	bit	in	the	
status	register	(csr_status)	determines	the	current	privilege	mode.	

CSRs	can	only	be	read/written	when	running	in	kernel	mode.	

There	are	16	CSRs.	

Each	CSR	has	a	special	name	and	each	has	a	unique	function.	Reading	and/or	writing	
a	CSR	will	have	an	effect	on	the	processor	operation.	The	CSRs	are	read	and	written	
with	just	a	couple	of	general-purpose	instructions.	The	instructions	to	read/write	
the	CSRs	are	privileged	and	can	only	be	executed	in	kernel	mode.	

In	order	to	understand	the	user-mode	instruction	set	and	to	create	user-level	code,	
the	CSRs	can	and	should	be	ignored,	especially	on	your	Uirst	introduction	to	Blitz-64.	

Virtual	Memory	

Blitz-64	supports	virtual	memory.	For	each	virtual	address	space,	there	will	be	a	
page	table	stored	in	memory.	The	page	table	is	organized	as	a	tree	of	nodes	and,	at	
any	time,	the	root	of	the	current	page	table	is	pointed	to	by	a	control	and	status	
register	(CSR)	named	csr_pgtable.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	39 344

Chapter	3:	Architectural	Summary	

Pages	in	the	virtual	address	space	can	be	marked	as	

	 •	valid	/	invalid	
	 •	writable	
	 •	executable	
	 •	copy-on-write	
	 •	dirty	

Any	attempt	by	user	code	to	access	a	page	in	violation	of	the	permissions	for	that	
page	will	cause	an	exception.	

The	virtual	memory	architecture	and	page	tables	are	described	in	the	chapter	titled	
“Memory,	Address	Spaces,	and	the	Page	Table”.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	40 344

Chapter	4:	Instruction	Formats	

Quick	Summary	

•	Machine	instructions	are	32	bits	long.	
	 	 The	16	registers	are	encoded	in	Uields	of	4	bits.	
	 	 Immediate	values	occupy	Uields	of	either	16	or	20	bits.	
•	There	are	4	formats	of	instructions,	called	A,	B,	C,	and		D.	
•	Assembly	syntax	is	summarized.	
	 	 The	destination	register	is	schematically	called	“RegD”.		
	 	 The	operand	registers	are	schematically	called	“Reg1”,	“Reg3”,	and	“Reg3”.		
•	Compressed	instructions	will	be	deUined	and	speciUied	in	the	future.	
	 	 Compressed	instructions	are	variable	in	length.	
	 	 Compressed	and	full-sized	instructions	can	be	distinguished	by	their	opcodes.	

Compressed	and	Full-Sized	Instructions	

There	are	two	types	of	instructions:	

	 •	Full-sized	instructions	(32	bits)	
	 •	Compressed	instructions	(variable	length)	

Each	compressed	instruction	is	exactly	equivalent	in	function	to	a	32	bit	full-sized	
instruction.	However,	there	may	be	many	32	bit	instructions	for	which	there	is	no	
equivalent	compressed	version.	

A	major	performance	bottleneck	is	the	time	required	to	fetch	instructions	from	main	
memory.	The	entire	purpose	of	compressed	instructions	is	to	reduce	the	size	of	code.	

The	full-sized	and	compressed	instructions	may	be	intermixed.	There	is	no	“mode”	
bit	to	put	the	processor	into	“compressed	instruction	mode”,	as	there	is	in	some	
processors.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	41 344

Chapter	4:	Instruction	Formats	

Commentary	Reducing	the	size	of	code	results	in	increased	processor	
performance	since	it	allows	more	instructions	to	be	cached,	reducing	the	time	to	
fetch	instructions	from	main	memory,	which	is	often	a	performance	bottleneck.	

In	a	typical	hardware	implementation,	when	a	compressed	instruction	is	fetched	
and	loaded	into	the	Instruction	Register	(IR)	prior	to	being	executed,	the	hardware	
will	notice	that	it	is	a	compressed	instruction.	At	that	time,	the	compressed	
instruction	will	immediately	be	expanded	into	the	equivalent	32	bit	instruction.	
Thereafter,	there	is	no	need	for	any	additional	hardware	logic	to	support	the	
compressed	instruction	set.	

A	sophisticated	assembler	will	automatically	generate	compressed	instructions	
whenever	it	can.	The	idea	is	that	the	programmer	(or	compiler)	will	create	only	32	
bit	instructions.	Upon	encountering	a	32	bit	instruction	that	can	also	be	coded	as	a	
compressed	instruction,	the	assembler	will	choose	the	smaller	instruction.	Such	an	
assembler	will	relieve	programmers	(and	compilers)	from	the	burden	of	selecting	
compressed	instructions,	although	a	sophisticated	compiler	may	be	able	to	
generate	shorter	code	sequences	if	it	is	aware	of	which	instructions	can	be	
compressed.	

At	this	time,	only	the	full-sized	instructions	are	deUined.	The	compressed	
instructions	will	be	deUined	in	the	future,	based	on	which	full-sized	instructions	are	
most	widely	used.	

Opcode	Encoding	

The	Uirst	2	bits	in	every	instruction	determine	whether	or	not	it	is	a	compressed	
instruction.	All	full-sized	instructions	begin	with	bits	00.	

	 00	-	Full-sized	instruction	
	 01	-	Compressed	instruction		
	 10	-	Compressed	instruction	
	 11	-	Compressed	instruction	

From	here	on,	we	only	discuss	full-sized	instructions.	

The	instruction	opcode	is	either	1	or	2	bytes.	The	opcode	is	in	either	the	Uirst	byte	or	
the	Uirst	two	bytes	of	the	instruction,	i.e.,	the	most	signiUicant	byte	or	bytes.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	42 344

Chapter	4:	Instruction	Formats	

The	Uirst	byte	of	every	instruction	is	called	“OP1”	and	the	second	byte	of	the	opcode,	
if	present,	is	called	“OP2”.	

If	the	Uirst	byte	(OP1)	is	0x00,	then	a	second	opcode	byte	(OP2)	will	be	used.	If	the	
Uirst	byte	(OP1)	is	non-zero,	then	there	will	be	no	second	byte.	

Instruction	Fields	

We	use	the	following	notations	to	describe	the	various	bit	Uields	in	an	instruction.	

	 Reg1	 4	bits,	indicating	a	source	register	
	 Reg2		 4	bits,	indicating	a	source	register	
	 Reg3		 4	bits,	indicating	a	source	register	
	 RegD		 4	bits,	indicating	the	destination	register	
	 immed-3	 3	bits	containing	an	immediate	value	
	 immed-6	 6	bits	containing	an	immediate	value	
	 immed-10	 10	bits	containing	an	immediate	value	
	 immed-16	 16	bits	containing	an	immediate	value	
	 immed-20	 20	bits	containing	an	immediate	value	

The	registers	are	encoded	in	the	obvious	way:	

	 r0	=	0000	
	 r1	=	0001	
	 …	
	 r15	=	1111	

The	immed-3	Uield	is	used	in	the	CHECKADDR	instruction	and	is	interpreted	as	a	
code	indicating	which	sort	of	check	to	perform.	

The	immed-6	Uield	is	used	in	the	shifting	instructions	and	is	interpreted	as	a	
positive	number,	i.e.,	the	number	of	bits	to	shift	by.	

The	immed-10	Uield	is	only	used	in	the	SYSCALL	instruction	and	is	interpreted	as	a	
positive	number.	

The	immed-16	and	immed-20	Uields	are	signed-extended	to	64	bits,	unless	
explicitly	noted	otherwise.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	43 344

Chapter	4:	Instruction	Formats	

	 Smallest	 Largest	 Number													
	 		Value					 		Value						 													of	Values													 	
	 reg	 r0	 r15	 16	 =	24	
	 immed-3	 0	 7	 8	 =	23	
	 immed-6	 0	 63	 64	 =	26	
	 immed-10	 0	 1,023	 1,024	 =	210	
	 immed-16	 -32,768	 +32,767	 65,536	 =	216	=	64	Ki	
	 immed-20	 -524,288	 +524,287	 1,048,576	 =	220	=	1	Mi	

Instruction	Formats	

FIGURE:	Instruction	Formats	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	44 344

Chapter	4:	Instruction	Formats	

When	giving	the	binary	patterns	for	the	various	instruction	formats	below,	we	use	
the	following	notation	to	represent	bit	Uields.	

	 DDDD	=	RegD	
	 1111	=	Reg1	
	 2222	=	Reg2	
	 3333	=	Reg3	
	 VVVVVVVV	=	Immediate	value	
	 XXXXXXXX	=	Op-code	
	 00000000	=	Zero	bits	

For	some	instructions,	one	or	more	of	the	Uields	may	be	unused.	

Unused	Uields	are	ignored.	The	assembler	should	Uill	them	with	zeros,	but	the	do	not	
affect	the	core’s	execution.	

For	example,	the	ADD	instruction	is	a	Format-A	instruction,	which	has	room	for	4	
register	operands.	However	the	ADD	instruction	only	uses	3	registers.	The	
remaining	Uield	is	unused	for	ADD.	

The	shorter	immediate	values	(i.e.,	immed-3,	immed-6,	and	immed-10)	are	
encoded	as	16	bit	values	with	the	upper	bits	being	unused	and	ignored.	

	 Format-A	instructions:	
	 	 Operands:	
	 	 	 RegD,Reg1,Reg2,Reg3	
	 	 Binary	Encoding:	

0000 0000 XXXX XXXX 3333 2222 1111 DDDD
	 	 Examples:	

SYSRET # Return from trap handler
CHECKH r4 # Ensure r4 is within 16 bits
SEXTW r4,r6 # r4 ← SignExtend(r6)
ADD r4,r6,r7 # r4 ← r6+r7

	 Format-B	instructions:	
	 	 Operands:	
	 	 	 RegD,Reg1,immed-16	
	 	 Binary	Encoding:	

00XX XXXX VVVV VVVV VVVV VVVV 1111 DDDD
	 	 Examples:	

ADDI r4,r6,1234 # r4 ← r6+1234
LOAD.B r6,1234(r4) # r6 ← Mem[1234+r4]

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	45 344

Chapter	4:	Instruction	Formats	

	 Format-C	instructions:	
	 	 Operands:	
	 	 	 Reg1,Reg2,immed-16	
	 	 Binary	Encoding:	

00XX XXXX VVVV VVVV VVVV 2222 1111 VVVV
	 	 Examples:	

B.LT r4,r6,loop # if r4<r6, goto offset(pc)
STORE.B 1234(r4),r6 # Mem[1234+r4] ← r6

	 Format-D	instructions:	
	 	 Operands:	
	 	 	 RegD,immed-20	
	 	 Binary	Encoding:	

00XX XXXX VVVV VVVV VVVV VVVV VVVV DDDD	
	 	 Examples:	

JAL lr,MyFunc # call: pc←offset+pc; lr←ret addr
UPPER20 r4,0x3A4B5 # r4 ← (0x3A4B5 << 16)

Operand	Syntax	

In	assembly	language,	the	instruction	operands	are	speciUied	in	several	different	
ways.	

	 General	Form	 Example	
	 Format-A	
	 	 A-0	 OP	<no	operands>	 sysret	
	 	 A-1	 OP	Reg1	 checkb r1	
	 	 A-2	 OP	RegD,Reg1	 sextb r7,r1	
	 	 A-3	 OP	RegD,Reg1,Reg2	 add r7,r1,r2	
	 	 A-4	 OP	RegD,Reg1,Reg2,Reg3	 muladd	 r7,r1,r2,r3	
	 	 A-5	 					<	No	longer	used	>	
	 	 A-6	 					<	No	longer	used	>	
	 	 A-7	 OP	RegD,CSRReg1,Reg2	 csrswap	 r7,csr1,r2	
	 	 A-8	 OP	RegD,CSRReg1	 csread	 r7,csr1	
	 	 A-9	 OP	RegD	 getstat	 r7	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	46 344

Chapter	4:	Instruction	Formats	

	 Format-B	
	 	 B-1	 OP	RegD,Reg1,immed-16	 addi r7,r1,0x1234	
	 	 B-2	 OP	RegD,immed-16(Reg1)	 load.b r7,offset(r1)	
	 	 B-3	 OP	RegD,Reg1,immed-3	 checkaddr r7,r1,5	
	 	 B-4	 OP	immed-10	 syscall 123	
	 	 B-5	 OP	RegD,Reg1,immed-6	 slli r7,r1,5	
	 	 B-6	 OP	CSRReg1,immed-16	 csrset csr_status,0x1234	
	 Format-C	
	 	 C-1	 OP	immed-16(Reg1),Reg2	 store.b offset(r1),r2	
	 	 C-2	 OP	Reg1,Reg2,immed-16	 b.le r1,r2,MyLabel	
	 Format-D	
	 	 D-1	 OP	RegD,immed-20	 jal lr,MyLabel	

Notice	that	the	destination	is	almost	always	the	Uirst	(leftmost)	operand.	This	is	easy	
to	remember	since	this	order	mimics	the	order	of	an	assignment	statement	in	a	
high-level	programming	language.	

	 Typical	assignment	statement:	
	 	 destination	=	…expr…	;	
	 Blitz	assembler:	
	 	 RegD,	…other	operands…	

For	the	branching	instructions,	the	operand	order	mimics	an	“if”	statement.	

	 Typical	“if”	statement:	
	 	 if	(x	<=	y)	then	go	to	MyLabel	
	 Blitz	assembler:	

B.LE r1,r2,MyLabel

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	47 344

Chapter	5:	Instructions	

Don’t	leave	the	classroom	of	pain	without	
gathering	wisdom	from	its	instruction.	

	 	 	 —	Tim	Hiller	

Machine	Instructions	versus	Synthetic	Instructions	

A	machine	instruction	is	implemented	in	hardware.	Each	machine	instruction	has	
a	single	numeric	opcode	and,	in	assembly	code,	the	opcode	is	indicated	with	a	
symbolic	name,	such	as	“ADD”	or	“SLL”.	

Synthetic	instructions	are	not	implemented	in	hardware.	Instead,	each	synthetic	
instruction	is	processed	by	the	assembler	and/or	linker	and	translated	into	machine	
instructions.	

Each	synthetic	instruction	has	a	symbolic	opcode,	such	as	“LOADD”	or	“CALL”,	so	the	
synthetic	instructions	may	be	difUicult	to	distinguish	when	looking	at	an	assembly	
code	program.	

Typically,	each	synthetic	instruction	is	translated	into	a	single	machine	instruction,	
but	in	some	cases	the	translation	will	be	2,	3,	or	4	machine	instructions.	The	
processor	core	does	not	see	or	execute	synthetic	instructions.	

An	Instruction	Set	Architecture	(ISA)	normally	deUines	only	machine	instructions,	
because	that	is	all	that	hardware	designers	need	in	a	speciUication	of	what	to	
implement.	However,	this	document	also	includes	descriptions	of	synthetic	
instructions,	alongside	the	machine	instructions,	making	an	easy	reference	for	
programmers.	

In	the	instruction	listings,	synthetic	instructions	are	identiUied	by	marking	them	
with	an	asterisk	(*)	preUixing	the	symbolic	opcode,	as	in	*LOADD	or	*CALL.	This	
asterisk	is	only	used	in	this	documentation	to	make	it	easy	to	identify	the	synthetic	
instructions.	The	asterisk	is	not	part	of	the	assembly	language.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	48 344

Chapter	5:	Instructions	

All	Instructions	-	Summary	Listing	

Arithmetic	

	 ADD		 RegD,Reg1,Reg2	
	 ADDI		 RegD,Reg1,immed-16	
	 ADDOK		 RegD,Reg1,Reg2		 RegD	←	(Reg1+Reg2	overUlows)	?	0	:	1	
	 ADD3		 RegD,Reg1,Reg2,Reg3		 RegD	←	Reg1+Reg2+Reg3	(unsigned)	
	 SUB		 RegD,Reg1,Reg2	
*	MUL	 RegD,Reg1,Reg2	
	 MULADD	 RegD,Reg1,Reg2,Reg3	 RegD	←	(Reg1	×	Reg2)	+	Reg3	
	 MULADDU	 RegD,Reg1,Reg2,Reg3	 RegD	←	(Reg1	×	Reg2)	+	Reg3	(unsigned)	
	 DIV		 RegD,Reg1,Reg2	
	 REM		 RegD,Reg1,Reg2	
*	NEG		 RegD,Reg1	
*	ABS		 RegD,Reg1	

Logical	

	 AND		 RegD,Reg1,Reg2	
	 ANDI		 RegD,Reg1,immed-16	
	 OR		 RegD,Reg1,Reg2	
	 ORI		 RegD,Reg1,immed-16	
	 XOR		 RegD,Reg1,Reg2	
	 XORI		 RegD,Reg1,immed-16	
*	BITNOT		 RegD,Reg1	 RedD	←	Bitwise	NOT	(Reg1)	
*	LOGNOT		 RegD,Reg1		 RegD	←	(Reg1	=	0)	?	1	:	0	

Move	

*	MOV		 RegD,Reg1	
*	MOVI		 RegD,immediate-64	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	49 344

Chapter	5:	Instructions	

Shift	

	 SLL		 RegD,Reg1,Reg2	 Shift	left	logical	
	 SLLI		 RegD,Reg1,immed-6	
	 SLA		 RegD,Reg1,Reg2	 Shift	left	arithmetic	
	 SLAI		 RegD,Reg1,immed-6	

	 SRL		 RegD,Reg1,Reg2	 Shift	right	logical	
	 SRLI		 RegD,Reg1,immed-6	
	 SRA		 RegD,Reg1,Reg2	 Shift	right	arithmetic	
	 SRAI		 RegD,Reg1,immed-6	

	 ROTR		 RegD,Reg1,Reg2		 Rotate	right	(circular)	
	 ROTRI		 RegD,Reg1,immed-6	

Sign	Extension	

	 SEXTB		 RegD,Reg1	 Sign	extend	byte	to	64	bits	
	 SEXTH		 RegD,Reg1		 Sign	extend	16	bits	to	64	bits	
	 SEXTW		 RegD,Reg1		 Sign	extend	32	bits	to	64	bits	

Range	Checking	

	 NULLTEST		 Reg1	 Trap	if	Reg1	is	contains	NULL	
	 CHECKB		 Reg1	 Trap	if	Reg1	not	within	-128	…	+127	
	 CHECKH		 Reg1	 Trap	if	Reg1	not	within	-32768	…	+32767	
	 CHECKW		 Reg1	 Trap	if	Reg1	not	within	32	bit	range	
	 INDEX0		 RegD,Reg1,Reg2,Reg3	 Reg1=arrayPtr,	Reg2=header,	Reg3=index	
	 INDEX1		 RegD,Reg1,Reg2,Reg3	 .			RegD	←	Reg1	+	8	+	(Reg3	*	scale)	
	 INDEX2		 RegD,Reg1,Reg2,Reg3	 .			Reg2	=		header	=	[ArrayMAX	||	ArrayCURR]	
	 INDEX4		 RegD,Reg1,Reg2,Reg3	 .			Trap	if	(Reg3	<	0)	or	(Reg3	≥	ArrayCURR)	
	 INDEX8		 RegD,Reg1,Reg2,Reg3	 .																										or	(ArrayMAX	=	0)	
	 INDEX16		 RegD,Reg1,Reg2,Reg3	 .	
	 INDEX24		 RegD,Reg1,Reg2,Reg3	 .	
	 INDEX32		 RegD,Reg1,Reg2,Reg3	 .	

Byte	Reordering	

	 ENDIANH		 RegD,Reg1	 Reorder	bytes	in	all	4	halfwords	
	 ENDIANW		 RegD,Reg1		 Reorder	bytes	in	both	words	
	 ENDIAND		 RegD,Reg1		 Reorder	bytes	in	a	doubleword	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	50 344

Chapter	5:	Instructions	

Test	and	Set	a	Boolean	

	 TESTEQ		 RegD,Reg1,Reg2		 RegD	←	(Reg1	=	Reg2)	?	1	:	0	
	 TESTNE		 RegD,Reg1,Reg2		 RegD	←	(Reg1	≠	Reg2)	?	1	:	0	
	 TESTLT		 RegD,Reg1,Reg2		 RegD	←	(Reg1	<	Reg2)	?	1	:	0	
	 TESTLE		 RegD,Reg1,Reg2		 RegD	←	(Reg1	≤	Reg2)	?	1	:	0	
*	TESTGT		 RegD,Reg1,Reg2		 RegD	←	(Reg1	>	Reg2)	?	1	:	0	
*	TESTGE		 RegD,Reg1,Reg2		 RegD	←	(Reg1	≥	Reg2)	?	1	:	0	

	 TESTEQI		 RegD,Reg1,immed-16	 RegD	←	(Reg1	=	immed)	?	1	:	0	
	 TESTNEI		 RegD,Reg1,immed-16		RegD	←	(Reg1	≠	immed)	?	1	:	0	
	 TESTLTI		 RegD,Reg1,immed-16		RegD	←	(Reg1	<	immed)	?	1	:	0	
	 TESTLEI		 RegD,Reg1,immed-16		RegD	←	(Reg1	≤	immed)	?	1	:	0	 	
	 TESTGTI		 RegD,Reg1,immed-16	 RegD	←	(Reg1	>	immed)	?	1	:	0	 	
	 TESTGEI		 RegD,Reg1,immed-16	 RegD	←	(Reg1	≥	immed)	?	1	:	0	 	

*	TESTEQZ		 RegD,Reg1		 RegD	←	(Reg1	=	0)	?	1	:	0,	i.e.,	if	zero	
*	TESTNEZ		 RegD,Reg1		 RegD	←	(Reg1	≠	0)	?	1	:	0,	i.e.,	if	non-zero	
*	TESTLTZ		 RegD,Reg1		 RegD	←	(Reg1	<	0)	?	1	:	0,	i.e.,	if	negative	
*	TESTLEZ		 RegD,Reg1		 RegD	←	(Reg1	≤	0)	?	1	:	0,	i.e.,	if	non-positive	
*	TESTGTZ		 RegD,Reg1		 RegD	←	(Reg1	>	0)	?	1	:	0,	i.e.,	if	positive	
*	TESTGEZ		 RegD,Reg1		 RegD	←	(Reg1	≥	0)	?	1	:	0,	i.e.,	if	non-negative	

Branch	-	Limited	Range	

	 B.EQ		 Reg1,Reg2,immed-16	 Branch	if	Reg1	=	Reg2;	Offset	is	PC-relative	
	 B.NE		 Reg1,Reg2,immed-16		Branch	if	Reg1	≠	Reg2;	Offset	is	PC-relative	
	 B.LT		 Reg1,Reg2,immed-16		Branch	if	Reg1	<	Reg2;	Offset	is	PC-relative	
	 B.LE		 Reg1,Reg2,immed-16		Branch	if	Reg1	≤	Reg2;	Offset	is	PC-relative	

Branch	-	General	

*	BEQ		 Reg1,Reg2,address	 Branch	if	Reg1	=	Reg2	
*	BNE		 Reg1,Reg2,address		 Branch	if	Reg1	≠	Reg2	
*	BLT		 Reg1,Reg2,address		 Branch	if	Reg1	<	Reg2	
*	BLE		 Reg1,Reg2,address		 Branch	if	Reg1	≤	Reg2	
*	BGT		 Reg1,Reg2,address	 Branch	if	Reg1	>	Reg2	
*	BGE		 Reg1,Reg2,address		 Branch	if	Reg1	≥	Reg2	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	51 344

Chapter	5:	Instructions	

*	BEQI		 Reg,value,address	 Branch	if	Reg	=	immediate	value	
*	BNEI		 Reg,value,address		 Branch	if	Reg	≠	immediate	value	
*	BLTI		 Reg,value,address	 Branch	if	Reg	<	immediate	value	
*	BLEI		 Reg,value,address	 Branch	if	Reg	≤	immediate	value		
*	BGTI		 Reg,value,address	 Branch	if	Reg	>	immediate	value	
*	BGEI		 Reg,value,address	 Branch	if	Reg	≥	immediate	value	

*	BEQZ		 Reg,address	 Branch	if	Reg	=	0	
*	BNEZ		 Reg,address		 Branch	if	Reg	≠	0	
*	BLTZ		 Reg,address	 Branch	if	Reg	<	0,	i.e.,	if	negative	
*	BLEZ		 Reg,address	 Branch	if	Reg	≤	0,	i.e.,	if	not	positive		
*	BGTZ		 Reg,address	 Branch	if	Reg	>	0,	i.e.,	if	positive	
*	BGEZ		 Reg,address	 Branch	if	Reg	≥	0,	i.e.,	if	not	negative	

*	BFALSE		 Reg,address	 Branch	if	Reg	=	0,	i.e.,	if	“false”	
*	BTRUE	 Reg,address	 Branch	if	Reg	≠	0,	i.e.,	if	“true”	

Larger	Addresses	

	 UPPER20		 RegD,immed-20	 RegD	←	(immed<<16)	
	 UPPER16		 RegD,Reg1,immed-16	 RegD	←	(immed<<16)	+	Reg1	
	 SHIFT16		 RegD,Reg1,immed-16	 RegD	←	(Reg1	+	immed-16)	<<	16	
	 ADDPC		 RegD,immed-20	 RegD	←	immed	+	PC	
	 AUIPC		 RegD,immed-20	 RegD	←	(immed<<16)	+	PC	

Jumping	-	Limited	Range	

	 JAL		 RegD,immed-20	 RegD	←	return	addr;	Target	←	PC+offset	
	 JALR		 RegD,immed-16(Reg1)	 RegD	←	return	addr;	Target	←	offset+Reg1	

Call	/	Jump	/	Return	-	General	

*	CALL		 address	 Jump	to	any	address;	save	return	addr	in	“lr”	
*	CALLR		 Reg1	 Jump	to	address;	save	return	addr	in	“lr”	
*	RET		 <no	operands>	 Return	value	is	in	link	register	“lr”	
*	JUMP		 address	 Jump	to	any	address	
*	JR		 Reg1	 Indirect	jump,	via	register	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	52 344

Chapter	5:	Instructions	

Load	-	Limited	Range	

	 LOAD.B		 RegD,immed-16(Reg1)	 Sign	extend	8	bits	to	64	bits	
	 LOAD.H		 RegD,immed-16(Reg1)		 Sign	extend	16	bits	to	64	bits	
	 LOAD.W		 RegD,immed-16(Reg1)		 Sign	extend	32	bits	to	64	bits	
	 LOAD.D		 RegD,immed-16(Reg1)	

Load	-	General	

*	LOADB		 RegD,address	
*	LOADH		 RegD,address	
*	LOADW		 RegD,address	
*	LOADD		 RegD,address	

*	LOADB		 RegD,offset(Reg1)	
*	LOADH		 RegD,offset(Reg1)	
*	LOADW		 RegD,offset(Reg1)	
*	LOADD		 RegD,offset(Reg1)	

Store	-	Limited	Range	

	 STORE.B		 immed-16(Reg1),Reg2	 Ignore	upper	56	bits	
	 STORE.H		 immed-16(Reg1),Reg2		 Ignore	upper	48	bits	
	 STORE.W		 immed-16(Reg1),Reg2		 Ignore	upper	32	bits	
	 STORE.D		 immed-16(Reg1),Reg2	

Store	-	General	

*	STOREB		 address,Reg2	
*	STOREH		 address,Reg2	
*	STOREW		 address,Reg2	
*	STORED		 address,Reg2	

*	STOREB		 offset(Reg1),Reg2	
*	STOREH		 offset(Reg1),Reg2	
*	STOREW		 offset(Reg1),Reg2	
*	STORED		 offset(Reg1),Reg2	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	53 344

Chapter	5:	Instructions	

Support	for	Unaligned	Loads	and	Stores	

	 ALIGNH		 RegD,Reg1,Reg2,Reg3	
	 ALIGNW		 RegD,Reg1,Reg2,Reg3	
	 ALIGND		 RegD,Reg1,Reg2,Reg3	

	 INJECT1H		 RegD,Reg1,Reg2,Reg3	
	 INJECT2H		 RegD,Reg1,Reg2,Reg3	
	 INJECT1W		 RegD,Reg1,Reg2,Reg3	
	 INJECT2W		 RegD,Reg1,Reg2,Reg3	
	 INJECT1D		 RegD,Reg1,Reg2,Reg3	
	 INJECT2D		 RegD,Reg1,Reg2,Reg3	

Miscellaneous	

	 SYSCALL		 immed-10	 immed-10	selects	one	of	1,024	syscalls	
	 SYSRET		 <no	operands>	
*	NOP		 <no	operands>	
	 ILLEGAL		 <no	operands>	
	 SLEEP1		 <no	operands>	 Enter	light	sleep	state	
	 SLEEP2		 <no	operands>	 Enter	deep	sleep	state	
	 RESTART		 <no	operands>	 Same	as	Power-On-Reset	
	 DEBUG		 <no	operands>	
	 BREAKPOINT		<no	operands>	
	 CONTROL		 RegD,Reg1,immed-16	
	 CONTROLU		 RegD,Reg1,immed-16	
	 CAS		 RegD,Reg1,Reg2,Reg3	Compare	and	Set:	If	*r1=r2	then	*r1←r3	
	 FENCE	 <no	operands>	

CSR	Manipulation	

	 CSRSWAP		 RegD,CSRReg1,Reg2	 RegD	←	CSR;	CSR	←	Reg2	
	 CSRREAD		 RegD,CSRReg1	 Reg1	encodes	CSR;	RegD	←	CSR	
*	CSRWRITE		 CSRReg1,Reg2	 Reg1	encodes	CSR;	CSR	←	Reg2	
	 CSRSET		 CSRReg1,immed-16	 Set	selected	bits	in	CSR	
	 CSRCLR		 CSRReg1,immed-16		 Clear	selected	bits	in	CSR	
	 GETSTAT		 RegD	 RegD	←	CSR_STATUS	&	0x0000…03f8	
	 PUTSTAT		 Reg1	 CSR_STATUS	[9:3]	←	Reg1	[9:3]	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	54 344

Chapter	5:	Instructions	

Memory	Management	Unit	

	 TLBCLEAR	 <no	operands>	 Invalidate	all	TLBs	for	current	ASID	
	 TLBFLUSH		 Reg1	 Invalidate	TLB	for	virtual	address	in	Reg1	
	 CHECKADDR	 RegD,Reg1,immed-3	 Reg1	=	virt	addr;	RegD	←	except.	code	or	0	

Floating	Point	

	 FADD		 RegD,Reg1,Reg2	 RegD	←	Reg1	+	Reg2	
	 FSUB		 RegD,Reg1,Reg2	 RegD	←	Reg1	-	Reg2		
	 FMUL		 RegD,Reg1,Reg2		 RegD	←	Reg1	×	Reg2	
	 FDIV		 RegD,Reg1,Reg2		 RegD	←	Reg1	/	Reg2	
	 FMIN		 RegD,Reg1,Reg2		 RegD	←	MIN	(Reg1,	Reg2)	
	 FMAX		 RegD,Reg1,Reg2		 RegD	←	MAX	(Reg1,	Reg2)	
	 FNEG		 RegD,Reg1		 RegD	←	-Reg1	
	 FABS		 RegD,Reg1		 RegD	←	ABSOLUTE_VALUE	(Reg1)	
	 FSQRT		 RegD,Reg1		 RegD	←	SQUARE_ROOT	(Reg1)	
	 FEQ		 RegD,Reg1,Reg2		 RegD	←	(Reg1	=	Reg2)	?	1	:	0	(Uloat	compare)	
	 FLT		 RegD,Reg1,Reg2	 RegD	←	(Reg1	<	Reg2)	?	1	:	0	(Uloat	compare)	
	 FLE		 RegD,Reg1,Reg2		 RegD	←	(Reg1	≤	Reg2)	?	1	:	0	(Uloat	compare)	
*	FGT		 RegD,Reg1,Reg2	 RegD	←	(Reg1	>	Reg2)	?	1	:	0	(Uloat	compare)	
*	FGE		 RegD,Reg1,Reg2		 RegD	←	(Reg1	≥	Reg2)	?	1	:	0	(Uloat	compare)	
	 FCVTFI		 RegD,Reg1	 Convert:	Uloating-point	←	int	
	 FCVTIF		 RegD,Reg1	 Convert:	int	←	Uloating-point	
	 FMADD		 RegD,Reg1,Reg2,Reg3	 RegD	←	(Reg1	×	Reg2)	+	Reg3	
	 FNMADD		 RegD,Reg1,Reg2,Reg3	 RegD	←	(-(Reg1	×	Reg2))	+	Reg3	
	 FMSUB		 RegD,Reg1,Reg2,Reg3	 RegD	←	(Reg1	×	Reg2)	-	Reg3	
	 FNMSUB		 RegD,Reg1,Reg2,Reg3	 RegD	←	(-(Reg1	×	Reg2))	-	Reg3	

Machine	Instructions,	Grouped	By	Format	

Here	is	a	complete	list	of	the	Blitz-64	machine	instruction	set.	

The	headers	give	the	format	that	assembly	language	programmers	will	use.	These	
are	followed	by	all	the	instructions	that	Uit	the	pattern,	with	example	operands	and	
comments,	to	give	a	hint	at	what	each	instruction	does.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	55 344

Chapter	5:	Instructions	

	 Format	A-0	 <no	operands>	
	 	 ILLEGAL Canonical	form	of	illegal	instruction
	 	 SYSRET PC	←	csr_prev;	csr_status	←	csr_stat2
	 	 SLEEP1 Enter	light	sleep	state
	 	 SLEEP2 Enter	deep	sleep	state
	 	 RESTART Same	as	Power-On-Reset
	 	 DEBUG
	 	 BREAKPOINT
	 	 FENCE	 	
	 	 TLBCLEAR	 Invalidate	all	TLBs	for	current	ASID	

	 Format	A-1	 Reg1	
	 	 NULLTEST	 r1 Trap	if	reg	contains	NULL
	 	 CHECKB	 r1 Trap	if	reg	not	within	-128	…	+127
	 	 CHECKH	 r1 Trap	if	reg	not	within	-32768	…	+32767
	 	 CHECKW	 r1 Trap	if	reg	not	within	32	bit	range

PUTSTAT r1 CSR_STATUS	[9:3]	←	Reg1	[9:3]
TLBFLUSH r1 Invalidate	TLB	for	virtual	address	in	Reg1

	 Format	A-2	 RegD,Reg1	
	 	 ENDIANH	 r7,r1 Reorder	bytes:	76543210	→	67452301
	 	 ENDIANW	 r7,r1	 Reorder	bytes:	76543210	→	45670123
	 	 ENDIAND	 r7,r1	 Reorder	bytes:	76543210	→	01234567
	 	 SEXTB	 r7,r1 Sign	extend	byte	to	64	bits
	 	 SEXTH	 r7,r1	 Sign	extend	16	bits	to	64	bits
	 	 SEXTW	 r7,r1	 Sign	extend	32	bits	to	64	bits
	 	 FNEG	 r7,r1
	 	 FABS	 r7,r1
	 	 FSQRT	 r7,r1
	 	 FCVTFI	 r7,r1 Convert:	Uloating-point	←	int
	 	 FCVTIF	 r7,r1 Convert:	int	←	Uloating-point

	 Format	A-3	 RegD,Reg1,Reg2	
	 	 ADD	 r7,r1,r2
	 	 ADDOK	 r7,r1,r2
	 	 SUB	 r7,r1,r2
	 	 DIV	 r7,r1,r2
	 	 REM	 r7,r1,r2
	 	 AND	 r7,r1,r2

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	56 344

Chapter	5:	Instructions	

	 	 OR	 r7,r1,r2
	 	 XOR	 r7,r1,r2
	 	 SLL	 r7,r1,r2
	 	 SLA	 r7,r1,r2 Shift-left-arithmetic;	checks	for	overUlow
	 	 SRL	 r7,r1,r2
	 	 SRA	 r7,r1,r2
	 	 ROTR	 r7,r1,r2	 Rotate	right	(circular)
	 	 TESTEQ	 r7,r1,r2	 RegD	←	(Reg1	=	Reg2)	?	1	:	0
	 	 TESTNE	 r7,r1,r2	 RegD	←	(Reg1	≠	Reg2)	?	1	:	0
	 	 TESTLT	 r7,r1,r2	 RegD	←	(Reg1	<	Reg2)	?	1	:	0
	 	 TESTLE	 r7,r1,r2	 RegD	←	(Reg1	≤	Reg2)	?	1	:	0
	 	 FADD	 r7,r1,r2
	 	 FSUB	 r7,r1,r2
	 	 FMUL	 r7,r1,r2
	 	 FDIV	 r7,r1,r2
	 	 FMIN	 r7,r1,r2
	 	 FMAX	 r7,r1,r2
	 	 FEQ	 r7,r1,r2	 RegD	←	(Reg1	=	Reg2)	?	1	:	0	(Uloat	compare)
	 	 FLT	 r7,r1,r2 RegD	←	(Reg1	<	Reg2)	?	1	:	0	(Uloat	compare)
	 	 FLE	 r7,r1,r2	 RegD	←	(Reg1	≤	Reg2)	?	1	:	0	(Uloat	compare)

	 Format	A-4	 RegD,Reg1,Reg2,Reg3	
	 	 ADD3		 r7,r1,r2,r3	 Reg3	←	Reg1+Reg2+Reg3	(unsigned)	
	 	 MULADD	 r7,r1,r2,r3 RegD	←	(Reg1	×	Reg2)	+	Reg3	
	 	 MULADDU	 r7,r1,r2,r3 RegD	←	(Reg1	×	Reg2)	+	Reg3	(unsigned)	
	 	 INDEX0	 r7,r1,r2,r3 Reg1=arrayPtr,	Reg2=header,	Reg3=index	
	 	 INDEX1	 r7,r1,r2,r3 .			RegD	←	Reg1	+	8	+	(Reg3	*	scale)	
	 	 INDEX2	 r7,r1,r2,r3 .			Reg2=header=[ArrayMAX||ArrayCURR]	
	 	 INDEX4	 r7,r1,r2,r3 .			Trap	if	(Reg3	<	0)	or	(Reg3	≥	ArrayCURR)	
	 	 INDEX8	 r7,r1,r2,r3 .																										or	(ArrayMAX	=	0)	
	 	 INDEX16	 r7,r1,r2,r3 .	
	 	 INDEX24	 r7,r1,r2,r3 .	
	 	 INDEX32	 r7,r1,r2,r3 .	
	 	 ALIGNH		 r7,r1,r2,r3	 Reg3	(unaligned	addr)	gives	shift	amount	
	 	 ALIGNW		 r7,r1,r2,r3	 Reg3	(unaligned	addr)	gives	shift	amount	
	 	 ALIGND		 r7,r1,r2,r3	 Reg3	(unaligned	addr)	gives	shift	amount	
	 	 INJECT1H		 r7,r1,r2,r3	 RegD	←	Reg1;	inject	Reg2	per	addr	in	Reg3		
	 	 INJECT2H		 r7,r1,r2,r3	 RegD	←	Reg1;	inject	Reg2	per	addr	in	Reg3	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	57 344

Chapter	5:	Instructions	

	 	 INJECT1W		 r7,r1,r2,r3	 RegD	←	Reg1;	inject	Reg2	per	addr	in	Reg3	
	 	 INJECT2W	 r7,r1,r2,r3	 RegD	←	Reg1;	inject	Reg2	per	addr	in	Reg3	
	 	 INJECT1D		 r7,r1,r2,r3	 RegD	←	Reg1;	inject	Reg2	per	addr	in	Reg3	
	 	 INJECT2D		 r7,r1,r2,r3	 RegD	←	Reg1;	inject	Reg2	per	addr	in	Reg3	
	 	 CAS	 r7,r1,r2,r3 Compare	and	Set:	If	*r1=r2	then	*r1←r3	
	 	 FMADD	 r7,r1,r2,r3 RegD	←	(Reg1	×	Reg2)	+	Reg3
	 	 FNMADD	 r7,r1,r2,r3 RegD	←	(-(Reg1	×	Reg2))	+	Reg3
	 	 FMSUB	 r7,r1,r2,r3 RegD	←	(Reg1	×	Reg2)	-	Reg3
	 	 FNMSUB	 r7,r1,r2,r3 RegD	←	(-(Reg1	×	Reg2))	-	Reg3	

	 Format	A-5	 Reg1,Reg2	
	 	 <	No	longer	used	>	

	 Format	A-6	 Reg2	
	 	 <	No	longer	used	>	

	 Format	A-7	 RegD,Reg1,Reg2	
	 	 CSRSWAP	 r7,csr,r2 Reg1	encodes	CSR;	RegD	←	CSR;	CSR	←	Reg2		

	 Format	A-8	 RegD,Reg1	
	 	 CSRREAD	 r7,csr Reg1	encodes	CSR;	RegD	←	CSR;	

	 Format	A-9	 RegD	
	 	 GETSTAT	 r7 RegD	←	CSR_STATUS	&	0x0000…03f8		

	 Format	B-1	 RegD,Reg1,immed-16	
	 	 ADDI	 r7,r1,0x1234
	 	 ANDI	 r7,r1,0x1234
	 	 ORI	 r7,r1,0x1234
	 	 XORI	 r7,r1,0x1234
	 	 TESTEQI	 r7,r1,0x1234 RegD	←	(Reg1=immed)	?	1	:	0
	 	 TESTNEI	 r7,r1,0x1234	 RegD	←	(Reg1≠immed)	?	1	:	0
	 	 TESTLTI	 r7,r1,0x1234	 RegD	←	(Reg1<immed)	?	1	:	0
	 	 TESTLEI	 r7,r1,0x1234	 RegD	←	(Reg1≤immed)	?	1	:	0
	 	 TESTGTI	 r7,r1,0x1234	 RegD	←	(Reg1<immed)	?	1	:	0
	 	 TESTGEI	 r7,r1,0x1234	 RegD	←	(Reg1≥	immed)	?	1	:	0
	 	 UPPER16	 r7,r1,0x1234 RegD	←	(immed<<16)	+	Reg1
	 	 SHIFT16	 r7,r1,0x1234 RegD	←	(Reg1+immed)	<<	16	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	58 344

Chapter	5:	Instructions	

	 	 CONTROL	 r7,r1,0x1234
	 	 CONTROLU	 r7,r1,0x1234

	 Format	B-2	 RegD,immed-16(Reg1)	
	 	 LOAD.B	 r7,offset(r1) Value	is	sign-extended	to	64	bits
	 	 LOAD.H	 r7,offset(r1) .			May	cause	unaligned	exception
	 	 LOAD.W	 r7,offset(r1) .			No	overUlow	check	on	addr	calculation
	 	 LOAD.D	 r7,offset(r1)
	 	 JALR	 lr,offset(r1) RegD	←	return	addr;	Target	←	offset+Reg1	

	 Format	B-3	 RegD,Reg1,immed-3	
	 	 CHECKADDR	r7,r1,5 Reg1	=	virt	addr;	RegD	←	except.	code	or	0

	 Format	B-4	 immed-10	
	 	 SYSCALL	 123 immed-10	selects	one	of	1,024	syscalls	

	 Format	B-5	 RegD,Reg1,immed-6	
	 	 SLLI	 r7,r1,5
	 	 SLAI	 r7,r1,5	 Shift-left-arithmetic	checks	for	overUlow
	 	 SRLI	 r7,r1,5
	 	 SRAI	 r7,r1,5
	 	 ROTRI	 r7,r1,5	 Rotate	right	(circular)	

	 Format	B-6	 Reg1,immed-16	
	 	 CSRSET	 csr,0x1234 Reg1	encodes	CSR;	Set	selected	bits	in	CSR
	 	 CSRCLR	 csr,0x1234	 Reg1	encodes	CSR;	Clear	selected	bits	in	CSR

	 Format	C-1	 immed-16(Reg1),Reg2	
	 	 STORE.B	 offset(r1),r2	 Upper	bits	in	reg	are	ignored
	 	 STORE.H	 offset(r1),r2	 .			May	cause	unaligned	exception
	 	 STORE.W	 offset(r1),r2	 .			No	overUlow	check	on	addr	calculation
	 	 STORE.D	 offset(r1),r2

	 Format	C-2	 Reg1,Reg2,immed-16	
	 	 B.EQ	 r1,r2,MyLabel Branch	if	Reg1=Reg2;	Offset	is	PC-relative
	 	 B.NE	 r1,r2,MyLabel	 Branch	if	Reg1≠Reg2;	Offset	is	PC-relative
	 	 B.LT	 r1,r2,MyLabel	 Branch	if	Reg1<Reg2;	Offset	is	PC-relative
	 	 B.LE	 r1,r2,MyLabel	 Branch	if	Reg1≤Reg2;	Offset	is	PC-relative	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	59 344

Chapter	5:	Instructions	

	 Format	D-1	 RegD,immed-20	
	 	 UPPER20	 r7,MyLabel RegD	←	(immed<<16)
	 	 ADDPC	 r7,MyLabel RegD	←	immed+PC
	 	 AUIPC	 r7,MyLabel RegD	←	(immed<<16)	+	PC
	 	 JAL	 lr,MyLabel RegD	←	return	addr	;	Target	←	PC+immed

The	Instruction	Set	

Next,	we	list	the	Blitz-64	instructions,	including	both	machine	instructions	and	
synthetic	instructions.	In	this	document,	synthetic	instructions	are	identiUied	with	
“*”.	

ADD RegD,Reg1,Reg2
ADDI	 RegD,Reg1,immed-16	 	
SUB	 RegD,Reg1,Reg2	 	
*MUL	 RegD,Reg1,Reg2	 	
DIV	 RegD,Reg1,Reg2	 	
REM	 RegD,Reg1,Reg2	 	
AND	 RegD,Reg1,Reg2	 	
ANDI	 RegD,Reg1,immed-16	 	
OR	 RegD,Reg1,Reg2	 	
ORI	 RegD,Reg1,immed-16	 	
XOR	 RegD,Reg1,Reg2	 		
XORI	 RegD,Reg1,immed-16	 	

May	cause	an	“Arithmetic	Exception”	

All	computations	are	performed	using	64	bit	values	and	the	arithmetic	instructions	
are	performed	with	signed,	two’s	complement	arithmetic.	

The	operands	are	either	in	Reg1	and	Reg2,	or	in	Reg1	and	an	immediate	value	
embedded	in	the	instruction.	The	result	is	placed	into	RegD.	

For	the	immediate-form	instructions,	the	16	bit	immediate	value	is	signed	extended	
to	64	bits.	Thus,	any	value	within	the	range	-32,768	…	32,767	may	be	used.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	60 344

Chapter	5:	Instructions	

It	is	the	assembly	programmer’s	or	compiler’s	responsibility	to	ensure	that	the	
immediate	value	is	within	range.	If	the	value	is	out	of	range,	the	assembler	will	issue	
an	error	message.	If	necessary,	the	programmer	can	always	use	a	MOVI	instruction	
to	move	a	larger	value	into	a	temp	register.	(Register	“t”	is	generally	used	for	things	
like	this.)	

OverUlow	is	always	checked.	The	goal	is	to	catch	all	program	bugs	and	failures,	and	
not	continue	computing	with	incorrect	values,	as	happens	in	other	systems.	

The	following	instructions	will	never	cause	an	exception:	
	 AND,	ANDI,	OR,	ORI,	XOR,	XORI	

The	following	instructions	will	cause	an	“Arithmetic	Exception”	whenever	the	
mathematically	correct	result	is	not	representable.	
	 ADD,	ADDI,	SUB,	MUL	

The	following	instructions	will	cause	an	“Arithmetic	Exception”	in	the	case	of	divide-
by-zero	or	attempt	to	evaluate	MIN_64	/	-1:	
	 DIV,	REM	

The	following	instructions	are	candidates	for	emulation.	Any	attempt	to	execute	an	
unimplemented	instruction	will	result	in	an	“Emulation	Exception”.	
	 DIV,	REM	

The	MUL	instruction	is	synthetic	and	is	shorthand	for:	
	 MULADD	 RegD,Reg1,Reg2,r0	

MULADD RegD,Reg1,Reg2,Reg3	 RegD	←	(Reg1	×	Reg2)	+	Reg3
MULADDU RegD,Reg1,Reg2,Reg3	 RegD	←	(Reg1	×	Reg2)	+	Reg3	(unsigned)

MULADD	may	cause	an	“Arithmetic	Exception”;	MULADDU	causes	no	exceptions	

These	instructions	multiply	the	contents	of	Reg1	and	Reg2,	then	add	the	contents	of	
Reg3,	and	Uinally	place	the	result	in	RegD.	

In	the	case	of	MULADD,	the	arguments	and	the	result	are	treated	as	64	bit	signed	
integers.	If	overUlow	occurs	on	either	the	multiplication	or	addition,	it	will	cause	an	
Arithmetic	Exception.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	61 344

Chapter	5:	Instructions	

In	the	case	of	MULADDU,	the	arguments	and	the	result	are	treated	as	64	bit	
unsigned	integers.	OverUlow	is	ignored	and	no	exception	will	be	raised.	

Note	that	both	instructions	will	produce	the	same	64-bit	result,	unless	of	course	the	
MULADD	causes	an	exception,	in	which	case	it	fails	to	produce	any	result	at	all.	

If	Reg1	is	r0,	then	these	instructions	can	be	used	to	perform	a	simple	multiply;	
signed	in	the	case	of	MULADD	and	unsigned	in	the	case	of	MULADDU.	

The	MULADD	instruction	is	used	to	implement	the	synthetic	MUL	instruction.	The	
MULADDU	instruction	is	useful	for	accessing	arrays.	

Integer	Division	With	Negative	Operands	

Consider	dividing	a	by	n	(that	is,	a/n).	

q		←		a		DIV		n	 #	compute	quotient	
r		←		a		REM		n	 #	compute	remainder	

The	resulting	quotient	(q)	and	remainder	(r)	must	obey	these	equations:	

a	=	nq	+	r	
	 |r|	<	|q|	

With	positive	operands,	this	speciUication	is	unambiguous.	However,	there	always	
remains	a	question	about	how	negative	operands	are	treated.	There	are	several	
competing	deUinitions	which	meet	the	basic	division	deUinition	given	above.	

Many	languages	(C,	C++,	Java)	perform	“truncated	division”:	

q	←	trunc(a/n)	
r	←	a	-	n	trunc(a/n)	

which	produces	these	results:	

 7 DIV 3 = 2 7 REM 3 = 1
-7 DIV 3 = -2 -7 REM 3 = -1
 7 DIV -3 = -2 7 REM -3 = 1
-7 DIV -3 = 2 -7 REM -3 = -1

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	62 344

Chapter	5:	Instructions	

A	second	reasonable	deUinition	is	called	“]loored	division”:	

q	=	⌊a/n⌋	
r	=	a	-	n⌊a/n⌋	

which	produces	the	following	results.	The	dot	(•)	indicates	differences	with	
truncated	division.	

 7 DIV 3 = 2 7 REM 3 = 1
-7 DIV 3 = -3 • -7 REM 3 = 2 •
 7 DIV -3 = -3 • 7 REM -3 = -2 •
-7 DIV -3 = 2 -7 REM -3 = -1

There	is	also	a	third	deUinition	called	“Euclidean	division”,	in	which	the	remainder	
is	never	negative.	The	dot	(•)	indicates	differences	with	both	previous	deUinitions.	

 7 DIV 3 = 2 7 REM 3 = 1
-7 DIV 3 = -3 -7 REM 3 = 2	 same	as	“Zloored”
 7 DIV -3 = -2 7 REM -3 = 1	 same	as	“truncated”
-7 DIV -3 = 3 • -7 REM -3 = 2 • different	from	both	

Which	deUinition	is	better?	The	following	quote	from	Wikipedia	is	pertinent:	

“…	Euclidean	division	is	superior	to	the	other	ones	in	terms	of	regularity	and	
useful	mathematical	properties,	although	Uloored	division	…	is	also	a	good	
deUinition.	Despite	its	widespread	use,	truncated	division	is	shown	to	be	
inferior	to	the	other	deUinitions.”	

— Daan	Leijen,	Division	and	Modulus	for	Computer	Scientists	

The	Blitz-64	spec	leaves	this	decision	open	as	“implementation	dependent”.	

We	chose	to	name	the	instruction	“REM”	and	not	“MOD”	because	“MOD”	is	assumed	
to	mean	“Euclidean	division”,	but	this	may	not	be	the	what	the	implementation	
actually	performs.	

Note	that	“truncated”	and	“Euclidean”	have	identical	results	as	long	as	the	number	
on	top	(the	“dividend”,	which	is	deUined	as	a	in	the	operation	a/n)	is	positive.	

Division	by	a	power	of	2	(i.e.,	when	the	divisor	is	1,2,4,8,16,…)	is	sometimes	
implemented	as	a	right	shift	operation.	For	example,	dividing	by	4	is	implemented	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	63 344

Chapter	5:	Instructions	

with	a	right	shift	of	two	bits.	Shifting	always	works	correctly	if	the	dividend	is	
positive.	For	example,	21	DIV	4	=	21	>>	2	=	10101	>>	2	=	101	=	5.	

But	note:	If	the	dividend	is	negative,	shifting	may	not	be	equivalent	to	the	DIV	
operation.	The	result	of	shifting	is	always	the	same	as	“Uloored”	and	“Euclidean”	
division.	However	shifting	is	not	equivalent	to	“truncated”	division.	Truncated	
division	is	used	in	“C”	and	may	be	the	choice	for	some	Blitz-64	implementations,	so	
care	must	be	taken	if	the	dividend	can	be	negative.	

For	example	with	truncated	division:	
	 -21	DIV	4	=	-5	with	reminder	-1.	
In	binary:	
	 -21	>>	2	=	…11101011	>>	2	=	…11111010	=	-6	

Division	Over]low	Conditions	

An	attempt	to	divide	by	zero	will	cause	an	Arithmetic	Exception.	But	there	is	another	
possibility	for	overUlow.	

Concerning	the	sizes	of	the	result,	note	that	the	following	must	hold,	since	|n|	≥	1:	

|q|	≤	|a|	
|r|	<	|a|	

Thus,	if	the	operands	(a	and	n)	are	64	bits,	then	the	results	(q	and	r)	will	almost	
always	Uit	into	64	bits.	

There	is	exactly	one	exception	in	which	the	result	will	not	Uit.	

Let	MIN_64	represent	-263,	which	is	the	most	negative	number	representable	in	64	
bits.	If	we	divide	MIN_64	by	-1,	the	result	is	+263,	which	is	one	greater	than	the	
largest	positive	64	bit	number.	

Note	that	“division	overUlow”	can	only	occur	with	negative	operands;	there	is	no	
need	to	worry	if	n>0	is	guaranteed	to	hold	when	computing	a/n.	

This	computation	will	cause	an	Arithmetic	Exception.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	64 344

Chapter	5:	Instructions	

Bottom	Line	Programmers	computing	a/n	should	take	special	care	unless	the	
following	are	certain	to	hold:	

	 a	≥	0	
	 n	>	0	

*NEG	 RegD,Reg1	 	

Synthetic	

May	cause	an	“Arithmetic	Exception”	
	 	
Register	t	Usage:	Not	used;	Okay	to	use	as	RegD	and/or	Reg1.	

Treating	the	value	as	a	signed	number,	this	instruction	will	Ulip	the	sign.	This	
instruction	is	implemented	as:	
	 SUB	 RegD,r0,Reg1	

An	“Arithmetic	Exception”	will	be	signaled	for	an	attempt	to	negate	the	most	
negative	number.	

*BITNOT	 RegD,Reg1	 	

Synthetic	
	 	
Register	t	Usage:	Not	used.	

All	64	bits	are	Ulipped.	This	instruction	is	implemented	as:	
	 XORI	 RegD,Reg1,-1	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	65 344

Chapter	5:	Instructions	

*NOP	 <no	operands>	 	

Synthetic	
	 	
Register	t	Usage:	Not	used.	

This	is	a	no-op.	This	instruction	is	implemented	as:	
	 ADDI	 r0,r0,0	

*ABS	 RegD,Reg1	 	

Synthetic	
	 	
Register	t	Usage:	Not	used.	

This	instruction	computes	the	absolute	value.	This	instruction	is	implemented	as:	
	 MOV	 RegD,Reg1	
	 BGEZ	 Reg1,Label	
	 SUB	 RegD,r0,Reg1	
	 Label:	 	

An	“Arithmetic	Exception”	will	be	signaled	for	an	attempt	to	compute	the	absolute	
value	of	the	most	negative	number.	

*MOV	 RegD,Reg1	 	

Synthetic	
	 	
Register	t	Usage:	Not	used.	

This	instruction	is	implemented	as:	
	 ORI	 RegD,Reg1,0	

Since	OR-ing	with	a	constant	of	0	is	not	commonly	done,	it	is	reasonable	for	a	
disassembler	to	render	this	instruction	as	MOV.	

This	instruction	may	also	be	implemented	as	any	of	these.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	66 344

Chapter	5:	Instructions	

	 ADD	 RegD,Reg1,r0	
	 ADDI	 RegD,Reg1,0	
	 OR	 RegD,Reg1,r0	
	 ORI	 RegD,Reg1,0		 	 This	instruction	is	preferred.	
	 XOR	 RegD,Reg1,r0	
	 XORI	 RegD,Reg1,0	

*MOVI	 RegD,immediate	 	

Synthetic,	Variable	Length	
	 	
Register	t	Usage:	Not	used;	Okay	to	use	as	RegD.	

An	immediate	64	bit	value	is	moved	into	register	RegD.	

The	implementation	of	this	instruction	depends	on	the	value	of	the	immediate	
operand.	

If	the	value	is	within	16	bits	(i.e.,	within	-32,768	…	32,767):	
	 XORI	 RegD,r0,immed-16	

If	the	value	is	an	address	near	the	MOVI	instruction	itself,	i.e.,	within	20	bits	
(-524,288	…	+524,287)	of	the	current	PC:	
	 ADDPC	 RegD,immed-20	

If	the	value	is	within	36	bits	(e.g.,	any	valid	address,	within	-32Gi	…	+32Gi-1):	
	 UPPER20	 RegD,immed-20	
	 XORI	 RegD,RegD,immed-16	

If	the	value	is	an	address	and	PC-relative	instructions	are	required:	
	 AUIPC	 RegD,immed-20	
	 XORI	 RegD,RegD,immed-16	

If	the	value	is	within	52	bits:	
	 UPPER20	 RegD,immed-20	
	 SHIFT16	 RegD,RegD,immed-16	
	 XORI	 RegD,RegD,immed-16	

Otherwise,	to	load	an	arbitrary	64	bit	value:	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	67 344

Chapter	5:	Instructions	

	 UPPER16	 RegD,r0,immed-16	
	 SHIFT16	 RegD,RegD,immed-16	
	 SHIFT16	 RegD,RegD,immed-16	
	 XORI	 RegD,RegD,immed-16	

Comment:	If	the	immediate	value	in	the	XORI	instruction	is	negative,	all	the	upper	
48	bits	will	be	1’s.	This	will	Ulip	any	bits	previously	loaded	into	the	upper	48	bits.	
Therefore,	the	assembler	will	need	to	compensate	by	Ulipping	all	the	bits	in	the	
immediate	values	used	in	the	UPPER20,	UPPER16,	and	SHIFT16	instructions.	

Since	these	instruction	sequences	are	idiosyncratic	and	not	likely	to	occur	
elsewhere,	it	is	reasonable	for	a	disassembler	to	render	them	as	a	MOVI	instruction.	

SLL	 RegD,Reg1,Reg2	 Shift	left	logical
SLLI	 RegD,Reg1,immed-6	 	
SLA	 RegD,Reg1,Reg2 Shift	left	arithmetic
SLAI	 RegD,Reg1,immed-6	
SRL	 RegD,Reg1,Reg2	 Shift	right	logical
SRLI	 RegD,Reg1,immed-6	 	
SRA	 RegD,Reg1,Reg2	 Shift	right	arithmetic
SRAI	 RegD,Reg1,immed-6	 	
ROTR	 RegD,Reg1,Reg2	 Rotate	right	(circular)	
ROTRI	 RegD,Reg1,immed-6	

May	cause	an	“Arithmetic	Exception”	

The	64	bit	value	in	Reg1	is	shifted/rotated	and	the	result	is	placed	in	RegD.	The	
shift/rotate	amount	is	speciUied	in	either	Reg2	or	as	an	immediate	value.	

The	logical	shifts	(SLL,	SLLI,	SRL,	SRLI)	will	shift	0	bits	in,	and	will	discard	the	bits	
shifted	out.	

The	Shift	Right	Arithmetic	instructions	(SRA,	SRAI)	are	conventional.	The	sign-bit	is	
duplicated	as	necessary	and	shifted	in	on	the	most	signiUicant	(left)	end.	

However,	Blitz-64	also	includes	Shift	Left	Arithmetic	instructions	(SLA,	SLAI)	which	
are	somewhat	unusual.	In	the	case	of	Shift	Left	Logical	(SLL,	SLLI),	there	is	no	
overUlow	check;	bits	are	simply	shifted	out	the	most-signiUicant	end	with	no	
consequences.	However,	in	the	case	of	Shift	Left	Arithmetic	(SLA,	SLAI),	there	is	an	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	68 344

Chapter	5:	Instructions	

overUlow	check.	For	SLA	and	SLAI,	if	the	bits	shifted	out	do	not	all	agree	with	the	
Uinal	sign	bit,	then	an	“Arithmetic	Exception”	is	signaled.	This	makes	these	
instructions	usable	as	a	way	to	multiply	by	a	power	of	2,	which	is	required	to	cause	
an	Arithmetic	Exception	in	the	case	of	overUlow.	

The	shift	amounts	should	be	between	0	and	63.	If	an	immediate	value	is	provided	in	
SLLI,	SLAI,	SRLI,	and	SRAI,	only	the	last	6	bits	are	examined.	The	upper	bits	are	
ignored	and	the	immed-6	value	is	treated	as	an	unsigned	value	within	the	range	0	…	
63.	The	value	of	0	results	in	no	shifting	and	is	effectively	a	“nop”. 	3

The	following	instructions	will	cause	an	“Arithmetic	Exception”	whenever	the	shift	
amount	(i.e.,	the	value	in	Reg2)	is	not	within	0	…	63.	
	 SLL,	SLA,	SRL,	SRA	

Except	as	mentioned	above,	the	other	instructions	never	cause	exceptions.	

For	bit	rotations	(ROTR	and	ROTRI),	if	the	shift	value	N	is	larger	than	63,	it	is	
equivalent	in	meaning	to	a	rotation	of	N	mod	64.	For	ROTR	and	ROTRI,	only	the	least	
signiUicant	6	bits	of	the	shift	amount	are	used;	the	upper	bits	are	ignored.	

Note	that	there	are	no	rotate-left	instructions,	since	a	rotate-left-by-N	is	equivalent	
to	a	rotate-right	with	a	shift	amount	of	64-N.	Thus,	we	can	use	negative	numbers	to	
achieve	a	left-rotation.	This	works	because	the	rotate	instructions	ignore	all	but	the	
least	signiUicant	6	bits.	

For	example,	imagine	that	you	wish	to	rotate	left	by	5.	The	number	-5	is	
0xFFFF_FFFF_FFFF_FFFB.	But	the	ROTR	and	ROTRI	only	use	the	least	signiUicant	6	
bits.	In	this	example,	the	least	signiUicant	6	bits	are	111011,	which	is	interpreted		as	
+59.	Rotating	right	by	59	achieves	the	same	result	as	rotating	left	by	5.	

Thus,	for	ROTR,	if	register	Reg1	contains	a	negative	shift	amount	of	-N,	the	effect	will	
be	to	rotate	to	the	left	by	N	bits.	

SEXTB	 RegD,Reg1 Sign	extend	byte	to	64	bits
SEXTH	 RegD,Reg1	 Sign	extend	16	bits	to	64	bits
SEXTW	 RegD,Reg1	 Sign	extend	32	bits	to	64	bits	

These	instructions	sign-extend	an	8,	16,	or	32	bit	value	to	64	bits.	

	This	range	restriction	is	normally	enforced	by	the	assembler,	so	it	is	never	as	issue.3

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	69 344

Chapter	5:	Instructions	

For	SEXTB,	the	upper	56	bits	[63:8]	are	all	set	to	the	value	of	bit	[7].	Likewise,	for	
SEXTH,	the	upper	48	bits	[63:16]	are	all	set	to	the	value	of	bit	[15].	For	SEXTW,	bits	
[63:32]	are	set	to	the	value	of	bit	[31].	

NULLTEST	 Reg1 Trap	if	reg	contains	NULL	

May	cause	an	“Null	Address	Exception”	

This	instruction	checks	to	see	whether	the	address	in	the	register	is	null	and	signals	
a	“Null	Address	Exception”	if	so.	More	speciUically,	it	signals	an	exception	if	and	only	
if	bits	[35…3]	are	zero.	

Recall	that	the	upper	28	bits,	i.e.,	bits	[63…36]	of	a	doubleword	are	ignored	when	
the	value	is	used	as	an	address.	Also,	the	entire	doubleword	at	address	0	is	
inaccessible,	so	the	least	signiUicant	bits	are	ignored.

CHECKB	 Reg1 Trap	if	reg	not	within	-128	…	+127
CHECKH	 Reg1 Trap	if	reg	not	within	-32768	…	+32767
CHECKW	 Reg1 Trap	if	reg	not	within	32	bit	range	

May	cause	an	“Arithmetic	Exception”	

These	instructions	look	at	the	64	bit	signed	integer	stored	in	a	register	and	test	it.	If	
the	value	is	out	of	range,	an	“Arithmetic	Exception”	will	be	signaled.	

CHECKB	will	ensure	that	the	value	is	within	the	range	representable	as	a	signed	
byte,	namely	within	-128	…	127.	

CHECKH	will	ensure	that	the	value	is	within	the	range	representable	as	a	signed	
halfword,	namely	within	-32,768	…	32,767.	

CHECKW	will	ensure	that	the	value	is	within	the	range	representable	as	a	signed	
word,	namely	within	-2,147,483,648	…	2,147,483,647.	

ENDIANH	 RegD,Reg1 Reorder	bytes	in	all	4	halfwords
ENDIANW	 RegD,Reg1	 Reorder	bytes	in	both	words

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	70 344

Chapter	5:	Instructions	

ENDIAND	 RegD,Reg1	 Reorder	bytes	in	a	doubleword	

These	instructions	are	used	for	transforming	data	between	“big	endian”	and	“little	
endian”	byte	ordering.	

ENDIANH	will	swap	the	bytes	in	all	halfwords	in	the	register:	
	 0x7766_5544_3322_1100			→		0x6677_4455_2233_0011	

ENDIANW	will	swap	the	bytes	in	both	words	in	the	register:	
	 0x7766_5544_3322_1100			→		4455_6677_0011_2233	

ENDIAND	will	swap	the	bytes	in	a	doubleword:	
	 0x7766_5544_3322_1100			→		0x0011_2233_4455_6677	

Note	that	ENDIANW	can	be	used	to	swap	the	byte	order	in	a	word,	but	the	sign	bits	
may	not	follow.	For	example,	assume	that	the	following	32	bit	value	from	memory	is	
assumed	to	be	stored	in	little	endian	order.	Note	that,	as	a	signed	valued,	this	
number	is	negative.	
	 55	66	77	88	
We	would	like	to	store	the	correct	value	in	a	register.	First	we	load	it,	using	LOADW,	
giving:	
	 0x	0000_0000_5566_7788	
Then	we	execute	the	ENDIANW	instruction,	to	get:	
	 0x	0000_0000_8877_6655	
Finally,	we	must	execute	the	SEXTW	instruction	to	sign	extend	it,	giving:	
	 0x	FFFF_FFFF_8877_6655	
However,	if	we	only	need	to	store	the	32	bit	word	back	to	memory,	the	SEXTW	is	
unnecessary,	since	STOREW	ignores	the	upper	32	bits	in	the	register.	

The	same	issue	applies	to	reversing	the	byte	order	of	halfwords.	

TESTEQ	 RegD,Reg1,Reg2	 RegD	←	(Reg1	=	Reg2)	?	1	:	0
TESTNE	 RegD,Reg1,Reg2	 RegD	←	(Reg1	≠	Reg2)	?	1	:	0
TESTLT	 RegD,Reg1,Reg2	 RegD	←	(Reg1	<	Reg2)	?	1	:	0
TESTLE	 RegD,Reg1,Reg2	 RegD	←	(Reg1	≤	Reg2)	?	1	:	0
TESTEQI	 RegD,Reg1,immed-16 RegD	←	(Reg1	=	immed)	?	1	:	0
TESTNEI	 RegD,Reg1,immed-16	 RegD	←	(Reg1	≠	immed)	?	1	:	0
TESTLTI	 RegD,Reg1,immed-16	 RegD	←	(Reg1	<	immed)	?	1	:	0
TESTLEI	 RegD,Reg1,immed-16	 RegD	←	(Reg1	≤	immed)	?	1	:	0

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	71 344

Chapter	5:	Instructions	

TESTGTI	 RegD,Reg1,immed-16	 RegD	←	(Reg1	>	immed)	?	1	:	0
TESTGEI	 RegD,Reg1,immed-16	 RegD	←	(Reg1	≥	immed)	?	1	:	0	

These	instructions	compare	two	values	using	signed	64	bit	arithmetic.	The	result,	a	
boolean	value,	is	placed	in	register	RegD	as	either	1	(true)	or	0	(false).	

For	the	immediate	values,	the	16	bit	immediate	is	sign-extended	to	64	bits.	

It	is	the	assembly	programmer’s	or	compiler’s	responsibility	to	ensure	that	the	
immediate	value	is	within	range.	If	the	value	is	out	of	range,	the	assembler	will	issue	
an	error	message.	The	programmer	is	always	free	to	use	a	MOVI	instruction	using	
the	temporary	“t”	register	if	necessary,	to	deal	with	a	larger	immediate	value.	

*TESTGT	 RegD,Reg1,Reg2	 RegD	←	(Reg1	>	Reg2)	?	1	:	0
*TESTGE	 RegD,Reg1,Reg2	 RegD	←	(Reg1	≥	Reg2)	?	1	:	0

Synthetic	
	 	
Register	t	Usage:	Not	used;	Okay	to	use	as	RegD,	Reg1	and/or	Reg2.	

The	TESGT	instruction	is	implemented	as:	
	 TESTLT	 RegD,Reg2,Reg1	 Note	that	Reg1	and	Reg2	are	reversed	
The	TESTGE	instruction	is	implemented	as:	
	 TESTLE	 RegD,Reg2,Reg1	 Note	that	Reg1	and	Reg2	are	reversed	

*TESTEQZ	 RegD,Reg1	 RegD	←	(Reg1	=	0)	?	1	:	0,	i.e.,	if	zero
*TESTNEZ	 RegD,Reg1	 RegD	←	(Reg1	≠	0)	?	1	:	0,	i.e.,	if	non-zero
*TESTLTZ	 RegD,Reg1	 RegD	←	(Reg1	<	0)	?	1	:	0,	i.e.,	if	negative
*TESTLEZ	 RegD,Reg1	 RegD	←	(Reg1	≤	0)	?	1	:	0,	i.e.,	if	non-positive
*TESTGTZ	 RegD,Reg1	 RegD	←	(Reg1	>	0)	?	1	:	0,	i.e.,	if	positive
*TESTGEZ	 RegD,Reg1	 RegD	←	(Reg1	≥	0)	?	1	:	0,	i.e.,	if	non-negative

Synthetic	

Register	t	Usage:	Not	used;	Okay	to	use	as	RegD	and/or	Reg1.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	72 344

Chapter	5:	Instructions	

The	value	in	a	register	is	compared	with	zero	and	a	boolean	result	(either	0	or	1)	is	
placed	in	register	RegD.		

The	TESTEQZ	instruction	is	implemented	as:	
	 TESTEQ	 RegD,Reg1,r0	 	
The	TESTNEZ	instruction	is	implemented	as:	
	 TESTNE	 RegD,Reg1,r0	 	
The	TESTLTZ	instruction	is	implemented	as:	
	 TESTLT	 RegD,Reg1,r0	 	
TheTESTLEZ	instruction	is	implemented	as:	
	 TESTLE	 RegD,Reg1,r0	 	
The	TESTGTZ	instruction	is	implemented	as:	
	 TESTLT	 RegD,r0,Reg1	 Note	that	the	registers	are	reversed	
The	TESTGEZ	instruction	is	implemented	as:	
	 TESTLE	 RegD,r0,Reg1		 Note	that	the	registers	are	reversed	

*LOGNOT RegD,Reg1	 RegD	←	(Reg1	=	0)	?	1	:	0

Synthetic	

Register	t	Usage:	Not	used;	Okay	to	use	as	RegD	and/or	Reg1.	

The	convention	is	to	interpret	0	as	“false”	and	any	non-zero	value	as	“true”,	with	1	
being	the	desired,	canonical	value	for	“true”.	The	LOGNOT	instruction	performs	a	
logical	“not”.	For	input	0,	it	computes	1.	For	any	other	input,	it	computes	0.	

The	LOGNOT	instruction	is	implemented	as:	
	 TESTEQ	 RegD,r0,Reg1	 RegD	←	(zero=Reg1)	?	1	:	0	

Note	that	the	synthetic	instruction:	
	 *TESTEQZ	 RegD,Reg1	
is	implemented	as:	
	 TESTEQ	 RegD,Reg1,r0	 RegD	←	(Reg1=zero)	?	1	:	0	
which	is	slightly	different.	This	allows	a	disassembler	to	differentiate	them.	

ADDOK RegD,Reg1,Reg2	 RegD	←	(Reg1+Reg2	overUlows)	?	0	:	1

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	73 344

Chapter	5:	Instructions	

This	instruction	adds	the	contents	of	Reg1	and	Reg2	using	64	bit	signed	arithmetic.	
If	the	addition	results	in	overUlow,	then	RegD	is	set	to	0.	Otherwise,	if	the	addition	
proceeds	without	overUlow,	RegD	is	set	to	1.	The	sum	is	discarded.	No	exception	will	
be	raised.	

ADD3 RegD,Reg1,Reg2,Reg3	 RegD	←	Reg1+Reg2+Reg3	(unsigned)

This	instruction	adds	the	contents	of	Reg1,	Reg2,	and	Reg3	using	64	bit	arithmetic,	
placing	the	result	in	RegD.	OverUlow	is	ignored	and	no	exceptions	will	be	raised.	

Commentary	Obviously,	the	ADD3	instruction	can	be	used	to	add	only	two	unsigned	
values	by	using	register	r0	as	the	Reg3	argument.	

The	ADD3	instruction	can	also	be	used	to	subtract	two	unsigned	numbers.	Recall	
that	to	arithmetically	negate	a	number,	we	Ulip	the	bits	and	add	1.	Thus,	the	following	
code	sequence	can	be	used	to	compute	“r1	←		r1-r2”	while	ignoring	overUlow.	

	 BITNOT	 r2,r2	
	 MOVI	 t,1	
	 ADD3	 r1,r1,r2,t	

The	result	is	identical	and	this	works	properly	regardless	of	whether	the	numbers	
are	viewed	as	signed	or	unsigned	values.	

Unsigned	subtraction	is	not	expected	to	be	used	much,	so	we	accept	the	extra	
instruction	overhead.	Note	that	if	we	have	to	do	a	large	number	of	subtractions,	the	
overhead	is	only	one	extra	instruction	(the	BITNOT),	since	we	assume	that	the	+1	
can	be	preloaded	into	a	register	so	the	MOVI	instruction	is	not	repeated.	

Note	that	with	a	“carry	save	adder”	the	microarchitecture	gate	delay	time	is	minimal.	
With	a	carry	save	adder,	the	gate	delay	for	adding	three	numbers	is	substantially	less	
than	twice	the	gate	delay	for	adding	two	numbers.	

INDEX0 RegD,Reg1,Reg2,Reg3	
INDEX1 RegD,Reg1,Reg2,Reg3	
INDEX2 RegD,Reg1,Reg2,Reg3	
INDEX4 RegD,Reg1,Reg2,Reg3	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	74 344

Chapter	5:	Instructions	

INDEX8 RegD,Reg1,Reg2,Reg3	
INDEX16 RegD,Reg1,Reg2,Reg3	
INDEX24 RegD,Reg1,Reg2,Reg3	
INDEX32 RegD,Reg1,Reg2,Reg3	

May	cause	an	“Bad	Array	Index	Exception”.	

This	instruction	is	designed	to	facilitate	array	accessing.	

To	understand	these	instructions,	assume	that	Reg1	contains	a	pointer	to	the	array,	
Reg2	contains	the	array	header,	and	Reg3	contains	the	desired	array	index.	There	
are	eight	INDEX	instructions	and	each	speciUies	a	“scale”,	which	can	be	0,	1,	2,	4,	8,	
16,	24,	or	32.	The	scale	is	the	size	of	the	array	elements,	in	bytes.	

The	instruction	computes:	
	 RegD	←	Reg1	+	8	+	(Reg3	×	scale)	
If	rewritten	as	follows,	we	see	the	address	of	the	desired	element	is	computed:	
	 RegD	←	arrayPtr	+	8	+	(index	×	scale)	

This	computation	is	performed	with	unsigned	arithmetic	and	overUlow	is	ignored.	

In	the	KPL	programming	language	every	array	begins	with	an	8	byte	header,	which	
consists	of	the	MAX	array	size	(bits	[63:32])	and	the	CURRENT	size	(bits	[31:0]).	The	
MAX	and	CURRENT	are	unsigned	values	in	the	range	0	…	4,294,967,295.	We	assume	
that	the	array	header	has	been	preloaded	into	Reg2.	

Each	INDEX	instruction	also	performs	two	tests.	The	Uirst	test	is	that	the	index	is	
legal.	If	((Reg3	<	0)	||	(Reg3	≥	CURRENT)),	the	instruction	causes	an	“Bad	Array	
Index	Exception”.	The	second	test	is	that	the	array	is	initialized.	If	(MAX	=	0),	the	
instruction	causes	an	“Bad	Array	Index	Exception”.	

The	CURRENT	size	of	an	array	should	always	be	≤	the	MAX	array	size,	but	these	
instructions	do	not	check	for	that.	

Commentary		Many	programs	use	arrays	and	access	the	elements	a	lot.	An	example	
from	KPL	is:	

myArr [n+1] = myArr [i]

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	75 344

Chapter	5:	Instructions	

Such	accesses	are	prone	to	program	bugs.	In	the	spirit	of	Blitz-64,	the	fullest	possible	
error-checking	is	desired	and	this	sort	of	check	must	be	performed	since	the	
consequences	of	a	program	bug	can	be	catastrophic.	The	purpose	of	the	INDEX__	
instructions	is	to	reduce	the	overhead	of	this	checking.	

While	these	instructions	are	not	limited	to	checking	array	index	values,	it	is	
presumed	that	the	software	will	respond	to	the	exception	with	a	message	such	as	
“Array	index	out	of	bounds”,	which	could	be	confusing	if	the	instruction	is	being	used	
for	another	purpose.	

Commentary		Assume	that	“myArr”	is	an	array	of	objects	and	consider	the	following	
KPL	statement:	

	 …	=	myArr	[i]	.	someField	

To	compile	code	for	this	expression,	of	course	instructions	to	get	the	address	of	
array	“myArr”	and	the	value	of	the	index	expression	“i”	are	needed.	Let’s	look	at	the	
code	after	that.	

Assume	that	each	array	element	is	24	bytes	in	size	and	that	“someField”—the	Uield	
we	are	interested	in—is	a	halfword	at	offset	18.	Then	the	following	instructions	
sufUice:	

	 r1	←	…	address	of	myArr	…	
	 r3	←	…	index	expression	…	
	 LOADD r2,0(r1)	 Fetch	array	header	
	 INDEX24 r7,r1,r2,r3	 Compute	address	&	check	for	errors	
	 LOADH …,18(r7)	 Fetch	the	halfword	at	offset	18	

If	the	access	is	in	a	loop,	then	a	clever	compiler	might	be	able	to	pull	some	of	these	
instructions	out	of	the	loop	body,	resulting	in	this	code:	

	 r1	←	…	address	of	myArr	…	
	 LOADD r2,0(r1)	 Fetch	array	header	

LOOP:
	 …	
	 r3	←	…	index	expression	…	
	 INDEX24 r7,r1,r2,r3	 Compute	address	&	check	for	errors	
	 LOADH …,18(r7)	 Fetch	the	halfword	at	offset	18	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	76 344

Chapter	5:	Instructions	

	 …	
JUMP LOOP

In	any	other	RISC	computer,	it	is	unlikely	that	a	LOAD	instruction	would	also	be	able	
to	multiply	to	perform	the	scaling,	so	at	least	one	additional	instruction	would	
probably	be	required,	resulting	in	at	least	two	instructions	within	the	loop.	So	the	
overhead	of	Blitz-64	to	provide	the	bounds	checking	appears	to	be	zero	instructions,	
at	least	in	this	example!	

If	the	size	of	the	array	elements	is	not	1,	2,	4,	8	16,	24,	or	32,	then	the	INDEX0	
instruction	can	be	used	in	conjunction	with	the	MULADDU	instruction.	For	example,	
assume	the	element	size	is	80:	

	 r1	←	…	address	of	myArr	…	
	 r3	←	…	index	expression	…	
	 LOADD r2,0(r1)	 Fetch	array	header	
	 INDEX0 r7,r1,r2,r3	 Check	for	errors,	advance	to	element	0	
	 MOVI r4,80	 Size	of	elements	is	80	bytes	
	 MULADDU r7,r3,r4,r7	 r7	=	r7	+	(index	×	scale)	
	 LOADH …,18(r7)	 Fetch	the	halfword	at	offset	18	

As	before,	if	the	access	is	within	a	loop,	the	compiler	might	pull	the	loop-invariant	
instructions	out	of	the	loop,	yielding:	

	 r1	←	…	address	of	myArr	…	
	 LOADD r2,0(r1)	 Fetch	array	header	
	 MOVI r4,80	 Size	of	elements	is	80	bytes	

LOOP:
	 …	
	 r3	←	…	index	expression	…	
	 INDEX0 r7,r1,r2,r3	 Check	for	errors,	advance	to	element	0	
	 MULADDU r7,r3,r4,r7	 r7	=	r7	+	(index	×	scale)	
	 LOADH …,18(r7)	 Fetch	the	halfword	at	offset	18	
	 …	

JUMP LOOP

B.EQ	 Reg1,Reg2,immed-16 Branch	if	Reg1	=	Reg2;	Offset	is	PC-relative
B.NE	 Reg1,Reg2,immed-16	 Branch	if	Reg1	≠	Reg2;	Offset	is	PC-relative

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	77 344

Chapter	5:	Instructions	

B.LT	 Reg1,Reg2,immed-16	 Branch	if	Reg1	<	Reg2;	Offset	is	PC-relative
B.LE	 Reg1,Reg2,immed-16	 Branch	if	Reg1	≤	Reg2;	Offset	is	PC-relative

May	cause	a	“Null	Address	Exception”	

The	values	in	Reg1	and	Reg2	are	compared.	In	the	case	of	LT	(less	than)	and	LE	(less	
than	or	equal),	the	operand	values	are	treated	as	signed	integers.	

If	the	condition	is	satisUied,	a	branch	is	taken.	

To	compute	the	target	destination	address,	the	16	bit	immediate	value	is	sign-
extended	to	64	bits	and	then	added	to	the	value	of	the	PC	(i.e.,	the	address	of	the	
BRANCH	instruction	itself).	

OverUlow	is	ignored.	The	upper	bits	[63:36]	of	the	target	address	are	ignored.	The	
LSBit	is	set	to	0,	forcing	halfword	alignment.	

Any	attempt	to	load	the	PC	with	zero	will	cause	a	“Null	Address	Exception”.	
Exceptions	will	only	occur	if	the	jump	is	taken;	if	the	jump	is	not	taken,	no	exception	
will	occur.	

In	systems	without	compressed	instructions	and	in	which	alignment	is	required	for	
instructions,	there	may	be	an	“Unaligned	LOAD/STORE	Exception”	if	the	target	
address	is	not	properly	aligned.	Alternatively,	such	systems	may	simply	ignore	the	
Uinal	bits,	rounding	the	target	address	down	to	force	alignment.	

Commentary	For	the	following	instructions,	we	make	a	distinction	between	the	
opcode	names	for	machine	instructions	and	synthetic	instructions,	even	though	
their	functions	are	similar.	

	 Machine	 Synthetic	
	 Instruction	 Instruction	

B.EQ BEQ
B.NE BNE
B.LT BLT
B.LE BLE
LOAD.B LOADB
LOAD.H LOADH
LOAD.W LOADW

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	78 344

Chapter	5:	Instructions	

LOAD.D LOADD
STORE.B STOREB
STORE.H STOREH
STORE.W STOREW
STORE.D STORED

A	machine	instruction	is	always	a	single	32	bit	instruction,	implemented	directly	in	
hardware.	

A	synthetic	instruction	may	be	implemented	with	1,	2,	or	3	machine	instructions,	
depending	on	the	value	of	the	address	operand.	The	assembler	and	linker	make	the	
decision	about	which	sequence	of	machine	instructions	to	use.	

In	most	cases,	a	BRANCH,	LOAD,	or	STORE	synthetic	instruction	will	be	
implemented	by	a	single	machine	instruction	with	the	corresponding	similar	name.	

To	make	the	distinction	between	machine	instruction	and	synthetic	instruction	
explicit,	we	assign	different	names.	But	to	keep	the	correspondence	obvious	and	the	
meaning	clear,	we	use	names	that	differ	only	by	the	presence	of	the	period	character.	

We	chose	to	use	a	period	for	the	machine	instructions	on	the	assumption	most	
assembly	programs	will	contain	the	synthetic	instructions,	not	the	machine	variants.	
The	presence	of	periods	(if	any)	will	stand	out.	Also,	programmers	are	more	likely	to	
err	by	forgetting	a	period,	rather	than	inserting	one,	so	we	chose	a	naming	scheme	
in	which	the	programmer	does	not	normally	use	the	period	character.		

*BEQ	 Reg1,Reg2,address Branch	if	Reg1	=	Reg2
*BNE	 Reg1,Reg2,address	 Branch	if	Reg1	≠	Reg2
*BLT	 Reg1,Reg2,address	 Branch	if	Reg1	<	Reg2
*BLE	 Reg1,Reg2,address	 Branch	if	Reg1	≤	Reg2	
*BGT	 Reg1,Reg2,address Branch	if	Reg1	>	Reg2
*BGE	 Reg1,Reg2,address	 Branch	if	Reg1	≥	Reg2

Synthetic,	Variable	Length,	May	Overwrite	“t”	Register,	May	cause	a	“Null	Address	
Exception”	

Register	t	Usage:	May	be	modiUied;	Okay	to	use	as	Reg1	and/or	Reg2.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	79 344

Chapter	5:	Instructions	

The	values	in	Reg1	and	Reg2	are	compared.	In	the	case	of	LT,	LE,	GT,	and	GE,	the	
operand	values	are	treated	as	signed	integers.	

If	the	condition	is	satisUied,	a	branch	is	taken.	

In	these	synthetic	instructions,	“address”	may	be	any	absolute	or	relocatable	
address,	except	0.	(Any	reference	to	address	0	always	causes	a	Null	Address	
Exception.)	

Typically	the	programmer	or	compiler	will	use	a	symbolic	label	to	stand	for	the	
address,	but	a	hard-coded	number	can	be	used,	too.	

Note	that	an	integer	value	indicates	an	absolute	address,	not	a	relative	address.	For	
example,	the	following	will	branch	to	location	0x0_0000_0008	and	not	to	an	
instruction	located	two	instructions	beyond	the	branch	instruction	itself.	

	 BEQ	 r1,r2,+8	

This	is	different	behavior	from	the	following	machine	instruction,	which	will	skip	
the	instruction	following	the	branch	instruction.	

	 B.EQ	 r1,r2,+8	

In	general,	the	actual	target	address	will	be	a	36-bit	address	that	is	not	known	until	
link-time.	In	such	cases,	the	actual	instruction	sequence	may	not	be	determined	until	
link-time.	(In	many	cases,	the	assembler	will	be	able	to	safely	produce	the	Uinal	
instruction	sequence.	This	happens	when	the	target	address	is	nearby	and	there	are	
no	intervening	synthetic,	variable	length	instructions.)	

The	target	of	most	branch	instructions	will	be	within	the	range	of	-32,768	…	+32,766	
from	the	address	of	the	branch	instruction.	(Since	the	target	address	must	be	
halfword	aligned,	the	high	end	of	the	range	is	32,766,	and	not	32,767.)	

If	the	address	is	within	this	range,	then	a	single	instruction	will	be	used,	as	follows.	

The	BEQ	instruction	is	implemented	with:	
	 B.EQ	 Reg1,Reg2,immed-16	
The	BNE	instruction	is	implemented	with:	
	 B.NE	 Reg1,Reg2,immed-16	
The	BLT	instruction	is	implemented	with:	
	 B.LT	 Reg1,Reg2,immed-16	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	80 344

Chapter	5:	Instructions	

The	BLE	instruction	is	implemented	with:	
	 B.LE	 Reg1,Reg2,immed-16	

The	BGT	instruction	is	implemented	by	exchanging	the	registers	and	changing	the	
test	condition:	
	 B.LT	 Reg2,Reg1,immed-16	 Note:	the	test	and	registers	are	changed.	
The	BGE	instruction	is	implemented	by	exchanging	the	registers	and	changing	the	
test	condition:	
	 B.LE	 Reg2,Reg1,immed-16	 Note:	the	test	and	registers	are	changed.	

If	the	target	is	within	the	range	of	-524,288	…	+524,286,	then	it	can	be	reached	with	
a	JAL	instruction.	However,	the	JAL	instruction	is	unconditional.	To	use	it,	the	
assembler/linker	must	change	the	sense	of	the	branch	(i.e.,	negate	the	condition)	
and	use	it	to	branch	around	the	JAL	instruction.	

The	BEQ	instruction	is	implemented	with:	
	 B.NE	 Reg1,Reg2,+8		 Note	the	test	is	reversed		
	 JAL	 r0,address	
The	BNE	instruction	is	implemented	with:	
	 B.EQ	 Reg1,Reg2,+8		 Note	the	test	is	reversed	
	 JAL	 r0,address	
The	BLT	instruction	is	implemented	with:	
	 B.LE	 Reg2,Reg1,+8		 Note	the	condition	&	regs	are	changed	
	 JAL	 r0,address	
The	BLE	instruction	is	implemented	with:	
	 B.LT	 Reg2,Reg1,+8		 Note	the	condition	&	regs	are	changed	
	 JAL	 r0,address	
The	BGT	instruction	is	implemented	with:	
	 B.LE	 Reg1,Reg2,+8		 Note	the	test	is	reversed	
	 JAL	 r0,address	
The	BGE	instruction	is	implemented	with:	
	 B.LT	 Reg1,Reg2,+8		 Note	the	test	is	reversed	
	 JAL	 r0,address	

In	the	very	rare	cases	where	the	target	address	is	out	of	this	range,	a	sequence	of	3	
instructions	must	be	generated,	as	follows.	

The	temp-register	“t”	is	used	to	build	a	36	bit	value.	In	the	code	below,	“upper-20”	
indicates	bits	[35:16]	of	the	address	and	“lower-16”	indicates	bits	[15:0].	The	JALR	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	81 344

Chapter	5:	Instructions	

instruction	will	sign-extend	the	immediate	lower-16	value	and	add	it	to	the	register.	
To	compensate,	the	value	used	for	upper-20	will	have	to	be	adjusted	accordingly.	

The	BEQ	instruction	is	implemented	with:	
	 B.NE	 Reg1,Reg2,+12	 Jump	around	next	2	statements	
	 AUIPC	 t,upper-20	 Execute	a	long	jump	if	EQ	
	 JALR	 r0,lower-16(t)	
The	BNE	instruction	is	implemented	with:	
	 B.EQ	 Reg1,Reg2,+12		 Note	the	test	is	reversed	
	 AUIPC	 t,upper-20	
	 JALR	 r0,lower-16(t)	
The	BLT	instruction	is	implemented	with:	
	 B.LE	 Reg2,Reg1,+12		 Note	the	condition	&	regs	are	changed	
	 AUIPC	 t,upper-20	
	 JALR	 r0,lower-16(t)	
The	BLE	instruction	is	implemented	with:	
	 B.LT	 Reg2,Reg1,+12		 Note	the	condition	&	regs	are	changed	
	 AUIPC	 t,upper-20	
	 JALR	 r0,lower-16(t)	
The	BGT	instruction	is	implemented	with:	
	 B.LE	 Reg1,Reg2,+12		 Note	the	test	is	reversed	
	 AUIPC	 t,upper-20	
	 JALR	 r0,lower-16(t)	
The	BGE	instruction	is	implemented	with:	
	 B.LT	 Reg1,Reg2,+12		 Note	the	test	is	reversed	
	 AUIPC	 t,upper-20	
	 JALR	 r0,lower-16(t)

Commentary	Since	each	instruction	is	only	32	bits,	any	operation	involving	
a	36	bit	address	will	necessarily	require	at	least	2	instructions.	

The	Blitz-64	solution	is	to	break	a	36	bit	address	into	two	pieces,	consisting	
of	the	most	signiUicant	20	bits	and	the	least	signiUicant	16	bits.	In	some	cases,	
we	break	a	32	bit	value	into	two	equal	sized	parts,	of	16	bits	each.	

To	explain	how	the	assembler/linker	produces	machine	code,	we	use	the	
following	notational	abbreviations:	

	 upper-20	 The	upper	20	bits	of	a	36	bit	value	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	82 344

Chapter	5:	Instructions	

	 upper-16		 The	upper	16	bits	of	a	32	bit	value	
	 lower-16		 The	lower	16	bits	of	the	value	

Generally,	the	Uirst	instruction	in	the	sequence	will	load	the	upper	20	bits	
and	the	second	instruction	will	add	in	lower	16	bits.	

For	example,	the	following	code	sequence	stores	a	byte	from	register	“r5”	
into	memory,	using	a	36	bit	absolute	address.	The	temporary	register	“t”	is	
used	to	build	the	memory	address.	

UPPER20 t,upper-20	 t	=	upper	20	bits	[35:16]
STORE.B lower-16(t),r5	 address	is	upper-20	+	lower-16

Note	that	the	second	instruction	will	sign-extended	the	lower-16	bit	piece	
and	perform	an	addition.	

Therefore,	the	assembler/linker	must	be	careful	when	computing	the	
“upper-20”	and	“lower-16”	pieces	from	an	arbitrary	36-bit	value.	Because	the	
lower-16	piece	will	be	sign-extended	by	the	second	instruction,	the	
assembler/linker	cannot	use:	

	 upper20	=	Value[35:16]	 Wrong!	
	 lower16	=	Value[15:0]	

Instead,	the	assembler/linker	must	do	this:	

	 Given:	
	 	 Value	(a	36-bit	quantity)	
	 Compute:	
	 	 lower16	=	Value[15:0]	
	 	 x	=	Value	–	SignExtend	(lower16)	
	 	 upper20	=	(x	>>	16)	[19:0]	 i.e.,	grab	upper	20	bits	[35:16]	from	x	

The	upper-16	value	is	computed	the	same	way,	with	the	last	line	modiUied	to:	

	 	 upper16	=	(x	>>	16)	[15:0]	 i.e.,	grab	upper	16	bits	[31:16]	from	x	

Note	that	overUlow	cannot	occur	either	in	the	subtraction	performed	by	the	
assembler/linker,	or	the	addition	performed	by	the	second	instruction	in	the	
code	sequence	(e.g.,	the	STORE.B).	This	is	assuming	that	the	original	“Value”	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	83 344

Chapter	5:	Instructions	

is	limited	to	a	quantity	representable	in	36	bits,	which	is	true	of	all	memory	
addresses	and	offsets.	

*BEQI	 Reg,value,address Branch	if	Reg	=	immediate	value
*BNEI	 Reg,value,address	 Branch	if	Reg	≠	immediate	value
*BLTI	 Reg,value,address Branch	if	Reg	<	immediate	value
*BLEI	 Reg,value,address Branch	if	Reg	≤	immediate	value	
*BGTI	 Reg,value,address Branch	if	Reg	>	immediate	value
*BGEI	 Reg,value,address Branch	if	Reg	≥	immediate	value	

Synthetic,	Variable	Length,	Will	Overwrite	“t”	Register,	May	cause	a	“Null	Address	
Exception”	

Register	t	Usage:	Will	be	modiUied;	Must	not	use	as	Reg.	

Since	these	instructions	are	synthesized	with	a	MOVI	instruction,	the	value	can	be	
any	64-bit	value.	Likewise,	the	address	can	be	any	address	in	memory,	since	BEQ/
BNE/BLT/BLE/BGT/BGE	can	handle	any	address.	

The	BEQI	instruction	is	implemented	as:	
	 *MOVI	 t,value	
	 *BEQ	 Reg,t,address	
The	BNEI	instruction	is	implemented	as:	
	 *MOVI	 t,value	
	 *BNE	 Reg,t,address	
The	BLTI	instruction	is	implemented	as:	
	 *MOVI	 t,value	
	 *BLT	 Reg,t,address	
The	BLEI	instruction	is	implemented	as:	
	 *MOVI	 t,value	
	 *BLE	 Reg,t,address	
The	BGTI	instruction	is	implemented	as:	
	 *MOVI	 t,value	
	 *BGT	 Reg,t,address	
The	BGEI	instruction	is	implemented	as:	
	 *MOVI	 t,value	
	 *BGE	 Reg,t,address	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	84 344

Chapter	5:	Instructions	

*BEQZ	 Reg,address Branch	if	Reg	=	0
*BNEZ	 Reg,address	 Branch	if	Reg	≠	0
*BLTZ	 Reg,address Branch	if	Reg	<	0,	i.e.,	if	negative
*BLEZ	 Reg,address Branch	if	Reg	≤	0,	i.e.,	if	not	positive	
*BGTZ	 Reg,address Branch	if	Reg	>	0,	i.e.,	if	positive
*BGEZ	 Reg,address Branch	if	Reg	≥	0,	i.e.,	if	not	negative	

Synthetic,	Variable	Length,	May	Overwrite	“t”	Register,	May	cause	a	“Null	Address	
Exception”	

Register	t	Usage:	May	be	modiUied;	Okay	to	use	as	Reg.	

Since	these	instructions	are	synthesized	with	BEQ/BNE/BLT/BLE/BGT/BGE,	the	
address	can	be	any	address	in	memory.	

The	BEQZ	instruction	is	implemented	as:	
	 *BEQ	 Reg1,r0,address	
The	BNEZ	instruction	is	implemented	as:	
	 *BNE	 Reg1,r0,address	
The	BLTZ	instruction	is	implemented	as:	
	 *BLT	 Reg1,r0,address	
The	BLEZ	instruction	is	implemented	as:	
	 *BLE	 Reg1,r0,address	
The	BGTZ	instruction	is	implemented	as:	
	 *BGT	 Reg1,r0,address	
The	BGEZ	instruction	is	implemented	as:	
	 *BGE	 Reg1,r0,address	

*BFALSE	 Reg,address Branch	if	Reg	=	0,	i.e.,	if	“false”
*BTRUE Reg,address Branch	if	Reg	≠	0,	i.e.,	if	“true”

Synthetic,	Variable	Length,	May	Overwrite	“t”	Register,	May	cause	a	“Null	Address	
Exception”	

Register	t	Usage:	May	be	modiUied;	Okay	to	use	as	Reg.	

The	BFALSE	instruction	is	implemented	as:	
	 *BEQ	 Reg1,r0,address	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	85 344

Chapter	5:	Instructions	

The	BTRUE	instruction	is	implemented	as:	
	 *BNE	 Reg1,r0,address	

UPPER20	 RegD,immed-20 RegD	←	(immed<<16)

The	20	bit	immediate	value	is	sign-extended.	It	is	then	shifted	left	by	16	bits.	The	
result	is	placed	into	register	RegD.	

The	UPPER20	instruction	is	useful	for	building	any	36	bit	value,	which	is	the	size	of	a	
memory	address.	The	UPPER20	instruction	takes	care	of	the	most	signiUicant	20	bits.	
The	following	instruction	(e.g.,	LOAD	or	STORE)	will	typically	add	in	the	least	
signiUicant	16	bits	and	perform	the	access.	

UPPER16	 RegD,Reg1,immed-16 RegD	←	(immed<<16)	+	Reg1

The	16	bit	immediate	value	is	sign-extended	and	then	shifted	left	by	16	bits.	This	
value	is	added	to	the	value	in	register	Reg1	and	the	result	is	placed	into	register	
RegD.	There	is	no	overUlow	check.	

The	UPPER16	instruction	is	useful	for	building	32	bit	offsets	from	a	register	such	as	
the	stack	pointer	“sp”.	The	UPPER16	instruction	takes	care	of	the	most	signiUicant	16	
bits	of	the	offset	and	the	addition	of	the	stack	pointer.	The	following	instruction	(e.g.,	
LOAD	or	STORE)	will	typically	add	in	the	least	signiUicant	16	bits	of	the	offset	and	
perform	the	memory	access.	

Commentary	Recall	that	the	ADDI	instruction	is	limited	to	an	immediate	value	of	
-32,768	…	+32,767:	

	 ADDI RegD,Reg1,immed-16	

In	order	to	add	a	larger	number,	the	following	code	sequence	is	recommended	and	
will	work	in	all	cases:	

	 MOVI t,value	
	 ADD RegD,Reg1,t	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	86 344

Chapter	5:	Instructions	

However,	for	a	32-bit	value	(i.e.,	in	the	range	-2,147,483,648	…	+2,147,483,647),	
notice	that	the	synthetic	MOVI	will	expand	to	two	instructions,	giving:	

	 UPPER20 t,upper-20	
	 XORI t,t,lower-16	
	 ADD RegD,Reg1,t	

However,	you	might	consider	achieving	the	same	effect	with	this	shorter	code	
sequence:	

	 UPPER16 t,Reg1,upper-16	
	 ADDI RegD,t,lower-16	

But	beware:	The	overUlow	behavior	is	not	equivalent!	The	UPPER16	instruction	
performs	an	addition	which	ignores	overUlow.	The	UPPER16	instruction	is	meant	for	
addresses,	so	this	is	reasonable.	UPPER16	is	not	meant	for	general	purpose	addition.	

SHIFT16	 RegD,Reg1,immed-16 RegD	←	(Reg1	+	immed-16)	<<	16

This	instruction	combines	the	immed-16	value	and	the	value	in	register	Reg1	and	
places	the	computed	result	in	register	RegD.	The	16	bit	immediate	value	is	injected	
into	the	lower	16	bits	of	the	value	in	register	Reg1.	The	value	is	then	shifted	left	by	
16	bits.	The	result	is	stored	into	register	RegD.	

By	inject,	we	mean	the	16	new	bits	overwrite	the	original	bits	[15:0]	of	the	value	
fetched	from	Reg1.	The	“+”	in	the	summary	above	is	a	bit	misleading.	The	following	
is	more	precise:	
	 RegD	←	Reg1[47:16]	||	immed-16	||	0x0000	

The	immediate	value	is	not	sign-extended	and	there	is	no	overUlow	check.	

This	instruction	is	useful	in	loading	arbitrary	64	bit	values	into	a	register.	See	the	
discussion	for	the	MOVI	instruction	to	see	how	this	instruction	is	used.	

ADDPC	 RegD,immed-20 RegD	←	PC+immed

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	87 344

Chapter	5:	Instructions	

The	20	bit	immediate	value	gives	a	PC-relative	“target	address”	which	is	moved	into	
register	RegD.	

The	immediate	value	is	sign-extended	and	added	to	the	current	value	of	the	PC	(the	
address	of	the	ADDPC	instruction,	not	the	following	instruction).	

Since	the	PC	and	the	offset	are	relatively	small	numbers,	overUlow	is	impossible.	The	
PC	is	a	positive	number;	i.e.,	it	is	not	sign-extended.	

This	instruction	is	used	in	loading	the	address	of	a	static	variable	or	function	into	a	
register,	when	that	address	is	within	-524,288	…	+524,287	of	this	instruction.	

A	program	can	determine	its	own	address	with	this	instruction:	executing	“ADDPC	
r1,0”	will	move	the	address	of	the	ADDPC	instruction	into	register	r1.	

AUIPC	 RegD,immed-20 RegD	←	(immed<<16)	+	PC

The	AUIPC	instruction	is	identical	to	the	UPPER20	instruction,	except	that	the	PC	is	
also	added	in.	

In	more	detail,	the	20	bit	immediate	value	is	sign-extended.	It	is	then	shifted	left	by	
16	bits.	This	value	is	added	to	the	current	value	of	the	PC	(the	address	of	this	
instruction,	not	the	following	instruction)	and	the	result	is	placed	in	register	RegD.	

Since	the	PC	and	the	offset	are	relatively	small	numbers,	overUlow	is	impossible.	The	
PC	is	a	positive	number;	i.e.,	it	is	not	sign-extended.	

The	AUIPC	instruction	is	useful	for	building	any	PC-relative	relocatable	address.	The	
AUIPC	instruction	takes	care	of	the	most	signiUicant	20	bits.	The	following	
instruction	(e.g.,	JALR,	LOAD.x,	etc.)	will	then	add	in	the	least	signiUicant	16	bits	and	
perform	the	jump,	load,	etc.	

JAL	 RegD,immed-20 RegD	←	return	addr;	Target	←	PC+offset

May	cause	a	“Null	Address	Exception”	

The	20	bit	immediate	value	gives	a	PC-relative	“target	address".	The	immediate	
value	is	sign-extended	and	added	to	the	current	value	of	the	PC	(the	address	of	the	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	88 344

Chapter	5:	Instructions	

JAL	instruction,	not	the	following	instruction).	The	address	of	the	instruction	
following	the	JAL	is	stored	into	RegD,	which	is	typically	the	link	register,	“lr”.	Finally,	
the	PC	is	loaded	with	the	target	address,	causing	a	jump.	

The	upper	28	bits	[63:36]	of	the	target	address	are	ignored,	since	addresses	are	36	
bits.	The	least	signiUicant	bit	of	the	address	is	ignored	and	0	is	assumed,	forcing	
halfword	alignment.	There	is	no	overUlow	check.	

This	instruction	is	used	to	implement	the	function	CALL	instruction.	The	return	will	
be	made	to	the	instruction	following	the	JAL,	and	this	address	is	exactly	what	this	
instruction	will	save	in	the	link	register.	

This	instruction	can	also	be	used	to	implement	a	PC-relative	jump	or	goto,	in	which	
case	the	zero	register	“r0”	is	used	as	the	destination	for	the	link	value.	Since	there	is	
to	be	no	return,	there	is	no	reason	to	save	a	return	address.	

Any	attempt	to	load	the	PC	with	zero	will	cause	a	“Null	Address	Exception”.	
Exceptions	will	only	occur	if	the	jump	is	taken;	if	the	jump	is	not	taken,	no	exception	
will	occur.	

In	systems	without	compressed	instructions	and	in	which	alignment	is	required	for	
instructions,	there	may	be	an	“Unaligned	LOAD/STORE	Exception”	if	the	target	
address	is	not	properly	aligned.	Alternatively,	such	systems	may	simply	ignore	the	
Uinal	bits,	rounding	the	target	address	down	to	force	alignment.	

JALR	 RegD,immed-16(Reg1) RegD	←	return	addr;	Target	←	offset+Reg1

May	cause	a	“Null	Address	Exception”	

The	16	bit	immediate	value	is	sign-extended	and	added	to	the	current	value	of	
register	Reg1,	giving	a	“target	address”.	The	address	of	the	instruction	following	the	
JALR	is	stored	into	RegD,	which	is	typically	the	link	register,	“lr”.	Finally,	the	PC	is	
loaded	with	the	target	address,	causing	a	jump.	

The	upper	28	bits	[63:36]	of	the	target	address	are	ignored,	since	addresses	are	36	
bits.	The	least	signiUicant	bit	of	the	address	is	ignored	and	0	is	assumed,	forcing	
halfword	alignment.	There	is	no	overUlow	check.	

This	instruction	can	be	used	to	implement	an	indirect	jump,	via	register.	It	is	also	
used	to	implement	the	RETURN	instruction.	It	is	also	used	to	implement	the	CALL	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	89 344

Chapter	5:	Instructions	

instruction	when	the	target	address	exceeds	the	20	bits	accommodated	by	the	JAL	
instruction.	

Any	attempt	to	load	the	PC	with	zero	will	cause	a	“Null	Address	Exception”.	
Exceptions	will	only	occur	if	the	jump	is	taken;	if	the	jump	is	not	taken,	no	exception	
will	occur.	

In	systems	without	compressed	instructions	and	in	which	alignment	is	required	for	
instructions,	there	may	be	an	“Unaligned	LOAD/STORE	Exception”	if	the	target	
address	is	not	properly	aligned.	Alternatively,	such	systems	may	simply	ignore	the	
Uinal	bits,	rounding	the	target	address	down	to	force	alignment.	

*CALL	 address Jump	to	address;	save	return	addr	in	“lr”
*CALLR	 Reg1 Jump	to	address;	save	return	addr	in	“lr”

May	cause	a	“Null	Address	Exception”	

Synthetic,	Variable	Length.	

Register	t	Usage:	May	be	modiUied	(CALL);	Okay	to	use	as	Reg1.	

In	the	case	of	the	CALL	instruction,	the	target	is	given	by	the	“address”	operand,	and	
may	be	any	absolute	or	relocatable	address.	Typically	the	programmer	or	compiler	
will	use	a	symbolic	label	to	stand	for	the	address,	but	a	hard-coded	number	can	be	
used,	too.	

In	the	case	of	CALLR,	the	target	address	is	in	register	Reg1.	

Since	all	program-generated	addresses	are	36	bits,	only	the	lower	36	bits	of	any	
target	address	can	affect	the	effective	address.	The	upper	28	bits	[63:36]	of	any	
target	address	are	always	ignored.	

The	CALLR	instruction	is	implemented	with:	
	 JALR	 lr,0(Reg1)	

In	the	case	of	CALL,	the	address	will	not	normally	be	known	until	link-time.	
Consequently,	the	actual	instruction	sequence	may	not	be	determined	until	link-
time.	(However	in	some	cases,	the	assembler	will	be	able	to	produce	the	Uinal	
instruction	sequence.)	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	90 344

Chapter	5:	Instructions	

If	address	is	within	the	range	-524,288	…	+524,287	from	the	CALL	instruction	(i.e.,	
within	the	range	of	a	20-bit	offset),	then	CALL	is	implemented	with:	
	 JAL	 lr,address	

Otherwise	(i.e.,	a	full	36	bit	relative	offset	from	the	PC	is	needed),	then	CALL	is	
implemented	with:	
	 AUIPC	 t,upper-20	
	 JALR	 lr,lower-16(t)	

If	the	target	address	is	an	absolute	address	in	the	range	-32,768	…	+32,767	(i.e.,	
within	the	lowest	32	GiBytes	of	the	address	space	0x0_0000_0000	…	0x0_0000_7FFF	
or	within	the	highest	32	GiBytes	of	the	address	space	0xF_FFFF_8000	…	
0xF_FFFF_FFFF),	then	CALL	is	implemented	with:	
	 JALR	 lr,address(r0)	

Otherwise	(i.e.,	an	absolute	address	is	provided	and	a	full	36	bits	are	required),	CALL	
is	implemented	with:	
	 UPPER20	 t,upper-20	
	 JALR	 lr,lower-16(t)	

In	the	above	code,	“upper-20”	indicates	bits	[35:16]	of	the	address	and	“lower-16”	
indicates	bits	[15:0].	The	JALR	instruction	will	sign-extend	the	immediate	lower-16	
value	and	add	it	to	the	register.	To	compensate,	the	value	used	for	upper-20	will	have	
to	be	adjusted	accordingly.	

*JUMP	 address Jump	to	address

Synthetic,	Variable	Length,	May	cause	a	“Null	Address	Exception”	

Register	t	Usage:	May	be	modiUied.	

See	the	comments	regarding	“address”	for	the	CALL	instruction.	

This	instruction	is	implemented	exactly	like	the	CALL	instruction,	except	the	register	
r0	is	used	for	the	link	register.	In	other	words,	the	return	address	is	discarded,	
instead	of	saved.	

If	address	is	within	the	range	-524,288	…	+524,287	from	the	JUMP	instruction	(i.e.,	
within	the	range	of	a	20-bit	offset),	then	JUMP	is	implemented	with:	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	91 344

Chapter	5:	Instructions	

	 JAL	 r0,address	

Otherwise	(i.e.,	a	full	36	bit	relative	offset	from	the	PC	is	needed),	then	JUMP	is	
implemented	with:	
	 AUIPC	 t,upper-20	
	 JALR	 r0,lower-16(t)	

If	the	target	address	is	an	absolute	address	in	the	range	-32,768	…	+32,767,	then	
JUMP	is	implemented	with:	
	 JALR	 r0,address(r0)	

If	an	absolute	addressing	requiring	36	bits	is	given,	then	JUMP	is	implemented	with:	
	 UPPER20	 t,upper-20	
	 JALR	 r0,lower-16(t)	

In	the	above	code,	“upper-20”	indicates	bits	[35:16]	of	the	address	and	“lower-16”	
indicates	bits	[15:0].	The	JALR	instruction	will	sign-extend	the	immediate	lower-16	
value	and	add	it	to	the	register.	To	compensate,	the	value	used	for	upper-20	will	have	
to	be	adjusted	accordingly.

*JR	 Reg1 Indirect	jump,	via	register

Synthetic,	May	cause	a	“Null	Address	Exception”	

Register	t	Usage:	Not	used;	Okay	to	use	as	Reg1.	

This	instruction	jumps	to	the	address	contained	in	the	register.	

It	is	implemented	with:	
	 JALR	 r0,0(Reg1)	

*RET	 <no	operands> Return	value	is	in	link	reg	“lr”

Synthetic,	May	cause	a	“Null	Address	Exception”	

Register	t	Usage:	Not	used.	

A	jump	is	made	to	the	address	saved	in	the	link	register.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	92 344

Chapter	5:	Instructions	

This	instruction	is	implemented	with:	
	 JALR	 r0,0(lr)	

Commentary	The	basic	approach	to	function	call	and	return	is	to	store	the	return	
address	(i.e.,	the	address	of	the	instruction	following	the	CALL	instruction)	in	a	
register.	By	convention,	one	register	(named	“lr”)	is	set	aside	for	this	purpose.	

A	“leaf”	function	is	a	function	that	does	not	call	any	other	functions.	For	leaf	
functions,	there	is	no	need	to	save	the	return	address	on	the	stack,	since	it	can	
remain	undisturbed	in	register	“lr”	until	the	function	is	ready	to	return.	This	avoids	
two	(costly)	accesses	to	memory,	one	to	save	the	return	address	and	one	to	restore	
it.	

Some	functions	can	pass	all	arguments	and	return	values	in	registers	and	can	store	
all	local	variables	in	registers.	Such	lucky	functions	can	get	by	without	needing	to	
use	the	stack	and	can	execute	without	ever	accessing	memory,	which	enhances	
execution	speed.	

In	the	case	of	non-leaf	functions,	this	link	register	scheme	will	not	work.	Instead,	the	
function	must	explicitly	save	its	return	address,	and	this	is	normally	done	on	the	
stack.	Thus,	the	function	“entry	prologue”	will	include	a	STORE	instruction	to	save	
the	return	address,	while	the	function	“exit	epilogue”	will	include	a	LOAD	instruction	
directly	before	the	RETURN	instruction.	

ENTER	 immed-16
EXIT	 immed-16	

May	cause	a	page-related	exception,	“Unaligned	LOAD/STORE	Exception”,	“Null	
Address	Exception”,	or	“Arithmetic	Exception”	

The	ENTER	instruction	has	the	same	effect	as	the	following	instruction	sequence:	

STORED -8(sp),lr
ADDI sp,sp,immed-16

The	EXIT	instruction	has	the	same	effect	as:	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	93 344

Chapter	5:	Instructions	

ADDI sp,sp,immed-16
LOAD pc,-8(sp)

Of	course,	the	Program	Counter	(PC)	is	not	a	directly	addressable	register.	The	above	
pseudo-code	for	EXIT	is	merely	suggestive:	A	doubleword	is	fetched	from	memory	
and	used	as	the	target	address	to	jump	to.	

In	the	case	of	ENTER,	when	an	exception	arises	from	the	store	operation,	the	sp	
register	may	or	may	not	be	adjusted.	If	the	addition	causes	overUlow,	an	Arithmetic	
Exception	will	occur.	The	store	operation	may	or	may	not	be	performed.	These	are	
implementation	dependencies.	

In	the	case	of	EXIT,	when	an	Arithmetic	Exception	arises	from	the	addition	to	sp,	the	
load	operation	may	or	may	not	be	performed.	In	the	case	the	load	operation	causes	
an	exception,	the	addition	may	or	may	or	may	not	be	performed.	Whether	the	store	
operation	is	completed	or	not	is	implementation	dependent.	These	are	
implementation	dependencies.	

The	memory	address	is	computed	by	adding	-8	to	the	contents	of	register	sp.	
OverUlow	on	this	addition	is	ignored.	The	upper	28	bits	[63:36]	of	the	address	are	
ignored	and	only	the	lower	36	bits	[35:0]	are	used.	The	resulting	address	must	be	
non-zero;	any	attempt	to	load	or	store	into	address	zero	will	result	in	a	“Null	
Address	Exception”	being	signaled.	The	resulting	address	must	be	doubleword	
aligned;	if	not,	a	“Unaligned	LOAD/STORE	Exception”	will	be	signaled.	

Commentary	To	understand	the	purpose	of	ENTER	and	EXIT,	consider	the	following	
example	function,	which	allocates	a	frame	of	24	bytes	on	the	stack.	The	return	
address	along	with	a	couple	of	registers	are	stored	in	the	frame	on	entry	and	then	
restored	before	returning.	

According	to	the	standard	program	calling	conventions,	the	return	address	must	
always	be	stored	in	the	top	(i.e.,	highest)	doubleword	of	the	frame.	Other	locations	in	
the	frame	will	be	used	in	different	ways,	depending	on	the	needs	of	the	particular	
function.	

myFunc:
addi sp,sp,-24 # Function Prologue
store.d 0(sp),r1 # .
store.d 8(sp),r2 # .
store.d 16(sp),lr # .

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	94 344

Chapter	5:	Instructions	

...
load.d r1,0(sp) # Return Sequence
load.d r2,8(sp) # .
load.d lr,16(sp) # .
addi sp,sp,24 # .
ret # .

We	can	rewrite	the	above	code	as	follows: 	4

myFunc:
store.d -8(sp),lr # Function Prologue
addi sp,sp,-24 # .
store.d 0(sp),r1 # .
store.d 8(sp),r2 # .
...
load.d r1,0(sp) # Return Sequence
load.d r2,8(sp) # .
addi sp,sp,24 # .
load.d lr,-8(sp) # .
ret # .

The	highlighted	code	above	can	be	replaced	by	the	ENTER	and	EXIT	instructions	to	
give:	

myFunc:
enter -24 # Function Prologue
store.d 0(sp),r1 # .
store.d 8(sp),r2 # .
...
load.d r1,0(sp) # Return Sequence
load.d r2,8(sp) # .
exit 24 # .

	Note	that	the	re-written	version	saves	register	lr	below	the	top	of	the	stack,	at	-8(sp).	In	certain	4

situations,	this	may	be	risky.	If	interrupts	are	possible	and	the	interrupting	trap	handler	saves	
things	on	the	stack,	disaster	will	result	if	the	trap	occurs	between	saving	lr	and	decrementing	sp,	
since	the	saved	lr	will	be	overwritten	by	the	trap	handler.	However,	with	ENTER	and	EXIT,	
interrupts	cannot	occur	in	the	middle,	so	this	problem	is	avoided.

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	95 344

Chapter	5:	Instructions	

LOAD.B	 RegD,immed-16(Reg1)
LOAD.H	 RegD,immed-16(Reg1)
LOAD.W	 RegD,immed-16(Reg1)
LOAD.D	 RegD,immed-16(Reg1)
	 		
STORE.B	 immed-16(Reg1),Reg2	 	
STORE.H	 immed-16(Reg1),Reg2	 	
STORE.W	 immed-16(Reg1),Reg2	 	
STORE.D	 immed-16(Reg1),Reg2	 	

May	cause	a	page-related	exception,	“Unaligned	LOAD/STORE	Exception”,	or	“Null	
Address	Exception”	

The	LOAD	instructions	transfer	a	byte/halfword/word/doubleword	from	main	
memory	to	the	destination	register	RegD.	

In	the	case	of	a	LOAD	of	less	than	64	bits,	the	value	will	be	signed-extended	to	64	
bits.	

The	STORE	instructions	transfer	a	byte/halfword/word/doubleword	from	register	
Reg2	to	main	memory.	

In	the	case	of	a	STORE	of	less	than	64	bits,	the	upper	bits	of	the	register	will	be	
ignored.	There	will	not	be	a	“Arithmetic	Exception”	signaled.	

The	address	is	computed	by	sign-extending	the	16	bit	immediate	value	to	64	bits	
and	adding	it	to	the	contents	of	register	Reg1.	OverUlow	on	this	addition	is	ignored.	
The	upper	28	bits	[63:36]	of	the	address	are	ignored	and	only	the	lower	36	bits	
[35:0]	are	used.	

The	resulting	address	must	be	non-zero;	any	attempt	to	load	or	store	into	address	
zero	will	result	in	a	“Null	Address	Exception”	being	signaled.	

The	resulting	address	must	be	properly	aligned	for	the	size	being	transferred;	if	not,	
a	“Unaligned	LOAD/STORE	Exception”	will	be	signaled.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	96 344

Chapter	5:	Instructions	

Commentary	The	large	size	of	the	16	bit	immediate	offset	in	the	LOAD	and	STORE	
instructions	provides	a	lot	of	Ulexibility	in	addressing.	

To	access	values	stored	on	the	stack	using	LOAD	and	STORE	instructions,	the	stack	
pointer	register	“sp”	can	be	used	as	Reg1.	The	stack	grows	downward	toward	low	
memory.	Therefore,	positive	offsets	from	“sp”	can	be	used	to	access	any	data	within	
the	top	32KiBytes	of	the	stack.	

Many	language	compilers	maintain	a	“frame	pointer”	as	well	as	a	“stack	pointer”.	The	
frame	pointer	(often	called	“fp”)	is	used	in	the	implementation	of	stack	frames	for	
storing	local	variables	in	a	function	invocation.	The	“fp”	register	will	typically	be	
initialized	to	point	to	the	boundary	with	the	previous	stack	frame.	That	is,	“fp”	will	
point	to	the	top	of	the	current	frame	and	the	bottom	of	the	previous	frame.	As	
always,	the	“sp”	register	points	to	the	stack	top,	accommodating	dynamically-sized	
stack	frames	and	ad	hoc	pushing	and	popping	onto	the	stack.	

In	this	approach,	negative	offsets	from	“fp”	will	access	variables	in	the	current	(top)	
frame	and	positive	offsets	will	access	variable	in	the	previous	frames,	such	as	
function	arguments.	Given	the	range	of	the	immed-16	offset,	this	method	will	
accommodate	stack	frames	of	up	to	32	KiBytes	in	size.	For	stack	frames	larger	than	
this,	an	additional	instruction	may	be	required	for	some	variables.	Thus,	in	almost	
all	cases,	stack	frame	variables	will	be	accessible	with	a	single	instruction.	

The	Blitz-64	calling	conventions	do	not	include	a	frame	pointer	register.	In	other	
words,	there	is	no	register	named	“fp”.	However,	for	functions	that	need	a	frame	
pointer,	the	compiler	can	choose	any	register	to	use.	Often,	there	will	be	no	separate	
thread	data	area,	so	register	“tp”	is	normally	the	logical	choice	to	use	as	a	frame	
pointer.	By	convention,	the	compiler	will	use	“tp”	as	a	frame	pointer.	To	prevent	
confusion,	we	intentionally	do	not	give	the	“tp”	a	second	name,	such	as	“fp”.	

Data	within	the	lower	32	KiBytes	of	main	memory	(addresses	0x0_0000_0000…
0x0_0000_7FFF,	i.e.,	decimal	0…32,767)	can	be	conveniently	accessed	by	using	the	
zero	register	“r0”	for	Reg1.	

Due	to	the	fact	that	the	upper	bits	[63:36]	of	addresses	are	ignored,	data	within	the	
upper	32	KiBytes	of	addressable	memory	(i.e.,	addresses	0xF_FFFF_8000…
0xF_FFFF_FFFF)	is	also	accessible	with	negative	addresses	(i.e.,	decimal	-32,768	…	
-1).	This	is	achieved	with	a	negative	immed-16	value.	

Assuming	the	global	data	pointer	register	“gp”	has	been	initialized,	a	range	of	64	
KiBytes	of	static	variable	data	can	be	accessed	with	a	single	LOAD	or	STORE	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	97 344

Chapter	5:	Instructions	

instruction.	This	can	be	achieved	by	initializing	the	global	data	pointer	“gp”	to	point	
to	the	center	of	the	block	of	64	GiBytes	of	global	data.	The	Uirst	half	of	the	global	data	
will	be	accessed	with	a	negative	offset	and	the	upper	half	will	be	accessed	with	a	
positive	offset.	

Assuming	that	some	register	points	to	an	“object”	(in	the	sense	of	object-oriented	
programming),	a	single	LOAD	or	STORE	instruction	can	be	used	to	access	any	Uield	
within	the	object,	as	long	as	the	object	is	not	larger	than	32	KiBytes.	

For	data	located	at	any	other	address,	an	additional	instruction	will	be	required.	See	
the	UPPER20	and	UPPER16	instructions.	

Concerning	Atomicity	of	LOAD	and	STORE	Instructions	The	following	machine	
instructions	are	atomic:	

	 LOAD.B	 LOAD.H	 LOAD.W	 LOAD.D	
	 STORE.B	 STORE.H	 STORE.W	 STORE.D	
	 CAS	

This	means	the	memory	operation	occurs	as	a	single,	uninterruptible	unit.	
ConUlicting	memory	operations	which	touch	the	same	or	overlapping	memory	
locations	will	be	serialized,	which	means	one	operation	will	be	executed	to	
completion	entirely	before	the	other	operation	begins	execution.	

This	assumes	that	LOADs	and	STOREs	are	aligned;	if	they	are	not	aligned,	then	an	
“Unaligned	LOAD/STORE	Exception”	will	occur	and	atomicity	becomes	a	software	
issue,	and	only	if	the	instruction	is	to	be	emulated.	

Within	the	private	memory	of	a	single	core,	unaligned	operations	may	be	atomic;	
this	is	implementation	dependent.	However,	when	performed	on	a	shared	memory	
address	in	the	presence	of	multiple	processors,	the	programmer	must	be	careful	
when	using	unaligned	operations.	Consider	two	more-or-less	simultaneous	attempts	
to	STORE	different	values	into	a	single	doubleword	that	happens	to	cross	a	
boundary	and	involves	two	cache	lines.	Even	if	operations	involving	a	single	cache	
line	are	atomic,	an	operation	involving	two	cache	lines	is	not	normally	atomic.		

We	chose	the	granularity	of	atomicity	to	be	64	bits	on	the	assumption	that	all	
memory	busses	and	transfer	paths	to	memory	and	caches	will	be	at	least	64	bits	in	
width,	or	at	least	all	bus	transactions	will	accommodate	64	bits.	Thus,	the	atomicity	
of	LOADs	and	STOREs	will	“come	for	free”.	Perhaps	the	system	busses	will	transfer	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	98 344

Chapter	5:	Instructions	

data	in	larger	units,	such	as	cache	lines	of	128	bytes,	but	this	should	never	be	relied	
upon.	

Relying	on	the	atomicity	of	memory	operations	is	somewhat	error	prone.	To	guard	
against	race-related	bugs,	all	potentially	shared	data	should	be	protected	by	
software	locks.	However,	for	the	efUicient	implementation	of	“mutex”	locks,	the	
atomicity	of	LOAD.x,	STORE.x,	and	CAS	(compare-and-set)	is	critical.	

*LOADB	 RegD,address	 Where	address	is	any	value
*LOADH	 RegD,address	 	
*LOADW	 RegD,address	 		
*LOADD	 RegD,address	 		 	

*LOADB	 RegD,offset(Reg1)		 Where	offset	is	any	value
*LOADH	 RegD,offset(Reg1)	 	
*LOADW	 RegD,offset(Reg1)	 	
*LOADD	 RegD,offset(Reg1)	 		

Synthetic,	Variable	Length,	may	cause	a	page-related	exception,	“Unaligned	LOAD/
STORE	Exception”,	or	“Null	Address	Exception”	

Register	t	Usage:	Not	used;	Okay	to	use	as	RegD	or	Reg1.	

Register	Note:	RegD	and	Reg1	must	be	different	!	

In	these	synthetic	instructions,	“address”	may	be	any	absolute	or	relocatable	
address.	Typically	the	programmer	or	compiler	will	use	a	symbolic	label	to	stand	for	
the	address,	but	a	hard-coded	number	can	be	used,	too.	The	“offset”	operand	may	be	
any	absolute	value.	

Both	address	and	offset	are	limited	to	36	bits.	Since	all	program-generated	addresses	
are	36	bits,	only	the	lower	36	bits	of	any	address	or	offset	can	affect	the	effective	
address.	The	upper	28	bits	[63:36]	of	any	address	are	always	ignored.	

Normally,	the	address	will	not	be	known	until	link-time.	The	offset	may	also	be	
unknown	until	link-time.	In	such	cases,	the	actual	instruction	sequence	may	not	be	
determined	until	link-time.	(However	in	some	cases,	the	assembler	will	be	able	to	
produce	the	Uinal	instruction	sequence.)	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	99 344

Chapter	5:	Instructions	

In	the	following,	we	describe	the	sequence	of	machine	instructions	produced	for	a	
LOADB	instruction.	The	LOADH,	LOADW,	and	LOADD	instructions	are	handled	
analogously.	

Consider	an	instruction	of	the	form:	
	 LOADB	 RegD,address	

If	the	value	of	address	is	within	the	range	of	-32,768	…	+32,767,	then	use:	
	 LOAD.B	 RegD,address(r0)	

If	address	is	any	other	value,	then	use:	
	 UPPER20	 RegD,upper-20	
	 LOAD.B	 RegD,lower-16(RegD)	

The	above	code	works	for	any	absolute	address.	Normally	the	linker	will	convert	
(i.e.,	“resolve”)	all	addresses	to	absolute	numbers.	But	if	PC-relative	addressing	is	
demanded,	the	following	sequence	must	be	used,	regardless	of	the	size	of	the	offset:	
	 AUIPC	 RegD,upper-20	
	 LOAD.B	 RegD,lower-16(RegD)	

Consider	an	instruction	of	the	form:	
	 LOADB	 RegD,offset(Reg1)	

If	offset	is	within	the	range	of	-32,768	…	+32,767,	then	use:	
	 LOAD.B	 RegD,offset(Reg1)	

If	offset	is	within	32	bits	(i.e.,	within	the	range	-2,147,483,648	…	+2,147,483,647),	
then	use:	
	 UPPER16	 RegD,Reg1,upper-16	
	 LOAD.B	 RegD,lower-16(RegD)	

If	offset	is	a	value	even	larger	than	32	bits,	then	use	the	following.	(An	offset	larger	
than	32	bits	would	be	quite	rare,	so	this	sequence	won’t	be	needed	often.)	
	 UPPER20	 RegD,upper-20	
	 ADD	 RegD,RegD,Reg1		 	
	 LOAD.B	 RegD,lower-16(RegD)	

(This	sequence	contains	an	ADD	instruction;	can	this	cause	an	“Arithmetic	
Exception”?	The	UPPER20	instruction	is	only	capable	of	loading	a	36	bit	value.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	100 344

Chapter	5:	Instructions	

Assuming	that	Reg1	contains	a	legal	address	(i.e.,	a	value	limited	to	36	bits)	the	ADD	
instruction	cannot	cause	an	Arithmetic	Exception.)	

In	the	above	code,	“upper-16”	indicates	the	upper	16	bits	[31:16]	of	the	value,	
“upper-20”	indicates	the	upper	20	bits	[35:16]	of	the	value,	and	“lower-16”	indicates	
bits	[15:0].	The	LOAD	instruction	will	sign-extend	the	immediate	lower-16	value	and	
add	it	to	the	register.	To	compensate,	the	value	used	for	upper-16	and/or	upper-20	
will	have	to	be	adjusted	accordingly.	

To	understand	why	RegD	and	Reg1	must	be	different,	consider	the	following	when	
the	offset	is	large:	
	 LOADB	 r5,offset(r5)	

Here	is	the	code	generated;	obviously	it	will	not	work	correctly.	
	 UPPER20	 r5,upper-20	 Error:	Original	value	of	r5	is	lost.	
	 ADD	 r5,r5,r5		 	
	 LOAD.B	 r5,lower-16(r5)

*STOREB	 address,Reg2		 Where	address	is	any	value
*STOREH	 address,Reg2	 	
*STOREW	 address,Reg2	 	
*STORED	 address,Reg2	 		

*STOREB	 offset(Reg1),Reg2		 Where	offset	is	any	value
*STOREH	 offset(Reg1),Reg2	 	
*STOREW	 offset(Reg1),Reg2	 	
*STORED	 offset(Reg1),Reg2	 	

Synthetic,	Variable	Length,	May	cause	a	page-related	exception,	“Unaligned	LOAD/
STORE	Exception”,	or	“Null	Address	Exception”	

Register	t	Usage:	May	be	modiUied;	Must	not	use	as	Reg1	and/or	Reg2	!	

Concerning	“address”	and	“offset”,	see	the	comments	under	the	LOAD	instructions.	

As	with	the	LOAD	instructions,	we	describe	how	the	synthetic	instruction	can	be	
implemented	with	1,	2,	or	3	instructions.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	101 344

Chapter	5:	Instructions	

In	some	cases	we	need	a	register	in	which	to	build	a	large	address.	In	the	case	of	the	
LOAD	instructions,	we	used	the	destination	register	RegD,	since	it	was	to	be	
overwritten	anyway.	In	the	case	of	the	STORE	instructions,	this	will	not	work.	
Instead,	we	use	the	temporary	register	“t”.	

Consider	an	instruction	of	the	form:	
	 STOREB	 address,Reg2	

If	the	value	of	address	is	within	the	range	of	-32,768	…	+32,767,	then	use:	
	 STORE.B	 address(r0),Reg2	

If	address	is	any	other	value,	then	use:	
	 UPPER20	 t,upper-20	
	 STORE.B	 lower-16(t),Reg2	

If	PC-relative	addressing	is	demanded,	then	use:	
	 AUIPC	 t,upper-20	
	 STORE.B	 lower-16(t),Reg2	

Consider	an	instruction	of	the	form:	
	 STOREB	 offset(Reg1),Reg2	

If	offset	is	within	the	range	of	-32,768	…	+32,767,	then	use:	
	 STORE.B	 offset(Reg1),Reg2	

If	offset	is	within	32	bits	(i.e.,	within	the	range	-2,147,483,648	…	+2,147,483,647),	
then	use:	
	 UPPER16	 t,Reg1,upper-16	
	 STORE.B	 lower-16(t),Reg2	

If	offset	is	a	value	even	larger	than	32	bits,	then	use:	
	 UPPER20	 t,upper-20	
	 ADD	 t,t,Reg1	
	 STORE.B	 lower-16(t),Reg2	

CAS	 RegD,Reg1,Reg2,Reg3		 	Compare	and	Set

May	cause	a	page-related	exception,	or	“Null	Address	Exception”	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	102 344

Chapter	5:	Instructions	

Register	Reg1	contains	the	address	of	a	doubleword,	Reg2	contains	the	expected	
“old”	value,	and	Reg3	contains	the	“new”value.	

This	operation	will	load	a	doubleword	from	memory.	If	the	value	is	equal	to	the	
expected	old	value	(in	Reg2),	then	memory	will	be	updated	by	storing	the	new	value	
(in	Reg3)	into	memory	and	1	will	be	moved	into	RegD.	If	not	equal,	memory	will	not	
be	updated	and	0	will	be	moved	into	RegD.	

More	precisely,	this	instruction	does	the	following	as	one	atomic	operation:	

if *Reg1 == Reg2
 *Reg1 ← Reg3
 RegD ← true
else
 RegD ← false
endIf

The	address	in	Reg1	is	forced	to	be	doubleword	aligned	by	ignoring	the	Uinal	3	bits.	
Thus,	an	“Unaligned	LOAD/STORE	Exception”	cannot	occur.	

This	instruction	is	not	normally	used	on	memory-mapped	I/O	devices.	This	
instruction	is	implementation	dependent	if	performed	on	a	memory-mapped	I/O	
address	and	may	not	work	as	expected.	

Commentary	The	compare-and-set	(CAS)	instruction	is	used	for	concurrency	
control	to	allow	synchronization	between	multiple	threads	which	may	be	running	
on	different	cores	accessing	shared	memory.	

Consider	implementing	a	mutex	lock,	which	will	be	represented	as	a	doubleword	
with	0=unlocked	and	1=locked.	If	it	is	currently	locked,	the	following	code	will	spin	
in	a	tight	loop	continually	executing	the	CAS	instruction	to	check	it.	

To	acquire	the	lock:	
 movi r1,…addressOfLock…
 movi r3,1
loop:
 cas r7,r1,r0,r3
 beqz r7,loop

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	103 344

Chapter	5:	Instructions	

To	release	the	lock:	
 movi r1,…addressOfLock…
 store.d 0(r1),r0

Next,	consider	the	case	where	we	have	several	cores,	each	executing	a	thread	with	
the	goal	of	selecting	one	of	the	cores	as	a	“leader”.	For	example,	we	might	want	all	
cores	to	agree	on	which	core	will	act	as	“master”,	with	the	others	acting	as	“slaves”.	

Assume	that	each	core	has	a	unique	ID	number	and	the	goal	is	for	these	concurrent	
processes	to	select	exactly	one	core.	We	will	assume	there	is	a	shared	memory	
location	(which	we	will	name	Leader)	which	will	be	used	for	the	election.	The	Leader	
variable	is	assumed	to	be	a	doubleword	initialized	to	zero.	

Here	is	the	code	that	each	core	will	execute	in	order	to	chose	their	leader:	
 movi r1,…address	of	Leader…
 movi r3,…my	core	ID…
 cas r7,r1,r0,r3
 bnez r7,WeWon
WeLost:
 load.d …,0(r1) Load	the	ID	of	the	leader

Commentary	To	use	the	CAS	instruction,	the	KPL	programming	language	has	a	
built-in	function	with	this	usage:	

	 function	cas	(p:	ptr	to	int,	old:	int,	new:	int)	returns	bool	

Such	a	function	could	be	implemented	in	assembly	code	as:	

casFunct:
 cas r1,r1,r2,r3
 ret

However,	the	compiler	will	recognize	this	as	a	predeUined	function	and	insert	the	
CAS	instruction	inline.	

FENCE	 <no	operands>	

No	exceptions;	Not	privileged	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	104 344

Chapter	5:	Instructions	

You	might	imagine	that	the	processor	fetches	instructions	in	order	and	executes	
them	in	sequence;	this	is	the	programming	model	that	programmers	and	compilers	
naturally	adopt.	

However,	to	increase	performance,	modern	processors	will	sometimes	execute	
instructions	out	of	sequence.	This	is	acceptable	as	long	as	the	effect	is	identical	to	
executing	them	in	the	sequence	they	appear.	

In	reordering	instructions,	the	processor	implicitly	assumes	that	there	are	no	other	
processors.	However,	this	may	not	be	true	and	the	results	can	be	incorrect	in	a	
multiprocessor	system	with	shared	memory.	Programmers	assume	the	operations	in	
their	code	are	executed	in	the	sequence	written	but,	with	concurrent	algorithms,	
violations	of	this	assumption	can	cause	race	bugs.	

The	FENCE	instruction	is	used	to	ensure	critical	instructions	complete	before	other	
instructions	begin.	Therefore,	FENCE	constrains	and	limits	out-of-order	execution	
and	may	introduce	delays	and	pipeline	bubbles.	

The	FENCE	instruction	affects	instructions	that	read	or	write	to	memory.	This	
includes:	

	 LOAD.B,	LOAD.H,	LOAD.W,	LOAD.D	
	 STORE.B,	STORE.H,	STORE.W,	STORE.D	
	 CAS,	TLBCLEAR,	TLBFLUSH,	CHECKADDR	

The	FENCE	instruction	requires	that	any	of	the	above	instructions	that	appear	
before	the	FENCE	instruction	will	be	completed	before	the	FENCE	instruction.	It	
requires	that	any	of	the	above	instructions	that	appear	after	the	FENCE	instruction	
will	not	be	started	until	after	the	FENCE	instruction.	

To	say	this	another	way,	let’s	call	all	memory-related	instructions	that	appear	in	the	
instruction	stream	before	the	FENCE	as	X	and	all	memory-related	instructions	that	
appear	after	the	FENCE	as	Y.	The	FENCE	instruction	says,	“Finish	executing	all	X	
instructions	before	starting	the	execution	of	any	Y	instructions.”	

Commentary	In	some	ISAs,	a	distinction	is	made	between	operations	that	read	
memory	and	operations	that	write	memory.	Also	a	distinction	can	be	made	between	
operations	that	affect	memory	and	operations	that	affect	I/O.	RISC-V	is	an	example.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	105 344

Chapter	5:	Instructions	

We	chose	to	keep	it	simple	and	provide	a	single	FENCE	instruction	for	all	cases.	

Commentary	To	use	the	FENCE	instruction,	the	KPL	programming	language	has	a	
built-in	function	which	takes	no	arguments	and	returns	no	result:	

	 function	fence	()	

Such	a	function	could	be	implemented	in	assembly	code	as:	

fenceFunct:
 fence
 ret

However,	the	compiler	will	recognize	this	as	a	predeUined	function	and	insert	the	
FENCE	instruction	inline.	

Like	an	out-of-order	processor,	compilers	also	reorder	instructions.	

In	fact,	the	compiler	can	make	major	changes	to	improve	performance,	for	example,	
by	keeping	variables	in	registers	and	delaying	writes	to	memory	for	long	periods	of	
time.	While	these	optimizations	improve	performance,	they	also	open	the	door	for	
race	bugs	in	concurrent	programs.	Thus,	there	must	be	a	way	to	instruct	the	
compiler	when	to	limit	optimizations	and	execute	the	operations	in	the	order	
speciUied.	

In	addition	to	inserting	a	FENCE	instruction,	the	KPL	compiler	will	also	recognize	
the	use	of	the	predeUined	“fence	()”	function	as	a	signal	to	avoid	the	sorts	of	
reordering	and	register	caching	that	could	confuse	and	break	concurrent	code.	

The	Blitz	approach	may	seem	like	a	blunt	force	tool	and	it	is	certainly	the	case	that	
other	ISAs	and	languages	provide	a	Uiner-grained	level	of	control.	However,	we	chose	
the	simple	approach	of	Blitz	for	two	reasons.	

First,	since	it	is	simpler,	we	may	avoid	a	programmer’s	failure	to	fully	and	adequately	
constrain	memory	operations	that	could	occur	with	a	Uiner	level	of	control.	In	other	
words,	a	more	complicated	approach	opens	the	way	for	the	programmer	to	use	it	
incorrectly.	We	feel	that	race	bugs	are	so	problematic	that	anything	we	can	do	is	
worthwhile.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	106 344

Chapter	5:	Instructions	

Second,	the	sections	of	code	that	will	be	affected	by	a	particular	use	of	“fence”	will	
probably	be	quite	small.	We	do	not	expect	many	variables	to	be	“in	play”	and	subject	
to	movement	around	a	particular	use	of	“fence”	beyond	the	variables	that	we	are	
intending	to	constrain,	so	the	only	optimizations	that	are	eliminated	are	the	ones	we	
need	to	eliminate.	The	overly	blunt	“fence”	of	Blitz	will	not	cause	many	unwanted,	
unintended	inefUiciencies.	(There’s	probably	an	entire	PhD	thesis	to	be	had	in	
sorting	this	issue	out.)	

Although	this	is	never	a	good	justiUication,	the	Blitz/KPL	approach	may	be	easier	to	
implement	than	the	approach	of	declaring	certain	variables	to	be	“volatile”.	

ALIGNH	 RegD,Reg1,Reg2,Reg3 Reg3	(unaligned	addr)	gives	shift	amount
ALIGNW	 RegD,Reg1,Reg2,Reg3 Reg3	(unaligned	addr)	gives	shift	amount
ALIGND	 RegD,Reg1,Reg2,Reg3 Reg3	(unaligned	addr)	gives	shift	amount

The	ALIGN	instructions	support	the	emulation	of	memory	LOADs	in	which	the	target	
address	is	not	properly	aligned.	

The	high-order	portion	of	the	data	comes	from	Reg1,	the	low-order	portion	of	the	
data	comes	from	Reg2.	The	least	signiUicant	bits	in	Reg3	tell	how	to	shift/combine	
the	portions.	The	result	is	sign-extended	and	placed	in	RegD.	

The	ALIGN	instructions	use	only	the	least	signiUiant	bits	of	Reg3,	so	the	(possibly	
unaligned)	target	address	itself	can	be	used.	These	bits	are	the	Uinal	bits	of	the	
address	and	tell	how	“misaligned”	the	address	is,	i.e.,	how	much	shifting	must	be	
done.	

Commentary	Let’s	look	at	the	operation	of	the	ALIGN	instructions	in	more	detail.	

ALIGNW	

For	the	ALIGNW	instruction,	the	goal	is	to	select	four	bytes,	which	may	be	aligned	in	
any	of	four	ways.	

Assume	the	memory	contains	the	following	sequence	of	bytes,	where	xx	represents	
one	byte.	Word	alignment	boundaries	are	indicated	with	a	period,	so	words	AA	BB	
CC	DD	and	EE	FF	GG	HH	are	properly	aligned.	The	(possibly	unaligned)	target	
address	will	fall	into	one	of	the	four	cases	shown.		

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	107 344

Chapter	5:	Instructions	

	 	 … xx xx xx xx.AA BB CC DD.EE FF GG HH.xx xx xx xx …	
	 0	 AA BB CC DD	
	 1	 BB CC DD EE	
	 2	 CC DD EE FF	
	 3	 DD EE FF GG	

The	LOADW	instruction	only	loads	properly	aligned	words.	In	order	to	retrieve	a	
(possibly	misaligned)	word	such	as	CC	DD	EE	FF,	we	will	LOAD	two	consecutive	
words.	Regardless	of	alignment,	this	guarantees	that	we	will	get	all	the	bytes.		

Assume	that	Reg1	and	Reg2	have	been	loaded	using	the	LOADW	instruction	from	
two	consecutive	words	in	the	memory	that	contain	the	desired	word.	

	 Reg1	 xx xx xx xx AA BB CC DD	
	 Reg2	 xx xx xx xx EE FF GG HH	

The	result	placed	in	RegD	will	be	determined	by	the	least	signiUicant	two	bits	in	
Reg3,	i.e.,	the	Uinal	bits	of	the	address.	The	resulting	word	will	be	sign-extended	to	Uill	
RegD.	

	 Reg3	 Result	in	RegD	
	 00	 ss ss ss ss AA BB CC DD	
	 01	 ss ss ss ss BB CC DD EE	
	 10	 ss ss ss ss CC DD EE FF	
	 11	 ss ss ss ss DD EE FF GG	

ALIGNH	

For	the	ALIGNH	instruction,	the	goal	is	to	select	two	bytes,	which	may	be	aligned	in	
any	of	two	ways.	

Assume	the	memory	contains	the	following	sequence	of	bytes,	where	xx	represents	
one	byte.	Halfword	alignment	boundaries	are	indicated	with	a	period,	so	words	AA	
BB	and	CC	DD	are	properly	aligned.	The	(possibly	unaligned)	target	address	will	fall	
into	one	of	the	two	cases	shown.		

	 	 … xx.xx xx.AA BB.CC DD.xx xx.xx …	
	 0	 AA BB	
	 1	 BB CC	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	108 344

Chapter	5:	Instructions	

The	LOADH	instruction	only	loads	properly	aligned	halfwords.	In	order	to	retrieve	a	
(possibly	misaligned)	halfword	such	as	BB	CC,	we	will	LOAD	two	consecutive	
halfwords.	Regardless	of	alignment,	this	guarantees	that	we	will	get	all	the	bytes.		

Assume	that	Reg1	and	Reg2	have	been	loaded	using	the	LOADH	instruction	from	two	
consecutive	halfwords	in	the	memory	that	contain	the	desired	halfword.	

	 Reg1	 xx xx xx xx xx xx AA BB	
	 Reg2	 xx xx xx xx xx xx CC DD	

The	result	placed	in	RegD	will	be	determined	by	the	least	signiUicant	bit	in	Reg3,	i.e.,	
the	Uinal	bit	of	the	address.	The	resulting	halfword	will	be	sign-extended	to	Uill	the	
RegD.	

	 Reg3	 Result	in	RegD	
	 0	 ss ss ss ss ss ss AA BB	
	 1	 ss ss ss ss ss ss BB CC	

ALIGND	

For	the	ALIGND	instruction,	the	goal	is	to	select	eight	bytes,	which	may	be	aligned	as	
follows.	The	period	indicates	properly	aligned	doubleword	boundaries.	The	
(possibly	unaligned)	target	address	will	fall	into	one	of	the	eight	cases	shown.	

	 	 … .AA BB CC DD EE FF GG HH.II JJ KK LL MM NN OO PP. …	
	 0	 AA BB CC DD EE FF GG HH	
	 1	 BB CC DD EE FF GG HH II	
	 2	 CC DD EE FF GG HH II JJ	
	 3	 DD EE FF GG HH II JJ KK	
	 4	 EE FF GG HH II JJ KK LL	
	 5	 FF GG HH II JJ KK LL MM	
	 6	 GG HH II JJ KK LL MM NN	
	 7	 HH II JJ KK LL MM NN OO	

The	LOADD	instruction	only	loads	properly	aligned	doublewords.	In	order	to	
retrieve	a	(possibly	misaligned)	doubleword,	we	will	LOAD	two	consecutive	
doublewords.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	109 344

Chapter	5:	Instructions	

Assume	that	Reg1	and	Reg2	have	been	loaded	using	the	LOADD	instruction	from	two	
consecutive	doublewords	in	the	memory	that	contain	the	desired	halfword.	

	 Reg1	 AA BB CC DD EE FF GG HH
	 Reg2	 II JJ KK LL MM NN OO PP	

The	result	placed	in	RegD	will	be	determined	by	the	least	signiUicant	three	bits	in	
Reg3,	i.e.,	the	Uinal	bits	of	the	address.	

	 Reg3	 Result	in	RegD	
	 000	 AA BB CC DD EE FF GG HH	
	 001	 BB CC DD EE FF GG HH II	
	 010	 CC DD EE FF GG HH II JJ	
	 011	 DD EE FF GG HH II JJ KK	
	 100	 EE FF GG HH II JJ KK LL	
	 101	 FF GG HH II JJ KK LL MM	
	 110	 GG HH II JJ KK LL MM NN	
	 111	 HH II JJ KK LL MM NN OO	

Code	Examples	

Here	is	an	example	of	how	to	use	the	ALIGNW	instruction.	Assume	that	we	wish	to	
load	a	word	into	register	RegD	from	the	(possibly	unaligned)	target	address	
contained	in	register	“RegAddr”.	This	code	requires	two	additional	registers,	
represented	as	RegLo	and	RegAlign.	

Registers	“RegD”	and	“RegLo”	will	be	used	to	contain	two	consecutive	words	from	
memory,	which	will	contain	the	target	4	bytes	somewhere	within	them.	First,	we	
must	modify	the	address	to	force	alignment,	to	avoid	a	“Unaligned	LOAD/STORE	
Exception”,	placing	the	rounded-down	version	of	the	address	in	register	“RegAlign”.	
Then	we	load	two	consecutive	words	from	memory.	Finally,	we	use	the	ALIGNW	
instruction	to	compute	the	desired	result.	

 ANDI RegAlign,RegAddr,0xFFFC
LOADW RegD,0(RegAlign)
LOADW RegLo,4(RegAlign)
ALIGNW RegD,RegD,RegLo,RegAddr

[Note	that,	in	the	case	when	the	address	happens	to	be	correctly	aligned,	the	second	
LOAD	instruction	is	unnecessary.	Also	note	that	if	the	target	word	happens	to	be	the	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	110 344

Chapter	5:	Instructions	

last	word	in	a	page,	the	second	LOAD	will	retrieve	data	on	a	different	page	than	the	
Uirst	LOAD.	In	rare	cases,	this	second	page	could	have	different	permissions	or	be	an	
unallocated	page,	causing	an	exception	to	occur.	This	exception	is	extraneous	and	
should	be	avoided	since	it	could	cause	the	program	to	fail.	To	avoid	this,	the	
programmer	could	add	an	extra	8	bytes	to	the	end	of	the	data,	which	will	guarantee	
that	an	extraneous	unnecessary	LOAD	will	not	cause	problems.	Or	the	programmer	
could	use	the	approach	described	next.]	

Here	is	a	variation	which	avoids	an	unnecessary	LOADW	in	the	case	where	the	
address	happens	to	be	correctly	aligned.	

 ANDI RegAlign,RegAddr,0xFFFC
LOADW RegD,0(RegAlign)
ANDI t,RegAddr,0x03
BEQZ t,EndLabel
LOADW RegLo,4(RegAlign)
ALIGNW RegD,RegD,RegLo,RegAddr

 EndLabel:

To	determine	which	of	these	sequences	is	superior	will	require	a	performance	
analysis	and	depend	on	the	relative	costs	of	LOADW	versus	the	ANDI/BEQZ/
ALIGNW	instructions.	

Without	the	ALIGN	instructions,	the	alternative	to	loading	data	from	arbitrary,	
unaligned	addresses	is	to	load	individual	bytes,	one	by	one.	For	example,	to	load	a	
word,	we	could	use	a	code	sequence	like	this.	For	loading	an	unaligned	doubleword,	
the	code	sequence	will	be	twice	as	long.	

LOADB r1,0(RegAddr) # Get MSByte and sign bits
LOADB r2,1(RegAddr) # Get byte 2
ANDI r2,r2,0x0ff # .
SLL r1,r1,8 # Shift byte 2 into result
ORI r1,r1,r2 # .
LOADB r2,2(RegAddr) # Get byte 3
ANDI r2,r2,0x0ff # .
SLL r1,r1,8 # Shift byte 3 into result
ORI r1,r1,r2 # .
LOADB r2,3(RegAddr) # Get LSByte
ANDI r2,r2,0x0ff # .

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	111 344

Chapter	5:	Instructions	

SLL r1,r1,8 # Shift LSByte into result
ORI r1,r1,r2 # .

The	hardware	implementation	of	the	ALIGN	instructions	is	fairly	simple	and	small.	
The	hardware	will	require	some	shifting	of	bits	(no	gates),	several	multiplexors	to	
select	which	result	to	use,	and	the	circuitry	to	sign-extend	either	a	halfword	or	a	
word	(which	might	already	be	present	anyway).	

The	beneUit	of	the	ALIGN	instructions	depends	on	how	much	unaligned	data	we	
expect	to	encounter.	The	KPL	language	always	places	all	variables,	objects,	and	Uields	
on	aligned	boundaries,	so	there	will	be	almost	no	unaligned	data	in	KPL,	unless	the	
programmer	decides	to	do	it	explicitly	with	pointers.	Occasionally,	we	will	encounter	
unaligned	data	from	Uiles	read	in,	or	data	received	over	the	Internet.	

INJECT1H	 RegD,Reg1,Reg2,Reg3 RegD	←	Reg1;	inject	Reg2	per	addr	in	Reg3
INJECT2H	 RegD,Reg1,Reg2,Reg3 RegD	←	Reg1;	inject	Reg2	per	addr	in	Reg3
INJECT1W	 RegD,Reg1,Reg2,Reg3 RegD	←	Reg1;	inject	Reg2	per	addr	in	Reg3
INJECT2W	 RegD,Reg1,Reg2,Reg3 RegD	←	Reg1;	inject	Reg2	per	addr	in	Reg3
INJECT1D	 RegD,Reg1,Reg2,Reg3 RegD	←	Reg1;	inject	Reg2	per	addr	in	Reg3
INJECT2D	 RegD,Reg1,Reg2,Reg3 RegD	←	Reg1;	inject	Reg2	per	addr	in	Reg3

The	INJECT	instructions	support	the	emulation	of	memory	STOREs	in	which	the	
destination	address	is	not	properly	aligned.	

The	contents	of	Reg1	are	copied	to	RegD	with	no	shifting.	However,	some	bytes	from	
Reg2	may	be	injected	into	the	copied	data.	By	“injected”,	we	mean	a	byte	from	Reg2	
will	replace	a	byte	being	copied	from	Reg1	to	RegD.	

The	value	in	Reg3	controls	which	bytes	from	Reg2	are	injected	into	the	data	and	
where	in	the	data	they	are	injected.	The	least	signiUicant	bits	in	Reg3	tell	how	to	
shift/combine	the	values	in	Reg1	and	Reg2	to	produce	the	value	stored	in	RegD.	

The	INJECT	instructions	use	only	the	least	signiUiant	bits	of	Reg3,	so	the	(possibly	
unaligned)	destination	address	itself	can	be	used.	These	bits	are	the	Uinal	bits	of	the	
address	and	tell	how	“misaligned”	the	address	is,	i.e.,	how	much	shifting	must	be	
done.	

In	the	case	of	INJECT1H	and	INJECT2H,	only	the	least	signiUicant	bit	of	Reg3	is	used.	
In	the	case	of	INJECT1W	and	INJECT2W,	the	least	signiUicant	2	bits	of	Reg3	are	used.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	112 344

Chapter	5:	Instructions	

In	the	case	of	INJECT1D	and	INJECT2D,	the	least	signiUicant	3	bits	of	Reg3	are	used.	
The	remaining	bits	in	Reg3	are	ignored.	

Details	of	the	INJECT	Instructions	

Let’s	look	at	the	operation	of	the	INJECT	instructions	in	more	detail,	starting	with	a	
code	sequence	to	show	how	they	can	be	used.	This	example	deals	with	doubleword-
sized	data;	the	code	for	halfword	or	word	data	would	be	virtually	identical.	

To	store	a	doubleword	“source	value”	into	an	unaligned	memory	address,	the	code	
must	Uirst	LOAD	two	aligned	doublewords	from	memory,	then	use	the	source	
doubleword	to	modify	(i.e.,	“inject”)	some	bytes	into	each	of	these	doublewords,	
then	issue	two	STORE	instructions	to	store	the	updated	doublewords	back	into	
memory.	

Assume the unaligned address is in r4
Assume the source data to be stored is in r7
ANDI r5,r4,0xFFF8 # Compute an aligned address
LOAD.D r1,0(r5) # Read two doublewords from memory
LOAD.D r2,8(r5) # .
INJECT1D r1,r1,r7,r4 # Inject bytes into lefthand dword
INJECT2D r2,r2,r7,r4 # Inject bytes into righthand dword
STORE.D 0(r5),r1 # Store two dwords back to memory
STORE.D 8(r5),r2 # .

(It’s	possible	that	the	address	happens	to	be	aligned	and,	by	adding	a	test	and	
branch,	some	LOADs	and	STOREs	could	be	avoided.	This	optimization	is	not	shown.)	

INJECT1D	and	INJECT2D	

The	two	INJECTD	instructions	will	inject	eight	bytes	in	one	of	eight	ways,	depending	
on	the	unaligned	address,	as	shown	next.	

Assume	that	the	most	signiUicant	doubleword	fetched	from	memory	is	
	 xx xx xx xx xx xx xx xx	
Assume	the	least	signiUicant	doubleword	fetched	from	memory	is	
	 yy yy yy yy yy yy yy yy	
Assume	that	the	source	value	to	be	stored	is	
	 AA BB CC DD EE FF GG HH

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	113 344

Chapter	5:	Instructions	

The	source	doubleword	will	need	to	be	injected	into	these	two	doublewords	in	one	
of	these	8	ways,	where	“..”	means	that	the	byte	is	unchanged.	

	 	 xx xx xx xx xx xx xx xx yy yy yy yy yy yy yy yy

	 0	 AA BB CC DD EE FF GG HH 	
	 1	 .. AA BB CC DD EE FF GG HH	
	 2	 AA BB CC DD EE FF GG HH	
	 3	 AA BB CC DD EE FF GG HH	
	 4	 AA BB CC DD EE FF GG HH	
	 5	 AA BB CC DD EE FF GG HH	
	 6	 AA BB CC DD EE FF GG HH	
	 7	 AA BB CC DD EE FF GG HH ..	

INJECT1D	will	perform	the	injection	shown	above	on	the	left	and	INJECT2D	will	
perform	the	injection	shown	above	on	the	right.	

To	be	more	precise,	assume	that	Reg1	and	Reg2	contain	the	following	bytes.	

	 Reg1	 X1 X2 X3 X4 X5 X6 X7 X8
	 Reg2	 AA BB CC DD EE FF GG HH	

INJECT1D	will	move	the	following	values	into	RegD,	based	on	the	least	signiUicant	3	
bits	in	Reg3,	i.e.,	the	Uinal	bits	of	the	unaligned	address.	

	 Reg3	 Result	in	RegD	
	 000	 AA BB CC DD EE FF GG HH	
	 001	 X1 AA BB CC DD EE FF GG	
	 010	 X1 X2 AA BB CC DD EE FF	
	 011	 X1 X2 X3 AA BB CC DD EE	
	 100	 X1 X2 X3 X4 AA BB CC DD	
	 101	 X1 X2 X3 X4 X5 AA BB CC	
	 110	 X1 X2 X3 X4 X5 X6 AA BB	
	 111	 X1 X2 X3 X4 X5 X6 X7 AA	

Assume	that	Reg1	and	Reg2	contain	the	following	bytes.	

	 Reg1	 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8
	 Reg2	 AA BB CC DD EE FF GG HH	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	114 344

Chapter	5:	Instructions	

INJECT2D	will	move	the	following	values	into	RegD,	based	on	the	least	signiUicant	3	
bits	in	Reg3,	i.e.,	the	Uinal	bits	of	the	unaligned	address.	

	 Reg3	 Result	in	RegD	
	 000	 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8	
	 001	 HH Y2 Y3 Y4 Y5 Y6 Y7 Y8	
	 010	 GG HH Y3 Y4 Y5 Y6 Y7 Y8	
	 011	 FF GG HH Y4 Y5 Y6 Y7 Y8	
	 100	 EE FF GG HH Y5 Y6 Y7 Y8	
	 101	 DD EE FF GG HH Y6 Y7 Y8	
	 110	 CC DD EE FF GG HH Y7 Y8	
	 111	 BB CC DD EE FF GG HH Y8

INJECT1W	and	INJECT2W	

When	it	comes	to	storing	a	word	into	an	unaligned	address	in	memory,	we	make	the	
assumption	that	it	will	be	implemented	in	terms	of	aligned	word	LOADs	and	STOREs,	
not	doubleword	LOADs	and	STOREs.	

The	two	INJECTW	instructions	will	inject	four	bytes	in	one	of	four	ways,	depending	
on	the	unaligned	address,	as	shown	next.	

Assume	that	the	most	signiUicant	word	fetched	from	memory	is	
	 xx xx xx xx	
Assume	the	least	signiUicant	word	fetched	from	memory	is	
	 yy yy yy yy	
Assume	that	the	source	value	to	be	stored	is	
	 AA BB CC DD

The	source	word	will	need	to	be	injected	into	these	two	words	in	one	of	these	4	
ways,	where	“..”	means	that	the	byte	is	unchanged.	

	 	 xx xx xx xx yy yy yy yy

	 0	 AA BB CC DD 	
	 1	 .. AA BB CC DD	
	 2	 AA BB CC DD	
	 3	 AA BB CC DD ..	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	115 344

Chapter	5:	Instructions	

Assume	that	Reg1	and	Reg2	contain	the	following	bytes.	

	 Reg1	 X1 X2 X3 X4 X5 X6 X7 X8
	 Reg2	 ss ss ss ss AA BB CC DD	

where	“ss”	represents	sign-extension	bytes	that	will	be	ignored.	

INJECT1W	will	move	the	following	values	into	RegD,	based	on	the	least	signiUicant	2	
bits	in	Reg3,	i.e.,	the	Uinal	bits	of	the	unaligned	address.	

	 Reg3	 Result	in	RegD	
	 00	 X1 X2 X3 X4 AA BB CC DD	
	 01	 X1 X2 X3 X4 X5 AA BB CC	
	 10	 X1 X2 X3 X4 X5 X6 AA BB	
	 11	 X1 X2 X3 X4 X5 X6 X7 AA	

Assume	that	Reg1	and	Reg2	contain	the	following	bytes.	

	 Reg1	 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8
	 Reg2	 ss ss ss ss AA BB CC DD	

INJECT2W	will	move	the	following	values	into	RegD,	based	on	the	least	signiUicant	2	
bits	in	Reg3,	i.e.,	the	Uinal	bits	of	the	unaligned	address.	

	 Reg3	 Result	in	RegD	
	 00	 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8	
	 01	 Y1 Y2 Y3 Y4 DD Y6 Y7 Y8	
	 10	 Y1 Y2 Y3 Y4 CC DD Y7 Y8	
	 11	 Y1 Y2 Y3 Y4 BB CC DD Y8

INJECT1H	and	INJECT2H	

When	it	comes	to	storing	a	halfword	into	an	unaligned	address	in	memory,	we	make	
the	assumption	that	it	will	be	implemented	in	terms	of	aligned	halfword	LOADs	and	
STOREs,	not	word	or	doubleword	LOADs	and	STOREs.	

The	two	INJECTH	instructions	will	inject	two	bytes	in	one	of	two	ways,	depending	on	
the	unaligned	address,	as	shown	next.	

Assume	that	the	most	signiUicant	halfword	fetched	from	memory	is	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	116 344

Chapter	5:	Instructions	

	 xx xx	
Assume	the	least	signiUicant	halfword	fetched	from	memory	is	
	 yy yy	
Assume	that	the	source	value	to	be	stored	is	
	 AA BB

The	source	halfword	will	need	to	be	injected	into	these	two	hafwords	in	one	of	these	
2	ways,	where	“..”	means	that	the	byte	is	unchanged.	

	 	 xx xx yy yy

	 0	 AA BB 	
	 1	 .. AA BB ..	

Assume	that	Reg1	and	Reg2	contain	the	following	bytes.	

	 Reg1	 X1 X2 X3 X4 X5 X6 X6 X7
	 Reg2	 ss ss ss ss ss ss AA BB	

where,	“ss”	is	represents	sign-extension	bytes,	which	will	be	ignored.	

INJECT1H	will	move	the	following	values	into	RegD,	based	on	the	least	signiUicant	bit	
in	Reg3,	i.e.,	the	Uinal	bit	of	the	unaligned	address.	

	 Reg3	 Result	in	RegD	
	 0	 X1 X2 X3 X4 X5 X6 AA BB	
	 1	 X1 X2 X3 X4 X5 X6 X7 AA	

Assume	that	Reg1	and	Reg2	contain	the	following	bytes.	

	 Reg1	 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8
	 Reg2	 ss ss ss ss ss ss AA BB	

INJECT2H	will	move	the	following	values	into	RegD,	based	on	the	least	signiUicant	bit	
in	Reg3,	i.e.,	the	Uinal	bit	of	the	unaligned	address.	

	 Reg3	 Result	in	RegD	
	 0	 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8	
	 1	 Y1 Y2 Y3 Y4 Y5 Y6 BB Y8

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	117 344

Chapter	5:	Instructions	

Commentary	The	assumption	made	by	the	INJECTD	instructions	is	that	unaligned	
doubleword	operations	will	be	emulated	by	using	aligned	doubleword	operations.	
Underlying	this	approach	is	the	implicit	assumption	that	the	implementation	
naturally	supports	doubleword	memory	operations.	

However,	the	implementation	may	actually	support	only	word-sized	operations	
directly	and	implement	doubleword	LOADs	and	STOREs	by	breaking	each	
instruction	into	two	memory	operations.	A	LOAD.D	instruction	will	result	in	two	
memory	reads	and	a	STORE.D	instruction	will	result	in	two	memory	writes.	Thus,	
the	approach	outlined	in	the	code	example	above	(with	2	LOAD.D	and	2	STORE.D	
instructions)	will	actually	result	in	4	memory	reads	and	4	memory	writes.	

The	INJECTD	operations	will	continue	to	work,	but	a	better	solution	might	be	
desirable.	Note	that	a	doubleword,	no	matter	how	it	is	aligned,	can	only	touch	3	
words.	To	store	a	doubleword	no	matter	how	it	is	aligned,	one	only	needs	to	read	at	
most	two	words	and	write	at	most	three	words.	

We	also	assume	that	unaligned	word	operations	will	be	emulated	with	aligned	word	
operations.	However,	the	implementation	may	not	naturally	support	word-sized	
LOADs	and	STOREs	and	may	actually	implement	them	as	doubleword	memory	
operations.	This	would	mean	that,	for	a	word	sized	STORE	instruction,	the	
implementation	will	be	reading,	injecting,	and	storing	beneath	the	level	of	software,	
similarly	to	what	we	are	discussing	doing	in	software.	

To	store	4	bytes	with	a	machine	whose	natural	unit	of	transfer	is	8	bytes,	we	only	
require	at	most	1	read	and	1	write	in	5/8	of	the	cases	and	2	reads	and	2	writes	in	the	
remaining	3/8	of	the	cases.	This	averages	to	1.4	reads	and	1.4	writes	per	operation.	

However,	naïvely	using	the	scheme	suggested	in	the	code	snippet	earlier	would	
result	in	duplicate	effort	and	severely	impact	performance.	There	are	two	LOAD.W	
instructions,	resulting	in	2	doubleword	memory	reads,	and	there	are	two	STORE.W	
instructions,	resulting	in	2	memory	reads	and	2	memory	writes.	This	comes	to	4	
reads	and	2	writes	per	operation,	much	worse	than	the	optimal	solution.	

A	better	approach	would	be	to	emulate	an	unaligned	word	operation	using	aligned	
doubleword	operations.	The	INJECTW	instructions	are	not	designed	for	this.	

Likewise,	in	the	case	of	halfword	data,	we	have	the	same	issues.

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	118 344

Chapter	5:	Instructions	

ILLEGAL	 <no	operands>	 	

Will	cause	“Illegal	Instruction	Exception”	

This	is	the	canonical	illegal	instruction.	Both	OP1	and	OP2	values	are	0x00.	Often,	
uninstalled	main	memory	will	be	read	as	containing	all	zeros.	Thus,	when	fetched,	
an	instruction	of	0x0000_0000	will	be	interpreted	as	an	illegal	instruction,	
preventing	the	execution	of	uninstalled	memory.	

Uninstalled	main	memory	may	also	be	read	as	all	1	bits.	An	instruction	0xFFFF_FFFF	
will	be	interpreted	as	a	pair	of	compressed	instructions.	For	this	reason,	the	pattern	
0xFFFF	will	be	interpreted	as	the	compressed	form	of	an	illegal	instruction.	

This	instruction	will	cause	an	“Illegal	Instruction	Exception”.	

SYSRET	 <no	operands>	 		

Privileged	

This	instruction	is	used	to	return	from	a	trap	handler.	It	performs	the	following	
operations:	
	 PC	=	csr_prevpc	
	 csr_status	=	csr_stat2	

In	other	architectures,	this	instruction	is	often	named	“RETI”.	

Commentary	Interrupts	are	disabled	by	the	hardware	whenever	trap	handlers	are	
invoked	and	they	generally	remain	disabled	throughout	the	trap	handler	code.	
Interrupts	should	always	be	disabled	at	the	time	of	the	SYSRET	at	the	end	of	the	trap	
handler.	Here’s	why.	

Note	that	the	SYSRET	instruction	uses	the	CSRs	—	csr_stat2	and	csr_prevpc	in	
particular.	If	interrupts	happen	to	be	enabled	at	the	time	the	SYSRET	instruction	is	
executed,	there	is	a	possibility	that	an	interrupt	might	occur	directly	before	the	
SYSRET	instruction.	

Trap	handlers	save	the	state	of	the	general	purpose	registers,	but	the	state	of	the	
CSRs	is	not	saved.	As	part	of	all	trap	invocation,	the	hardware	will	overwrite	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	119 344

Chapter	5:	Instructions	

csr_stat2	and	csr_prevpc	and	their	previous	contents	will	be	lost.	Thus,	if	an	
interrupt	might	occur	directly	before	a	SYSRET,	upon	return	after	the	interrupt	
processing,	the	SYSRET	could	not	possibly	function	correctly.	

Thus,	it	is	always	a	kernel	bug	to	execute	a	SYSRET	with	interrupts	enabled.	
However,	the	hardware	does	nothing	to	enforce	this.	

SLEEP1	 <no	operands> Enable	interrupts;	enter	light	sleep	state
SLEEP2	 <no	operands> Enable	interrupts;	enter	deep	sleep	state

Privileged	

These	are	the	“wait”	instructions,	which	put	the	core	to	sleep	until	the	next	interrupt	
occurs.	There	are	two	levels	of	sleep	state.	“Light	sleep”	is	intended	to	make	wake-up	
faster.	“Deep	sleep”	is	intended	to	be	a	power	saving	state,	which	may	require	more	
time	and	effort	to	recover	from.	

In	both	cases,	the	following	are	preserved:	
	 •	General	Purpose	Registers	
	 •	CSR	registers,	PC	
	 •	Main	Memory	

The	sleep	state	ends	when	an	interrupt	occurs.	During	the	sleep	state,	the	Program	
Counter	(PC)	points	to	the	instruction	following	the	SLEEP	instruction	so,	after	the	
interrupt	trap	handler	returns,	instruction	execution	will	resume	with	the	
instruction	following	the	SLEEP	instruction.	

These	instructions	will	enable	interrupts	before	entering	the	sleep	state.	

These	instructions	should	only	be	executed	with	interrupts	disabled,	for	the	
following	reason.	We	only	want	to	sleep	when	there	are	no	runnable	threads	and	the	
only	way	to	know	that	is	to	check	Uirst,	before	going	to	sleep.	But	an	interrupt	might	
occur	at	any	time	(including	directly	before	the	SLEEP	instruction	is	executed)	and	
this	may	cause	some	new	thread	to	become	runnable.	To	prevent	going	to	sleep	
when	runnable	threads	exist,	the	software	should	disable	interrupts,	check	to	make	
sure	it	is	safe	to	sleep,	then	execute	the	SLEEP	instruction.	If	interrupts	have	become	
pending,	then	the	sleep	state	will	end	immediately	and	the	interrupt	trap	handler	
will	be	invoked.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	120 344

Chapter	5:	Instructions	

In	some	implementations,	there	will	be	no	difference	between	“light”	and	“deep”	
sleeping.	Thus,	the	instructions	may	function	identically.	A	valid	implementation	is	
to	act	as	a	sort	of	no-op,	doing	nothing	more	than	enabling	interrupts.	In	more	
complex	implementations,	SLEEP1	and	SLEEP2	may	differ	as	follows:	In	the	light	
sleep	state,	the	clock	continues,	csr_cycle	is	constantly	incremented,	and	timer	
interrupts	occur.	In	the	deep	sleep	state,	csr_cycle	is	not	incremented	and	therefore	
timer	interrupts	do	not	occur;	effectively,	the	clock	is	turned	off.	

In	the	emulator,	SLEEP2	will	cause	an	immediate	halt	to	emulation.	If	the	emulator	is	
executing	in	auto-go	mode	(command	line	option	-g),	the	emulator	will	terminate	
and	the	value	in	register	r1	will	be	returned	as	the	Unix/Linux	exit	code	(where	
0=ok/no	error).	This	is	useful	for		KPL	programs	that	are	to	be	run	under	Unix/
Linux.	

RESTART	 <no	operands> Same	as	Power-On-Reset

Privileged	

The	purpose	of	this	instruction	is	to	cause	a	full	reboot	of	the	system.	This	
instruction	will	have	the	same	effect	as	cycling	the	power	on	the	processor,	namely:	

The	following	two	registers	will	be	set	to	their	initial	values:	

	 csr_inst	←	0x0000_0000_0000_0000	
	 csr_cycle	←	0x0000_0000_0000_0000	

	 csr_status	←	0x0000_0000_0000_0001	
	 Program	Counter	(PC)	←	0x4_0000_0000	

This	means	that	the	following	conditions	will	be	true:	

	 Kernel	Mode:	Enabled	
	 Interrupts:	Disabled	

The	PC	is	set	to	the	Uirst	word	of	the	memory-mapped	I/O	area,	which	is	where	the	
“Boot	ROM”	is	located.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	121 344

Chapter	5:	Instructions	

Any	pending	interrupts	are	cleared.	All	memory-mapped	I/O	devices	are	sent	a	
“reset”	signal	and	will	go	into	their	initial	states.	In	particular,	the	Secure	Storage	will	
be	reset	and	will	be	writable.	

All	other	other	programmer-visible	state	of	the	core	(i.e.,	the	general	purpose	
registers	and	all	other	CSRs)	will	have	undeUined	values.	

In	a	multi-core	processor,	this	instruction	will	affect	all	cores.	The	execution	of	this	
instruction	by	any	one	core	will	instantly	kill	all	cores,	which	will	all	be	restarted.	

DEBUG	 <no	operands>	 	
BREAKPOINT	 <no	operands>	 	

Will	cause	“Debug/Breakpoint	Exception”	

These	instructions	are	used	by	the	debugger.	Each	instruction	will	cause	an	
exception	and	there	is	a	corresponding	exception	type	for	each:	

	 Debug	Exception	
	 Breakpoint	Exception	

It	is	intended	that	the	DEBUG	instruction	will	be	inserted	into	code	by	the	
programmer.	When	executed,	the	resulting	exception	will	be	used	to	invoke	and	start	
up	the	debugger.	This	will	allow	the	user	to	begin	debugging	his/her	code.	

It	is	intended	that	the	BREAKPOINT	instruction	will	be	inserted	by	a	debugging	tool	
into	the	code	being	debugged.	

Typically,	the	user	of	the	debugger	will	command	the	debugger	to	insert	a	
breakpoint	a	some	point	in	the	code	being	debugged.	The	debugger	will	replace	the	
instruction	at	the	the	target	address	with	a	BREAKPOINT	instruction.	Then	later,	
after	execution	is	resumed	and	execution	reaches	the	target	address,	the	
BREAKPOINT	instruction	will	be	encountered.	The	resulting	exception	allows	the	
debugger	to	regain	control.	Typically,	the	debugger	will	save	the	instruction	that	was	
replaced	and,	when	the	BREAKPOINT	is	removed,	the	instruction	will	be	restored.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	122 344

Chapter	5:	Instructions	

These	two	instructions	are	almost	identical,	except	(1)	they	each	cause	a	different	
exception,	and	(2)	the	value	stored	in	csr_prevpc	at	the	time	of	the	exception	is	
different. 	5

These	instructions	are	both	Format-A	instructions.	The	opcode	occupies	the	Uirst	16	
bits	of	the	instruction	and	the	remaining	16	bits	contain	space	for	register	Uields.	
However,	since	no	registers	are	used,	these	16	bits	are	unused	and	shall	be	ignored	
by	the	ISA.	Bits	[15:0]	in	the	instruction	are	therefore	available	for	use	by	a	
debugger,	to	store	additional	information. 	6

If	the	Blitz-64	architecture	is	being	emulated	on	a	virtual	machine,	the	DEBUG	and	
BREAKPOINT	instructions	may	be	unimplemented.	In	other	words,	they	will	not	
cause	exceptions.	Instead,	when	encountered,	they	will	be	used	by	a	debugger	that	is	
built	in	to	the	emulator	itself.	

These	instructions	are	primarily	expected	to	be	used	to	debug	code	running	in	user	
mode.	However,	they	might	also	to	debug	code	running	in	kernel	mode.	

SYSCALL	 immed-10 	

Will	cause	“SYSCALL	Exception”	

The	SYSCALL	instruction	is	used	by	user	mode	code	to	invoke	one	of	the	1,024	
system	calls.	

This	instruction	causes	a	“SYSCALL	Exception”.	More	precisely,	this	instruction	will	
perform	the	following	actions:	

csr_stat2	=	csr_status	
csr_prevpc	=	PC	
csr_cause	=	immed-10	×	8	

	DEBUG	stores	the	address	of	the	following	instruction,	while	BREAKPOINT	stores	the	address	of	5

the	BREAKPOINT	instruction	itself.

	For	example,	when	the	debugger	sets	a	break	point,	it	will	replace	some	instruction	by	a	6

BREAKPOINT	instruction.	The	debugger	will	need	to	remember	which	instruction	was	removed	so	
that	when	the	break	point	is	encountered	it	can	replace	the	BREAKPOINT	instruction	with	the	
saved	instruction.	There	may	be	a	number	of	break	points	set	and	the	debugger	might	use	the	16	
bits	as	an	index	into	some	record-keeping	table	it	maintains.

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	123 344

Chapter	5:	Instructions	

It	will	then	initiate	trap	processing	by	performing	these	actions.	

csr_status[KERNEL_MODE]	=	1	
csr_status[INTERRUPTS_ENABLED]	=	0	
csr_status[SINGLE_STEP]	=	0	
PC	=	csr_trapvec	(the	address	of	the	global	trap	handler)	

The	immediate	value	gives	a	number	in	the	range	0	…	1,023.	This	number	is	shifted	
left	by	3	bits	(i.e.,	multiplied	by	8)	and	passed	to	the	trap	handler	for	use	in	
dispatching	to	the	correct	kernel	function.	The	immediate	value	is	not	sign-
extended.	

The	PC	value	copied	to	csr_prevpc	is	the	address	of	the	instruction	after	the	
SYSCALL	instruction,	not	the	SYSCALL	itself.	

Note	that	this	instruction	is	normally	executed	in	user	mode.	Whether	execution	of	
the	SYSCALL	instruction	in	kernel	mode	is	a	bug	or	not	is	a	software	design	decision;	
however,	the	instruction	will	still	function	as	described.	Like	all	exceptions,	if	this	
instruction	is	executed	with	interrupts	disabled,	the	SYSCALL	Exception	will	be	
promoted	to	a	Kernel	Exception.	

CONTROL RegD,Reg1,immed-16 	
CONTROLU RegD,Reg1,immed-16 	

CONTROL:	Privileged;	CONTROLU:	Not	privileged	

The	deUinition	of	these	instructions	is	left	unspeciUied	here	and	is	completely	
implementation	dependent.	

The	idea	is	that	an	implementation	of	the	Blitz-64	architecture	is	free	to	use	these	
instructions	whenever	it	is	necessary	to	supplement	the	instruction	set	with	
instructions	not	included	in	the	ISA	speciUication.	

A	speciUic	implementation	may	need	to	add	a	large	number	of	instructions	to	the	ISA.	
The	immediate	value	is	available	to	act	as	a	sort	of	additional	op-code.	The	idea	is	
that	different	values	of	immed-16	will	invoke	different	behaviors.	

These	instructions	may	or	may	not	access	registers	Reg1	and	RegD.	They	may	also	
access	other	registers	not	directly	mentioned;	everything	is	left	to	the	speciUic	
implementation	designers.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	124 344

Chapter	5:	Instructions	

We	really	want	all	User	Mode	programs	to	be	fully	portable	between	Blitz-64	
implementations.	To	this	end,	we	make	a	distinction	between	the	CONTROL	and	
CONTROLU	instructions.	

Implementation-dependent	behavior	really	ought	to	be	encapsulated	within	the	
Kernel.	Otherwise,	a	User	Mode	program	that	used	the	instruction	would	be	tied	to	a	
speciUic	implementation.	To	support	this,	the	CONTROL	instruction	is	a	privileged	
instruction	and	an	Illegal	Instruction	Exception	will	be	raised	if	this	instruction	is	
executed	in	User	Mode.	

On	the	other	hand,	some	operations	need	to	be	usable	in	User	Mode.	For	this,	we	
provide	the	CONTROLU	instruction,	which	may	be	executed	in	User	Mode.	Note	that	
any	program	using	a	CONTROLU	instruction	will	be	implementation	dependent	and	
may	have	completely	unexpected	results	when	executed	on	a	different	Blitz-64	
processor.	

The	implementation	is	free	to	deUine	whether	these	instructions	might	raise	other	
exceptions.	If	the	CONTROL	or	CONTROLU	instruction	is	used	incorrectly	(for	
example,	with	an	undeUined	immed-16	value),	the	implementation	really	ought	to	
raise	an	Illegal	Instruction	Exception.	

Commentary		The	memory-mapped	I/O	regions	in	the	Blitz-64	architecture	are	
designed	so	they	can	be	selectively	mapped	into	the	virtual	address	spaces	of	user	
processes.	However,	the	CONTROL/CONTROLU	mechanism	does	not	have	this	
Ulexibility.	

Whether	additional	functionality	is	added	to	the	Blitz-64	architecture	using	
CONTROL/CONTROLU	or	by	adding	a	new	memory-mapped	I/O	region	is	an	
engineering	decision	left	to	implementors.	

Example	Uses	for	CONTROL	and	CONTROLU	

How	might	a	Blitz-64	implementation	use	the	CONTROL	instruction?	Let’s	look	at	
several	examples.	

Digital	I/O	Pins		Imagine	that	the	Blitz-64	chip	has	a	number	of	digital	I/O	pins.	This	
might	occur	for	a	Blitz-64	processor	used	in	an	Arduino-like	setting.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	125 344

Chapter	5:	Instructions	

For	such	a	system,	the	CONTROL	instruction	will	be	deUined	to	write	values	to	
OUTPUT	pins	based	on	the	contents	of	register	Reg1.	The	instruction	will	also	be	
used	to	read	in	values	on	INPUT	pins	to	register	RegD.	Each	operation	will	both	read	
and	the	write	the	I/O	pins	simultaneously.	

If	this	is	the	only	use	of	the	CONTROL	instruction,	the	immed-16	value	can	be	
ignored:	

controlu r7,r1,0 # Read inputs and change outputs

In	this	case,	the	COLTROLU	instruction	was	used,	which	means	that	user-mode	
programs	can	control	the	digital	pins	directly,	without	needing	kernel	intervention.	

A	slightly	different	implementation	might	be	to	separate	the	input	and	output	
operations,	using	the	immed-16	value	to	distinguish	between	“read”	and	“write”	
operations:	

DIGITAL_READ: .equ 0x0001
DIGITAL_WRITE: .equ 0x0002

To	read	and	write	the	digital	I/O	pins,	the	operations	would	look	like	this:	

controlu r7,r0,DIGITAL_READ # sample the inputs
controlu r0,r1,DIGITAL_WRITE # update the outputs

LED	Control		LEDs	are	helpful	for	single-board	computers.	For	example,	as	the	
system	boots,	a	green	LEDs	might	turn	on.	If	error	conditions	arise,	the	core	can	turn	
on	a	red	LED	to	signal	that	it	is	unhappy.	In	order	to	drive	such	LEDs,	each	chip	will	
need	a	couple	of	output	pins	dedicated	to	these	LEDs.	

Such	“status	LEDs”	are	cheap	and	ought	to	be	included	in	every	single-board	
computer.	

In	such	a	system	design,	the	CONTROL	instruction	could	be	used	to	control	the	
status	LEDs. 	7

RED_LED_ON: .equ 0x0004

	Note	that	we	are	deUining	the	immediate	values	so	that	there	is	no	overlap	with	the	values	used	to	7

control	the	digital	pins,	so	both	could	be	used	within	the	same	system.

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	126 344

Chapter	5:	Instructions	

RED_LED_OFF: .equ 0x0008
GREEN_LED_ON: .equ 0x0010
GREEN_LED_OFF: .equ 0x0018
BLUE_LED_ON: .equ 0x0020
BLUE_LED_OFF: .equ 0x0028

To	manipulate	speciUic	LEDs,	the	core	can	execute	an	instruction	such	as:	

control r0,r0,GREEN_LED_ON | RED_LED_OFF

Imagine	a	system	with	a	large	number	of	Blitz-64	cores,	perhaps	with	hundreds	of	
processor	blades	mounted	in	racks,	comprising	a	giant	multi-processor	system.	
LEDS	for	each	board	(or	processor	or	core)	could	be	very	helpful	in	detecting	and	
understanding	faults.	

Flushing	Caches		The	Blitz-64	instruction	set	includes	a	single	instruction	(namely	
FENCE)	that	has	the	side-effect	of	Ulushing	caches,	if	they	exist.	However	the	FENCE	
instruction	may	be	too	course-grained	for	some	system	designs.	In	order	to	add	the	
ability	to	Ulush	individual	caches	separate,	the	CONTROL	instruction	could	be	
employed.	

If,	for	example,	the	implementation	needed	several	different	“Ulush”	operations,	then	
some	bits	in	the	immed-16	Uield	could	be	deUined	to	indicate	which	cache	Ulush	
operation	is	intended.	Perhaps	the	implementation	has	several	caches:	

FLUSH_CACHE_L1_I: .equ 0x0001
FLUSH_CACHE_L1_D: .equ 0x0002
FLUSH_CACHE_L2: .equ 0x0004
FLUSH_CACHE_L3: .equ 0x0008

Then,	to	perform	a	cache-Ulush	operation,	the	OS	kernel	might	execute	an	instruction	
such	as:	

control r0,r0,FLUSH_CACHE_L1_D

Flushing	the	caches	does	not	involve	registers,	so	r0	is	speciUied	for	both	source	and	
destination.	

Encryption	Support		A	common	but	time-consuming	operation	is	to	encode	and	
decode	encrypted	messages.	A	related	function	is	computing	message	digests.	The	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	127 344

Chapter	5:	Instructions	

algorithms	are	computationally	intensive	but	it	is	desirable	to	perform	these	
operations	quickly.	

The	Blitz-64	speciUication	requires	the	DMA	memory-mapped	I/I	device	to	support	
SHA-256	and	AES,	but	it	may	make	sense	to	implement	other,	similar	algorithms	in	
hardware,	using	the	CONTROL	instruction	to	access	this	special-purpose	hardware.	

Typically,	such	algorithms	involve	the	simultaneous	manipulation	of	a	number	of	
variables.	For	example,	in	the	SHA-2	algorithm	there	are	8	variables,	named	a,	b,	c,	…,	
h.	During	one	iteration,	all	8	variables	are	used	as	inputs	to	compute	8	new	values	
for	the	next	iteration.	

Of	course	the	function	computed	in	each	iteration	can	be	done	with	existing	Blitz-64	
instructions,	but	it	will	take	quite	a	few	instructions	for	each	iteration	of	the	loop.	To	
support	such	an	algorithm,	the	idea	is	that	the	entire	loop	body	will	be	implemented	
using	a	single	new	“instruction”.	Imagine	that	an	implementation	decides	to	add	a	
single	instruction	which	will	perform	the	entire	loop	body	computation	in	one	step.	

Such	a	proposed	new	instruction	will	need	8	inputs	and	8	outputs.	Consider	
SHA-256	which	is	a	speciUic	example	of	the	SHA-2	class	of	algorithms.	It	uses	eight	
variables,	each	of	32	bits.	We	can	pack	these	into	four	registers.	In	this	hypothetical	
implementation	design,	we	will	assign	variables	a,	b,	c,	…,	h	to	registers	r1,	r2,	r3,	
and	r4.	The	new,	hypothetical	CONTROL	instruction,	which	we	are	suggesting	here,	
will	ignore	the	RegD	and	Reg1	speciUiers	in	the	instruction	and	will	always	operate	
on	registers	r1-r4.	

There	is	no	reason	that	such	encryption	operations	can’t	be	done	in	User	Mode,	so	
for	these	operations,	it	makes	sense	to	use	the	CONTROLU	instruction,	instead	of	the	
CONTROL	instruction,	which	must	be	executed	in	Kernel	Mode.	

Additional	Floating	Point	Operations		The	Blitz	ISA	only	requires	support	for	double	
precision	Uloats.	It	might	be	desirable	to	provide	support	for	single	precision	or	quad	
precision	Uloats	in	some	systems.	Likewise,	there	might	be	special-purpose	
numerical	engines	(e.g.,	neural	net	or	graphic	engines).	This	might	be	
accommodated	with	CONTROL	instructions.	

Accessing	the	Micro-architecture		Another	possibility	is	that	the	CONTROL	
instruction	would	be	deUined	to	access	or	modify	internal	core	state.	For	example,	
the	CONTROL	instruction	might	be	used	to	read	pipeline	registers	that	are	otherwise	
invisible	to	the	ISA.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	128 344

Chapter	5:	Instructions	

Flexibility		Given	that	immediate	Uield	has	16	bits,	the	CONTROL	instruction	
framework	can	be	employed	to	add	many	unique	instructions	and	behaviors.	The	
immed-16	Uield	can	be	considered	as	a	sort	of	secondary	opcode	and	a	large	number	
(up	to	65,536)	of	additional	implementation-dependent	instructions	can	be	added	
to	any	core	using	the	CONTROL	instruction	framework.

TLBCLEAR <no	operands> Invalidate	all	TLBs	for	current	ASID
TLBFLUSH	 Reg1 Invalidate	TLB	for	virtual	address	in	Reg1

Privileged	

The	TLBCLEAR	instruction	invalidates	all	TLB	registers	that	apply	to	the	Address	
Space	ID	(ASID)	in	csr_pgtable.	While	the	format	of	the	TLB	registers	is	
implementation	dependent,	it	is	assumed	that	each	TLB	register	will	contain	a	
“valid”	bit.	This	instruction	will	clear	this	bit	for	all	registers	with	ASIDs	matching	
the	current	ASID.	

The	TLBCLEAR	should	be	executed	after	any	change	to	the	page	table	for	a	speciUic	
address	space.	This	will	force	all	subsequent	FETCHes	and	LOAD,	STORE,	and	CAS	
instructions	to	this	virtual	address	space	to	trigger	a	walk	of	the	new	page	table.	

The	TLBFLUSH	instruction	expects	Reg1	to	contain	a	virtual	address.	If	the	TLB	
contains	a	register	with	a	matching	virtual	address	and	an	ASID	matching	the	
current	ASID	(in	csr_pgtable),	then	the	“valid”	bit	for	that	TLB	register	will	be	
cleared	to	0.	The	address	in	Reg1	need	not	be	page	aligned;	only	bits	[35:14]	are	
used.	

If	the	address	is	a	physical	address	(i.e.,	bit	[35]	is	0)	or	does	not	match	any	TLB	
register,	TLBFLUSH	does	nothing.	If	the	system	does	not	contain	TLBs,	these	
instructions	do	nothing.	

Note	

In	a	multicore	system,	the	TLBCLEAR	and	TLBFLUSH	instructions	affect	only	the	
TLB	registers	on	the	core	executing	the	instruction.	There	is	a	potential	a	problem	
when	one	virtual	address	space	is	shared	across	multiple	cores	and	the	kernel	
running	on	one	core	wishes	to	alter	the	address	space	and	will	execute	one	of	these	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	129 344

Chapter	5:	Instructions	

instructions	to	eliminate	out-of-date	information	in	the	TLB	registers.	A	change	in	
the	current	speciUication	is	contemplated.	

CHECKADDR RegD,Reg1,immed-3 Reg1	=	virt	addr;	RegD	←	except.	code	or	0

Privileged	

The	CHECKADDR	instruction	requires	an	immediate	value,	which	should	be	one	of	
the	following	values.	

	 		immed-3						 						Access	Type									
	 0	 LOAD.B	
	 1	 LOAD.H	
	 2	 LOAD.W	
	 3	 LOAD.D	
	 4	 STORE.B	
	 5	 STORE.H	
	 6	 STORE.W	
	 7	 STORE.D	

(Only	the	least	signiUicant	3	bits	of	the	immediate	16	bit	value	are	used;	bits	[15:3]	
are	ignored.)	

Register	Reg1	will	contain	an	address,	which	may	be	physical	or	virtual.	The	
CHECKADDR	instruction	determines	what	would	happen	if	an	instruction	of	the	
indicated	type	were	to	be	executed	using	that	address.	CHECKADDR	will	store	the	
following	code	in	register	RegD.	

	 Result				 												Outcome																																							
0	 Success;	no	exception	
1	 Null	Address	Exception	
2	 Unaligned	LOAD/STORE	Exception	
3	 Page	Illegal	Address	Exception	
4	 Page	Table	Exception	
5	 Page	Invalid	Exception	
6	 Page	Write	Exception	
7	 Page	Copy-On-Write	Exception	
8	 Page	First	Dirty	Exception	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	130 344

Chapter	5:	Instructions	

The	hypothetical	access	is	assumed	to	be	performed	in	USER	MODE,	not	KERNEL	
MODE.	

From	time	to	time,	a	system	call	will	be	handled	by	kernel	code.	The	user	code	will	
pass	a	virtual	address	to	the	kernel.	For	example,	the	kernel	may	wish	to	retrieve	
argument	data	from	the	user’s	virtual	address	space	or	move	result	data	into	the	
user’s	virtual	address	space.	

Assuming	csr_pgtable	has	been	previously	set,	the	kernel	can	simply	use	normal	
LOAD	and	STORE	instructions	with	virtual	addresses	to	retrieve	data	from	or	store	
data	into	the	virtual	address	space.	

Of	course	the	kernel	cannot	trust	any	address	provided	by	user	code.	Executing	a	
LOAD	or	STORE	instruction	might	cause	an	exception.	

The	CHECKADDR	instruction	is	provided	so	that	the	kernel	can	check	(before	the	
LOAD	or	STORE	operation	is	attempted)	whether	such	an	access	would	result	in	an	
exception.	

More	Detail	

If	CHECKADDR	indicates	one	of	the	following	exceptions,	the	address	is	in	error.	If	
passed	from	user	code	to	the	kernel,	the	kernel	should	not	attempt	to	use	the	
address	in	a	LOAD	or	STORE	operation.	

	 Null	Address	Exception	
	 Unaligned	LOAD/STORE	Exception	
	 Page	Illegal	Address	Exception	
	 Page	Write	Exception	

The	following	exception	will	probably	never	to	occur,	since	we	can	assume	that	the	
kernel	has,	at	some	earlier	time,	set	csr_pgtable	correctly:	

	 Page	Table	Exception	

The	following	exception	types	may	occur	in	correct	user	mode	code.	Normally,	they	
would	be	serviced	and	the	instruction	re-tried.	When	CHECKADDR	indicates	this	
sort	of	exception,	some	additional	work	may	be	required	of	the	kernel	before	it	can	
perform	the	access	to	the	virtual	address	space.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	131 344

Chapter	5:	Instructions	

	 Page	Copy-On-Write	Exception	
	 Page	First	Dirty	Exception	

The	following	exception	could	be	caused	by	a	bad	address,	i.e.,	pointing	to	some	
region	of	the	virtual	address	space	that	is	unallocated.	Alternately,	it	might	also	point	
to	a	region	of	the	address	space	that	is	“allocate-on-demand”,	and	thus	be	perfectly	
legitimate.	

	 Page	Invalid	Exception	

The	following	exception	type	cannot	be	returned	by	the	CHECKADDR	instruction:	

	 Page	Fetch	Exception	

It	may	be	that	a	hardware	fault	occurs	during	the	CHECKADDR	instruction	or	during	
the	subsequent	LOAD	or	STORE	instruction.	In	such	a	case,	the	Hardware	Fault	
Exception	will	be	taken	when	it	occurs	and,	since	the	code	is	executing	in	Kernel	
Mode,	will	be	promoted	to	a	Kernel	Exception.	

If	the	implementation	uses	TLB	registers,	the	CHECKADDR	instruction	may	alter	
them.	

CSRSWAP	 RegD,CSRReg1,Reg2 RegD	←	CSR;	CSR	←	Reg2	
CSRREAD	 RegD,CSRReg1 Reg1	encodes	CSR;	RegD	←	CSR	
CSRSET	 CSRReg1,immed-16 Set	selected	bits	in	CSR
CSRCLR	 CSRReg1,immed-16	 Clear	selected	bits	in	CSR

Privileged	

These	instructions	each	access	one	of	the	16	CSR	registers.	The	identity	of	the	CSR	is	
encoded	using	4	bits	in	the	Reg1	Uield.	

The	CSRSWAP	instruction	performs	both	a	read	and	a	write	operation.	If	RegD	and	
Reg2	indicate	the	same	register,	the	value	in	that	register	is	swapped	with	the	value	
in	the	CSR	register.	

The	CSRREAD	instruction	reads	a	CSR	and	moves	it	into	a	general	purpose	register.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	132 344

Chapter	5:	Instructions	

For	CSRSET	and	CSRCLR,	the	immediate	Uield	is	sign-extended	and	forms	a	64	bit	
mask.	Wherever	there	is	a	1	bit	in	the	mask,	the	corresponding	bit	in	the	CSR	is	
either	set	to	1	or	cleared	to	0.		

It	is	the	assembly	programmer’s	or	compiler’s	responsibility	to	ensure	that	the	
immediate	value	is	within	the	range	-32,768	…	32,767	(0x8000	…	0x7FFF).	If	the	
value	is	out	of	range,	the	assembler	will	issue	an	error	message.	This	is	not	of	great	
concern,	since	none	of	the	CSRs	have	individual	bit	Uields,	except	in	the	least	
signiUicant	bits.	

(But	note	that	if	the	immediate	value	is	negative,	the	assembler	will	not	issue	an	
error	and	the	mask	will	include	1	bits	in	the	upper	48	bits,	which	may	not	be	what	is	
intended.	For	example,	CSRSET	csrReg,0x8000	will	set	all	bits	in	the	register	except	
the	least	signiUicant	15	bits,	while	CSRCLR	csrReg,-4	will	clear	all	bits	except	the	least	
signiUicant	2	bits.)	

*CSRWRITE	 CSRReg1,Reg2 Reg1	encodes	CSR;	CSR	←	Reg2	

Synthetic,	Privileged	

Register	t	Usage:	Not	used;	Okay	to	use	as	Reg2.	

The	CSRWRITE	instruction	is	implemented	as.	
CSRSWAP r0,CSRReg1,Reg2		

GETSTAT	 RegD RegD	←	CSR_STATUS	&	0x00000000000003f8
PUTSTAT	 Reg1 CSR_STATUS	[9:3]	←	Reg1	[9:3]

These	instructions	read	and	write	the	portions	of	the	CSR_STATUS	register	that	are	
visible	to	User	Mode	code.	

GETSTAT	will	only	return	bits	that	should	be	visible	to	User	Mode	code;	all	other	bits	
will	be	masked	and	returned	as	0.	PUTSTAT	will	only	modify	bits	that	are	modiUiable	
by	User	Mode	code.	

The	bits	that	can	be	read	and	written	are	the	FLOAT_ROUND	bits	(i.e.,	[9:8])	and	the	
FLOAT_STATUS	bits	(i.e.,	[7:3]).	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	133 344

Chapter	5:	Instructions	

Even	though	these	instructions	access	a	CSR	register,	they	are	not	privileged.

FADD	 RegD,Reg1,Reg2	 RegD	←	Reg1	+	Reg2
FSUB	 RegD,Reg1,Reg2	 RegD	←	Reg1	-	Reg2	
FMUL	 RegD,Reg1,Reg2		 RegD	←	Reg1	×	Reg2
FDIV	 RegD,Reg1,Reg2		 RegD	←	Reg1	/	Reg2
FMIN	 RegD,Reg1,Reg2		 RegD	←	MIN	(Reg1,	Reg2)
FMAX	 RegD,Reg1,Reg2		 RegD	←	MAX	(Reg1,	Reg2)
FNEG	 RegD,Reg1		 RegD	←	-Reg1
FABS	 RegD,Reg1		 RegD	←	ABSOLUTE_VALUE	(Reg1)
FSQRT	 RegD,Reg1		 RegD	←	SQUARE_ROOT	(Reg1)
FEQ	 RegD,Reg1,Reg2	 RegD	←	(Reg1	=	Reg2)	?	1	:	0	(Uloat	compare)
FLT	 RegD,Reg1,Reg2 RegD	←	(Reg1	<	Reg2)	?	1	:	0	(Uloat	compare)
FLE	 RegD,Reg1,Reg2	 RegD	←	(Reg1	≤	Reg2)	?	1	:	0	(Uloat	compare)
FCVTFI	 RegD,Reg1 Convert:	Uloating-point	←	int
FCVTIF	 RegD,Reg1 Convert:	int	←	Uloating-point
FMADD	 RegD,Reg1,Reg2,Reg3 RegD	←	(Reg1	×	Reg2)	+	Reg3
FNMADD	 RegD,Reg1,Reg2,Reg3 RegD	←	(-(Reg1	×	Reg2))	+	Reg3
FMSUB	 RegD,Reg1,Reg2,Reg3 RegD	←	(Reg1	×	Reg2)	-	Reg3
FNMSUB	 RegD,Reg1,Reg2,Reg3 RegD	←	(-(Reg1	×	Reg2))	-	Reg3

May	cause	an	“Emulated	Instruction	Exception”	

The	comments	above	describe	the	computations	performed	by	these	instructions.	

All	arithmetic	is	performed	in	double	precision	Uloating	point,	per	the	IEEE	754	
standard.	The	FLOAT_STATUS	bits	in	csr_status	are	set	as	required.	

With	Blitz,	all	rounding	is	“to	nearest,	with	ties	to	even”.	The	FLOAT_ROUND	bits	in	
csr_status	are	ignored. 	8

Note	that	there	are	no	FMOV,	FLOAD,	or	FSTORE	instructions.	The	instructions	MOV,	
LOADx,	and	STOREx	will	work	Uine.	

	At	least	in	this	version	of	the	Blitz	ISA;	if	the	need	should	ever	arise,	this	decision	could	be	8

revisited.

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	134 344

Chapter	5:	Instructions	

The	test	performed	by	FEQ	is	not	the	same	as	BEQ,	due	to	facts	like	“+0.0	=	-0.0”	and	
“NaN	≠	NaN”.	Programmers	should	note	that	equality	testing	of	Uloating	point	values	
is	especially	risky,	due	to	rounding	errors.	

The	conversion	instructions	(FCVTFI	and	FCVTIF)	are	discussed	below.	

The	Uloating	point		instructions	are	candidates	for	emulation.	Any	attempt	to	execute	
an	unimplemented	instruction	will	result	in	an	“Emulation	Exception”.	

Commentary	The	IEEE	754	speciUication	requires	single	precision	Uloating	point	to	
be	implemented	whenever	double	precision	is	implemented.	Blitz-64	does	not	
implement	single	precision	Uloating	point,	as	a	conscious	design	decision.	Therefore	
Blitz-64	clearly	does	not	conform	to	the	IEEE	754	spec.	

That	said,	Blitz-64	“respects”	and	“follows"	the	IEEE	754	Uloating	point	speciUication.	

IEEE	754	is	a	complex	speciUication	and	Uloating	point	math	is	a	can	of	wriggling	
worms.	The	Blitz-64	architecture	intends	and	attempts	to	conform	precisely	and	
accurately	to	the	IEEE	spec.	

To	be	honest,	Uloating	point	is	a	bit	out	of	my	primary	research	expertise	and	I’d	
really	appreciate	your	help.	If	you	see	violations	or	other	issues,	you	are	encouraged	
to	speak	up	and	email	me.	

FCVTIF	The	FCVTIF	instruction	converts	a	double	precision	Uloating	point	number	
into	a	64	bit	signed	integer	with	about	the	same	value.	

If	the	value	to	be	converted	is	NaN,	the	instruction	will	set	the	NV-Invalid	Ulag	in	the	
CSR_STATUS	register.	The	integer	result	will	be	“0”.	

If	the	value	is	+inf,	the	result	will	be	0x7FFF_FFFF_FFFF_FFFF	and	the	OF-Over]low	
and	NX-Inexact	Ulags	will	be	set.	If	the	value	is	-inf,	the	result	will	be	
0x8000_0000_0000_0000	and	the	OF-Over]low	and	NX-Inexact	Ulags	will	be	set.	

Concerning	overUlow,	here	are	the	values	around	the	largest	signed	integer	
(0x7FFF_FFFF_FFFF_FFFF	=	9,223,372,036,854,775,807)	that	can	be	represented	
exactly	with	double	precision	Uloats:	

	 +9,223,372,036,854,774,784.0	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	135 344

Chapter	5:	Instructions	

	 +9,223,372,036,854,775,808.0	
	 +9,223,372,036,854,777,856.0	

If	the	Uloating	value	to	be	converted	is	greater	than	+9,223,372,036,854,775,807.0	
(including	+inf)	then	the	OF-Over]low	and	NX-Inexact	bits	will	be	set	and	the	result	
will	be	+9,223,372,036,854,775,807	(i.e.,	0x7FFF_FFFF_FFFF_FFFF).	

If	the	Uloating	value	is	more	negative	than	-9,223,372,036,854,775,808.0	(including	
-inf)	then	the	OF-Over]low	and	NX-Inexact	bits	will	be	set	and	
-9,223,372,036,854,775,808	(i.e.,	0x8000_0000_0000_0000)	will	be	used.	

If	the	Uloating	point	value	is	not	an	integer	(i.e.,	if	it	has	non-zero	digits	to	the	right	of	
the	decimal	point,	as	in	4.5)	then	the	NX-Inexact	bit	will	be	set	and	the	value	will	be	
rounded	to	the	nearest	integer,	with	ties	to	even.	

The	UF-Under]low	and	DZ-Divide-by-zero	bits	in	FLOAT_STATUS	will	be	
unchanged.	

FCVTFI	The	FCVTFI	instruction	converts	a	64	bit	signed	integer	into	a	double	
precision	Uloating	point	number	with	about	the	same	value.	

All	integers	within	the	following	range	can	be	represented	exactly	in	double	
precision	Uloating	point:	

	 -9,007,199,254,740,992	…	+9,007,199,254,740,992	

In	hex,	this	range	is:	

	 0xFFE0_0000_0000_0000	…	0x0020_0000_0000_0000	

Some	integers	outside	this	range	can	be	represented	exactly,	but	most	cannot	be.	If	
the	integer	cannot	be	represented	exactly,	then	the	value	will	be	rounded	to	the	
nearest	integer	that	can	be	represented,	with	ties	to	even,	and	the	NX-Inexact	Ulag	in	
FLOAT_STATUS	will	be	set.	

There	are	no	error	or	overUlow	conditions,	so	no	other	bits	in	FLOAT_STATUS	will	be	
affected.	

*FGT	 RegD,Reg1,Reg2 RegD	←	(Reg1	>	Reg2)	?	1	:	0	(Uloat	compare)

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	136 344

Chapter	5:	Instructions	

*FGE	 RegD,Reg1,Reg2	 RegD	←	(Reg1	≥	Reg2)	?	1	:	0	(Uloat	compare)	

Synthetic	

Register	t	Usage:	Not	used;	Okay	to	use	as	RegD,	Reg1,	and/or	Reg2.	

The	FGT	instruction	is	implemented	as:	
	 FLT	 RegD,Reg2,Reg1	 Note	the	reversal	of	the	registers	
The	FGE	instruction	is	implemented	as:	
	 FLE	 RegD,Reg2,Reg1	 Note	the	reversal	of	the	registers	

Commentary	Blitz-64	includes	Uloating	point	instructions	because	there	are	
applications	which	require	this	functionality.	We	include	only	double	precision	
because	(1)	it	Uits	the	64	bit	size	of	the	registers	and	(2)	because	it	provides	more	
precision	than	single	precision.	Presumably,	double	precision	can	be	substituted	in	
applications	that	require	single	precision,	but	not	vice	versa.	If	there	is	only	one	
precision	(to	keep	the	architecture	simple),	it	seems	that	double	precision	is	a	better	
choice.	

However,	we	make	no	great	effort	to	design	an	architecture	for	high-performance	
Uloating	point	computation.	Applications	that	do	lots	of	Uloating	point	calculations	
and	are	dependent	on	Uloating	point	performance	beneUit	from	the	sort	of	vector	
architecture	and	parallelism	that	are	commonplace	in	special	purpose	hardware,	like	
graphics	coprocessors,	neural	net	accelerators,	etc.	This	is	really	where	Uloating	
point	calculations	should	be	done,	not	in	a	general	purpose	core.	

Commentary	Whenever	one	or	both	of	the	arguments	of	FEQ,	FLT,	FLE,	FGT,	or	FGE	
is	not-a-number	(NaN),	the	result	is	false.	This	comes	from	the	IEEE	754	spec.	

By	true	and	false,	we	mean	that	either	1	or	0	is	placed	in	the	result	register.	

Whenever	one	or	both	of	the	arguments	to	FEQ	is	not-a-number	(NaN),	the	result	is	
false	(0).	Surprisingly,	this	means	that	when	asking	“NaN	==	NaN?”,	that	answer	is	
“no”!	

The	deUinitions	of	“not	equal”	is	“NOT(equal)”.	Consequently,	this	means	that	when	
asking	“NaN	≠	NaN?”,	that	answer	is	“yes”!	

This	happens	regardless	of	the	exact	bit	patterns	used	to	represent	NaN.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	137 344

Chapter	5:	Instructions	

We	have	not	included	an	“FNE”	instruction,	but	we	could	easily	have	included	a	
synthetic	instruction,	which	would	be	translated	to:	

	 FEQ	 RegD,Reg2,Reg1	 Store	0	if	not	equal	
	 TESTEQZ	 RegD,RegD	 	 Change	0	to	1	

But	note	that	a	test	is	typically	followed	by	a	branch,	as	in:	

	 FNE	 RegD,Reg2,Reg1	 	
	 BNEZ	 RegD,Label	 	 Branch	if	not	equal,	i.e.,	if	RegD==1	

This	would	expand	to:	

	 FEQ	 RegD,Reg2,Reg1	 	
	 TESTEQZ	 RegD,RegD	
	 BNEZ	 RegD,Label	 	 	

By	not	including	an	FNE	instruction,	we	encourage	the	compiler	writer	to	generate	
the	following	superior	code	sequence:	

	 FEQ	 RegD,Reg2,Reg1	 	
	 BEQZ	 RegD,Label	 	 Instead,	branch	test	is	reversed	

Instruction	Opcodes	

This	list	is	provisional	and	subject	to	change	in	future	versions.	

The	Blitz-64	instruction	encoding	allows	up	to	256	Format-A	instructions	(including	
ILLEGAL)	and	up	to	63	instructions	in	other	formats.	

	 Max	Number	of	Format-A	Instructions	 256	
	 Max	Number	of	non-Format-A	Instructions	 63	

	 Range	of	possible	OP2	values	 0	…	255	
	 Range	of	possible	OP1	values	 1	…	63	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	138 344

Chapter	5:	Instructions	

Currently	there	are…	

	 Number	of	Format-A	Instructions	 80	
	 Number	of	non-Format-A	Instructions	 40	
	 Total	Number	of	Machine	Instructions	 120	

	 Current	range	of	OP2	values 	 0	…	79	9

	 Current	range	of	OP1	values	 1	…	40	

Commentary	The	process	of	decoding	machine	opcodes	involves	circuitry	that	will	
transform	the	OP1	and	OP2	Uields	(i.e.,	bits	[31:16])	into	a	collection	of	control	
signals.		

The	opcode	assignment	given	here	is	done	without	any	attempt	to	make	instruction	
decoding	via	combinational	circuitry	easier.	Instead,	we	assume	that	all	opcodes	are	
decoded	using	lookup	tables.	

The	number	of	OP1	values	is	less	than	64	and	the	number	of	OP2	values	is	also	less	
than	64.	Therefore,	decoding	the	can	be	done	with	two	lookup	tables,	each	with	no	
more	than	64	entries,	along	with	a	multiplexor	to	differentiate	Format	A	instructions	
(with	OP1=00000000)	from	the	others.	

In	all	“Format	A”	instructions,	the	value	of	OP1	is	0x00;	to	avoid	clutter	in	the	list	
below,	OP1	is	not	shown.	

Illegal	
	 				OP1				 				OP2				
	 hex	dec	 hex	dec	 format	
	 	 	 00	 0	 A	 ILLEGAL	

Arithmetic	
	 				OP1				 				OP2				
	 hex	dec	 hex	dec	 format	
	 	 	 01	 1	 A	 ADD	
	 01	 1	 	 	 B	 ADDI	

	There	may	be	some	gaps	in	the	numbering,	as	a	result	of	previously	deleted	instructions.	These	9

counts	count	the	ILLEGAL	instruction.

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	139 344

Chapter	5:	Instructions	

	 	 	 02	 2	 A	 ADDOK	
	 	 	 03	 3	 A	 ADD3	 	 (Note	that	OP2	is	out	of	order)
	 	 	 04	 4	 A	 SUB	
	 	 	 05	 5	 A	 MULADD	
	 	 	 06	 6	 A	 MULADDU		 (Note	that	OP2	is	out	of	order)	
	 	 	 07	 7	 A	 DIV	
	 	 	 08	 8	 A	 REM	

Logical	
	 				OP1				 				OP2				
	 hex	dec	 hex	dec	 format	
	 	 	 09	 9	 A	 AND	
	 02	 2	 	 	 B	 ANDI	
	 	 	 0A	 10	 A	 OR	
	 03	 3	 	 	 B	 ORI	
	 	 	 0B	 11	 A	 XOR	
	 04	 4	 	 	 B	 XORI	

Shift	
	 				OP1				 				OP2				
	 hex	dec	 hex	dec	 format	
	 	 	 0C	 12	 A	 SLL	
	 05	 5	 	 	 B	 SLLI	
	 	 	 0D	 13	 A	 SLA	
	 06	 6	 	 	 B	 SLAI	
	 	 	 0E	 14	 A	 SRL	
	 07	 7	 	 	 B	 SRLI	
	 	 	 0F	 15	 A	 SRA	
	 08	 8	 	 	 B	 SRAI	
	 	 	 10	 16	 A	 ROTR	
	 09	 9	 	 	 B	 ROTRI	

Sign	Extension	
	 				OP1				 				OP2				
	 hex	dec	 hex	dec	 format	
	 	 	 11	 17	 A	 SEXTB	
	 	 	 12	 18	 A	 SEXTH	
	 	 	 13	 19	 A	 SEXTW	

Range	Checking	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	140 344

Chapter	5:	Instructions	

	 				OP1				 				OP2				
	 hex	dec	 hex	dec	 format	
	 	 	 14	 20	 A	 NULLTREST		 (Note	that	OP2	is	out	of	order)	
	 	 	 15	 21	 A	 CHECKB	
	 	 	 16	 22	 A	 CHECKH	
	 	 	 17	 23	 A	 CHECKW	
	 	 	 18	 24	 A	 INDEX0	 	 (Note	that	OP2	is	out	of	order)
	 	 	 19	 25	 A	 INDEX1
	 	 	 1A	 26	 A	 INDEX2
	 	 	 1B	 27	 A	 INDEX4
	 	 	 1C	 28	 A	 INDEX8
	 	 	 1D	 29	 A	 INDEX16
	 	 	 1E	 30	 A	 INDEX24
	 	 	 1F	 31	 A	 INDEX32

Byte	Reordering	
	 				OP1				 				OP2				
	 hex	dec	 hex	dec	 format	
	 	 	 20	 32	 A	 ENDIANH	
	 	 	 21	 33	 A	 ENDIANW	
	 	 	 22	 34	 A	 ENDIAND	

Test	and	Set	a	Boolean	
	 				OP1				 				OP2				
	 hex	dec	 hex	dec	 format	
	 	 	 23	 35	 A	 TESTEQ	
	 	 	 24	 36	 A	 TESTNE	
	 	 	 25	 37	 A	 TESTLT	
	 	 	 26	 38	 A	 TESTLE	
	 0A	 10	 	 	 B	 TESTEQI	
	 0B	 11	 	 	 B	 TESTNEI	
	 0C	 12	 	 	 B	 TESTLTI	
	 0D	 13	 	 	 B	 TESTLEI	
	 0E	 14	 	 	 B	 TESTGTI	
	 0F	 15	 	 	 B	 TESTGEI	

Branch	
	 				OP1				 				OP2				
	 hex	dec	 hex	dec	 format	
	 10	 16	 	 	 C	 B.EQ	
	 11	 17	 	 	 C	 B.NE	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	141 344

Chapter	5:	Instructions	

	 12	 18	 	 	 C	 B.LT	
	 13	 19	 	 	 C	 B.LE	

Larger	Addresses	
	 				OP1				 				OP2				
	 hex	dec	 hex	dec	 format	
	 14	 20	 	 	 D	 UPPER20	
	 15	 21	 	 	 B	 UPPER16	
	 16	 22	 	 	 B	 SHIFT16	
	 17	 23	 	 	 D	 ADDPC	
	 18	 24	 	 	 D	 AUIPC	

Jump	
	 				OP1				 				OP2				
	 hex	dec	 hex	dec	 format	
	 19	 25	 	 	 D	 JAL	
	 1A	 26	 	 	 B	 JALR	

Load	&	Store	
	 				OP1				 				OP2				
	 hex	dec	 hex	dec	 format	
	 1B	 27	 	 	 B	 LOAD.B	
	 1C	 28	 	 	 B	 LOAD.H	
	 1D	 29	 	 	 B	 LOAD.W	
	 1E	 30	 	 	 B	 LOAD.D	
	 1F	 31	 	 	 C	 STORE.B	
	 20	 32	 	 	 C	 STORE.H	
	 21	 33	 	 	 C	 STORE.W	
	 22	 34	 	 	 C	 STORE.D	

Align	
	 				OP1				 				OP2				
	 hex	dec	 hex	dec	 format	
	 	 	 27	 39	 A	 ALIGNH	
	 	 	 28	 40	 A	 ALIGNW	
	 	 	 29	 41	 A	 ALIGND	
	 	 	 2A	 42	 A	 INJECT1H	
	 	 	 2B	 43	 A	 INJECT2H	
	 	 	 2C	 44	 A	 INJECT1W	
	 	 	 2D	 45	 A	 INJECT2W	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	142 344

Chapter	5:	Instructions	

	 	 	 2E	 46	 A	 INJECT1D	
	 	 	 2F	 47	 A	 INJECT2D	

Miscellaneous	
	 				OP1				 				OP2				
	 hex	dec	 hex	dec	 format	
	 23	 35	 	 	 B	 SYSCALL	
	 	 	 30	 48	 A	 SYSRET	
	 	 	 31	 49	 A	 SLEEP1	
	 	 	 32	 50	 A	 SLEEP2	
	 	 	 33	 51	 A	 RESTART	
	 	 	 34	 52	 A	 DEBUG	
	 	 	 35	 53	 A	 BREAKPOINT	
	 24	 36	 	 	 B	 CONTROL			 (Note	that	OP1	is	out	of	order)	
	 25	 37	 	 	 B	 CONTROLU	
	 	 	 36	 54	 A	 CAS		 	 (Note	that	OP2	is	out	of	order)
	 	 	 37	 55	 A	 FENCE		 	 (Note	that	OP2	is	out	of	order)

CSR	Manipulation	
	 				OP1				 				OP2				
	 hex	dec	 hex	dec	 format	
	 	 	 38	 56	 A	 CSRSWAP			 (Note	that	OP2	is	out	of	order)	
	 	 	 39	 57	 A	 CSRREAD	
	 26	 38	 	 	 B	 CSRSET	
	 27	 39	 	 	 B	 CSRCLR	
	 	 	 3A	 58	 A	 GETSTAT		 	 (Note	that	OP2	is	out	of	order)	
	 	 	 3B	 59	 A	 PUTSTAT	

Memory	Management	Unit	
	 				OP1				 				OP2				
	 hex	dec	 hex	dec	 format	
	 	 	 3C	 60	 A	 TLBCLEAR	
	 	 	 3D	 61	 A	 TLBFLUSH	
	 28	 40	 	 	 B	 CHECKADDR	

Floating	Point	
	 				OP1				 				OP2				
	 hex	dec	 hex	dec	 format	
	 	 	 3E	 62	 A	 FADD	
	 	 	 3F	 63	 A	 FSUB	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	143 344

Chapter	5:	Instructions	

	 	 	 40	 64	 A	 FMUL	
	 	 	 41	 65	 A	 FDIV	
	 	 	 42	 66	 A	 FMIN	
	 	 	 43	 67	 A	 FMAX	
	 	 	 44	 68	 A	 FNEG	
	 	 	 45	 69	 A	 FABS	
	 	 	 46	 70	 A	 FSQRT	
	 	 	 47	 71	 A	 FEQ	
	 	 	 48	 72	 A	 FLT	
	 	 	 49	 73	 A	 FLE	
	 	 	 4A	 74	 A	 FCVTFI	
	 	 	 4B	 75	 A	 FCVTIF	
	 	 	 4C	 76	 A	 FMADD	
	 	 	 4D	 77	 A	 FNMADD	
	 	 	 4E	 78	 A	 FMSUB	
	 	 	 4F	 79	 A	 FNMSUB

Unused	Opcodes	
	 				OP1				 				OP2				
	 hex	dec	 hex	dec	 format	
	 29	 41	 	 	 -	 (Next	unused	OP1)	
	 	 	 50	 80	 A	 (Next	unused	OP2)

Miscellaneous	Remarks	

Commentary:	The	COPY	and	CLEAR	Instructions	

It	is	useful	to	be	able	to	copy	bytes	quickly,	or	to	clear	large	blocks	of	memory	to	
zero.	For	example,	an	operating	system	must	be	careful	to	initialize	newly	allocated	
memory	pages,	in	order	to	prevent	data	leakage	from	one	address	space	into	
another.	The	OS	will	also	need	the	ability	to	copy	pages	quickly,	whenever	the	“copy-
on-write”	technique	is	used.	Plus,	there	just	seems	to	be	a	lot	of	data	copying,	no	
matter	how	much	programmers	try	to	eliminate	it.	

We	considered	adding	the	following	instructions,	but	did	not.	

	 COPY			Reg1,Reg2,Reg3	 This	is	not	a	Blitz-64	instruction!	
	 	 while	Reg3>0	repeat:	
	 	 	 *(Reg1++)	←	*(Reg2++)			[8	bytes]	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	144 344

Chapter	5:	Instructions	

	 	 	 Reg3--	

	 CLEAR			Reg1,Reg2,Reg3		 This	is	not	a	Blitz-64	instruction!	
	 	 while	Reg3>0	repeat:	
	 	 	 *(Reg1++)	←	Reg2				[8	bytes]	
	 	 	 Reg3--	

There	are	several	problems	with	these	instructions.	First,	these	instructions	require	
many	clock	cycles	to	execute	and	this	doesn’t	Uit	within	the	RISC	philosophy.	In	
particular,	a	lengthy	operation	will	effectively	disable	interrupts	for	a	long	time.	

Second,	these	instructions	access	memory.	When	executed	in	user	mode,	it	is	
possible	there	could	be	a	virtual	memory	fault	(i.e.,	one	of	the	page-related	
exceptions).	There	is	no	clean	way	to	handle	this	situation.	

Finally,	there	is	the	possibility	that	the	counter	register,	Reg3,	is	inordinately	large	
due	to	a	bug,	and	this	will	effectively	bring	the	core	to	a	stop	as	the	instruction	takes	
forever	to	execute.	

Instead,	we	opt	for	coding	these	operations	as	functions,	which	solves	all	these	
problems.	

In	many	systems,	a	Direct	Memory	Access	(DMA)	controller	will	be	present	as	an	I/O	
device.	If	present,	the	DMA	controller	can	be	employed	to	perform	the	“copy”	and	
“clear”	memory	operation	at	a	higher	speed.	If	a	DMA	controller	with	this	capability	
is	present,	then	it	makes	sense	to	add	a	system	call	to	access	this	functionality.	The	
user-level	functions	will	handle	boundary	cases	and	then	use	the	system	call	to	
invoke	the	DMA	controller	to	do	the	bulk	of	the	work.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	145 344

Chapter	6:	Privileged	Instructions	
and	Kernel	Mode	

Quick	Summary	

•	There	are	two	privilege	modes:	kernel	and	user.	
•	Privileged	instructions	may	only	be	executed	in	kernel	mode.	
•	There	are	16	Control	and	Status	Registers	(CSRs).	

Privileged	Instructions	

At	all	times,	the	processor	is	executing	in	one	of	two	possible	modes:	

	 •	Kernel	Mode	
	 •	User	Mode	

The	current	mode	is	determined	by	a	single	bit	within	the	status	register	csr_status.	
Upon	power-on-reset,	the	processor	begins	execution	in	kernel	mode.	

Some	instructions	are	privileged	instructions;	these	may	only	be	executed	when	
running	in	kernel	mode.	Any	attempt	to	execute	a	privileged	instruction	when	
running	in	user	mode	will	signal	a	“Illegal	Instruction	Exception”.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	146 344

Chapter	6:	Privileged	Instructions	and	Kernel	Mode	

Control	and	Status	Registers	

There	are	16	Control	and	Status	Registers	(CSRs):	

	 0	 r/o	 csr_version	 Version	of	the	BLITZ-64	architecture	ISA	
	 1	 r/o	 csr_prod	 Product	Info	
	 2	 r/o	 csr_core	 Core	number	
	 3	 r/o	 csr_instr	 Instruction	counter	(Reset	upon	power-on-reset)	
	 4	 r/o	 csr_cycle	 Cycle	counter	(Reset	upon	power-on-reset)	
	 5	 r/w	 csr_timer	 Time	until	next	interrupt,	in	cycles	
	 6	 r/w	 csr_status	 System	status	register	
	 7	 r/w	 csr_stat2	 Used	during	trap	invocation	and	return	
	 8	 r/w	 csr_trapvec	 Pointer	to	trap	handler	code	
	 9	 r/w	 csr_pgtable	 Pointer	to	page	table	root	node	
	 10	 r/w	 csr_prevpc	 Previous	PC	(for	trap	handler)	
	 11	 r/w	 csr_cause	 A	code	indicating	which	trap	just	happened	
	 12	 r/w	 csr_bad	 Offending	instruction	(for	Kernel	Exception:	cause)	
	 13	 r/w	 csr_addr	 Bad	Address	
	 14	 r/w	 csr_ptr	 Used	during	trap	invocation	and	return	
	 15	 r/w	 csr_temp	 Temp	work	register	

The	following	instructions	are	used	to	access	the	CSRs:	

	 CSRREAD	 Retrieve	data	from	a	CSR	
	 CSRWRITE	 Move	data	into	a	CSR	
	 CSRSWAP	 Simultaneous	read	and	write	to/from	a	CSR	
	 CSRSET	 Set	selected	bits	to	1	
	 CSRCLR	 Clear	selected	bits	to	0	

These	instructions	reference	a	CSR,	which	is	encoded	using	4	bits	in	the	Reg1	
register	Uield	within	the	instruction:	

	 0000	=	csr_version	
	 0001	=	csr_prod	
	 …	
	 1111	=	csr_temp	

These	instructions	are	all	privileged,	which	means	that	they	cannot	be	used	by	user	
mode	code.	Thus,	the	CSRs	are	hidden	and	inaccessible	from	user	programs.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	147 344

Chapter	6:	Privileged	Instructions	and	Kernel	Mode	

Some	CSRs,	as	marked	above,	are	read-only.	Any	attempt	to	store	data	into	these	
registers	is	legal,	but	the	data	will	simply	be	discarded.	

Next,	we	discuss	the	function	of	each	CSR.	

Each	CSR	is	a	64	bit	register.	All	64	bits	can	be	set	and	cleared	like	any	normal	
register,	with	these	exceptions:	

—		Unused	bits	in	csr_status	are	always	zeros;	they	cannot	be	altered.	
—	The	registers	csr_version,	csr_intsr,	csr_cycle,	csr_prod,	and	csr_core	are	
read-only.	

csr_version	

This	CSR	is	read-only.	Its	value	is	Uixed	and	will	never	change.	Any	attempt	to	update	
this	CSR	is	ignored.	

The	uppermost	32	bits	[63:32]	indicate	the	number	of	cycles	per	millisecond	that	
the	core	normally	runs	at.	This	number	need	not	be	perfectly	accurate;	the	actual	
processor	speed	may	be	more	or	less	with	under-	and	over-clocking.	(This	value	
might	be	used,	for	example,	to	control	the	Ulashing	of	LEDs	at	a	rate	appropriate	for	
humans	or	for	initializing	the	default	time-slice	size.)	

Bit	[31]	indicates	whether	this	core	fully	conforms	to	an	ofUicial	Blitz-64	ISA	
speciUication.	If	the	core	meets	all	the	requirements	given	in	an	ofUicially	sanctioned	
Blitz-64	speciUication—either	this	one	or	some	future	speciUication—this	bit	will	be	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	148 344

Chapter	6:	Privileged	Instructions	and	Kernel	Mode	

1	and	bits	[30:16]	will	contain	a	version	number	indicating	exactly	which	
speciUication	it	conforms	to.	

Bits	[30:16]	of	this	CSR	contain	a	version	number	of	the	architecture.	The	version	
documented	here	is	0x0001.	It	is	intended	that	version	numbers	will	be	
incremented	sequentially	as	changes	are	made	to	the	ofUicial	Blitz-64	ISA.	

A	core	can	be	said	to	be	“in	full	conformance”	(i.e.,	“compliance”)	to	this	version	of	
the	Blitz-64	speciUication	if	and	only	if	all	instructions,	registers,	and	behaviors	
documented	here	are	implemented	exactly	as	described.	

However,	the	inclusion	of	additional,	novel	instructions	is	acceptable	and	is	not	
cause	for	bit	[31]	to	be	zero.	If	an	opcode	that	is	deUined	as	an	“illegal	instruction”	in	
this	document	is	assigned	to	a	newly	created	instruction,	then	it	will	not	affect	bit	
[31].	

If	the	architecture	of	a	core	fails	to	meet	any	ofUicial	Blitz-64	ISA	speciUication,	bit	
[31]	must	be	zero. 	We	presume	that	if	a	Blitz	core	fails	to	fully	conform,	then	it	will	10

at	least	implement	“a	lot	of”	the	Blitz	speciUication.	In	particular,	we	assume	the	
version	number	(bits	[30:16])	will	still	contain	the	version	number	of	the	Blitz-64	
ISA	that	is	most	closely	implemented	by	the	core,	such	as	0x0001.	

Bits	[15:0]	is	the	“implementor/organization”	Uield	and	contains	a	value	which	
identiUies	a	speciUic	implementor	(e.g.,	a	person,	group,	or	corporation).	These	
numbers	are	to	be	assigned	centrally	and	are	not	to	be	created	independently.	The	
current	assignment	is:	

	 0x0000	 All	other	implementors	/	organizations	
	 0x0001	 Harry	Porter	
	 0x0002	 HDL	Express	

Values	0x0003	…	0xFFFF	are	reserved	for	future	assignment;	do	not	use	them.	

NOTE:	The	csr_prod	register	(“product	info”)	is	intended	to	be	deUined	by	a	speciUic	
implementor/organization.	Software	recognizing	a	particular	implementor/

For	example,	if	the	MULADD	instruction	causes	an	Emulated	Instruction	Exception,	bit	[31]	must	10

be	0.	As	another	example,	if	FDIV	causes	an	Emulated	Instruction	Exception,	it	is	not	cause	for	bit	
[31]	to	be	0.	But	is	FDIV	is	implemented	but	fails	to	round	ties	to	even,	then	the	entire	core	fails	to	
conform	and	bit	[31]	must	be	0.

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	149 344

Chapter	6:	Privileged	Instructions	and	Kernel	Mode	

organization	may	wish	to	examine	csr_prod	to	gather	more	info	about	the	speciUic	
capabilities	of	the	core.	

csr_prod	

This	CSR	is	read-only.	Its	value	is	Uixed	and	will	never	change.	Any	attempt	to	update	
this	CSR	is	ignored.	

The	deUinition	of	this	register	is	left	up	to	the	speciUic	implementation.	The	
implementor	/organization	is	identiUied	in	csr_version,	which	should	be	consulted	
before	any	attempt	to	decipher	the	contents	of	this	register.	

The	intent	is	that	a	particular	implementor	or	organization	may	create	several	
implementations	of	the	Blitz-64	architecture.	Each	might	be	considered	a	unique	
“product”.	This	register	is	intended	to	contain	a	number	that	identiUies	the	product.	
The	implementor	is	free	to	deUine	certain	bits	in	this	register	to	indicate	the	
presence	or	absence	of	certain	features.	For	example,	certain	bits	might	indicate	
whether	some	special	instruction	is	available,	or	whether	the	core	is	optimized	for	
“low	power”	or	for	“high	performance”.	

It	may	also	be	the	case	that	each	part	has	a	serial	number	hardwired	into	it	and	a	
part’s	serial	number	can	be	obtained	by	reading	this	register.	For	example,	the	upper	
16	bits	might	contain	a	product	number	and	the	lower	48	bits	might	contain	a	serial	
number. 	11

csr_core	

This	CSR	is	read-only.	Its	value	is	Uixed	and	will	never	change.	Any	attempt	to	update	
this	CSR	is	ignored.	

In	a	multi-core	processor,	the	lower	16	bits	[15:0]	of	this	CSR	give	the	core	number	
and	will	be	within	0	…	65536.	Core	number	0	is	considered	the	“primary	core”.	

In	a	multi-core	system,	the	cores	can	be	arranged	either	linearly,	in	a	2	dimensional	
array,	or	in	a	3	dimensional	array.	The	upper	48	bits	describe	the	arrangement	of	the	
cores.	

	Of	course	current	technology	may	make	it	impractical	to	hardwire	unique	serial	numbers	11

directly	into	each	core.	Thus,	an	implementation	may	choose	to	reveal	serial	number	information	
in	other	ways,	such	as	through	a	memory-mapped	I/O	device	created	for	this	purpose,	or	a	
number	written	into	Secure	Storage	and	therefore	not	updatable.

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	150 344

Chapter	6:	Privileged	Instructions	and	Kernel	Mode	

	 bits	[63:48]	 Number	of	columns	(0	…	65536)	
	 bits	[47:32]	 Number	of	rows	(0	…	65536)	
	 bits	[31:16]	 Number	of	planes	(0	…	65536)	

In	a	1D	arrangement,	the	number	of	rows	and	the	number	of	planes	will	be	1.	In	a	
2D	arrangement,	the	number	of	planes	will	be	1.	

In	a	uni-core	processor,	this	register	will	contain	0x0001_0001_0001_0000.	In	a	
multi-core	system	in	which	the	cores	are	not	organized	as	an	array,	this	register	will	
contain:	

	 0xNNNN_0001_0001_MMMM	

Where	MMMM+1	=	NNNN.	

csr_instr	

This	CSR	is	set	to	zero	upon	power-on-reset.	It	is	incremented	by	one	for	every	
instruction	executed.	It	can	be	used	for	performance	measurement.	

This	CSR	is	read-only;	any	attempt	to	update	this	CSR	is	ignored.	

csr_cycle	

This	CSR	is	set	to	zero	upon	power-on-reset.	It	is	incremented	by	one	for	every	clock	
cycle.	It	can	be	used	for	performance	measurement.	

(Assuming	the	processor	runs	at	10	gigahertz,	the	csr_cycle	will	run	for	about	30	
years	before	overUlowing.	Thus,	a	problem	will	only	arise	in	a	processor	core	which	
runs	non-stop	for	decades.	The	workaround	is	to	reboot	every	decade.)	

This	CSR	is	read-only;	any	attempt	to	update	this	CSR	is	ignored.	

csr_timer	

The	processor	has	a	built-in	timer.	This	timer	is	used	by	the	kernel	to	implement	
time-slicing.	When	the	timer	expires	(i.e.,	when	the	time-slice	ends),	a	“Timer	
Interrupt”	will	be	signaled.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	151 344

Chapter	6:	Privileged	Instructions	and	Kernel	Mode	

This	CSR	controls	when	the	timer	will	cause	the	interrupt.	This	register	is	
decremented	on	every	clock	cycle,	with	no	check	for	overUlow.	A	“Timer	Interrupt”	
will	be	signaled	when	this	CSR	goes	negative.	The	trap	handler	should	reset	this	CSR	
before	reenabling	interrupts	to	avoid	an	inUinite	chain	of	timer	interrupts.	

If	no	interrupt	is	wanted,	the	value	MAX_64	(0x7FFF_FFFF_FFFF_FFFF)	can	be	used.	
The	maximum	time	interval	is	measured	in	decades,	but	normally	it	will	be	reset	
after	every	time-slice,	e.g.,	every	millisecond.	

Commentary	The	timer	is	speciUied	in	terms	of	clock	cycles,	rather	than	real-time,	
since	it	is	easier	to	implement.	A	real-time	clock	may	exist,	but	it	will	be	
implemented	as	a	separate	I/O	device,	probably	with	a	separate	power	supply	and	
independent	frequency	generator,	so	that	it	continues	to	operate	even	when	the	
processor	is	powered	down	and	can	measure	time	accurately,	regardless	of	which	
frequency	the	processor	is	clocked.	

The	purpose	of	the	cycles-per-millisecond	Uield	of	csr_version	is	so	that	a	real-time	
clock	can	be	approximated	from	the	processor	cycle	frequency,	if	no	real-time	clock	
is	present.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	152 344

Chapter	6:	Privileged	Instructions	and	Kernel	Mode	

csr_status	

This	CSR	is	broken	into	the	following	Uields:	

	 [63:10]	 54	 <	unused	/	zero	>	
	 [9:8]	 2	 FLOAT_ROUND	—	the	rounding	mode	for	Uloat	operations	
	 [7:3]	 5	 FLOAT_STATUS	—	the	error	status	of	recent	Uloat	operations	
	 [2]	 1	 SINGLE_STEP	(1=enabled,	0=disabled)	
	 [1]	 1	 INTERRUPTS_ENABLED	(1=enabled,	0=disabled)	
	 [0]	 1	 KERNEL_MODE	(1=Kernel	Mode,	0=User	Mode)	

FIGURE:	CSR_STATUS	Register	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	153 344

Chapter	6:	Privileged	Instructions	and	Kernel	Mode	

There	are	2	bits	(FLOAT_ROUND)	which	should	be	set	by	software	to	control	which	
rounding	mode	to	be	used	when	the	need	arises	during	Uloating	point	computations:	

	 00	 RN	—	Round	to	nearest.	Tie	goes	to	value	with	0	in	LSB.	
	 01	 RZ	—	Round	toward	zero,	i.e.,	truncate.	
	 10	 RD	—	Round	down,	i.e.,	round	toward	-inf.	
	 11	 RU	—	Round	up,	i.e.,	round	toward	+inf.	

There	are	4	bits	(FLOAT_STATUS)	which	are	set	by	hardware	to	reUlect	recent	
Uloating	point	computations.	Here	is	the	meaning	of	these	bits:	

	 bit	
	 3	 NX	—	Inexact	results	were	produced	
	 4	 DZ	—	Divide	by	zero	has	occurred	
	 5	 UF	—	UnderUlow	has	occurred 		12

	 6	 OF	—	OverUlow	has	occurred	
	 7	 NV	—	Invalid	operation	has	been	attempted	

A	value	of	00000	indicates	that	no	problems	have	occurred.	These	bits	are	“sticky”,	
once	set	to	1	they	remain	set	until	explicitly	cleared	by	software.	

The	Uloating	bits	(FLOAT_ROUND	and	FLOAT_STATUS)	must	be	saved	and	restored	
upon	any	context	switch.	This	is	why	they	are	in	the	status	register.	

In	general	,	non-privileged	instructions	are	not	allowed	to	read	or	write	the	CSR	
registers.	However,	the	GETSTAT	and	PUTSTAT	instructions	(which	are	not	
privileged)	can	be	used	to	read	and	write	bits	[9:3].	This	allows	user	programs	to	
make	use	of	the	FLOAT_ROUND	and	FLOAT_STATUS	bits.	

The	INTERRUPTS_ENABLED	bit	determines	whether	an	interrupt	will	cause	an	
immediate	trap	or	not.	If	set	to	1,	any	interrupt	will	cause	trap	processing	to	occur	
after	the	current	instruction	completes	execution.	If	the	bit	is	0,	the	signaling	of	an	
interrupt	will	not	cause	trap	handling.	Instead,	that	interrupt	type	will	become	
pending.	The	interrupt	will	remain	pending	until	the	bit	is	set	to	1,	at	which	time	
trap	processing	will	occur.	

	The	“underUlow”	(UF)	bit	is	set	when	the	result	of	an	operation	is	both	a	subnormal	number	12

(including	zero)	and	the	result	is	inexact.

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	154 344

Chapter	6:	Privileged	Instructions	and	Kernel	Mode	

The	KERNEL_MODE	bit	determines	whether	the	processor	is	in	kernel	mode	or	user	
mode.	The	mode	determines	whether	privileged	instructions	can	be	executed	and	
determines	whether	addresses	below	0x8_0000_0000	(i.e.,	physical	memory	and	
memory	mapped	I/O)	can	be	used	directly.	

Code	running	in	user	mode,	but	with	interrupts	disabled,	is	particularly	risky	since	
an	inUinite	loop	would	freeze	the	system:	even	timer	interrupts	would	not	stop	the	
looping.	The	kernel	will	normally	not	run	user	mode	code	with	interrupts	disabled.	

The	SINGLE_STEP	bit	is	used	to	invoke	a	trap	handler	after	each	instruction.	This	
functionality	is	used	by	a	debugger	to	single-step	the	code	being	debugged.	

Bits	[47:9]	are	unused.	Attempts	to	set	these	bits	are	ignored	and	reads	always	
return	zeros. 	13

csr_stat2	

The	csr_status	CSR	must	be	saved	and	restored	at	context	switches	and	this	is	the	
function	of	csr_stat2.	During	the	hardware	phase	of	trap	invocation	for	interrupts	
and	exceptions,	the	status	register	csr_status	is	copied	to	this	CSR.	This	allows	the	
software	trap	handler	to	return	to	the	interrupted	code	at	some	later	time.	

This	process	is	discussed	more	fully	later,	when	trap	processing	is	described.	

csr_trapvec	

This	CSR	will	contain	the	address	of	the	function	that	will	handle	traps.	When	a	trap	
(i.e.,	an	interrupt	or	exception)	occurs,	the	program	counter	will	be	loaded	with	the	
address	in	csr_trapvec	as	part	of	trap	handling.	Execution	of	the	trap	handler	will	
then	begin	with	the	next	instruction	FETCH.	

Only	35	bits	—	i.e.,	bits	[34:0]	—	of	csr_trapvec	will	be	used,	giving	an	address	in	
the	kernel	address	space;	the	upper	bits	will	be	ignored.	If	csr_trapvec	is	not	a	valid	
address	—	for	example	0,	which	would	normally	cause	a	Null	Address	Exception	—	
the	results	are	undeUined.	

	If,	in	the	future,	a	new	version	of	the	architecture	deUines	some	meaning	for	an	unused	bit,	then	13

we	must	ask	whether	the	bit	will	be	visible	to	User	Mode	programs	or	not.	If	visible	to	User	Mode,	
then	it	would	make	sense	to	redeUine	the	GETSTAT	and	PUTSTAT	instructions	to	include	the	newly	
deUined	bit,	along	with	the	FLOAT_ROUND	and	FLOAT_STATUS	bits.

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	155 344

Chapter	6:	Privileged	Instructions	and	Kernel	Mode	

csr_pgtable	

This	CSR	will	point	to	the	current	page	table.	That	is,	csr_pgtable	will	contain	the	
address	of	the	root	node	of	the	page	table	tree.	In	addition,	this	register	will	contain	
the	address	space’s	ID	(ASID).	

The	address	of	the	root	of	the	page	table	tree	is	a	44	bit	address	in	the	physical	
memory	space.	The	root	of	the	page	table	must	be	page	aligned.	A	page-aligned	
address	will	contain	zeros	in	the	lower	14	bits.	As	such,	only	bits	[43:14]	are	used,	
constituting	the	Physical	Page	Number	(PPN)	of	the	page	containing	the	root	node.	
The	offset	bits	[13:0]	are	ignored	and	zeros	are	assumed.	This	results	in	a	page-
aligned	address	in	the	16	TiByte	physical	address	space.	

The	Address	Space	IdentiUier	(ASID)	is	a	16	bit	number	which	identiUies	the	virtual	
address	space.	Each	virtual	address	space	should	have	a	unique	ASID,	so	there	is	a	
one-to-one	correspondence	between	virtual	address	spaces	and	ASIDs.	

The	ASID	from	csr_pgtable	will	be	used	by	the	Memory	Management	Unit	(MMU)	
during	address	translation	during	any	LOAD,	STORE,	or	FETCH.	It	will	be	matched	
against	the	ASID	value	stored	in	the	Translation	Lookaside	Buffer	(TLB)	registers. 	14

csr_prevpc	

	It	is	assumed	that	the	Translation	Lookaside	Buffer	(TLB)	will	cache	page	table	entries	in	an	14

associative	memory,	in	order	to	reduce	the	number	of	page	table	lookups.	Each	TLB	entry	will	be	
keyed	on	both	ASID	and	virtual	page	number.	Presumably,	each	virtual	address	space	will	be	
assigned	and	associated	with	a	unique	ASID.	

The	purpose	of	the	ASID	is	to	make	sure	that	code	running	in	one	virtual	address	space	will	only	
use	TLB	entries	that	are	associated	with	the	correct	virtual	address	space.	If,	for	some	reason,	the	
TLB	registers	are	not	implemented	(meaning	every	FETCH,	LOAD,	and	STORE	requires	a	page	
table	lookup),	the	ASID	becomes	unnecessary	and	will	be	ignored.

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	156 344

Chapter	6:	Privileged	Instructions	and	Kernel	Mode	

This	CSR	is	used	to	save	the	value	of	the	Program	Counter	(PC)	during	trap	
processing.	During	the	hardware	phase	of	trap	invocation	for	interrupts	and	
exceptions,	this	CSR	is	set	to	point	to	either	the	instruction	causing	the	exception	or	
the	following	instruction	(depending	on	exactly	which	interrupt	or	exception	has	
occurred).	This	allows	the	software	trap	handler	to	return	to	the	interrupted	code	at	
some	later	time.	

This	process	is	discussed	more	fully	later,	when	trap	processing	is	described.	

The	PC	is	only	36	bits,	yet	csr_prevpc	is	a	64	bit	register.	When	the	PC	is	copied	to	
this	register,	the	upper	28	bits	will	be	set	to	zero.	When	csr_prevpc	is	copied	to	the	
PC,	the	upper	28	bits	will	be	ignored.	

csr_cause	

This	CSR	is	set	by	the	hardware	during	trap	processing	to	a	code	to	indicate	which	
exception/interrupt	caused	the	trap.	

csr_bad	

This	CSR	is	set	by	the	hardware	during	the	trap	processing	to	contain	the	instruction	
that	caused	the	exception.	However,	in	the	case	of	a	Kernel	Exception,	this	CSR	is	set	
to	the	cause	code	for	the	triggering	exception.	

When	an	instruction	is	copied	to	csr_bad,	the	upper	bits	will	be	set	to	zero.	

csr_addr	

This	CSR	is	set	by	the	hardware	during	trap	processing	of	certain	exceptions	to	
contain	additional	information	about	the	exception.	For	example,	in	the	case	of	page-
related	exceptions,	this	CSR	is	set	to	the	program-generated	address	causing	the	
problem.	

When	the	hardware	stores	an	address	in	csr_addr	during	an	exception,	the	upper	28	
bits	will	be	set	to	zero.	

csr_ptr	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	157 344

Chapter	6:	Privileged	Instructions	and	Kernel	Mode	

This	CSR	is	intended	to	be	used	by	the	kernel	to	store	a	pointer	to	a	“thread	control	
block”	while	a	user	mode	program	is	running.	During	trap	handling	and/or	context	
switches	the	kernel	must	save	user	mode	state,	including	registers,	and	this	CSR	is	
intended	to	contain	a	pointer	to	where	in	memory	that	saving	should	be	done.	

This	CSR	is	neither	set	nor	queried	by	the	hardware,	except	by	the	CSR	instructions.	

csr_temp	

This	CSR	is	available	for	use	as	needed	by	trap	handler	and/or	kernel	code.	It	is	
neither	set	nor	queried	by	the	hardware,	except	by	the	CSR	instructions.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	158 344

Chapter	7:	Exceptions,	Interrupts,	
and		Trap	Handling	

Quick	Summary	

•	There	are	two	kinds	of	traps:	exceptions	and	interrupts.	
	 •	Exceptions	are	synchronous	and	include	the	“syscall”	trap.	
	 •	Interrupts	are	asynchronous	and	come	from	I/O	devices.	
•	All	trap	processing	invokes	a	single	Global	Trap	Handler.	
•	The	trap	cause	code	can	be	used	as	an	index	into	a	jump	table.	
•	A	single	timer	is	speciUied,	which	will	signal	a	“Timer	Interrupt”.	
•	Up	to	1,024	different	SYSCALLs	are	supported	in	the	jump	table.	
•	A	novel	approach	for	null	pointer	exceptions	is	used.	

Traps,	Exceptions,	and	Interrupts	

There	are	two	sources	of	“traps”,	namely	exceptions	and	interrupts.	

	 •	Trap	
	 	 •	Exception	—	synchronous,		caused	by	an	instruction	
	 	 •	Interrupt	—	asynchronous,	caused	by	an	external	source	

An	“exception”	is	caused	by	and	related	to	a	speciUic	instruction.	In	that	sense,	
exceptions	are	synchronous.	

An	“interrupt”	is	caused	by	the	arrival	of	a	signal	from	an	external	source.	
Interrupts	are	asynchronous,	which	means	their	timing	is	unrelated	to	instruction	
execution.	Interrupts	can	occur	at	any	time	during	execution.	

Exceptions	and	interrupts	are	said	to	be	signaled	or	raised.	(We	use	the	terms	
“signaled”	and	“raised”	synonymously.)	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	159 344

Chapter	7:	Exceptions,	Interrupts,	and		Trap	Handling	

In	response	to	an	exception	or	interrupt,	the	hardware	will	invoke	a	trap	handler.	

Exceptions	

An	exception	is	raised	by	the	execution	of	an	instruction	and	is	therefore	directly	
related	to	one	particular	instruction.	

In	some	cases,	exceptions	are	caused	by	a	problem	in	the	instruction	which	prevents	
it	from	executing.	In	other	cases,	the	instruction	requires	kernel	attention	and	will	
be	re-executed	after	the	kernel	handles	the	exception.	A	system	call	(raised	by	the	
“syscall”	instruction)	is	considered	to	be	a	type	of	exception.	

When	an	exception	occurs,	trap	handling	will	always	be	invoked	directly	after	the	
instruction.	Trap	handling	for	exceptions	will	never	be	delayed,	become	pending,	or	
be	ignored.	

Interrupts	

An	interrupt	is	signaled	when	an	external	source	sends	a	hardware	signal	to	the	
processor.	The	device	is	requesting	attention.	An	interrupt	has	nothing	to	do	with	
the	instruction	currently	being	executed.	

When	an	interrupt	is	signaled,	the	interrupt	becomes	pending.	Trap	processing	will	
occur	at	some	future	time.	The	interrupt	remains	pending	until	trap	handling	occurs.	
The	interrupt	may	be	handled	immediately	after	the	completion	of	the	current	
instruction,	or	it	may	be	postponed	until	later.	Either	way,	the	interrupt	will	remain	
pending	until	trap	handling	is	invoked.	

Once	handled,	the	interrupt	will	cease	being	pending.	

Interrupts	are	masked	by	the	INTERRUPTS_ENABLED	bit	in	the	status	word	
csr_status.	If	0,	then	any	interrupt	that	occurs	will	remain	pending	until	interrupts	
are	once	again	enabled.	Trap	processing	will	not	occur	until	this	time.	

Exceptions	may	not	be	masked.	Any	exception	will	cause	trap	processing	
immediately	after	the	current	instruction	(i.e.,	the	instruction	which	caused	the	
exception)	has	Uinished	execution.	In	that	sense,	we	might	say	that	exceptions	
remain	pending	only	a	very	short	time,	until	the	current	instruction	is	completed.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	160 344

Chapter	7:	Exceptions,	Interrupts,	and		Trap	Handling	

Interrupt	handling	is	only	masked	by	the	INTERRUPTS_ENABLED	bit	in	the	
csr_status	register.	Unlike	other	ISAs,	Blitz-64	has	no	additional	masking	
mechanisms.	

There	are	several	different	types	of	interrupt	(e.g.,	Timer	Interrupt,	Serial	Device	
Interrupt,	etc.).	If	interrupts	of	two	or	more	types	are	pending	then,	when	trap	
processing	occurs,	the	one	with	the	higher	priority	will	be	selected	and	the	others	
will	remain	pending	during	the	execution	of	the	trap	handler.	At	some	later	time,	the	
other	interrupts	will	be	processed.	

If	there	are	multiple	interrupts	of	the	same	type	signaled	before	trap	handling	
occurs,	then	they	are	combined.	In	other	words,	only	one	trap	of	each	interrupt	type	
can	be	pending	at	once.	If	an	interrupt	of	type	X	is	signaled	and	is	still	pending	at	the	
time	a	second	interrupt	of	the	same	type	X	is	signaled,	the	second	interrupt	is	
combined	with	the	Uirst	interrupt,	which	means	it	is	effectively	ignored	and	lost.	

Trap	Handlers	

When	an	interrupt	or	exception	occurs,	a	trap	handler	will	be	invoked.	An	interrupt	
may	remain	pending	for	some	time,	but	eventually	it	will	be	handled.	An	exception	
will	be	handled	immediately,	before	the	next	instruction	is	executed.	

Trap	handling	has	two	components:	the	hardware	component	and	the	software	
component.	When	the	trap	handling	is	invoked,	the	processor	will	perform	several	
simple	actions.	These	actions	will	occur	between	instructions.	In	other	words,	the	
previous	instruction	will	complete	processing,	and	then	the	hardware	component	
will	execute.	

Basically,	the	hardware	phase	will	save	some	processor	state,	clear	the	
INTERRUPTS_ENABLED	bit	in	csr_status,	and	set	the	Program	Counter	(PC)	to	point	
to	the	trap	handler.	

After	the	hardware	component	has	completed,	instruction	processing	will	resume,	
with	the	Uirst	instruction	in	a	kernel	function	known	as	a	“trap	handler”.	

Here	are	the	types	of	trap:	

	 Exceptions	
	 	 SYSCALL	(multiple	types,	determined	by	immed-10	in	SYSCALL	instruction)	
	 	 Arithmetic	Exception	(integer	overUlow,	divide-by-zero,	…)	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	161 344

Chapter	7:	Exceptions,	Interrupts,	and		Trap	Handling	

	 	 Unaligned	LOAD/STORE	Exception	
	 	 Null	Address	Exception	
	 	 Illegal	Instruction	Exception	(including	privileged	instruction	violation)	
	 	 Page	Illegal	Address	Exception	(attempt	to	access	kernel	space)	
	 	 Page	Table	Exception	(bad	csr_pgtable)	
	 	 Page	Invalid	Exception	(either	index	page	or	PTE)	
	 	 Page	Write	Exception	
	 	 Page	Fetch	Exception	
	 	 Page	Copy-On-Write	Exception	
	 	 Page	First	Dirty	Exception	
	 	 Debug	Exception	
	 	 Breakpoint	Exception	
	 	 Singlestep	Exception	
	 	 Kernel	Exception	
	 	 Emulated	Instruction	Exception	
	 	 Hardware	Fault	Exception	

			 Interrupts	
	 	 Timer	Interrupt	
	 	 DMA	Controller	Interrupt	
	 	 Neighbor	Request	(north,	south,	east,	west,	up,	down)	
	 	 I/O	Device	Request	
	 	 	 Serial	device,	real	time	alarm	clock	
	 …	Interrupt	details	are	implementation	dependent	…	

When	a	trap	occurs,	a	transfer	of	control	is	made	to	the	address	in	csr_trapvec.	In	
other	words,	the	value	in	csr_trapvec	is	copied	into	the	Program	Counter	(PC)	as	
part	of	the	trap	processing.	

Thus,	there	is	a	single	trap	handler	for	all	trap	types,	which	we	call	the	“global	trap	
handler”.	This	function	is	responsible	for	determining	the	nature	of	the	trap	and	
jumping	to	individual	trap	handlers	to	Uinish	the	handling	of	the	trap.	

Generally	speaking,	we	expect	there	will	be	several	individual	trap	handler	
functions,	one	for	each	type	of	trap.	Trap	handlers	will	typically	end	with	a	SYSRET	
instruction,	which	will	be	used	to	resume	execution	in	the	interrupted	code	
sequence.	

Upon	trap	handling,	the	hardware	will	cause	a	jump	to	the	global	trap	handler	by	
loading	the	PC	with	the	address	of	the	the	global	trap	handler,	i.e.,	the	contents	of	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	162 344

Chapter	7:	Exceptions,	Interrupts,	and		Trap	Handling	

csr_trapvec.	Presumably,	this	CSR	has	been	previously	loaded	with	the	address	of	
the	global	trap	handler.	

It	is	intended	that	the	global	trap	handler	will	begin	by	saving	additional	state	of	the	
interrupted	process	(such	as	the	general	purpose	registers)	and	then	jump,	via	a	
trap	dispatch	table,	to	the	desired	individual	trap	handler.	

This	dispatch	vector	is	entirely	in	software.	This	global	trap	handler,	which	may	be	
written	in	assembler,	will	perform	an	indirect	jump	through	the	jump	table.	The	
individual	target	trap	handlers	will	typically	be	written	in	high-level	KPL.	

The	trap	dispatch	table	will	contain	one	entry	for	each	type	of	trap	and	each	entry	is	
8	bytes.	With	8	bytes,	there	is	enough	room	for	two	instructions,	so,	if	necessary,	
each	entry	can	contain	a	long	absolute	jump	(UPPER20+JALR).	However,	many	trap	
handler	functions	may	be	close	and	reachable	with	a	single	instruction.	Although	all	
table	entries	are	8	bytes,	some	will	be	padded	with	unused	bytes.	

There	are	approximately	1100	types	of	traps,	since	there	are	1024	different	syscall	
traps.	So	the	trap	vector	will	consume	about	8,800	bytes.	

At	the	time	a	trap	is	handled,	the	hardware	will	set	the	csr_cause	register	to	a	code	
indicating	which	sort	of	trap	is	being	handled.	Each	code	is	divisible	by	8,	which	
makes	trap	dispatching	simpler.	

	 Code	 Code	
	 (decimal)	 (hex)	 Trap	Type	
	 0	 0000	 Syscall	0	
	 8	 0008	 Syscall	1	
	 16	 0010	 Syscall	2	
	 …	 …	 …	
	 8184	 1FF8	 Syscall	1023	

	 8192	 2000	 Arithmetic	Exception	
	 8200	 2008	 Unaligned	LOAD/STORE	
	 8208	 2010	 Null	Address	Exception	
	 8216	 2018	 Illegal	Instruction,	privilege	violation	
	 8224	 2020	 Page	Illegal	Address	Exception	
	 8232	 2028	 Page	Table	Exception	
	 8240	 2030	 Page	Invalid	Exception	
	 8248	 2038	 Page	Write	Exception	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	163 344

Chapter	7:	Exceptions,	Interrupts,	and		Trap	Handling	

	 8256	 2040	 Page	Fetch	Exception	
	 8264	 2048	 Page	Copy-On-Write	Exception	
	 8272	 2050	 Page	First	Dirty	Exception	
	 8280	 2058	 Debug	Exception	
	 8288	 2060	 Breakpoint	Exception	
	 8296	 2068	 Singlestep	Exception	
	 8304	 2070	 Kernel	Exception	
	 8312	 2078	 Emulated	Instruction	Exception	
	 8320	 2080	 Hardware	Fault	Exception	
	 8328	 2088	 Bad	Array	Index	Exception	

	 8336	 2090	 Timer	Interrupt	
	 8344	 2098	 DMA	Complete	
	 8352	 20A0	 Neighbor	Send	Complete	-	west	
	 8360	 20A8	 Neighbor	Send	Complete	-	east	
	 8368	 20B0	 Neighbor	Send	Complete	-	north	
	 8376	 20B8	 Neighbor	Send	Complete	-	south	
	 8384	 20C0	 Neighbor	Send	Complete	-	up	
	 8392	 20C8	 Neighbor	Send	Complete	-	down	
	 8400	 20D0	 Neighbor	Incoming	-	west	
	 8408	 20D8	 Neighbor	Incoming	-	east	
	 8416	 20E0	 Neighbor	Incoming	-	north	
	 8424	 20E8	 Neighbor	Incoming	-	south	
	 8432	 20F0	 Neighbor	Incoming	-	up	
	 8440	 20F8	 Neighbor	Incoming	-	down	

	 …	Codes	for	asynchronous	interrupts	are	implementation	dependent		…	

Note	that	bit	13	(8192=0x2000)	of	csr_cause	indicates	whether	this	is	a	syscall	or	
not.	

Cause	codes	are	zero-extended	to	64	bits	whenever	the	hardware	writes	them	into	a	
CSR	register.	

Interrupt	Processing	

Interrupt	processing	occurs	between	instructions.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	164 344

Chapter	7:	Exceptions,	Interrupts,	and		Trap	Handling	

If	the	previous	instruction	happens	to	have	caused	an	exception,	then	that	exception	
will	be	processed	Uirst.	Processing	an	exception	will	always	have	the	effect	of	
disabling	interrupts.	Then,	since	interrupts	are	disabled,	any	pending	interrupt	will	
remain	pending	until	after	interrupts	are	re-enabled,	at	which	time	the	interrupt	
processing	will	occur.	But	assuming	there	is	no	exception,	the	interrupt	will	be	
processed.	

If	multiple	interrupts	are	signaled,	then	one	will	be	selected.	The	order	of	preference	
among	the	different	interrupt	types	is	implementation	dependent.	

The	previous	instruction	will	complete	execution	before	an	interrupt	is	processed.	If	
there	are	any	future,	partially-executed	instructions	in	the	pipeline,	they	will	be	
cancelled	and	will	have	no	effect.	

When	an	interrupt	is	processed,	the	register	csr_prevpc	will	be	set	to	the	address	of	
the	next	unexecuted	instruction,	which	is	just	the	value	of	pc	(the	Program	Counter).	
The	registers	csr_bad	and	csr_addr	will	be	set	to	zero.	

	 csr_prevpc	=	the	address	of	the	next	instruction	
	 csr_bad	=	0	
	 csr_addr	=	0	

Timer	Interrupt	

The	register	csr_timer	is	decremented	on	every	clock	cycle.	If	it	is	negative	and	
interrupts	are	enabled,	then	a	“Timer	Interrupt”	will	be	signaled.	

If	interrupts	are	disabled,	this	interrupt	will	not	be	signaled.	When	interrupts	are	
once	again	enabled,	this	interrupt	will	occur	if	and	only	if	csr_timer	is	still	negative	
at	that	time. 	15

Presumably	the	trap	handler	that	deals	with	timer	interrupts	will	reset	csr_timer	in	
preparation	for	the	next	time-slice.	But	before	it	can	do	this,	there	will	several	cycles	

	Previously	we	said	that	an	interrupt,	once	signaled,	remains	pending	until	interrupts	are	again	15

enabled.	What	if	a	Timer	Interrupt	becomes	pending	while	interrupts	are	disabled,	i.e.,	during	the	
trap	handler	for	some	other	trap?	What	if	that	trap	handler	subsequently	resets	csr_timer,	in	an	
attempt	to	reschedule	the	Timer	Interrupt?	Shall	the	Timer	Interrupt,	once	raised,	remain	pending	
or	shall	it	be	checked	anew	during	the	execution	of	each	instruction?	

Here	we	specify	that	the	core	will	check	csr_timer	for	each	instruction.	It	will	not	remain	pending.

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	165 344

Chapter	7:	Exceptions,	Interrupts,	and		Trap	Handling	

in	which	the	csr_timer	remains	negative.	However,	the	negative	value	of	csr_timer	
will	not	cause	an	interrupt	since	interrupts	are	disabled	during	the	handler,	thus	
avoiding	an	inUinite	cascade	of	interrupts.	

If	another	interrupt	is	signaled	simultaneously	to	a	Timer	Interrupt,	then	the	
determination	of	which	interrupt	is	handled	Uirst	is	implementation	dependent.	

If	another	interrupt	has	priority	and	is	handled	before	the	Timer	Interrupt,	then	the	
Timer	Interrupt	does	not	remain	pending;	instead	it	will	be	re-signaled	when	
interrupts	are	once	again	enabled	if	and	only	if	csr_timer	is	still	negative. 	16

	 csr_prevpc	=	the	address	of	the	next	instruction	
	 csr_bad	=	0	
	 csr_addr	=	0	

DMA	Complete	Interrupt	

When	the	DMA	Controller	device	completes	an	operation,	it	will	signal	this	
interrupt.	

If	interrupts	are	disabled,	this	interrupt	will	remain	pending.	

Additional	Devices	

Presumably	there	will	be	additional	devices	that	interrupt	but	details	are	
implementation	dependent..	

Description	of	Exceptions	

SYSCALL	Exception	

This	exception	is	caused	by	the	execution	of	the	SYSCALL	instruction.	

	The	idea	is	that	the	other	interrupt’s	handler	may	invoke	the	scheduler	and	cause	a	different	16

thread	to	be	scheduled,	thereby	terminating	the	previous	thread’s	time-slice.	Such	a	thread-switch	
would	naturally	cause	csr_timer	to	be	reset	to	a	new	value.	Allowing	an	earlier	Timer	Interrupt	to	
remain	pending	and	to	occur	later	once	interrupts	are	re-enabled	would	effectively	terminate	the	
new	thread’s	time-slice	the	moment	it	starts,	before	it	has	a	chance	to	do	anything.

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	166 344

Chapter	7:	Exceptions,	Interrupts,	and		Trap	Handling	

The	SYSCALL	machine	instruction	is	used	in	the	implementation	of	a	“system	call”	
to	a	kernel	function.	By	convention,	the	standard	calling	conventions	are	used,	which	
means	that	all	arguments	and	returned	results	are	passed	in	registers	r1,	r2,	…	
There	will	be	many	system	calls	and	the	global	trap	handler	must	be	able	to	quickly	
dispatch	to	the	correct	individual	trap	handler	(i.e.,	to	the	desired	kernel	system	
function).	

The	SYSCALL	instruction	takes	a	10	bit	immediate	value	which	is	interpreted	as	an	
integer	in	the	range	0	…	1,023.	This	integer	is	used	in	dispatching	to	the	individual	
syscall	trap	handlers.	The	integer	is	multiplied	by	8	(since	each	dispatch	table	entry	
is	8	bytes)	and	is	placed	in	csr_cause.	

Otherwise,	exception	processing	occurs	just	like	other	exceptions.	

The	Blitz-64	design	facilitates	fast	dispatching	for	the	most	commonly	used	system	
call	functions.	If	there	are	more	than	1,024	system	calls,	one	of	the	code	numbers	
(e.g.,	the	last	code	number)	can	be	used	to	implement	a	second	level	of	dispatching	
for	functions	that	are	not	commonly	used	and	not	performance-critical.	

This	exception	will	set…	
	 csr_prevpc	=	the	address	of	the	instruction	following	the	SYSCALL	
	 csr_bad	=	the	syscall	instruction	
	 csr_addr	=	0	

Commentary		Here	are	the	programming	conventions	that	will	be	followed	by	user	
mode	code	making	a	system	call	to	the	kernel:	

•	There	can	be	up	to	6	arguments.	Arguments	are	passed	in	registers	r1	…	r6.	
(Recall	that	the	normal	calling	conventions	allow	up	to	7	arguments	in	
registers.)	Any	additional	argument	data	must	be	passed	in	user	memory,	
placing	a	pointer	to	the	memory	area	(i.e.,	a	virtual	address)	in	r1	…	r6.	
•	A	value	will	be	returned	in	register	r1.	Zero	will	be	returned	for	system	calls	
that	have	no	meaningful	return	value.	If	additional	return	data	is	required,	the	
kernel	will	place	it	in	memory	at	the	virtual	address	supplied	by	one	of	the	
arguments.		
•	Upon	return,	registers	r2	…	r7,	and	r8	(t)	will	be	zero.	
•	Registers	r9	…	r15	(i.e.,	s0,	s1,	s2,	tp,	gp,	lr,	and	sp)	will	be	unchanged.	

Arithmetic	Exception	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	167 344

Chapter	7:	Exceptions,	Interrupts,	and		Trap	Handling	

This	exception	can	be	caused	by	the	following	operations:	
	 Integer	arithmetic	:	 ADD,	ADDI,	SUB,	MULADD,	DIV,	REM	
	 Shift	operations:	 SLA,	SLAI,	SRA,	SRL,	SLL	
	 Size	checking:	 CHECKB,	CHECKH,	CHECKW	
The	instruction	may	have	modiUied	RegD	but	the	result	computed	is	not	
“mathematically	correct.”	

This	exception	will	set…	
	 csr_prevpc	=	the	address	of	the	offending	instruction	
	 csr_bad	=	the	offending	instruction	
	 csr_addr	=	0	

Unaligned	LOAD/STORE	Exception	

This	exception	can	be	caused	by	the	following	instructions:	
	 LOAD.H,	LOAD.W,	LOAD.D	
	 STORE.H,	STORE.W,	STORE.D	

This	exception	will	be	signaled	whenever	the	program-generated	address	is	not	
properly	aligned.	The	instruction	may	have	modiUied	RegD	but	any	value	stored	is	
incorrect.	

This	exception	will	set…	
	 csr_prevpc	=	the	address	of	the	offending	instruction	
	 csr_bad	=	the	offending	LOAD	or	STORE	instruction	
	 csr_addr	=	the	program-generated	address	

Emulation	of	Unaligned	LOAD	and	STORE	Instructions	

Perhaps	unaligned	data	will	be	simply	banned	by	Uiat.	Whenever	it	might	occur,	we	
shall	make	it	the	responsibility	of	compiler/programmer	to	use	properly	aligned	
operations	to	read	and	write	data	to/from	memory.	Note	that	the	descriptions	
earlier	in	this	document	for	the	machine	instructions	LOAD.H,	LOAD.W,	LOAD.D,	
STORE.H,	STORE.W,	and	STORE.D	included	the	requirement	that	the	addresses	must	
be	properly	aligned.	With	this	approach,	this	restriction	is	enforced.	

If	this	approach	is	to	be	taken,	then,	whenever	this	exception	occurs,	it	indicates	a	
program	error.	The	trap	handler	will	probably	just	terminate	the	offending	process.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	168 344

Chapter	7:	Exceptions,	Interrupts,	and		Trap	Handling	

However,	the	Blitz-64	ISA	is	designed	to	support	another	more	complex	approach,	in	
which	the	compiler/programmer	is	relieved	of	the	responsibility	to	always	use	
aligned	addresses.	With	this	approach,	the	compiler/programmer	is	free	to	use	
LOAD	and	STORE	instructions	with	addresses	that	are	not	properly	aligned.	

Next	we	describe	this	approach.	

It	is	assumed	that	the	majority	of	LOAD	and	STORE	operations	will	be	properly	
aligned,	but	unaligned	data	will	occasionally	occur	and	the	compiler/programmer	
will	not	take	special	action	to	check	alignment.	

Instead,	the	Unaligned	LOAD/STORE	Exception	is	designed	to	allow	a	trap	handler	
to	intervene	and	deal	with	unaligned	data	addresses	by	completing	the	operation	
(using	only	aligned	LOAD	and	STORE	instructions)	and	returning	to	the	interrupted	
code.	To	the	programmer	of	the	original	code,	it	will	simply	appear	that	the	LOAD	
and	STORE	instructions	work	just	Uine	with	improperly	aligned	addresses.	

In	reality,	the	unaligned	LOAD	or	STORE	will	invoke	a	handler	that	will	run	in	Kernel	
Mode	and	will	ultimately	return	to	the	interrupted	user	code.	

The	ALIGN	and	INJECT	instructions	are	speciUically	designed	to	be	used	in	such	a	
trap	handler	to	support	unaligned	LOAD	or	STORE	operations.	

Generally	speaking,	the	trap	handler	for	the	Unaligned	LOAD/STORE	Exception	will	
need	to	make	two	accesses	to	memory.	For	example,	to	load	a	doubleword	from	8	
bytes	that	spans	two	properly	aligned	doublewords,	the	handler	will	need	to	load	
two	aligned	doubleword	and	extract	the	initial	bytes	from	the	Uirst	and	the	Uinal	
bytes	from	the	second.	(Example	code	sequences	are	discussed	in	detail	elsewhere	
in	this	document.)	

When	an	unaligned	LOAD	or	STORE	operation	also	causes	a	page-related	exception,	
the	Unaligned	LOAD/STORE	Exception	will	have	priority,	Thus,	the	trap	handler	
code	for	Unaligned	LOAD/STORE	Exception	will	be	invoked.	

Once	invoked,	the	trap	handler	will	then	go	on	to	perform	two	aligned	operations.	
One	or	both	of	these	may	cause	a	page-related	exception. 	Such	exceptions	could	17

either	be	fatal	to	the	LOAD/STORE	or	repairable.	For	example,	if	the	operation	is	a	

	The	Uirst	memory	access	might	not	cause	an	exception	while	the	second	access	—	falling	within	17

a	different	page	—	might	cause	an	exception.

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	169 344

Chapter	7:	Exceptions,	Interrupts,	and		Trap	Handling	

STORE	into	a	page	that	is	not	writable,	then	it	is	fatal;	the	“Page	Write	Exception”	
needs	to	happen	and	the	STORE	aborted.	On	the	other	hand,	a	“Page	Copy-On-Write	
Exception”	should	be	transparent;	it	may	require	the	kernel	to	copy	a	page,	but	the	
STORE	operation	should	complete	with	no	consequence	to	the	user	code.	

There	are	two	approaches	the	kernel	programmer	can	take.	

In	the	Uirst	approach,	the	trap	handler	code	can	use	the	CHECKADDR	instruction	
before	accessing	data	in	the	user’s	virtual	address	space.	If	a	page-related	exception	
would	occur,	the	handler	can	directly	invoke	whatever	kernel	functions	are	required.	
Once	complete	and	the	handler	code	is	assured	that	access	to	the	memory	is	safe,	it	
can	proceed.	

But	if	CHECKADDR	indicates	that	a	fatal	page-related	exception	would	occur,	the	
trap	handler	for	the	Unaligned	LOAD/STORE	Exception	will	need	abandon	the	
operation	and	end	by	simulating	the	page-related	exception. 	In	any	case,	interrupts	18

remain	disabled	throughout	the	handler.	

In	the	second	approach,	interrupts	are	reenabled.	The	handler	code	for	the	
Unaligned	LOAD/STORE	Exception	becomes	interruptible.	Then	it	simply	performs	
the	necessary	memory	operations	without	Uirst	checking,	possibly	causing	a	page-
related	exception.	If	such	a	page-related	exception	occurs,	it	will	be	handled	(since	
interrupts	are	enabled)	by	the	appropriate	handler.	Assuming	the	exception	is	not	
fatal,	there	will	be	a	return	to	the	interrupted	handler	and	the	handler	will	then	run	
to	completion. 	19

If	the	page-related	exception	is	fatal,	then	the	user	thread	must	be	terminated.	The	
kernel	will	need	to	detect	that	the	problem	occurred	during	the	emulation	of	a	LOAD	
or	STORE	so	that	it	can	report	it	correctly.	The	real	error	location	is	within	the	user	

	An	exception	can	be	“simulated”	or	“faked”	as	follows.	The	kernel	code	must	set	csr_stat2,	18

csr_prevpc,	csr_cause,	csr_bad,	and	csr_addr	as	they	would	be	if	the	faked	exception	had	actually	
occurred.	Then	it	must	jump	to	the	start	of	the	global	trap	handler,	i.e.,	to	the	address	in	
csr_trapvec.	From	then	on,	the	trap	handler	will	deal	with	the	exception	just	as	it	normally	does	
with	all	exceptions,	without	knowing	that	it	was	tricked.	

	Is	it	guaranteed	that	there	will	not	be	additional	page-related	exceptions?	Might	it	be	necessary	19

to	pin	the	pages	to	prevent	an	inUinite	chain	of	page-related	exceptions?	These	are	the	challenges	
that	make	kernel	hacking	fun!

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	170 344

Chapter	7:	Exceptions,	Interrupts,	and		Trap	Handling	

code	at	the	instruction	that	caused	the	Unaligned	LOAD/STORE	Exception,	not	
within	the	trap	handler	that	actually	caused	the	fatal	exception.	

LOAD	and	STORE	operations	in	kernel	code	must	be	properly	aligned.	As	described	
elsewhere,	any	exception	which	occurs	when	interrupts	are	disabled	will	be	
promoted	to	a	Kernel	Exception.	Since	Kernel	Exceptions	are	unacceptable	and	will	
typically	crash	the	kernel,	it	is	recommended	the	kernel	simply	avoid	any	unaligned	
data. 	20

Concerning	Atomicity	

Note	that	the	emulation	of	unaligned	LOAD	and	STORE	operations	differs	in	an	
important	way	from	aligned	operations.	Aligned	LOAD	and	STORE	instructions	are	
guaranteed	to	be	atomic,	which	means	that	the	entire	operation	is	either	executed	or	
not.	With	regard	to	other	unrelated	memory	operations,	the	LOAD/STORE	
instruction	either	occurs	before	or	occurs	after	the	other	operation.	There	is	no	
interleaving.	

With	a	single-core	processor,	it	might	seem	like	there	is	no	risk	concerning	atomicity.	
If	there	is	only	one	core	that	can	be	issuing	LOADs	and	STOREs	to	memory,	you	
might	assume	an	unaligned	memory	operation	is	effectively	atomic,	because	the	trap	
routine	that	emulates	unaligned	operations	runs	with	interrupts	disabled.	Nothing	
can	interrupt	the	core	between	the	Uirst	memory	operation	and	the	second	memory	
operation	and	there	is	no	second	core	capable	of	touching	memory.	

However,	the	kernel	programmer	must	think	carefully.	What	if	the	second	memory	
operation	entails	a	page-related	exception?	The	thread	might	get	rescheduled	and	
other	threads	might	run	while	the	trap	handler	is	waiting	for	a	page	to	be	read	in	
from	disk.	Or,	what	if	there	is	an	I/O	device	that	is	also	accessing	memory?	For	
example,	a	DMA	controller	might	be	copying	a	block	of	memory	at	the	same	time	the	
unaligned	LOAD/STORE	is	being	emulated.	

Practically	speaking,	the	problems	associated	with	non-atomic	memory	operations	
should	be	dealt	with	in	other	ways.	Typically,	the	kernel	will	lock	shared	data,	thus	

	If,	for	some	reason,	your	kernel	will	be	executing	unaligned	LOAD	or	STORE	instructions	and	20

will	rely	on	the	emulation	code	to	deal	with	them,	you	may	only	do	this	outside	of	any	code	in	
which	interrupts	are	disabled.

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	171 344

Chapter	7:	Exceptions,	Interrupts,	and		Trap	Handling	

enforcing	the	constraint	that	only	one	“customer”	is	allowed	to	touch	the	shared	
memory	at	any	time.	The	use	of	locks	can	enforce	data	consistency.	However,	within	
the	code	to	implement	the	locks	themselves,	it	may	be	necessary	to	use	atomic	
operations,	so	care	must	be	taken.	

Null	Address	Exception	

This	exception	can	be	caused	by	the	following	instructions:	
	 Store	to	memory	:	 STORE.B,	STORE.H,	STORE.W,	STORE.D	
	 Read	from	memory:	 LOAD.B,	LOAD.H,	LOAD.W,	LOAD.D	
	 Jumping:	 JAL,	JALR,	B.EQ.	B.NE,	B.LE,	B.LT	
	 Other:	 NULLTEST,	CAS	

This	exception	will	set…	
	 csr_prevpc	=	the	address	of	the	offending	instruction	
	 csr_bad	=	the	offending	instruction	
	 csr_addr	=	0	

Any	attempt	to	use	an	address	in	the	range	0…7	as	the	target	for	a	LOAD,	STORE,	
jumping,	NULLTEST,	or	CAS	instruction	will	cause	a	“Null	Address	Exception”.	

A	LOAD.X	instruction	may	have	modiUied	RegD	but	the	value	is	“undeUined.”	A	
STORE.X	instruction	may	or	may	not	have	modiUied	the	Uirst	8	bytes	of	physical	
memory	(i.e.,	the	doubleword	at	address	0);	this	behavior	is	undeUined.	

If	any	jumping	instruction	sets	the	PC	to	zero,	there	will	be	no	effect	on	the	PC	
because	the	trap	handling	will	immediately	overwrite	the	PC.	The	PC	value	saved	
into	csr_prevpc	will	be	the	address	of	the	jumping		instruction	itself.	

Note	that	the	machine	instructions	for	jumping	are	used	in	the	implementation	of	a	
number	of	synthetic	instructions,	including	CALL,	CALLR,	JR,	RET,	and	the	branch	
instructions.	

Commentary		“Null”	pointers	are	widely	used	in	programming.	Ideally	programs	
are	either	bug-free	or	will	always	test	pointers	before	use,	so	that	there	will	never	be	
any	attempt	to	dereference	a	null	pointer.	But	alas,	we	live	in	a	difference	universe.	

The	Blitz	manifesto	dictates	that	we	should	try	to	catch	and	handle	every	error.	
Catching	null	pointer	dereferencing	must	be	done.	We	considered	requiring	the	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	172 344

Chapter	7:	Exceptions,	Interrupts,	and		Trap	Handling	

compiler	to	implicitly	insert	a	test	for	every	pointer	dereference.	In	fact,	we	took	this	
approach	in	Blitz-32	and	came	to	appreciate	the	testing	enormously.	However,	there	
was	a	huge	performance	hit:	a	test	and	branch	for	every	pointer	use.	We	also	
considered	adding	a	new	instruction,	whose	sole	purpose	is	to	cause	an	exception	if	
necessary.	But	the	overhead	of	even	a	single	instruction	is	too	much.	

The	novel	approach	we	are	introducing	with	Blitz-64	is	an	unusual	innovation.	

In	code	such	as:	
i = *p

the	compiler	will	produce	a	single	instruction,	such	as:	
LOADD r1,0(r2)

With	our	approach,	no	additional	test	is	necessary.	

In	other	situations,	an	offset	from	the	pointer	is	needed,	as	in:	
i = p.field

For	this,	the	compiler	might	produce	an	instruction	sequence	such	as:	
NULLTEST r2
LOADD r1,48(r2)

With	Blitz-64,	the	8	bytes	at	location	0	are	forever	inaccessible,	unused,	and	wasted.	

Any	attempt	to	read	or	write	location	zero	will	cause	a	“Null	Address	Exception”.	If	
the	programmer	ever	attempts	to	use	a	NULL	pointer,	the	program	will	undergo	
controlled	exception	handling.	The	payoff	is	that	every	use	of	a	pointer	will	be	
checked	in	hardware,	in	parallel	to	other	execution.	Thus,	we	expect	no	performance	
penalty.	

This	particular	sort	of	error	is	unique	and	important	enough	to	be	handled	specially.	
The	programmer	deserves	an	error	message	that	says	“NULL	pointer	used”	instead	
of	the	legacy	incantation	“segmentation	fault”.	

We	should	note	that	one	approach	taken	in	traditional	OSes	is	to	reserve	an	entire	
virtual	page.	Page	number	zero	in	the	user’s	address	space	is	not	mapped,	and	any	
attempt	to	read/write	to	it	will	cause	a	virtual	memory	exception.	Our	approach	
uses	a	separate	type	for	this	error;	it	is	not	piggybacked	onto	a	more	general	error	
condition.	

We	also	want	to	catch	null	pointer	use	in	kernel	code.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	173 344

Chapter	7:	Exceptions,	Interrupts,	and		Trap	Handling	

In	traditional	systems,	null	pointer	use	within	the	kernel	can	be	trapped	by	
executing	the	kernel	with	virtual	memory	mapping	turned	on.	Page	zero	in	the	
kernel’s	virtual	address	mapping	would	be	marked	as	invalid.	If	the	kernel’s	page	
table	maps	all	of	physical	memory	to	virtual	memory	in	a	one-to-one	manner,	then,	
marking	page	zero	as	invalid	will	waste	an	entire	page	of	physical	memory.	The	
Blitz-64	approach	wastes	only	8	bytes.	

The	Blitz	approach	seeks	to	improve	the	performance	of	kernel	code	by	avoiding	the	
necessity	of	mapping	the	kernel	address	space.	Thus,	Blitz	kernel	code	can	
potentially	execute	faster	than	in	other	ISAs,	since	address	mapping	is	not	used	for	
kernel	code.	However,	since	the	kernel’s	address	space	is	not	mapped	into	a	virtual	
address	space,	catching	null	pointers	by	using	a	mapping	in	which	the	page	at	virtual	
address	0x0_0000_0000	is	invalid	is	not	possible	in	Blitz-64.	But	the	Null	Address	
Exception	works	better	anyway.	

With	a	1	GiByte	physical	memory,	the	sacriUice	of	8	bytes	is	an	insigniUicant,	trivial	
overhead.	

The	memory	at	location	0	can,	in	fact,	be	read	and	written.	Physical	page	zero	can	be	
mapped	into	a	virtual	page,	and	the	Uirst	byte	of	this	page	can	be	read/written	with	a	
non-zero	virtual	address,	effectively	accessing	byte	0.	Recall	that	the	Uirst	pages	of	
physical	memory	are	intended	to	contain	the	kernel’s	static	data.	So	mapping	these	
into	a	virtual	address	space	for	use	by	user-level	code	would	be	foolish	and	risky.	

Illegal	Instruction	Exception	(including	Privilege	Violations)	

Any	attempt	to	execute	an	instruction	with	an	undeUined	OPCODE	will	cause	this	
exception.	Any	attempt	to	execute	a	privileged	instruction	while	running	in	user	
mode	will	also	cause	this	instruction.	The	instruction	named	ILLEGAL	will	cause	this	
exception.	

The	privileged	instructions	are:	
	 SYSRET	
	 SLEEP1	
	 SLEEP2	
	 CONTROL	
	 CSRSWAP	
	 CSRREAD	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	174 344

Chapter	7:	Exceptions,	Interrupts,	and		Trap	Handling	

	 CSRWRITE	(a	synthetic	form	of	CSRSWAP)	
	 CSRSET	
	 CSRCLR	
	 TLBCLEAR	
	 TLBFLUSH	
	 CHECKADDR	

This	exception	will	set…	
	 csr_prevpc	=	the	address	of	the	offending	instruction	
	 csr_bad	=	the	offending	instruction	
	 csr_addr	=	0	

Page-Related	Exceptions	

	 Page	Illegal	Address	Exception	Attempt	to	access	kernel	space	in	User	Mode	
	 Page	Table	Exception	 Bad	csr_pgtable	
	 Page	Invalid	Exception	 VALID	bit	=	0	either	at	level	1	or	2	
	 Page	Write	Exception		 Write	to	a	page	which	is	not	marked	writable	
	 Page	Fetch	Exception		 Fetch	from	a	page	not	marked	executable	
	 Page	Copy-on-Write	Exception	Page	is	not	dirty	and	marked	copy-on-write	
	 Page	First_Dirty	Exception	 Writing	to	page	which	is	not	marked	dirty	

The	page-related	exceptions	occur	when	the	Memory	Management	Unit	(MMU)	has	
a	problem	translating	a	virtual	address	to	a	physical	address.	They	are	discussed	
more	fully	later.	

A	page-related	exception	can	occur	during	the	FETCH	phase	of	execution,	whenever	
an	instruction	is	read	from	memory.	It	can	also	occur	during	LOAD	and	STORE	
instructions.	These	situations	are	the	only	ones	that	can	cause	a	page-related	
exception.	

Page-related	exceptions	may	be	caused	by	code	running	in	either	user	mode	or	
kernel	mode.	

For	code	running	in	user	mode,	all	program-generated	addresses	(whether	FETCH,	
LOAD,	or	STORE)	should	be	in	the	upper,	virtual	address	range.	In	other	words,	all	
program-generated	addresses	should	have	bit	[35]	set	to	1.	Any	problem	with	an	
address	will	cause	one	of	the	page-related	exceptions.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	175 344

Chapter	7:	Exceptions,	Interrupts,	and		Trap	Handling	

For	code	running	in	kernel	mode,	addresses	in	the	physical	address	region	(that	is,	
within	the	lower	32	GiBytes,	i.e.,	addresses	with	bit	[35]	cleared	to	0)	will	never	
cause	page-related	exceptions.	Addresses	in	upper	virtual	address	range	will	cause	
the	exact	same	page-related	exceptions	they	would	cause	if	executed	in	user	mode.	

Thus,	address	translation	and	page-related	exceptions	work	the	same	for	both	user	
code	and	kernel	code,	with	one	difference:	Program-generated	addresses	in	the	
physical	address	region	are	perfectly	okay	for	kernel	code,	but	will	cause	a	Page	
Illegal	Address	Exception	in	user	mode.	

The	csr_prevpc	is	set	to	the	address	of	the	instruction	causing	the	problem.	The	
csr_addr	is	set	to	the	program-generated	address	that	caused	the	exception.	(In	the	
case	of	a	problem	with	fetching,	both	CSRs	will	contain	the	same	value.)	21

The	general	purpose	registers	will	be	unchanged.	The	assumption	is	that,	in	many	
cases,	the	kernel	trap	handler	will	Uix	the	memory	problem	and	execution	will	be	
resumed,	starting	with	the	faulting	instruction	which	will	be	re-executed.	

These	exceptions	will	set…	
	 csr_prevpc	=	the	address	of	the	offending	instruction	
	 csr_bad	=	0	
	 csr_addr	=	the	program-generated	address	causing	the	problem	

Debug	Exception	

This	exception	is	used	in	debugging	programs.	

This	exception	is	caused	by	the	execution	of	the	DEBUG	instruction.	If	instruction	
execution	is	resumed,	it	will	occur	after	the	DEBUG	instruction.	

The	DEBUG	instruction	uses	only	the	OP1	and	OP2	Uields.	The	remaining	16	bits	of	
the	instruction	[15:0]	are	left	undeUined	and	may	be	used	by	software	to	store	
additional	information.	

This	exception	will	set…	
	 csr_prevpc	=	the	address	of	the	instruction	after	the	DEBUG	instruction	
	 csr_bad	=	the	offending	instruction,	i.e.,	the	DEBUG	instruction	itself	

	For	example,	if	a	SYSRET	instruction	loads	a	bad	value	into	the	PC,	then	car_prevpc	will	contain	21

that	bad	address,	not	the	address	of	the	SYSRET	instruction.

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	176 344

Chapter	7:	Exceptions,	Interrupts,	and		Trap	Handling	

	 csr_addr	=	0	

Breakpoint	Exception	

This	exception	is	used	in	debugging	programs.	

This	exception	is	caused	by	the	execution	of	the	BREAKPOINT	instruction.	If	
instruction	execution	is	resumed,	it	will	occur	by	attempting	to	re-execute	the	
instruction.	

It	is	assumed	that	a	BREAKPOINT	instruction	replaces	some	other	valid	instruction.	
After	the	breakpoint	is	reached,	the	BREAKPOINT	instruction	will	be	removed	and	
the	original	instruction	will	be	restored.	After	execution	is	resumed,	the	restored	
instruction	will	be	executed.	

The	BREAKPOINT	instruction	uses	only	the	OP1	and	OP2	Uields.	The	remaining	16	
bits	of	the	instruction	[15:0]	are	left	undeUined	and	may	be	used	by	software	to	store	
additional	information.	

This	exception	will	set…	
	 csr_prevpc	=	the	address	of	the	BREAKPOINT	instruction	
	 csr_bad	=	the	offending	instruction,	i.e.,	the	BREAKPOINT	instruction	itself	
	 csr_addr	=	0	

Singlestep	Exception	

The	purpose	of	this	exception	is	to	allow	debugging	software	to	single-step	
execution,	that	is,	to	execute	a	single	instruction	of	the	target	program	and	then	
regain	control.	

Whenever	single-stepping	is	turned	on	(i.e.,	when	the	Singlestep	bit	in	csr_status	is	
set	to	1)	then	a	Singlestep	Exception	will	be	signaled	following	the	execution	of	any	
instruction,	as	long	as	interrupts	were	enabled	during	the	instruction	execution	and	
no	other	exceptions	were	signaled.	

This	exception	is	described	more	fully	in	a	later	section.	

This	exception	will	set…	
	 csr_prevpc	=	the	address	of	the	next	instruction	to	be	executed	
	 csr_bad	=	the	instruction	just	executed	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	177 344

Chapter	7:	Exceptions,	Interrupts,	and		Trap	Handling	

	 csr_addr	=	0	

The	csr_prevpc	is	set	to	the	address	of	the	next	instruction	to	execute	after	the	
instruction	that	caused	the	exception.	For	example,	if	a	jump	instruction	causes	the	
exception,	csr_prevpc	will	be	set	to	the	jump	target	address.	

Kernel	Exception	

Bug-free	kernel	code	running	with	interrupts	disabled	should	never	cause	any	
exception.	Any	asynchronous	interrupt	that	occurs	will	remain	pending	until	the	
trap	handler	re-enables	interrupts.	But	what	happens	when	a	trap	handler	(i.e.,	
kernel	code	running	with	interrupts	disabled)	has	a	bug	that	causes	an	exception?	

Whenever	an	exception	of	any	type	occurs	while	interrupts	are	disabled,	a	“Kernel	
Exception”	will	be	raised	and	the	original	exception	will	be	ignored	and	lost.	The	
occurrence	of	this	exception	indicates	a	bug/failure	within	a	kernel	trap	handler.	
Exceptions	are	never	masked,	so	the	Kernel	Exception	will	cause	trap	handling	to	
occur	immediately.	

The	csr_bad	will	be	set	to	contain	the	cause	of	the	other	exception.	

The	trap	handler	for	the	Kernel	Exception	will	likely	perform	a	(hopefully	
controlled)	“kernel	crash”.	But	perhaps	the	handler	for	this	exception	will	at	least	
be	able	to	capture	and	save	the	PC	and	csr_bad	in	order	to	localize	the	problem	and	
support	kernel	debugging.	

During	normal	bug-free	operation,	exceptions	may	occur	in	kernel	code,	as	long	as	
interrupts	are	enabled.	For	example,	the	kernel	may	make	use	of	some	instructions	
that	are	emulated,	invoking	the	trap	handler	for	the	“Emulated	Instruction	
Exception”.	Perhaps	other	exceptions	(e.g.,	“Singlestep	Exception”,	“Debug	Exception”,	
or	“Breakpoint	Exception”)	will	also	occur	during	bug-free	kernel	code.	

This	exception	will	set…	
	 csr_prevpc	=	the	address	of	the	offending	instruction	
	 csr_bad	=	the	cause	of	the	triggering	exception	
	 csr_addr	=	0	

Emulated	Instruction	Exception	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	178 344

Chapter	7:	Exceptions,	Interrupts,	and		Trap	Handling	

This	exception	is	caused	by	an	attempt	to	execute	a	machine	instruction	which	is	
deUined	but	not	implemented.	The	hardware	will	set	csr_bad	to	the	instruction	that	
is	not	implemented,	as	it	was	fetched	from	memory.	The	csr_prevpc	will	be	set	to	
the	address	of	the	instruction	following	the	unimplemented	instruction.	

The	following	instructions	are	candidates	for	emulation.	The	algorithms	are	complex	
and	will	require	complex	hardware.	It	may	be	preferable	to	perform	these	
operations	in	software,	especially	on	smaller,	simpler	implementations	of	the	
Blitz-64	architecture.	

	 DIV,	REM	
	 All	Uloating	point	instructions	

Emulated	instructions	may	be	used	in	either	user	mode	or	kernel	mode,	as	long	as	
interrupts	are	enabled.	Therefore,	an	emulated	instruction	must	never	be	used	in	a	
trap	handler	running	with	interrupts	disabled,	because	any	exception	will	cause	a	
Kernel	Exception	if	it	occurs	when	interrupts	are	disabled.	

This	exception	will	set…	
	 csr_prevpc	=	the	address	of	the	following	instruction	
	 csr_bad	=	the	offending	instruction	
	 csr_addr	=	0	

Hardware	Fault	Exception	

Some	implementations	of	the	Blitz-64	ISA	will	include	circuitry	that	detects	errors.	
For	example,	a	core	might	include	circuitry	for:	

	 •	Additional	error	checking	bits	for	register	contents	
	 •	Additional	error	checking	bits	for	main	memory	data	
	 •	Additional	error	checking	bits	for	bus	data	
	 •	Duplication	of	ALU	circuitry,	to	catch	errors	

When	circuitry	such	as	the	above	detects	that	an	error	has	occurred,	a	Hardware	
Fault	Exception	will	be	triggered.	

Presumably	a	single	hardware	error	will	directly	affect	only	the	thread	in	execution.	
That	thread	can	no	longer	be	considered	reliable	and	correct.	Presumably,	the	kernel	
will	never	ignore	a	hardware	fault.	Instead	the	kernel	might	take	actions	such	as:	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	179 344

Chapter	7:	Exceptions,	Interrupts,	and		Trap	Handling	

	 Log	the	error	
	 Notify	the	affected	thread	
	 Abort	the	thread	
	 Restart	the	affected	thread	

This	exception	will	set…	
	 csr_prevpc	=	the	address	of	the	offending	instruction	
	 csr_bad	=	the	offending	instruction	
	 csr_addr	=	0	

A	hardware	error	may	be	“transient”	in	which	case	it	was	a	one-time	event	and	there	
will	be	no	further	malfunctions	in	the	core.	Or	it	may	be	an	ongoing	problem	and	the	
same	error	will	be	detected	again	in	the	future,	whenever	a	similar	operation	is	
performed.	The	error	may	also	be	the	result	of	a	physical	insult,	such	as	the	power	
supply	falling	below	speciUications.	In	such	cases,	we	might	encounter	an	increasing	
number	of	hardware	faults	with	total	failure	being	imminent.	

In	some	cases,	the	“error	detection	and	correction”	(EDC)	codes	will	be	used.	Such	
codes	are	capable	of	not	only	detecting	that	a	bit	has	erroneously	Ulipped	in	value,	
but	also	of	determining	which	bit	is	in	error,	thus	allowing	the	bit	to	be	corrected.	

Commentary	In	some	ISAs,	hardware	faults	are	treated	like	asynchronous	
interrupts.	However	in	Blitz-64,	a	hardware	fault	causes	an	exception,	not	an	
interrupt.	

Exceptions	are	never	ignored	and,	when	an	exception	occurs,	it	causes	immediate	
trap	invocation.	In	the	case	of	hardware	faults,	it	is	critical	to	deal	with	hardware	
errors	as	soon	as	possible.	Also	exceptions	are	tied	to	a	particular	instruction;	this	is	
needed	for	hardware	faults,	since	the	kernel	needs	to	identify	which	thread	was	
executing	at	the	moment	the	fault	was	detected.	

Interrupts	can	and	are	masked	at	various	times.	However,	hardware	faults	should	
never	be	masked.	When	a	fault	occurs,	handling	it	should	not	be	delayed	or	masked.	
In	the	case	when	a	hardware	fault	is	so	persistent	that	the	kernel	is	incapable	of	
handling	it,	what	will	happen?	When	a	second	Hardware	Fault	Exception	occurs	on	
the	heels	of	the	Uirst	Hardware	Fault	Exception,	before	the	trap	handler	has	
completed,	the	exception	will	be	promoted	to	a	Kernel	Exception.	It	is	assumed	that	
Kernel	Exceptions	are	dealt	with	in	a	different	way	and	perhaps	the	second	attempt	
will	work	better	than	the	Hardware	Fault	trap	handler.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	180 344

Chapter	7:	Exceptions,	Interrupts,	and		Trap	Handling	

Bad	Array	Index	Exception	

This	exception	can	be	caused	by	the	following	instructions:	

	 INDEX0,	INDEX1,	INDEX2,	INDEX4,	
	 INDEX8,	INDEX16,	INDEX24,	INDEX32	

The	purpose	of	these	instructions	is	to	verify	that	an	array	index	is	legal	and	within	
range	and	cause	this	exception	if	there	is	a	problem.		Presumably	the	software	will	
react	to	this	exception	by	printing	a	message	to	the	effect	that	there	was	an	array	
index	error.	

This	exception	will	set…	
	 csr_prevpc	=	the	address	of	the	INDEX__	instruction	
	 csr_bad	=	the	INDEX__	instruction	
	 csr_addr	=	0	

Commentary	There	is	no	“Illegal	Address”	exception.	

All	upper	bits	[63:36]	in	a	program-generated	address	(i.e.,	above	the	normal	36	bits	
in	every	address)	are	ignored.	

If	a	program-generated	address	is	in	the	upper	half	of	the	36	bit	address	range,	the	
address	goes	through	the	Memory	Management	Unit	(MMU)	which	performs	virtual-
to-physical	address	translation.	If	there	is	a	problem	with	the	address,	one	of	the	
page-related	exceptions	will	be	generated.	

If	the	address	is	in	the	lower	half	of	the	36	bit	address	range,	the	address	is	a	
physical	address	and	will	be	used	without	translation.	

Regardless	of	whether	any	address	translation	was	performed,	the	full	35	bit	
physical	address	is	sent	to	the	main	memory	and	the	memory-mapped	I/O	devices	
“as	is”.	

Physical	address	violations	(i.e.,	attempts	to	access	an	uninstalled	address	in	the	
physical	memory	region)	are	not	checked	and	the	consequences	are	undeUined.	If	an	
attempt	is	made	to	access	uninstalled	memory,	then	writes	are	likely	to	be	ignored	
and	reads	are	undeUined,	and	likely	to	return	garbage	values.	In	any	case,	no	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	181 344

Chapter	7:	Exceptions,	Interrupts,	and		Trap	Handling	

exception	will	occur.	It	is	the	kernel’s	responsibility	to	access	only	installed	memory	
and	deUined	memory-mapped	I/O	addresses.	

Commentary	We	considered	adding	an	exception	to	deal	with	stack	overUlow,	but	
decided	against	it.	

This	idea	was	this:	A	single	CSR	would	be	dedicated	to	this	use,	perhaps	called	
csr_limit.	This	CSR	would	hold	an	address	which	would	function	as	a	limit	value.	In	
particular,	csr_limit	would	hold	the	smallest	legal	value	for	the	stack	top	pointer,	
register	r15	(sp).	Every	time	the	sp	register	is	loaded	or	modiUied,	the	hardware	
would	perform	a	comparison.	If	the	condition	“sp	<	csr_limit”	were	ever	found	to	be	
true,	a	“Stack	OverUlow	Exception”	would	be	signaled.	Also	the	reset	speciUication	
would	be	amended	to	require	that	both	the	sp	and	csr_limit	registers	be	initialized	
to	0,	in	order	to	prevent	a	spurious	exception	after	a	power-on-reset.	

This	check	does	not	require	a	lot	of	extra	circuitry	and	could	be	done	in	parallel	so	it	
was	not	expected	to	have	a	performance	impact.	However,	this	exception	is	not	
included.	For	User	Mode	programs,	the	technique	of	using	sentinel	pages	is	
adequate.	For	Kernel	Mode	code,	we	expect	the	Max_Stack_Usage	feature	of	KPL	to	
sufUice.	

The	Singlestep	Exception	

Programmers	may	want	to	debug	user	mode	programs	with	a	“debugger”	which	will	
allow	them	to	examine	variables	and	execute	instructions	in	a	controlled	manner.	
The	single-stepping	facility	is	designed	for	use	by	such	a	debugger. 	22

The	status	register	csr_status	contains	a	single	bit	named	SINGLE_STEP.	When	set	to	
1,	there	will	be	a	“Singlestep	Exception”	signaled	immediately	after	the	completion	
of	the	next	instruction.	When	cleared	to	0,	no	such	exception	will	be	signaled.	

	This	approach	described	here	requires	the	execution	of	privileged	instructions,	such	as	22

modifying	the	SINGLE_STEP	bit	in	csr_status.	We	make	no	assumptions	about	whether	the	
debugger	is	running	as	a	separate	process,	or	running	within	the	virtual	address	space	of	the	
target	program	as	a	separate	thread,	or	whether	the	debugger	code	is	entirely	integrated	with	the	
kernel	code.	If	the	debugger	is	not	integrated	with	the	kernel	code,	then	the	debugger	process	will	
need	to	make	speciUic	requests	of	the	kernel	to	perform	the	privileged	operations	and	take	the	
actions	discussed	in	this	section.

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	182 344

Chapter	7:	Exceptions,	Interrupts,	and		Trap	Handling	

The	Singlestep	Exception	will	only	occur	if	the	previous	instruction	was	executed	
with	interrupts	enabled	and	no	other	exceptions	were	generated	by	the	
instruction. 	23

The	purpose	of	this	exception	is	to	allow	a	debugger	to	execute	a	single	instruction	
of	the	target	code	and	then	regain	control	immediately	afterward.	

In	order	for	the	debugger	to	execute	a	single-step	operation,	the	debugger	will	
execute	a	SYSRET	instruction	in	which	the	new	value	of	csr_status	has	SINGLE_STEP	
=	1.	A	“return”	(which	you	can	think	of	as	a	“jump”)	will	be	effected	to	the	code	
sequence	being	debugged	and	a	single	instruction	will	be	executed.	

After	that	instruction,	a	Singlestep	Exception	will	be	signaled.	The	Singlestep	
Exception	has	a	priority	below	all	other	exceptions.	If	the	instruction	causes	another	
exception,	the	Singlestep	Exception	will	not	occur	and	will	be	effectively	ignored	and	
lost.	

Assuming	that	no	other	exceptions	occurred	for	that	instruction,	the	Singlestep	trap	
handler	will	be	invoked	and	the	debugger	will	regain	control.	

If	the	target	instruction	caused	another	exception,	then	the	Singlestep	Exception	will	
not	occur.	It	is	assumed	that	the	debugger	will	regain	control	through	the	trap	
handler	for	whatever	other	exception	occurred. 	24

Normally,	interrupts	will	be	disabled	at	the	time	the	SYSRET	instruction	is	executed,	
so	the	SYSRET	will	not	itself	cause	a	Singlestep	Exception.	(However,	if	a	SYSRET	is	
executed	with	interrupts	disabled	—	a	buggy	scenario	—	a	Singlestep	Exception	will	
occur.)	

	More	precisely,	a	Singlestep	Exception	may	only	occur	after	an	instruction	for	which	interrupts	23

were	enabled	directly	prior	to	instruction	execution.	This	distinction	makes	a	difference	for	a	
couple	of	privileged	instructions	which	may	alter	the	INTERRUPTS_ENABLED	bit.

	If	the	other	exception	was	due	to	a	programming	error	(e.g.,	a	Null	Address	or	Arithmetic	24

Exception),	then	the	kernel	should	deliver	this	information	to	the	debugger,	along	with	the	address	
of	the	instruction	causing	the	exception,	so	the	debugger	can	report	it.	But	the	other	exception	
might	not	indicate	a	program	error.	For	example,	some	STORE	instruction	might	cause	a	Page	First	
Dirty	Exception,	which	would	be	handled	by	the	kernel	by	updating	the	in-memory	page	table.	The	
kernel	can	then	return	to	the	user	code,	which	will	naturally	re-attempt	to	execute	the	instruction.	
On	the	second	execution,	the	singlestep	exception	will	Uinally	happen,	and	the	debugger	can	be	
notiUied.

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	183 344

Chapter	7:	Exceptions,	Interrupts,	and		Trap	Handling	

What	about	the	presence	of	interrupts	occurring	around	the	time	of	a	single-step	
operation?	

The	trap	handler	for	the	Singlestep	Exception	will	run	with	interrupts	disabled.	The	
timing	of	an	incoming	asynchronous	interrupt	determines	whether	it	will	be	
handled	before	the	Singlestep	Exception	handler	runs	or	whether	it	must	wait	until	
after	the	Singlestep	Exception	handler	completes.	

Interrupts	are	disabled	before	and	through	the	execution	of	the	SYSRET	instruction.	
An	interrupt	may	have	been	signaled,	but	the	interrupt	will	remain	pending	until	the	
SYSRET	instruction	is	executed.	

Immediately	after	the	SYSRET	instruction	is	executed	and	interrupts	are	re-enabled,	
a	pending	interrupt	X	may	exist.	Interrupt	processing	effectively	occurs	between	the	
execution	of	instructions,	not	during	them.	After	the	SYSRET,	but	before	the	next	
instruction,	the	hardware	will	initiate	trap	processing	to	invoke	the	trap	handler	for	
interrupt	X.	The	Singlestep	Exception	will	not	occur,	since	no	instructions	were	
executed	in	user	mode	before	code	in	the	interrupt	handler	runs.	

Presumably,	all	interrupt	handlers	will	save	csr_status	and,	upon	completion	of	the	
trap	handler,	the	handler	will	restore	it	(with	its	own	SYSRET	instruction).	This	time	
—	assuming	no	more	interrupts	are	pending	—	a	single	instruction	will	be	executed	
and	the	Singlestep	Exception	will	Uinally	occur.	

Because	the	Singlestep	Exception	cannot	occur	when	interrupts	are	disabled,	it	is	
impossible	to	single-step	though	trap	handers,	using	the	Singlestep	Exception	
mechanism.	

A	Singlestep	Exception	will	never	occur	immediately	after	a	SYSCALL	instruction,	
since	the	Singlestep	Exception	is	overridden	by	the	SYSCALL	Exception.	This	makes	
it	moderately	tricky	to	perform	single-stepping	at	a	SYSCALL.	A	Singlestep	Exception	
may	occur	directly	before	the	SYSCALL,	but	the	next	opportunity	will	not	be	until	
after	the	instruction	following	the	SYSCALL	completes	execution.	Of	course,	the	trap	
handler	for	SYSCALL	may	be	aware	of	the	presence	of	a	debugger	and	the	single-
stepping	activity.	

There	is	also	an	issue	with	emulated	instructions.	If	an	instruction	(e.g.,	FMUL)	
causes	an	Emulation	Exception,	it	cannot	also	cause	a	Singlestep	Exception.	Thus,	
the	FMUL	instruction	will	invoke	a	trap	handler	which	will	return	to	the	instruction	
following	the	FMUL,	call	it	X.	The	Singlestep	Exception	will	occur	after	the	execution	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	184 344

Chapter	7:	Exceptions,	Interrupts,	and		Trap	Handling	

of	instruction	X.	There	will	be	no	Singlestep	Exception	associated	with	the	FMUL	
instruction. 		25

Instructions	that	cause	page-related	exceptions	should	not	present	a	single-stepping	
problem.	Typically,	an	instruction	(e.g.,	LOAD	or	STORE)	will	cause	a	page-related	
exception.	After	the	trap	handler	deals	with	the	problem,	the	instruction	will	be	re-
tried.	The	Singlestep	Exception	will	then	occur	after	the	second	attempt	succeeds	
with	no	exception.	

Value	of	Saved	PC	

During	trap	handling,	the	hardware	will	begin	by	saving	the	program	counter	(PC)	in	
csr_prevpc.	This	allows	the	trap	handler	software	to	locate	the	instruction	causing	
the	trap	and,	in	many	cases,	to	resume	execution	of	the	interrupted	code	upon	
completion	of	the	trap	handler	function.	

For	the	following	trap	types,	the	address	of	the	instruction	causing	the	trap	is	saved.	

In	the	case	of	some	exceptions,	the	SYSRET	instruction	at	the	end	of	the	trap	handler	
will	resume	execution	by	attempting	to	re-execute	the	offending	instruction	again.	In	
the	case	of	other	exceptions,	the	instruction	has	a	fatal	problem	that	requires	
debugging.	In	either	case,	pointing	to	the	offending	instruction	makes	sense.	

	 csr_prevpc	points	to	offending	instruction:	
	 	 Exceptions	
	 	 	 Arithmetic	Exception	
	 	 	 Unaligned	LOAD/STORE	Exception 	26

	 	 	 Null	Address	Exception	
	 	 	 Illegal	Instruction	Exception	(including	privilege	violation)	

	Perhaps	the	Emulated	Instruction	Exception	will	check	to	see	if	the	interrupted	code	is	actively	25

being	debugged.	If	so,	the	handler	can	end	by	“faking”	a	Singlestep	Exception,	rather	than	simply	
returning	to	instruction	X.	We	discuss	“faking”	an	exception	elsewhere	in	this	document.

	For	an	Unaligned	LOAD/STORE	Exception,	csr_prevpc	will	point	to	the	LOAD	or	STORE	26

instruction.	If	this	exception	is	to	be	treated	as	an	error,	then	pointing	at	the	instruction	causing	
the	problem	makes	sense.	But	if	this	exception	is	handled	by	emulating	the	operation,	then	the	
emulation	handler	will	need	to	increment	PC	so	that,	on	execution	of	SYSRET,	the	same	instruction	
will	not	be	re-executed,	causing	an	inUinite	chain	of	exceptions.

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	185 344

Chapter	7:	Exceptions,	Interrupts,	and		Trap	Handling	

	 	 	 Page	Illegal	Address	Exception	
	 	 	 Page	Table	Exception	
	 	 	 Page	Invalid	Exception	
	 	 	 Page	Write	Exception	
	 	 	 Page	Fetch	Exception	
	 	 	 Page	Copy-On-Write	Exception	
	 	 	 Page	First	Dirty	Exception	
	 	 	 Breakpoint	Exception	
	 	 	 Kernel	Exception	
	 	 	 Hardware	Fault	Exception	
	 	 	 Bad	Array	Index	Exception	
	 	 Interrupts	
	 	 	 …	all	interrupt	types	…	

For	the	following	trap	types,	the	address	to	be	saved	in	csr_prevpc	will	be	the	next	
instruction	to	execute.	It	is	assumed	that	the	previous	instruction	executed	to	
completion	and	re-executing	that	instruction	would	be	in	error.	The	SYSRET	
instruction	will	resume	by	executing	the	following	instruction.	

	 csr_prevpc	points	to	the	following	instruction:	
	 	 Exceptions	
	 	 	 SYSCALL	
	 	 	 Debug	Exception	
	 	 	 Singlestep	Exception	
			 	 	 Emulated	Instruction	Exception	

Traps	Related	to	Instruction	Fetching	

The	following	instructions	can	modify	the	Program	Counter	(PC) :	27

B.EQ	
B.NE	
B.LT	
B.LE	
JAL	
JALR	

	We	ignore	power-on-reset	and	the	RESTART	instruction,	since	exceptions	must	not	occur	then.27

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	186 344

Chapter	7:	Exceptions,	Interrupts,	and		Trap	Handling	

SYSRET	

Keep	in	mind	that	a	number	of	synthetic	instructions	(such	as	JUMP,	JR,	CALL,	RET,	
BEQ,	…)	are	translated	into	one	of	the	above	instructions.	

Furthermore,	trap	processing	will	modify	the	PC	by	copying	csr_trapvec	into	the	PC.	
Sequential	program	execution	also	modiUies	the	PC	by	incrementing	it.	

Whenever	an	instruction	is	fetched,	one	of	the	following	exceptions	may	arise:	

Null	Address	Exception	
Page	Illegal	Address	Exception	
Page	Table	Exception	
Page	Invalid	Exception	
Page	Fetch	Exception	

Since	compressed	instructions	may	be	as	short	as	a	single	byte,	there	is	no	
alignment	requirement	for	instructions.	Therefore,	the	Unaligned	LOAD/STORE	
Exception	cannot	occur. 	28

The	Null	Address	Exception	will	occur	at	the	time	the	PC	is	loaded,	by	the	jumping	
instruction.	The	“offending	instruction”	is	the	jumping	instruction	itself.	

The	remaining	exceptions	(that	is,	the	page-related	exceptions)	occur	when	the	
memory	operation	to	fetch	the	instruction	is	performed.	As	such,	the	“offending	
instruction”	is	the	instruction	being	fetched.	No	information	about	where	the	jump	
“came	from”	is	captured.	

In	some	cases,	the	Null	Address	Exception	may	not	be	detected	until	the	instruction	
fetch	occurs.	For	example,	if	a	trap	occurs	at	a	time	when	csr_trapvec	happens	to	be	
null,	the	problem	is	really	that	someone	failed	to	load	csr_trapvec.		In	such	a	case,	
there	is	no	identiUiable	“offending	instruction”.	As	another	example,	a	user-mode	
program	might	take	a	branch	to	some	random	address	in	a	page	that	is	invalid.	

In	such	cases,	csr_bad	and	csr_addr	may	not	be	set	to	the	values	that	were	
mandated	in	the	above	description	of	the	Null	Address	Exception.	

	In	earlier	versions	of	the	ISA,	there	was	an	alignment	requirement	on	instructions.28

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	187 344

Chapter	7:	Exceptions,	Interrupts,	and		Trap	Handling	

As	another	example,	a	CALL	instruction	(i.e.,	JALR)	could	load	the	PC	with	a	
problematic	PC	that	results	in	an	exception	during	the	fetch.	Normally,	when	
exceptions	occur,	the	offending	instruction	will	be	completely	aborted	and	have	no	
effect.	However,	in	the	case	of	the	JALR,	the	return	address	may	be	saved	(e.g.,	
register	LR	will	be	modiUied)	before	the	exception	is	discovered. 	29

Trap	Priority	and	Simultaneous	Exceptions	

The	occurrence	of	an	interrupt	or	exception	will	invoke	hardware	trap	processing,	
which	initiates	the	execution	of	a	software	trap	handler.	Conceptually,	hardware	trap	
invocation	occurs	between	the	execution	of	instructions;	it	is	not	done	concurrently	
with	instruction	execution	(at	least	as	far	as	functionality	observable	by	software).	

More	precisely,	interrupts	are	checked	for	before	each	instruction	is	executed	and,	if	
triggered,	hardware	trap	invocation	occurs	prior	to	the	instruction	execution.	On	the	
other	hand,	exceptions	are	checked	for	during	the	execution	of	instructions	and,	if	
triggered,	hardware	trap	invocation	occurs	after	instruction	execution	is	terminated.	

If	an	interrupt	is	pending	before	an	instruction	X	begins	execution,	then	the	
hardware	interrupt	processing	will	occur	immediately.	This	will	cause	a	change	in	
the	Ulow	of	control	and	the	next	instruction	to	execute	will	be	the	Uirst	instruction	of	
the	interrupt	handler.	Instruction	X	will	be	delayed	and	will	not	be	executed	until	the	
interrupt	handler	completes	and	ends	by	executing	a	SYSRET	instruction.	

On	the	other	hand,	if	the	interrupt	arrives	a	little	later,	then	instruction	X	will	
execute.	If	instruction	X	causes	an	exception,	then	that	exception	will	cause	trap	
handling.	The	next	instruction	after	X	will	be	the	Uirst	instruction	of	the	trap	handler	
for	that	exception.	The	interrupt	will	not	invoke	a	trap	handler	and	the	interrupt	will	
remain	pending.	

As	a	result	of	the	exception	and	trap	processing,	the	hardware	will	clear	the	
INTERRUPTS_ENABLED	bit	in	csr_status	to	disable	interrupts.	Therefore,	the	
handler	for	the	interrupt	will	not	run	until	after	the	trap	handler	for	the	exception	
completes.	

	If	the	kernel	repairs	the	problem	and	re-executes	the	instruction,	there	will	be	no	harm	done	by	29

moving	the	return	address	into	the	LR	register	a	second	time.

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	188 344

Chapter	7:	Exceptions,	Interrupts,	and		Trap	Handling	

At	some	later	time,	the	trap	handler	for	the	exception	will	end	by	executing	a	
SYSRET	instruction.	At	this	time,	interrupts	will	become	re-enabled.	As	a	result,	the	
trap	handler	for	the	interrupt	will	be	invoked	immediately	after	the	SYSRET	
instruction	and	before	any	instruction	in	the	original,	interrupted	code	sequence	is	
executed.	

Commentary		Conceptually,	interrupt	processing	occurs	before	the	execution	of	an	
instruction,	and	exception	processing	occurs	during	and	after	the	processing	of	an	
instruction.		

It	may	seem	that	our	model	somehow	gives	priority	to	exceptions	over	interrupts,	
but	this	is	not	necessarily	accurate.	In	fact,	any	core	will	check	for	and	accept	
interrupts	at	only	certain	moments	in	execution.	During	other	times,	instruction	
execution	will	occur.	

Machine	instructions	atomic,	in	the	sense	that	instructions	either	execute	
completely	or	do	not	execute	at	all.	In	other	words,	the	instructions	following	an	
instruction	causing	an	exception	are	not	executed	at	all.	The	Blitz-64	architecture	
requires	that	any	partial	or	incomplete	instruction	execution	(for	example,	
instructions	further	ahead	in	the	pipeline)	shall	not	be	visible	to	the	programmer.	

The	Blitz-64		model	does	not	preclude	a	pipelined	implementation	in	which	
interrupts	are	accepted	and	processed	with	alacrity.	For	example,	a	pipelined	
implementation	might	accept	and	process	interrupts	immediately,	even	though	
there	are	several	instructions	at	varying	stages	of	the	pipeline.	When	an	interrupt	
arrives,	trap	processing	would	be	begin	immediately,	which	will	force	the	emptying	
of	whatever	is	in	the	pipeline	and	an	immediate	switchover	to	the	trap	processing	
sequence.	However,	any	and	all	partially	executed	instructions	must	be	abandoned	
and	any	possible	effects	must	be	avoided	or	undone.	

On	the	other	hand,	an	implementation	may	delay	an	interrupt	for	several	cycles,	in	
order	to	allow	all	instructions	currently	in	the	pipeline	to	complete	execution.	The	
key	constraint	imposed	by	the	ISA	is	that	the	interrupt	processing	must	occur	
discretely	between	two	instructions.	The	instruction	before	the	trap	handling	will	
complete	fully 	and	all	instructions	after	the	interrupt	must	not	begin	execution.	30

	This	includes	exception	processing	associated	with	the	instructions.	If	the	previous	instruction	30

causes	an	exception,	then	trap	handling	for	that	exception	will	occur.	Trap	handling	for	the	
interrupt	will	be	delayed	and	the	interrupt	will	remain	pending.

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	189 344

Chapter	7:	Exceptions,	Interrupts,	and		Trap	Handling	

Our	model	gives	only	a	semantics	for	interrupt	acceptance	and	processing.	Any	
Blitz-64	implementation	must	have	the	the	same	behavioral	result	as	a	simple,	non-
pipelined	implementation	in	which	instructions	are	executed	serially,	one	after	the	
other,	and	interrupt	processing	occurs	between	two	instructions.	

It	is	possible	that	some	instruction	will	cause	more	than	one	exception.	Only	one	
exception	will	be	signaled.	All	other	other	exceptions	for	that	instruction	will	be	
ignored	and	forgotten.	

For	example,	consider	a	LOADD	instruction	attempting	to	load	from	address	1.	Both	
the	Unaligned	LOAD/STORE	Exception	and	the	Null	Address	Exception	apply.	For	
such	a	conUlict,	the	Null	Address	Exception	shall	occur	and	the	Unaligned	LOAD/
STORE	Exception	shall	be	ignored. 	31

	In	this	example,	the	decision	about	precedence	is	more-or-less	arbitrary.	While	an	Unaligned	31

LOAD/STORE	Exception	might	invoke	emulation,	a	Null	Address	Exception	always	indicates	a	
program	bug.	For	this	reason,	we	chose	to	give	the	Null	Address	Exception	priority.	However,	this	
distinction	only	affects	error	reporting	and	should	not	affect	correct	code.

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	190 344

Chapter	7:	Exceptions,	Interrupts,	and		Trap	Handling	

Here	is	a	summary	of	how	multiple	simultaneous	exceptions	are	handled:	

	 Highest	priority	→	 Kernel	Exception	
	 	 Hardware	Fault	Exception	

	 	 Illegal	Instruction	Exception	(including	privilege	violation)	
	 	 Debug	Exception	
	 	 Breakpoint	Exception	
	 	 Syscall	
	 	 Arithmetic	Exception	
	 	 Emulated	Instruction	Exception	
	 	 Bad	Array	Index	Exception	

	 	 Null	Address	Exception	
	 	 Unaligned	LOAD/STORE	Exception	

	 	 Page	Illegal	Address	Exception	
	 	 Page	Table	Exception	
	 	 Page	Invalid	Exception	
	 	 Page	Write	Exception	
	 	 Page	Fetch	Exception	
	 	 Page	Copy-On-Write	Exception	
	 	 Page	First	Dirty	Exception	
	 	
	 Lowest	priority	→	 Singlestep	Exception	

The	following	rules	apply	when	there	are	multiple	exceptions	and	interrupts.	

•	If	an	instruction	causes	more	than	one	exception,	then	only	one	exception	will	
be	chosen	for	trap	processing.	All	other	exceptions	will	be	lost.	

•	Exceptions	have	priority	over	interrupts.	If	an	exception	is	signaled,	any	and	all	
pending	interrupts	will	remain	pending	and	the	exception	will	be	chosen	for	
trap	processing.	

•	If	a	“Kernel	Exception”	is	signaled,	it	will	have	the	highest	priority.	It	will	be	
serviced	and	trap	handling	for	it	will	occur,	regardless	of	other	exceptions.	

•	If	a	“Hardware	Fault	Exception”	is	signaled,	it	will	have	the	next	highest	priority.	
Any	and	all	exceptions	of	lower	priority	will	be	ignored	and	lost.	If	a	hardware	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	191 344

Chapter	7:	Exceptions,	Interrupts,	and		Trap	Handling	

fault	is	detected	when	running	with	interrupts	disabled,	the	exception	will	be	
promoted	to	a	“Kernel	Exception”.	

•	A	“Null	Address	Exception”	overrides	an	“Unaligned	LOAD/STORE	Exception”	
and	all	Page-Related	exceptions.	

•	An	“Unaligned	LOAD/STORE	Exception”	overrides	all	Page-Related	exceptions.	

•	The	following	exceptions	are	all	mutually	exclusive	and	cannot	co-occur	with	
other	exceptions	types: 	32

	 Illegal	Instruction	Exception	
	 Debug	Exception	
	 Breakpoint	Exception	
	 Syscall	
	 Arithmetic	Exception	
	 Emulated	Instruction	Exception	
	 Bad	Array	Index	Exception	

•	A	“Page	Illegal	Address	Exception”	overrides	all	other	Page-Related	exceptions.	

•	The	following	Page-Related	exceptions	are	mutually	exclusive;	at	most	only	one	
of	these	can	occur.	

	 Page	Table	Exception	
	 Page	Invalid	Exception	
	 Page	Write	Exception	
	 Page	Fetch	Exception	
	 Page	Copy-On-Write	Exception	
	 Page	First	Dirty	Exception	

•	During	an	instruction	FETCH	a	Page-Related	exception	can	occur.	However,	if	
such	an	exception	occurs,	then	the	instruction	is	not	fetched	and	instruction	
execution	is	not	begun.	Any	other	exception	that	the	instruction	might	have	
caused	never	happens.	

	Except	“Kernel	Exception”	and	“Hardware	Fault	Exception”,	which	have	higher	priority,	and	32

“Singlestep	Exception”,	which	has	lower	priority.

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	192 344

Chapter	7:	Exceptions,	Interrupts,	and		Trap	Handling	

•	A	“Singlestep	Exception”	has	a	priority	below	all	other	exceptions.	If,	for	
example,	the	debugger	is	single-stepping	some	code	and	an	ADD	instruction	
causes	an	“Arithmetic	Exception”,	the	“Arithmetic	Exception”	will	be	chosen.	

•	Interrupts	have	the	lowest	priority	and	will	only	be	handled	if	there	are	no	
exceptions.	

•	If	there	are	several	interrupts	pending,	then	one	will	be	chosen	for	processing.	
That	interrupt	will	cause	trap	processing	and	the	others	will	remain	pending.	

Commentary	The	logic	behind	choosing	one	exception	and	ignoring	all	others	is	
this.	

If	a	Kernel	Exception	has	occurred,	it	indicates	a	bug	in	the	kernel;	we	are	not	
expecting	any	sort	of	recovery	or	return	to	execution	of	the	interrupted	code.	There	
is	no	point	is	trying	to	salvage	the	offending	instruction,	so	no	point	in	honoring	the	
exception.	

A	Hardware	Fault	Exception	has	priority	below	Kernel	Exception	because	some	
hardware	faults	may	be	transient,	one-time	events.	The	thread	in	execution	must	be	
terminated,	but	the	kernel	itself	need	not	crash.	A	Hardware	Exception	occurring	in	
user	mode	code	might	be	dealt	with	by	the	kernel,	which	will	simply	terminate	the	
affected	process;	it	is	not	necessarily	a	cause	for	crashing	the	kernel.	However,	a	
Hardware	Exception	occurring	in	kernel	code	when	interrupts	are	disabled	is	more	
serious.	The	kernel	has	been	compromised	and	so	it	should	be	promoted	to	a	Kernel	
Exception.	

A	Page	Illegal	Address	Exception	and	a	Page	Table	Exception	conUlict	would	occur	if	
user	code	attempts	to	access	kernel	memory	at	the	same	that	the	csr_pgtable	
register	is	uninitialized.	However,	it	is	impossible	to	FETCH	an	instruction	from	user	
space	without	a	page	table,	so	this	conUlict	could	only	arise	when	the	kernel	jumps	to	
user	code	with	both	csr_pgtable	and	the	PC	being	invalid.	Thus,	the	Page	Illegal	
Address	Exception	is	given	higher	priority.	A	Page	Illegal	Address	Exception	cannot	
co-occur	with	any	other	Page-Related	exception.	

The	decision	about	precedence	between	the	Null	Address	Exception	and	the	
Unaligned	LOAD/STORE	Exception	is	more-or-less	arbitrary.	While	Unaligned	
LOAD/STORE	Exceptions	might	sometimes	be	legitimate	(invoking	emulation),	a	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	193 344

Chapter	7:	Exceptions,	Interrupts,	and		Trap	Handling	

Null	Address	Exception	always	indicates	a	program	bug.	For	this	reason,	we	chose	to	
give	the	Null	Address	Exception	priority.	

Pending	Interrupts	

Once	an	interrupt	is	signaled	by	a	device,	it	becomes	“pending”	and	remains	pending	
until	it	is	accepted	for	trap	processing.	At	the	time	it	is	accepted,	the	program	
counter	(PC)	is	set	to	csr_trapvec,	the	status	word	is	saved	in	csr_stat2,	an	interrupt	
code	is	loaded	into	csr_cause,	and	the	Uirst	instruction	of	the	trap	handler	will	be	
executed	next.	

If	the	previous	instruction	caused	an	exception,	any	interrupt	that	occurs	will	
remain	pending	during	the	execution	of	the	trap	handler	for	the	exception.	The	only	
information	that	must	be	kept	is	the	identity	of	the	interrupt	type,	i.e.,	the	fact	that	
an	interrupt	is	pending. 	33

With	this	approach,	an	interrupt	can	only	be	serviced	after	the	execution	of	an	
instruction	which	causes	no	exception.	Note	that	the	SYSRET	will	not	cause	an	
exception.	Thus,	immediately	after	the	trap	handler	returns,	a	pending	interrupt	will	
be	handled,	before	the	next	instruction	is	executed. 	34

Any	instruction	which	causes	an	exception	will	invoke	a	trap	handler	and	during	the	
entire	execution	of	the	handler,	interrupts	will	be	disabled.	If	an	interrupt	arrives	
early	enough	—	that	is,	before	the	excepting	instruction	begins	execution	—	the	
interrupt	will	be	handled	before	the	exception’s	trap	handler	runs.	On	the	other	
hand,	if	the	interrupt	happens	to	be	signaled	a	little	bit	later,	it	will	miss	its	window	

	In	the	case	of	a	conUlict	between	an	exception	and	interrupt	occurring	simultaneously,	we	33

considered	a	design	in	which	the	exception	is	made	pending	and	the	interrupt	is	handled.	
However,	an	exception	involves	more	information	(such	as	the	values	of	the	Program	Counter,	
csr_cause,	csr_bad,	and	csr_addr).	Instead	of	keeping	this	info,	the	exception	is	handled	and	the	
interrupt	remains	pending.

	Well,	a	SYSRET	might	theoretically	cause	an	exception	if	it	is	executing	in	a	virtual	address	space	34

and	a	page-related	exception	arises	for	the	FETCH.	But	kernel	code	should	never	be	placed	in	
virtual	pages	that	are	not	pinned	and	exception-proof,	and	probably	not	even	then,	so	this	is	not	
expected	to	occur.

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	194 344

Chapter	7:	Exceptions,	Interrupts,	and		Trap	Handling	

of	opportunity	and	will	be	delayed	until	after	the	exception’s	trap	handler	completes	
and	re-enables	interrupts. 	35

To	summarize,	with	the	design	of	Blitz-64,	an	interrupt	occurring	during	an	
exception-causing	instruction	is	effectively	treated	as	if	it	came	a	little	later	and	
simply	missed	its	window	of	opportunity.	It	will	get	serviced	immediately	after	the	
trap	handler	Uinishes	and	reenables	interrupts,	which	is	what	must	happen	anyway	
if	the	interrupt	had	arrived	one	instruction	later.	

Commentary	We	considered	a	design	in	which	a	trap	handler	for	one	exception	or	
interrupt	could,	itself,	be	interrupted.	For	example,	a	scheme	with	multiple	levels	of	
interrupt	execution	might	provide	more	responsiveness	for	some	interrupt	types.	
Such	a	design	might	be	necessary	to	handle	interrupts	that	always	require	a	
immediate,	super-fast	response.	

Such	was	the	case	in	the	old	days,	when	the	CPUs	were	relatively	slow	and	they	had	
to	manage	a	rotating	disk	drive	directly.	The	CPU	was	interrupted	when	the	disk	
platter	rotated	into	position	and	data	was	ready	to	be	transferred.	The	CPU	needed	
to	pay	attention	quickly	and,	if	it	failed	to,	the	disk	would	continue	rotating	and	the	
opportunity	for	data	transfer	would	be	lost.	A	similar	situation	arose	with	
communication	links,	where	an	incoming	message	had	to	be	moved	into	memory	as	
the	bits	arrive,	or	else	the	message	was	lost.	

We’ve	come	a	long	way	and	interrupting	devices	generally	have	their	own	
controllers.	Device-speciUic	controllers	handle	most	of	the	time-critical	operations	of	
peripheral	hardware	and	allow	the	primary	core	to	merely	transfer	data	and	high-
level	logical	commands	back	and	forth	to	the	controller.	Nowadays,	the	interrupt	
primarily	serves	the	function	of	letting	the	core	know	that	the	some	peripheral	
operation	is	complete	and	the	core	is	now	free	to	make	use	of	the	results.	In	other	
words,	interrupts	now	serve	primarily	to	send	information	to	the	core,	allowing	the	
core	to	take	action	when	it	is	ready,	not	to	demand	the	core	perform	some	time-
critical	action.		

Blitz-64	is	designed	to	be	a	general	purpose	operating	system	core,	not	a	
microcontroller.	Accommodating	interrupts	during	trap	handling	would	require	the	
addition	of	another	level	of	complexity,	perhaps	necessitating	a	third	mode	or	a	trap	

	This	is	a	simpliUication.	A	real-world	kernel	will	sometimes	reenable	interrupts	before	returning	35

to	the	interrupted	code	sequence.	The	point	is	that	the	pending	interrupt	will	occur	at	the	moment	
interrupts	are	re-enabled.

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	195 344

Chapter	7:	Exceptions,	Interrupts,	and		Trap	Handling	

priority	scheme	or	a	mechanism	for	selectively	masking	interrupts.	This	is	just	too	
complicated.	The	simplicity	and	limitations	of	the	Blitz-64	interrupt	mechanism	are	
an	intentional	and	logical	manifestation	of	the	overall	project	objectives.	

That	said,	it	is	critical	that	all	trap	handlers	keep	interrupts	disabled	for	as	short	a	
time	as	possible.	The	expectation	is	that	any	trap	handler	unable	to	return	quickly	
will	do	something	—	such	as	simply	signal	a	semaphore	in	order	to	wake	up	another	
thread	or	immediately	go	to	sleep,	waiting	on	some	condition.	In	any	case,	the	
handler	will	effectively	branch	into	to	the	scheduler	to	resume	execution	of	user	
threads	as	quickly	as	possible,	thereby	re-enabling	interrupts	in	short	order.	

Delegation	to	User	Mode	Error	Handlers	

Typically,	when	exceptions	occur	in	user	code	(such	as	“Illegal	Instruction	
Exception”),	the	kernel	will	abort	the	process	without	further	ado.	However,	there	is	
the	possibility	that	some	exceptions	will	be	handled	a	little	differently	by	invoking	a	
“user	mode	error	handler”.	

There	is	no	support	for	this	user	mode	exception	delegation	in	the	hardware;	the	
delegation	is	handled	entirely	by	the	kernel	software.	When	an	exception	occurs	in	
user	mode	code,	the	kernel	will	get	control	through	the	trap	handling	mechanisms	
discussed	above.	The	kernel	may	then,	at	its	option,	notify	the	user	process	in	some	
way	or	another.	This	notiUication	is	entirely	a	software	operation	since	there	is	no	
special	hardware	involved.	

We	speciUically	use	the	term	“error	handler”	rather	than	“trap/exception/interrupt	
handler”,	since	the	mechanisms	are	quite	different.	

The	following	types	of	exception	are	candidates	for	software	delegation	to	user	
mode	code,	when	they	arise	in	that	code:	

	 •	Hardware	Fault	Exception	
	 •	Arithmetic	Exception	
	 •	Illegal	Instruction	Exception	
	 •	Null	Address	Exception	
	 •	Bad	Array	Index	Exception	
	 •	Unaligned	LOAD/STORE	Exception	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	196 344

Chapter	7:	Exceptions,	Interrupts,	and		Trap	Handling	

	 •	Privilege	Exception	
	 •	Debug	Exception	
	 •	Breakpoint	Exception	
	 •	Singlestep	Exception	
	 •	Page-related	exceptions,	under	certain	conditions	such	as:	
	 	 —	Attempt	to	access	an	unallocated	page	
	 	 —	Attempt	to	STORE	to	a	read-only	page	
	 	 —	Attempt	to	FETCH	from	a	non-executable	page	

After	the	exception	occurs	and	the	corresponding	trap	handler	is	invoked,	it	will	see	
that	the	processor	was	running	in	user	mode	when	the	exception	occurred.	It	will	
then	return	to	the	user	code	but	will	modify	the	PC	to	cause	a	forced	jump	to	the	
user	error	handler’s	address.	

The	kernel	may	maintain	Ulags	associated	with	each	address	space	so	the	kernel	
mode	trap	handler	can	optionally	either	(1)	abort	the	process,	or	(2)	pass	control	to	
the	user	mode	error	handler.	

Then,	the	user	code	will	presumably	invoke	the	“throw-error”	sequence	in	the	KPL	
language.	But	if	nothing	else,	the	user	code	can	simply	abort	the	offending	thread.	In	
any	case,	this	mechanism	makes	possible	the	creation	of	user	mode	programs	that	
can	address	their	own	bugs,	including	the	support	of	debugging	and	error	reporting,	
and	potentially	fault	tolerance	and	error	recovery.	Support	for	error	reporting	and/
or	debugging	will	likely	be	included	in	the	shared	core	function	library,	as	so	will	be	
available	to	all	processes	at	no	extra	cost.	

Trap	Processing	and	Handler	Startup	

When	a	trap	is	processed,	the	hardware	will	take	a	number	of	simple,	Uixed	actions.	
These	actions	are	performed	between	the	execution	of	the	previous	machine	
instruction	and	the	Uirst	instruction	of	the	global	trap	handler.	

Interrupts	are	either	“enabled”	or	“disabled”	and	this	is	controlled	by	the	
INTERRUPTS_ENABLED	bit	in	the	status	register	csr_status.	

When	an	interrupt	is	signaled,	it	remains	pending	until	the	hardware	invokes	trap	
handling.	Interrupts	may	not	be	masked,	other	than	by	the	INTERRUPTS_ENABLED	
bit	in	the	csr_status.	Pending	interrupts	remain	pending	while	interrupts	are	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	197 344

Chapter	7:	Exceptions,	Interrupts,	and		Trap	Handling	

disabled.	Once	interrupts	are	re-enabled,	one	interrupt	will	be	selected	and	the	
corresponding	trap	handler	is	invoked.	

Exceptions	cannot	be	masked:	If	an	instruction	causes	an	exception,	then	hardware	
trap	invocation	will	be	immediately	performed.	

When	a	trap	handling	is	invoked,	the	hardware	will	perform	the	following	actions:	

	 Invocation	(Hardware	Phase):	

	 	 csr_prevpc	←	PC	
	 	 PC	←	csr_trapvec	
	 	 csr_stat2	←	csr_status	
	 	 csr_status	[INTERRUPTS_ENABLED]	←	0	
	 	 csr_status	[KERNEL_MODE]	←	1	
	 	 csr_status	[SINGLE_STEP]	←	0	
	 	 csr_cause	←	<trap	code>	
	 	 csr_bad	←	<additional	trap	info;	e.g.,	the	offending	instruction>	
	 	 csr_addr	←	<additional	trap	info;	e.g.,	the	virtual	address>	

The	PC	is	copied	to	csr_prevpc	so	that	it	can	be	saved	by	the	trap	handler	software	
so	that	after	the	trap	handler	Uinishes,	a	return	can	be	made	to	the	interrupted	code.	

The	PC	is	loaded	with	the	value	in	csr_trapvec,	the	address	of	the	global	trap	
handler.	

The	csr_status	is	copied	to	csr_stat2.	If	a	return	is	made	to	the	interrupted	code,	the	
status	register	will	need	to	be	restored.	

Interrupts	are	disabled	and	the	mode	is	switched	to	“kernel	mode”.	The	global	trap	
handler	begins	with	interrupts	disabled,	since	it	needs	to	perform	operations	(such	
as	saving	the	general	purpose	registers	and	some	CSRs)	which	cannot	be	
interrupted.	Some	individual	trap	handlers	may	choose	to	re-enable	interrupts.	
However,	the	Uinal	sequence	of	returning	to	the	interrupted	code	(ending	with	a	
SYSRET	instruction)	must	be	performed	with	interrupts	disabled.	

Single-stepping	is	turned	off.	Since	the	global	trap	handler	runs	with	interrupts	
disabled,	this	is	not	strictly	necessary,	but	is	a	convenience	for	those	individual	trap	
handlers	which	will	re-enable	interrupts	during	their	execution.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	198 344

Chapter	7:	Exceptions,	Interrupts,	and		Trap	Handling	

A	code	indicating	the	type	or	nature	of	the	trap	is	written	to	csr_cause.	The	global	
trap	handler	is	expected	to	use	this	information	to	dispatch	to	the	individual	trap	
handlers.	

In	the	case	of	several	exceptions,	additional	information	is	written	to	csr_bad	and	
csr_addr.	For	example,	during	a	page-related	exception,	the	program-generated	
virtual	address	causing	the	problem	in	written	to	csr_addr.	

Saving	State	During	Thread	Switching	

When	trap	processing	occurs	as	a	result	of	an	interrupt,	an	executing	thread	will	be	
interrupted.	Generally	speaking,	the	trap	handler	will	return	to	that	thread	after	trap	
handling	is	complete.	As	such,	the	state	of	the	general	purpose	registers	must	be	
saved	and	restored	so	that	the	interrupted	thread	is	unaffected	by	the	trap	handler.	

In	some	cases	such	as	a	timer	interrupt,	the	registers	associated	with	the	thread	will	
be	saved	for	a	longer	period	of	time,	and	the	return	is	made	to	a	different	thread.	The	
interrupted	thread	will	be	delayed	for	quite	some	time	while	other	threads	are	run.	

Next,	we	discuss	how	the	kernel	software	is	expected	to	use	the	Blitz-64	hardware.	
This	discussion	motivates	and	explains	the	Blitz-64	ISA;	it	should	not	be	confused	
with	a	description	of	any	speciUic	kernel	code.	

It	is	assumed	that	each	thread	will	have	an	area	of	memory,	which	we	call	a	Thread	
Control	Block	(TCB),	that	will	contain	important	information	about	the	thread	and	
that	will	be	used	to	save	the	general	purpose	registers	and	other	state	during	an	
interruption.	

[In	the	discussion	of	page	tables	later	in	this	document,	we	will	see	that	the	root	
page	will	be	half	used,	leaving	8,192	bytes	of	unused	and	available	space.	This	area	is	
an	ideal	place	in	which	to	store	information	about	the	processes,	perhaps	including	
one	or	more	Thread	Control	Blocks.]	

When	a	thread	is	interrupted,	the	Uirst	thing	that	must	be	done	is	to	save	the	
registers	and	these	will	be	saved	in	the	Thread	Control	Block	(TCB).	We	expect	
csr_ptr	to	be	used	to	point	to	the	Thread	Control	Block	of	the	running	thread.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	199 344

Chapter	7:	Exceptions,	Interrupts,	and		Trap	Handling	

For	any	thread	running	with	interrupts	enabled	—	whether	in	user	mode	or	kernel	
mode	—	we	assume	that	the	following	will	contain	valid	state	information:	

	 The	State	of	the	Currently	Running	Thread:	
		 	 csr_status	—	The	status	register	
		 	 csr_ptr	—	A	pointer	to	the	TCB	
		 	 csr_pgtable	—	A	pointer	to	the	root	of	the	page	table	
		 	 csr_trapvec	—	Address	of	the	trap	handler	to	be	used	for	traps	
	 	 …	all	general	purpose	registers	…	

In	this	discussion,	we	make	no	assumptions	about	the	other	CSR	registers.	They	are	
not	assumed	to	contain	state	information	and	may	be	used	as	work	registers	by	the	
trap	handler.	(But	of	course,	this	discussion	is	hypothetical.	Kernel	programmers	
may	elect	to	use	other	CSRs	as	they	see	Uit.)	

Some	threads	will	never	use	virtual	memory,	so	csr_pgtable	is	not	needed	for	them.	
Such	threads	—	kernel	threads	—	are	not	associated	with	any	particular	address	
space	and	have	no	use	for	a	page	table.	

Other	threads	(which	we	call	user	threads)	will	have	an	associated	virtual	address	
space.	They	run	in	user	mode	and	all	addresses	are	translated	from	the	virtual	
address	space	to	the	physical	address	space,	with	the	assistance	of	the	page	table.	

The	Translation	Lookaside	Buffer	(TLB)	registers	—	if	they	exist	—	serve	as	a	cache	
of	Page	Table	Entries	(PTEs).	If	there	is	no	TLB,	the	page	table	must	be	walked	on	
every	access	to	memory.	The	TLB	registers	dramatically	reduce	the	need	to	access	
the	page	table.	For	a	running	user	mode	thread,	the	TLB	registers	contain	the	
working	set,	i.e.,	information	about	pages	that	have	been	recently	used	and	can	be	
expected	to	be	needed	in	the	near	future.	

Each	TLB	is	tagged	with	an	Address	Space	IdentiUier	(ASID).	At	context	switches,	
there	is	no	need	to	Ulush	the	TLB	since	the	ASIDs	will	function	to	distinguish	the	TLB	
registers	associated	with	one	process’s	address	space	from	the	registers	for	another	
process’s	address	space.	Only	when	pages	tables	are	modiUied	or	deleted	is	there	any	
need	to	Ulush	the	TLB.	

When	a	context	switch	occurs	and	a	new	process	begins	execution,	it	is	likely	that	
the	existing	TLB	registers	used	by	the	previous	process	will	gradually	be	evicted	and	
replaced	with	the	working	set	of	the	newly	executing	process.	As	the	new	process	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	200 344

Chapter	7:	Exceptions,	Interrupts,	and		Trap	Handling	

begins	execution,	several	walks	of	the	page	table	will	be	necessary	until	the	new	
process’s	working	set	has	been	loaded	into	the	TLB.	

However,	if	the	TLB	is	large	enough	and	there	are	not	too	many	addresses	spaces,	it	
is	possible	that	the	working	sets	of	several	processes	can	all	coexist	in	the	TLB.	In	
such	a	scenario,	at	context	switches,	evictions	will	be	rare	and	the	walking	of	the	
page	tables	will	be	reduced.	

Consider	what	happens	when	a	user	thread	makes	a	system	call.	The	thread	will	be	
running	in	user	mode	before	the	SYSCALL	and	then	will	be	running	trap	handler	
code	in	kernel	mode.	Since	it	is	the	same	thread	and	since	the	TLB	registers	continue	
to	contain	important	values,	we	will	refer	to	this	as	a	“user	thread	running	in	kernel	
mode”.	But	regardless	of	what	we	call	it,	any	code	running	in	kernel	mode	will	need	
to	use	its	own	stack.	It	must	be	careful	not	to	rely	on	the	correctness	of	any	user	
mode	register	values	and	be	careful	to	restore	any	user	mode	registers	that	were	
used.	Of	course	information	must	not	be	allowed	to	not	leak	from	the	kernel	back	to	
the	user	mode	code.	

There	are	several	cases	to	be	considered:	

	 For	user	threads…	
	 	 The	thread	performs	a	SYSCALL	
	 	 The	thread	causes	an	exception	
	 	 The	thread	is	suspended	by	an	interrupt	
	 For	kernel	threads…	
	 	 The	thread	performs	a	SYSCALL	
	 	 The	thread	causes	an	exception	
	 	 The	thread	is	suspended	by	an	interrupt	
	 Upon	completion	of	the	trap	handler…	
	 	 The	interrupted	thread	is	resumed.	
	 	 The	interrupted	thread	is	suspended	and	another	thread	is	scheduled.	

Global	Trap	Handler	—	Dispatching	and	Return	

Once	the	core	has	completed	the	hardware	phase	of	trap	invocation,	the	Uirst	
instruction	of	the	Global	Trap	Handler	will	be	fetched	and	executed.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	201 344

Chapter	7:	Exceptions,	Interrupts,	and		Trap	Handling	

In	this	section,	we	sketch	out	algorithms	and	code	sequences	for	how	the	Global	
Trap	Handler	might	be	coded.	The	goal	is	to	give	some	idea	about	how	the	various	
architectural	features	of	the	Blitz-64	architecture	might	be	used.	We	also	want	to	get	
a	rough	idea	of	how	many	machine	instructions	are	involved.	

This	discussion	is	speculative	and	kernel	programmers	may	take	a	different	
approach.	

We	assume	the	Global	Trap	Handler	is	written	in	assembler	and	will	invoke	
functions	written	in	the	KPL	language.	We	look	at	handling	syscalls	(where	the	
arguments	are	passed	in	registers)	and	we	look	at	all	other	traps	(where	we	assume	
that	all	user	registers	must	be	saved	and	restored	before	the	SYSRET).	We	assume	
that	interrupts	will	remain	disabled	for	the	duration	of	all	handler	code	and	each	
handler	will	terminate	by	returning	to	the	interrupted	code. 	36

First,	let’s	look	at	a	possible	algorithm	for	the	Global	Trap	Handler,	which	is	invoked	
after	any	trap.	Its	duty	is	to	save	the	state	of	the	interrupted	process	and	then	
dispatch	to	function	that	will	handle	the	particular	trap	encountered.	

Global	Trap	Handler	-	Algorithm	

	 //	We	assume	the	following	have	just	been	set	by	the	hardware:	
	 //	 	 csr_stat2,	csr_prevpc,	csr_cause,	csr_bad,	csr_addr	
	 //	We	also	assume:		
	 //	 	 csr_ptr	points	to	the	Thread	Control	Block	(TCB)	
	 //	 	 csr_pgtable	points	to	a	page	table	
	 //	 	 csr_trapvec	points	to	this	Global	Trap	Handler	

	 Save	general	purpose	registers	in	the	TCB:	
	 	 Swap	csr_ptr	with	register	r7.	
	 	 Save	r12-r15	(i.e.,	“tp”,	“gp”,	“lr”	and	“sp”)		in	the	TCB.	
	 	 	 	 (About	5	instructions)	 	

		 Determine	if	this	is	a	SYSCALL	Exception.	
	 	 	 	 (About	3	instructions,	using	only	r12-r15)	
	 	
	 If	this	is	a	SYSCALL	Exception…	

	Realistically,	a	kernel	will	invoke	the	scheduler	at	timer	interrupts,	if	not	during	other	traps	as	36

well.	So	interrupts	will	be	enabled	at	some	point	before	return	to	the	interrupted	code,	but	this	is	
beyond	the	scope	of	the	discussion	here.

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	202 344

Chapter	7:	Exceptions,	Interrupts,	and		Trap	Handling	

	 	 Prepare	to	execute	a	kernel-mode	function	written	in	high-level	KPL:	
	 	 	 Load	r15	(the	kernel	stack	pointer	“sp”)	from	the	TCB.	
	 	 	 Load	r12-r13	(i.e,	“tp”,	“gp”)	from	the	TCB.	
	 	 	 Copy	r7	(the	ptr	to	the	TCB)	back	into	csr_ptr.	
	 	 	 	 (About	4	instructions)	

	 	 Dispatch	to	the	individual	SYSCALL	handlers:	
	 	 	 Dispatch	on	csr_cause,	i.e.,	jump	through	the	trap	vector	to	a	KPL	function.	
	 	 	 	 (About	4	instructions,	using	register	“t”,	including	the	indirect	jump)	

	 	 Upon	entry	to	the	KPL	function	to	handle	the	SYSCALL…	
	 	 	 •	Registers	r1	…	r6	contain	arguments	to	the	system	function.	
	 	 	 •	Register	r7	contains	a	pointer	to	the	TCB.	
	 	 	 •	Registers	r8-r11	(“t,	s0,	s1,	s2”)	are	work	registers.	
	 	 	 •	Registers	r1	will	contain	a	return	value	to	the	user	code.	
	 	 	 •	Registers	r2-r11	should	be	zeroed	before	return.	
	 	 	 •	User-mode	registers	r12-r15	have	been	saved	in	the	TCB.	
	 	 	 •	CSRs	csr_stat2,	csr_prevpc,	csr_ptr,	csr_pgtable,	csr_trapvec	
	 	 	 	 	will	remain	unchanged	throughout	the	handler	function.	

	 If	this	is	NOT	a	SYSCALL	Exception…	

	 	 Save	the	user	mode	registers:	
	 	 	 Save	r1-r6,	r8-11	in	the	TCB.	
	 	 	 Read	csr_ptr	(i.e.,	previous	value	of	r7)	into	a	reg.	
	 	 	 Store	it	in	the	TCB.	
	 	 	 	 (About	12	instructions)	

	 	 Prepare	to	execute	kernel-mode	functions	written	in	high-level	KPL:	
	 	 	 Load	r15	(the	kernel	stack	pointer	“sp”)	from	the	TCB.	
	 	 	 Load	r12-r13	(i.e,	“tp”,	“gp”)	from	the	TCB.	
	 	 	 Copy	r7	(the	ptr	to	the	TCB)	back	into	csr_ptr.	
	 	 	 	 (About	4	instructions)	

	 	 Prepare	the	arguments	to	the	individual	trap	handler.	
	 	 	 r1	←	csr_cause	
	 	 	 r2	←	csr_addr	
	 	 	 r3	←	csr_bad	
	 	 	 r4	←	csr_prevpc	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	203 344

Chapter	7:	Exceptions,	Interrupts,	and		Trap	Handling	

	 	 	 r5	←	csr_stat2	
	 	 	 //	r6	←	<nothing>	
	 	 	 //	r7	←	addr	of	TCB	from	above	
	 	 	 	 (About	5	instructions)	

	 	 Dispatch	to	the	individual	trap	handlers:	
	 	 	 Using	r1	(csr_cause),	jump	through	the	trap	vector	to	a	KPL	function.	
	 	 	 	 (About	3	instructions,	using	register	“t”,	including	indirect	jump)	

	 	 Upon	entry	to	the	KPL	function	to	handle	the	interrupt	/	exception…	
	 	 	 •	Registers	r1	…	r7	contain	arguments,	see	above.	
	 	 	 •	Register	r8	(“t”)		can	be	trashed.	
	 	 	 •	Registers	r1-r15	should	be	restored	from	the	TCB	before	return.	
	 	 	 •	CSRs	csr_stat2,	csr_prevpc,	csr_ptr,	csr_pgtable,	csr_trapvec	
	 	 	 	 	will	remain	unchanged	throughout	the	handler	function	

So	we	may	be	looking	at	about	16	instructions	for	dispatching	to	a	SYSCALL	function	
and	about	32	instructions	to	dispatch	to	any	other	trap	handler.	

After	completely	dealing	with	the	trap,	the	individual	KPL	handler	routines	will	not	
return.	Instead,	they	will	call	one	of	two	assembler	functions.	In	either	case,	this	is	
effectively	a	jump,	since	these	routines	do	not	return.	

The	KPL	functions	for	handling	SYSCALL	traps	will	invoke	a	function	named	
“SyscallHandlerReturn”.	The	KPL	function	for	handling	all	other	exceptions	and	
interrupts	will	invoke	a	function	called	“TrapHandlerReturn”.	

The	SyscallHandlerReturn	function	is	passed	a	value	which	it	leaves	in	register	r1	
before	executing	the	SYSRET.	All	other	caller-saved	regs	should	be	zeroed	or	
restored	to	prevent	information	leakage	from	the	kernel.	

Here	are	the	Uinal	steps	of	a	SYSCALL	trap	handler,	which	must	be	coded	in	assembly	
language:	

Syscall	Handler	Return	-	Algorithm	

	 //	At	this	point,	we	assume…	
	 //			 r1	contains	the	value	to	be	returned	to	the	user	mode	code.	
	 //	 	 CSRs	csr_stat2,	csr_prevpc,	csr_ptr,	csr_pgtable,	csr_trapvec	
	 	 	 	 	have	remained	unchanged	throughout	the	handler	function.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	204 344

Chapter	7:	Exceptions,	Interrupts,	and		Trap	Handling	

	 //	 	 csr_ptr	still	points	to	the	Thread	Control	Block	(TCB).	
	 //			 csr_prevpc	still	contains	the	PC.	
	 //			 csr_stat2	still	contains	the	status	register.	
	 //			 csr_pgtable	and	csr_trapvec	are	unchanged.	
	 //			 User-mode	registers	r12-r15	have	been	saved	in	the	TCB.	

	 r7	←	0.	
	 Swap	r7	with	csr_ptr.	
	 //	r7	now	points	to	the	TCB.	
	 //	csr_ptr	now	contains	0.	

	 //	We	assume	that	nothing	of	value	remains	on	the	kernel	stack,	
	 //	 	 so	we	can	avoid	saving	the	value	of	“sp”.	
	 //	We	assume	that	the	kernel	“tp”	and	“gp”	registers	never	change,	
	 //	 	 so	we	can	avoid	saving	their	values.	
	 //	Register	r14	(“lr”)	is	meaningless,	so	we	don’t	need	to	save	it.	

	 //	Values	of	user	registers	“tp,	gp,	lr,	sp”	were	saved	at	the	time	of	the	trap.	
	 Fetch	the	saved	registers	from	the	TCB	and	move	into	r12…r15.	

	 Set	registers	r2-r6,r8-r11	to	0				//	To	prevent	info	leakage	from	the	kernel.	
	 Swap	csr_ptr	with	r7.	
	 Execute	the	SYSRET	instruction,	which	will…	
	 	 PC	←	csr_prevpc.	
	 	 csr_status	←	csr_stat2.	

	 (About	17	instructions)	

The	TrapHandlerReturn	function	is	passed	no	args.	All	the	registers	are	restored	
before	the	SYSRET	is	executed.	The	TrapReturn	function	will	take	the	following	
actions,	performed	in	assembly	code:	

Trap	Handler	Return	-	Algorithm	

	 //	On	entry,	we	assume…	
	 //	 	 csr_ptr	still	points	to	the	Thread	Control	Block	(TCB).	
	 //			 csr_prevpc	still	contains	the	PC.	
	 //			 csr_stat2	still	contains	the	status	register.	

	 r7	←	csr_ptr	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	205 344

Chapter	7:	Exceptions,	Interrupts,	and		Trap	Handling	

	 //	We	assume	that	nothing	of	value	remains	on	the	kernel	stack,	
	 //	 	 so	we	can	avoid	saving	the	value	of	“sp”.	
	 //	We	assume	that	the	kernel	“tp”	and	“gp”	registers	never	change,	
	 //	 	 so	we	can	avoid	saving	their	values.	
	 //	We	assume	their	values	of	sp,	tp,	and	gp	were	placed	in	the	TCB	
	 //	 	 when	it	was	initialized.	
	 //	Register	r14	(“lr”)	is	meaningless,	so	we	don’t	need	to	save	it.	

	 Fetch	the	“saved	r7”	from	the	TCB	and	move	it	into	csr_ptr.	
	 Fetch	the	saved	registers	from	the	TCB	and	move	into	r1…r6,	r8…r15.	

	 Swap	csr_ptr	with	r7.	
	 Execute	the	SYSRET	instruction,	which	will…	
	 	 PC	←	csr_prevpc.	
	 	 csr_status	←	csr_stat2.	

	 (About	19	instructions)	

A	typical	trap	handler	will	perform	its	work	and	complete,	returning	to	the	
interrupted	code	without	reenabling	interrupts.	However,	in	many	cases	the	handler	
will	be	unable	to	return	immediately	and	will	need	to	block	the	thread.	In	such	cases,	
the	trap	handler	might	perform	a	“wait”	operation	on	a	semaphore,	or	sleep	on	a	
lock,	or	simple	invoke	the	scheduler	directly.	Often,	an	interrupt	handler	will	need	to	
wake	up	a	process	to	service	the	interrupt.	This	could	be	done	by	performing	a	
“signal”	operation	on	a	semaphore.	

The	algorithms	sketched	above	are	provisional.	For	example,	it	may	be	the	case	that	
the	kernel	will	make	use	of	additional	CSRs	(e.g.,	csr_temp)	for	storing	registers,	
rather	than	saving	the	register	in	the	TCB.	This	may	improve	trap	invocation	by	
replacing	memory	STORES	and	LOADs	with	CSR_SWAP	instructions,	at	the	cost	of	
requiring	these	registers	to	be	saved	before	re-enabling	interrupts.	Or,	alternatively,	
csr_stat2	and	csr_prevpc	may	be	saved	to	the	TCB	immediately	within	the	global	
trap	handler,	removing	the	need	to	save/restore	them	when	enabling	interrupts.	

It	will	often	be	the	case	that	after	a	trap	has	occurred,	but	before	a	SYSRET	has	been	
executed,	the	kernel	code	will	need	to	re-enable	interrupts.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	206 344

Chapter	7:	Exceptions,	Interrupts,	and		Trap	Handling	

The	above	algorithms	assume	the	interrupted	thread	was	running	in	user	mode.	The	
global	trap	handler	saves	the	user	mode	registers	in	the	TCB	in	an	area	reserved	for	
the	user	mode	registers.	However,	if	the	interrupted	thread	is	running	in	kernel	
mode,	there	could	be	issues.	If,	for	example,	the	interrupted	thread	is	a	user	thread	
currently	running	in	kernel	mode	(for	example,	in	the	middle	of	servicing	a	
SYSCALL)	and	it	has	reenabled	interrupts,	then	an	interrupt	or	exception	will	be	
catastrophic.	The	TCB	register	save	area	already	contains	the	value	of	user	mode	
registers.	The	global	trap	handler	(as	coded	above)	will	blindly	overwrite	those,	
resulting	in	disaster	when,	at	some	future	time,	the	thread	tries	to	return	to	user	
mode.	

The	above	algorithms	are	only	intended	to	give	you	an	idea	of	how	the	hardware	
could	be	used.	Your	kernel-hacking	skills	will	be	needed	to	Uigure	out	how	to	actually	
use	the	Blitz-64	ISA. 	37

	Another	issue	is	the	FENCE	instruction,	which	may	be	needed.37

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	207 344

Chapter	8:	Memory,	Address	Spaces,	
and	Page	Tables	

Quick	Summary	

•	Program-generated	address	range:		64	GiBytes	(36	bit	addresses)	
	 —	Maximum	Virtual	Address	Space:	32	GiBytes	(35	bits)	
	 —	Max	size	of	physical	memory:	16	GiBytes	(34	bits)	
	 —	Memory-mapped	I/O	region:	16	GiBytes	(34	bits)	

•	The	current	page	table’s	address	is	in	csr_pgtable.	

•	Page	table	architecture:	
	 —	Page	size:	16	KiBytes.	
	 —	Page	offset	(to	access	a	byte	within	a	page):	14	bits.	
	 —	Page	table	entry	(PTE):	8	bytes.	
	 —	Each	page	holds	2Ki	entries.	
	 	 	 2Ki	x	8	bytes	=	16	KiBytes.	
	 	 	 11	bits	to	index	into	a	page	(recall	211	=	2,048).	
	 —	Page	table	has	two	levels.	
	 —	Virtual	addresses	are	35	bits.	
	 	 	 VPN[1]:	10	bits.	VPN[2]:	11	bits.	Offset:	14	bits.	
	 —	With	a	two	level	table…	
	 	 	 Only	half	of	the	top-level	page	is	used.	
	 	 	 1Ki	x	2Ki	=	2Mi	pages	per	address	space.	
	 —	Maximum	size	of	virtual	address	space:	
	 		 	 2Mi	pages	x	16	KiBytes/page=	32	GiBytes.	

•	The	address	translation	cache	(TLB	registers):	invisible	to	the	ISA.	
	 —	Each	TLB	entry	is	tagged	with	an	Address	Space	ID	(ASID).	
	 —	ASID	is	16	bits;	maximum	number	of	address	spaces:	65,536.	
	 —	ASID	of	current	process	is	in	csr_pgtable	register.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	208 344

Chapter	8:	Memory,	Address	Spaces,	and	Page	Tables	

Memory	Organization	

All	program-generated	addresses	are	36	bits.	This	allows	a	program	to	address	up	to	
64	GiBytes.	

This	total	64	GiByte	address	space	is	divided	into	the	following	ranges:	

	 						size									 	
	 16	GiBytes	 Physical	memory	
	 16	GiBytes	 Memory	mapped	I/O	devices	
	 32	GiBytes	 Virtual	address	space	

FIGURE:	Program	Generated	Addresses	

Any	address	in	the	lower	32	GiBytes	is	said	to	be	a	physical	address.	Any	address	in	
the	upper	32	GiBytes	is	said	to	be	a	virtual	address.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	209 344

Chapter	8:	Memory,	Address	Spaces,	and	Page	Tables	

Blitz-64	instructions	can	generate	both	physical	addresses	and	virtual	addresses.	
However,	the	processor	core	will	only	generate	physical	address	for	use	in	accessing	
the	installed	main	memory	and	I/O	devices.	

The	Uirst	32	GiBytes	(i.e.,	physical	memory	and	memory-mapped	I/O)	is	the	kernel’s	
address	space	and	can	only	be	accessed	in	kernel	mode.	User	mode	code	cannot	use	
addresses	in	this	range.	Any	attempt	by	user	mode	code	to	use	a	physical	address	
will	cause	a	“Page	Illegal	Address	Exception”.	

Of	course,	the	kernel	is	free	to	map	virtual	addresses	to	physical	addresses	via	the	
page	table	scheme.	This	allows	user	mode	programs	to	access	physical	memory	and	
memory-mapped	I/O	devices.	

The	upper	32	GiBytes	can	be	accessed	regardless	of	the	privilege	mode.	Any	address	
in	this	range	is	a	virtual	address	and	memory	mapping	will	be	performed	to	convert	
the	address	into	a	physical	address	in	the	lower	32	GiBytes.	

Bit	35	of	the	address	determines	whether	the	access	is	allowed	only	in	kernel	mode	
or	whether	it	will	be	mapped	as	a	virtual	address.	

	 0	=	Kernel	access	only;	no	memory	mapping	
	 1	=	The	address	is	virtual;	memory	mapping	always	performed	

As	mentioned	above,	any	attempt	to	LOAD,	STORE,	or	FETCH	instructions	using	an	
address	in	the	lower	32	GiBytes	while	executing	in	user	mode	will	cause	an	
exception.	But	any	attempt	to	LOAD,	STORE,	or	FETCH	instructions	using	an	address	
in	the	lower	32	GiBytes	will	be	allowed	when	running	in	kernel	mode,	and	the	
program-generated	address	will	be	used	“as	is”.	All	bytes	in	the	lower	32	GiBytes	are	
considered	to	have	full	read/write/fetch	privileges	and	no	checking	is	performed.	

A	program-generated	address	is	considered	to	be	“virtual”	and	will	be	mapped	to	a	
physical	address	if	and	only	if	the	address	is	within	upper	half	of	the	address	range.	
In	other	words,	any	address	with	bit	35	set	to	1	(i.e.,	within	the	range	
0x8_0000_0000	…	0xF_FFFF_FFFF)	will	be	mapped.	

Any	attempt	to	LOAD,	STORE,	or	FETCH	instructions	using	an	address	in	the	upper	
32	GiBytes	will	be	processed	by	the	Memory	Management	Unit	(MMU).	The	MMU	
will	translate	a	virtual	address	into	a	physical	address.	The	mode	is	irrelevant	for	
this	range.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	210 344

Chapter	8:	Memory,	Address	Spaces,	and	Page	Tables	

Tasks,	Address	Spaces,	and	the	User	Mode	Viewpoint	

A	user	mode	program	in	execution	(i.e.,	a	running	program)	is	called	a	“task”.	A	task	
consists	of	a	virtual	address	space	and	one	or	more	threads.	(The	term	“process”	is	
often	deUined	as	a	task	with	exactly	one	thread.	The	“task”	concept	is	more	general	
and	useful.)	

A	user	mode	program	runs	within	a	“virtual	address	space”.	Each	byte	has	an	
address	and	a	virtual	address	space	appears	to	behave	very	similarly	to	a	chunk	of	
physical	main	memory.	Generally	speaking,	each	byte	of	the	virtual	address	space	
will	be	implemented	(i.e.,	“backed”)	by	a	byte	of	physical	main	memory.	

Virtual	address	spaces	are,	of	course,	subtly	different	from	physical	memory.	For	one	
thing,	virtual	addresses	are	mapped	into	physical	addresses	in	such	a	way	that	the	
user	program	has	no	way	of	determining	which	physical	addresses	are	being	used.	
Also,	each	virtual	address	space	is	independent;	a	user	program	has	no	way	to	
access	bytes	in	the	kernel	space	or	in	other	address	spaces.	

Here	is	one	way	a	kernel	might	organize	a	virtual	address	space	for	user	tasks,	
although	this	particular	organization	is	not	mandated	by	the	ISA.	

FIGURE:	User	Mode	Virtual	Address	Space	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	211 344

Chapter	8:	Memory,	Address	Spaces,	and	Page	Tables	

Every	virtual	address	space	is	broken	into	a	number	of	pages.	

In	Blitz-64,	the	page	size	is	16	KiBytes.	Each	page	starts	on	a	16	KiByte	boundary:	
pages	are	always	properly	aligned.	Since	214	=	16,384	=	16	Ki,	the	last	14	bits	[13:0]	
of	the	page	address	will	always	be	00000000000000.	

Each	page	of	the	virtual	address	space	will	be	either:	

	 •	Allocated	
	 •	Not	allocated	

Typically,	most	of	the	pages	in	the	address	space	will	be	unallocated.	Any	attempt	by	
the	user	program	to	access	an	unallocated	page	will	cause	an	exception.	Typically	
the	user	program	will	be	aborted;	that	is	random	memory	accesses	to	unallocated	
areas	normally	cause	the	kernel	to	terminate	the	program.	However,	it	may	also	be	
the	case	that	the	kernel	throws	(i.e..,	signals	or	forwards)	a	user	mode	error.	

(There	may	also	some	pages	in	the	virtual	address	space	that	are	not	allocated	until	
there	is	a	demand	for	them.		For	example,	as	the	stack	grows,	pages	will	be	allocated	
as	necessary.	However,	this	is	transparent	to	the	user	program.	When	an	attempt	is	
made	by	a	user	program	to	access	such	a	page,	the	kernel	will	quietly	allocate	a	new	
page	and	retry	the	instruction.	Such	dynamic		allocation	is	solely	a	kernel	function.)	

From	the	viewpoint	of	the	running	user	mode	program,	each	allocated	page	will	
have	certain	privileges.	Every	page	is:	

	 •	Writable	or	not	
	 •	Executable	or	not	

Therefore,	the	following	combinations	are	allowed:	

	 •	Unallocated	
	 •	Read-only	
	 •	Read/write	
	 •	Read/executable	
	 •	Read/write/executable	

Every	allocated	page	is	readable;	there	is	not	a	separate	privilege	status	for	this.	
Pages	containing	executable	code	are	always	readable.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	212 344

Chapter	8:	Memory,	Address	Spaces,	and	Page	Tables	

Every	thread	within	a	task	will	see	the	exact	same	address	space.	Each	page	will	
have	the	same	privileges,	regardless	of	which	thread	within	the	task	is	accessing	it. 	38

Any	attempt	by	a	thread	to	LOAD	from	a	page	that	is	not	allocated	will	cause	an	
exception.	Any	attempt	by	a	thread	to	STORE	to	a	page	that	is	not	allocated	or	not	
writable	will	cause	an	exception.	Any	attempt	to	FETCH	instructions	from	a	page	
that	is	not	allocated	or	not	executable	will	cause	an	exception.	

Presumably,	the	kernel	will	treat	such	accesses	as	a	program	error.	

Note	that	here	we	are	talking	about	the	viewpoint	of	the	user	mode	program.	There	
are	cases	in	which	such	attempts	will	cause	exceptions	but	the	kernel	will	take	
actions,	change	the	status	of	pages,	and	restart	the	user	program.	The	instruction	
will	then	execute	and	the	user	program	will	be	unaware	that	there	was	ever	an	
exception.	

For	example,	imagine	a	situation	where	a	page	is	allocated	but	is	not	currently	
resident	in	memory.	Instead,	the	page	has	been	written	out	to	disk	(i.e.,	backing	
store).	Any	attempt	to	access	that	page	(FETCH,	LOAD,	or	STORE)	will	cause	an	
exception.	The	kernel	will	respond	by	reading	the	page’s	contents	from	disk	into	
physical	memory	and	resuming	execution	of	the	user	program.	Another	example	is	
when	a	page	is	marked	“copy-on-write”;	any	attempt	to	STORE	to	the	page	will	cause	
an	exception;	then	the	kernel	will	copy	the	page	and	the	user	program	will	be	
resumed.	

In	some	cases,	a	page	may	be	shared	by	two	different	address	spaces.	The	page	will	
be	backed	by	a	single	page	of	physical	memory.	Thus,	a	page	can	be	mapped	into	two	
(or	more)	address	spaces.	All	tasks	will	see	the	same	contents	of	the	page.	A	WRITE	
by	any	task	can	be	observed	by	a	READ	or	FETCH	performed	in	any	other	task.	A	
single	page	of	physical	memory	may	be	mapped	into	pages	in	multiple	virtual	
address	spaces	at	either	the	same	or	different	virtual	addresses.	A	single	physical	
page	may	have	the	same	or	different	permissions	in	the	different	address	spaces.	

	It	may	be	desirable	for	two	threads	to	share	most	of	an	address	space,	but	have	some	38

differences.	For	example,	the	pages	of	the	stack	might	need	to	be	mapped	into	different	physical	
pages.	In	order	to	achieve	this,	the	kernel	must	create	a	separate	address	space	for	each	thread	and	
mark	all	pages	except	the	stack	pages	as	“shared”	in	both	address	spaces.	However,	since	address	
spaces	can	be	up	to	32	GiBytes,	the	preferred	solution	is	to	use	a	single	address	space	and	place	
the	stacks	in	separate,	non-overlapping	memory	regions.

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	213 344

Chapter	8:	Memory,	Address	Spaces,	and	Page	Tables	

In	some	cases,	a	virtual	page	may	be	mapped,	not	onto	physical	memory,	but	onto	a	
location	in	the	memory-mapped	I/O	region.	In	such	a	case,	when	the	user	mode	
program	WRITEs	to	an	address	in	the	page	(i.e.,	executes	a	STORE	instruction),	the	
data	will	be	sent	to	the	I/O	device.	When	the	user	mode	program	READs	from	an	
address	in	the	page	(i.e.,	executes	a	LOAD	instruction),	data	will	be	transferred	from	
the	I/O	device.	

Page	Tables	

For	each	address	space,	the	kernel	will	create,	build,	and	update	a	page	table.	
Blitz-64	uses	a	two	level	page	table.	

Diagram:	“Page	Table	Tree”	

Each	page	table	index	node	and	each	data	page	is	stored	in	a	single	16	KiByte	page.	
Both	index	and	data	pages	must	at	page-aligned	addresses.		

A	page	table	tree	consists	of	a	root	node	and	up	to	1,024	second	level	index	nodes.	
Each	second	level	node	can	point	to	up	to	2,048	data	pages.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	214 344

Chapter	8:	Memory,	Address	Spaces,	and	Page	Tables	

There	can	be	up	to	2,097,152	data	pages	in	a	virtual	address	space.	Since	each	data	
page	is	16	KiBytes,	this	exactly	accommodates	the	largest	virtual	address	space,	
which	is	32	GiBytes. 	39

Each	page	table	entry	is	8	bytes. 	40

The	root	node	contains	1,024	entries	pointing	to	second	level	nodes.	A	page	can	
accommodate	up	to	2,048	entries,	but	only	the	Uirst	half	of	the	page	is	used.	The	
second	half	of	the	root	page	is	not	used.	

	Notice	that	39

	 221	=	1,024	×	2,048	=	2,097,152	
and	
	 235	=	2	Mi	×	16	Ki	=	32	Gi

	Notice	that	40

	 8	×	2,048	=	16,384	
	 211	=	2,048	
So	up	to	2,048	PTE’s	will	Uit	into	a	single	page.	And	to	address	any	one	of	2,048	entries,	11	bits	are	
required.

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	215 344

Chapter	8:	Memory,	Address	Spaces,	and	Page	Tables	

Each	second	level	node	contains	2,048	entries.	

Diagram:	“Page	Table	Detail”	

The	smallest	address	space	would	require	a	single	root	node	and	2	nodes	at	the	
second	level	(one	for	low	memory	and	one	for	high	memory). 	A	page	table	for	the	41

largest	address	space	will	require	1,024+1	nodes	in	the	page	table	tree. 	42

	Such	a	minimal	page	table	will	accommodate	a	virtual	address	space	up	to	64	MiBytes	(i.e.,	41

4,096	pages).	This	would	easily	include	enough	space	for	entries	for	the	32	pages	required	for	the	
shared	core	functions,	as	described	elsewhere.

	The	maximum	virtual	address	space	has	a	size	of	32	GiBytes	(i.e.,	2,097,152	pages).	The	page	42

table	for	such	an	address	space	requires	1,024	+	1	pages	(i.e.,	16.02	MiBytes).

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	216 344

Chapter	8:	Memory,	Address	Spaces,	and	Page	Tables	

The	memory	overhead	for	page	tables	is	roughly	8	bytes	per	16	KiByte	data	page,	in	
other	words,	the	ratio	of	page	table	memory	to	data	memory	is	less	than	1	::	2,000.	

Each	index	page	in	the	page	table	is	stored	in	a	single	16	KiByte	page.	Each	index	
page	is	organized	as	an	array	of	“page	table	entries”	(PTEs).	Each	page	table	entry	
will	be	8	bytes	in	length.	Thus,	a	single	page	can	contain	2,048	PTEs.	

As	mentioned,	the	top-level	(root)	node	of	the	page	table	will	only	contain	1,024	
PTEs	so	only	the	Uirst	half	of	the	page	is	used.	The	kernel	is	free	to	use	the	second	
half	of	the	page	to	store	additional	information	about	the	address	space,	the	task,	
and/or	the	threads	running	in	that	address	space.	

Conceptually,	every	time	a	virtual	memory	address	is	accessed,	the	page	table	will	be	
walked	to	locate	the	data	page	and	translate	the	virtual	page	number	into	a	physical	
page	number.	

However,	actually	walking	the	page	table	to	retrieve	the	page	table	entry	(PTE)	
requires	two	additional	memory	accesses	for	every	“real”	memory	access.	This	
would	impose	an	intolerable	performance	penalty.	

Instead,	it	is	assumed	that	the	processor	will	cache	recently	used	page	table	entries	
in	order	to	avoid	accessing	the	index	pages	for	most	memory	operations.	To	improve	
performance,	we	assume	Page	Table	Entries	(PTEs)	from	the	page	table	are	cached	
in	a	set	of	special	purpose	registers	designed	for	the	purpose.	This	cache	is	called	the	
Translation	Lookaside	Buffer	(TLB).	

For	the	most	part,	the	TLB	is	invisible	to	the	kernel	programmer.	The	caching	is	
transparent	and	the	result	is	exactly	the	same	as	if	no	TLBs	are	implemented.	

Just	as	with	main	memory	caches,	the	TLB	registers	are	loaded	automatically	by	the	
hardware,	with	no	special	attention	required	of	the	software.	The	presence	or	
absence	of	a	TLB	cache	will	not	change	the	correctness	or	functionality	of	the	
software,	only	its	performance.	

Whenever	a	memory	operation	(LOAD,	STORE,	or	FETCH)	is	attempted	using	a	
virtual	address,	the	page	table	must	be	consulted	—	at	least	in	theory.	If	a	matching	
entry	is	cached	in	a	TLB	register,	then	that	can	be	used	instead	and	the	hardware	can	
avoid	the	two	additional	memory	operations	that	would	be	necessary	to	access	the	
page	table.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	217 344

Chapter	8:	Memory,	Address	Spaces,	and	Page	Tables	

However,	from	time	to	time,	the	page	tables	will	be	modiUied	by	the	kernel	software.	
This	may	invalidate	the	information	previously	cached	in	the	TLB	registers.	It	is	
crucial	that	any	PTEs	cached	in	the	TLB	registers	contain	only	valid	and	current	
information.The	Blitz-64	ISA	provides	instructions	to	Ulush	(i.e.,	modify	or	
invalidate)	selected	TLB	registers. 	43

An	OS	kernel	will	implement	a	number	of	virtual	address	spaces,	with	one	address	
space	for	each	task.	Associated	with	every	address	space	is	a	page	table.	At	any	one	
time,	a	core	is	executing	code	within	one	address	space,	so	there	is	always	a	“current	
page	table.”	

The	current	page	table	is	pointed	to	by	the	Control	and	Status	Register	named	
csr_pgtable.	More	precisely,	csr_pgtable	contains	the	address	of	the	root	index	page	
of	the	page	table. 	44

When	the	kernel	switches	from	one	task	to	another	(i.e.,	from	one	address	space	to	a	
new	address	space),	it	will	modify	csr_pgtable	to	point	to	the	page	table	of	the	new	
address	space.	

Given	that	there	are	many	address	spaces	and	many	page	tables,	it	is	crucial	that	the	
cached	page	table	entries	(PTEs)	in	the	TLB	for	the	old	address	space	not	be	
confused	with	PTEs	for	the	new	address	space.	

To	facilitate	this,	each	address	space	is	assigned	a	unique	number	called	the	
Address	Space	Identi]ier	(ASID).	This	is	a	16	bit	value,	accommodating	up	to	
65,536	different	address	spaces.	It	is	assumed	that	each	PTE	cached	in	a	TLB	
register	will	be	marked	with	the	ASID	of	the	address	space	to	which	it	belongs.	

The	ASID	of	the	currently	executing	task	is	kept	in	the	csr_pgtable	register.	

The	idea	is	that	whenever	the	TLB	is	consulted	to	see	if	there	is	a	cached	PTE,	the	
ASID	is	checked.	Each	TLB	register	will	contain	an	ASID,	along	with	the	cached	

	These	instructions	are		named	TLBFLUSH	and	TLBCLEAR.43

	The	csr_pgtable	register	contains	a	44	bit	page-aligned	address	within	the	physical	main	44

memory,	i.e.,	anywhere	within	the	16	TiByte	address	space.	Addressing	memory	within	the	lower	
16	GiBytes	can	be	done	directly	and	easily	when	running	in	Kernel	Mode,	so	it	is	likely	that	most	
OSes	will	choose	to	place	all	page	table	nodes	within	the	Uirst	16	GiBytes	of	main	memory.	Of	
course,	page	table	nodes	can	be	placed	elsewhere,	but	in	order	to	accommodate	this,	the	kernel	
itself	will	need	to	set	up	and	use	a	second	virtual	address	space,	solely	for	accessing	such	page	
table	nodes.

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	218 344

Chapter	8:	Memory,	Address	Spaces,	and	Page	Tables	

mapping	information.	If	there	is	an	entry	with	a	matching	ASID,	then	the	cached	PTE	
can	be	used	and	the	core	can	avoid	accessing	the	index	pages	altogether.	But	if	the	
ASID	doesn’t	match,	the	cached	value	applies	to	a	different	address	space	and	the	
cached	PTE	cannot	be	used.	

If	there	is	no	cached	PTE	in	the	TLB	registers,	then	the	core	is	forced	to	access	the	
page	table	in	main	memory.	This	will	require	the	core	to	perform	two	additional	
LOADs	to	read	from	the	index	pages	in	order	to	retrieve	the	desired	PTE.	But	once	a	
PTE	is	retrieved	from	the	in-memory	page	table,	that	PTE	will	be	cached	in	the	TLB.	
This	means	that	future	accesses	will	hit	the	TLB	cache	and	all	page	table	accesses	for	
any	addresses	within	the	same	data	page	can	be	avoided	in	the	future.	Whenever	a	
PTE	cached	(i.e.,	the	PTE	is	written	to	the	TLB),	the	TLB	register	will	be	marked	
with	the	ASID	of	the	current	task,	which	is	the	ASID	currently	stored	in	csr_pgtable.	

A	General	Overview	of	TLBs	

To	accommodate	virtual	memory,	program-generated	“virtual	addresses”	are	
translated	into	“physical	addresses”	in	hardware	by	address	translation	
hardware.	This	circuitry	is	called	the	Memory	Management	Unit	(MMU)	and	it	
uses	a	page-table	(stored	in	memory)	to	perform	the	translation	from	virtual	to	
physical	addresses.	

To	make	address	translation	fast	enough	for	virtual	memory	to	be	feasible,	page	
table	entries	must	be	cached	in	an	“address	translation	cache”.	Such	a	cache	is	
traditionally	called	a	“Translation	Lookaside	Buffer”,	or	“TLB”.	

The	TLB	will	contain	a	small	number	of	page	table	entries.	When	a	FETCH,	LOAD	
or	STORE	to	memory	occurs,	the	address	translation	hardware	(the	MMU)	will	
check	the	address	translation	cache	(the	TLB).	If	the	TLB	contains	a	matching	
entry,	the	address	translation	hardware	will	use	it	to	generate	a	physical	address	
immediately,	which	is	much	faster	because	the	core	can	avoid	going	to	main	
memory	to	read	the	page	table	tree	to	locate	the	data	page.	

The	TLB	is	organized	as	an	associative	memory,	keyed	on	virtual	page	number	
(VPN).	If	a	TLB	entry	is	present,	then	the	entry	will	contain	the	physical	page	
number.	The	MMU	will	then	concatenate	the	physical	page	number	to	the	offset	
within	the	page	to	build	a	physical	address.	It	will	then	proceed	directly	to	
performing	the	FETCH,	LOAD,	or	STORE	operation.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	219 344

Chapter	8:	Memory,	Address	Spaces,	and	Page	Tables	

However,	if	the	entry	is	absent,	the	address	translation	process	must	go	to	
memory	to	locate	and	fetch	the	appropriate	entry	from	the	page	table.	Some	TLB	
entry	will	be	evicted	and	the	new	entry	will	be	placed	in	the	TLB.	The	address	
translation	will	then	proceed.	

From	the	Memory	Management	Unit’s	perspective,	the	in-memory	page	table	is	
considered	to	be	read-only.	Thus,	the	values	stored	in	the	TLB	never	need	to	be	
updated	by	the	hardware	whenever	a	FETCH,	LOAD,	or	STORE	occurs.	

When	a	memory	access	is	attempted	but	the	TLB	contains	no	matching	entry,	the	
MMU	will	need	to	cache	a	new	entry	in	the	TLB.	To	make	room,	it	must	“evict”	
some	existing	entry.	Since	the	TLB	contains	only	copies	of	entries	from	the	in-
memory	page	table,	the	MMU	has	no	need	to	update	the	in-memory	page	table.	

However,	from	time-to-time,	the	kernel	will	modify	the	address	space	and	update	
the	page	table.	When	this	happens,	the	cached	entries	in	the	TLB	can	become	out	
of	date.	To	handle	this,	the	hardware	must	include	instructions	that	can	be	used	to	
invalidate	some	or	all	entries	in	the	TLB.	The	simplest	approach	is	to	include	an	
instruction	that	will	invalidate	all	TLB	entries.	A	more	targeted	approach	is	to	
include	an	instruction	that	can	be	used	to	invalidate	selected	pages,	possibly	also	
including	information	about	which	address	space	is	affected.	

Megapages	

Due	to	the	large	(16	KiByte)	page	size	used	in	Blitz-64,	the	overhead	of	the	page	
table	is	less	than	with	the	typical	4	KiByte	page	size	of	traditional	architectures.	
Roughly	speaking,	a	page	that	is	4	times	as	large	could	cut	the	number	of	page	
table	walks	by	a	factor	of	4	and	reduce	the	number	of	TLB	registers	by	the	same	
amount.	The	large	page	size	also	allows	each	page	walk	to	require	only	two	
memory	LOADs,	instead	of	three,	which	are	needed	for	a	system	with	three	level	
page	tables.		

We	considered	deUining	a	“megapage”	as	a	chunk	of	memory	of	size	32	MiBytes.	
This	is	exactly	2,048	pages	in	size.	The	idea	is	that	a	single	entry	in	the	root	page	
of	the	page	table	would	point	directly	to	the	megapage,	instead	of	pointing	to	a	
second-level	node	in	the	page	table.	

With	megapages,	we	would	be	able	to	accommodate	very	large	address	spaces	
with	almost	no	page	table	overhead.	The	maximal	address	space	with	32	GiBytes	
would	require	only	a	single	root	page	table	node.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	220 344

Chapter	8:	Memory,	Address	Spaces,	and	Page	Tables	

It	should	be	noted	that	with	megapages,	a	single	PTE	will	sufUice	for	a	very	large	
amount	of	memory.	Without	megapages,	many	more	PTE	entries	may	be	required	
to	support	the	same	algorithm.	Thus,	support	for	megapages	reduces	the	number	
of	PTEs,	therefore	reducing	access	to	the	in-memory	page	table	and	contention	for	
TLB	registers.	

If	a	process’s	working	set	is	not	too	large	and	changes	slowly,	then	occasional	page	
table	walks	and	TLB	loads	will	not	be	a	great	overhead,	and	a	small	number	of	TLB	
registers	will	support	good	performance.	We	believe	that	a	system	with	(say)	a	
dozen	16	KiByte	pages	should	be	adequate	to	cover	the	working	set	of	many	
typical	programs	and	thus	provide	good	performance.	

Of	course,	support	for	megapages	will	reduce	the	number	of	page	table	accesses	
and	could	be	critical	in	programs	that	would	otherwise	have	a	lot	of	page	table	
accesses.	

As	a	general	principle,	complex	algorithms	with	complex	behavior	tend	to	exhibit	
complex	(i.e.,	seemingly	random)	memory	patterns.	In	other	words,	modern	
programs	bounce	around	a	lot.	For	processes	like	this,	there	can	be	much	more	
pressure	on	the	TLB.	

Megapages	may	become	necessary	to	enable	acceptable	performance	for	complex	
algorithms	that	consume	a	lot	of	memory,	exhibit	little	locality	of	reference,	and	
bounce	all	around	memory	quickly.	

At	this	time,	Blitz-64	does	not	support	megapages,	but	this	decision	may	be	
revisited.	An	unused	bit	in	the	PTE	entry	might	be	deUined	to	Ulag	megapages.	The	
PTE	entry	will	either	point	to	a	second	level	page	table	node,	or	to	a	megapage,	as	
determined	by	this	bit.	

Why	Only	Two	Levels?	

Most	computer	architectures	use	3	or	4	level	page	tables.	Blitz-64	was	carefully	
designed	to	use	only	2	levels.	This	mandated	a	limit	on	the	maximum	address	
space	size;	is	it	worth	this	cost?	

For	programs	that	exhibit	very	good	locality	of	reference	—	that	is,	that	have	very	
small	working	sets	—	the	TLBs	will	work	well	and	the	in-memory	page	tables	will	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	221 344

Chapter	8:	Memory,	Address	Spaces,	and	Page	Tables	

need	to	be	consulted	rarely.	So	it	will	matter	less	if	the	table	is	one	level	deeper:	
the	additional	memory	operation	will	not	often	be	needed.	

However,	we	expect	modern	programs	to	often	be	more	complex,	such	as	object-
oriented	programs	which	bounce	around	large	heaps	or	complex	algorithms	that	
exhibit	minimal	locality.	Each	time	such	an	algorithms	follows	a	pointers	to	a	new	
area,	a	new	pages	is	touched	and	another	page	table	lookup	is	required.	In	the	
extreme,	each	and	every	memory	reference	could	be	a	TLB	miss	and	require	a	
page	table	lookup.	Going	from	3	to	2	levels	implies	turning	an	operation	that	
requires	4	memory	references	into	one	requiring	only	3	memory	operations,	a	
huge	performance	gain.	

While	such	completely	degenerate	programs	may	be	rare,	the	general	idea	
remains.	Page	table	lookups	are	very,	very	costly	and	reducing	each	lookup	from	3	
memory	accesses	to	2	accesses	will	improve	overall	performance,	although	we	
cannot	yet	say	by	how	much.	

Another	consideration	is	time-slicing.	Every	time	the	kernel’s	scheduler	is	
invoked,	a	new	thread	is	selected	and	initiated.	The	execution	of	the	new	thread	
may	have	the	effect	of	entirely	Ulushing	the	TLB,	which	means	that	every	time	the	
scheduler	runs	(i.e.,	every	time-slice),	the	entire	TLB	will	need	to	be	reloaded.	This	
means	a	page	table	lookup	is	required	for	each	TLB	register.	

This	cost	can	potentially	be	large.	Of	course,	there	are	techniques	to	mitigate	this	
problem,	such	as	distributing	the	threads	across	cores	in	such	a	way	that	the	
scheduler	will	likely	choose	to	run	a	thread	that	lives	in	the	same	address	space	as	
the	thread	previously	scheduled.	

A	Uinal	issue	is	that	address	spaces	will	sometimes	be	changed	and	modiUied.	With	
message	passing	kernels,	we	expect	to	see	large	amounts	of	data	passed	by	the	
manipulation	of	page	tables.	For	example,	to	pass	data	from	one	task	to	another,	a	
page	may	be	deallocated	from	one	address	space	and	mapped	into	another	
address	space.	

Each	time	such	an	operation	is	done,	it	may	be	necessary	to	Ulush	the	entire	TLB,	
this	requiring	a	reloading	the	TLB	registers,	with	multiple	page	table	lookups.	
Again,	there	may	be	techniques	to	reduce	this	cost.	For	example,	Blitz-64	provides	
an	instruction	(TLBFLUSH)	to	clear	a	single	entry	cached	in	the	TLB.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	222 344

Chapter	8:	Memory,	Address	Spaces,	and	Page	Tables	

Although	a	2	level	page	table	is	conceptually	simpler	than	a	3	level	table,	the	
performance	around	virtual	memory	must	be	the	overriding	concern.	

Some	architectures	have	a	Ulexible	design.	For	example,	the	RISC-V	can	
accommodate	2,	3,	or	4	level	page	tables.	Accommodating	multiple	depths	
introduces	quite	a	bit	of	complexity	into	an	ISA.	

Finally,	we	note	that	2	level	page	tables	seem	adequate,	so	there	is	no	reason	for	a	
3	level	table.	Of	course	this	is	closely	tied	to	the	decision	to	limit	the	maximum	
size	of	a	virtual	address	space	to	32	GiBytes.	

Will	the	address	space	limitation	prove	to	be	a	problem	in	practice?	Are	3	levels	
clearly	a	better	approach?	Time	will	tell.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	223 344

Chapter	8:	Memory,	Address	Spaces,	and	Page	Tables	

Virtual	Addresses	

Program-generated	addresses	are	36	bits,	as	shown	in	this	diagram :	45

FIGURE:	“Virtual	Address”	

The	upper	bits	[63:36]	are	always	ignored.	This	means	that	any	address	outside	of	
the	basic	64	GiByte	range	is	mapped	into	the	lower	64	GiByte	area.	

The	most	signiUicant	bit	[35]	selects	for	virtual/kernel	mode.	If	the	bit	is	1	(virtual	
address	space),	then	memory	mapping	(i.e.,	address	translation)	will	occur.	If	the	bit	

	Here	is	the	same	information,	expressed	differently:	45

	 bits	 size]ield	
	 [35]	 1		 mapped	or	unmapped	
	 [34:14]	 21	 VPN:	virtual	page	number	
	 	 [34:25]	 	 10	 	 VPN[1]:	First	level	
	 	 [24:14]	 	 11	 	 VPN[2]:	Second	level	
	 [13:0]	 14	 byte	offset	(14	bits)	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	224 344

Chapter	8:	Memory,	Address	Spaces,	and	Page	Tables	

is	0	(kernel/physical	space),	then	mapping	does	not	occur	and	the	address	is	used,	
as	is.	

Memory	is	broken	into	pages.	The	page	size	is	16	KiBytes.	To	access	a	byte	within	a	
page,	the	page	offset	is	14	bits.	

Within	a	virtual	address,	21	bits,	namely	bits	[34:14],	indicate	the	Virtual	Page	
Number	(VPN).	This	is	further	broken	into	Uields	VPN[1]	and	VPN[2],	which	are	
used	to	index	into	the	two-level	page	table	tree.	

Page	Table	Entries	

Each	entry	in	the	page	table	is	called	a	Page	Table	Entry	(PTE).	Each	entry	is	8	
bytes	and	has	this	format:	

FIGURE:	“Page	Table	Entry”	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	225 344

Chapter	8:	Memory,	Address	Spaces,	and	Page	Tables	

Here	the	same	information:	

	 				bits					 		width			
	 [63:34]	 30	 Physical	Page	Number 	46
	 [33:5]	 29	 <	unused,	available	for	kernel	use	>	
	 [4]	 1	 C	bit	(1	=	Copy-on-write)	
	 [3]	 1	 D	bit	(1	=	Dirty)	
	 [2]	 1	 W	bit	(1	=	Writable)	
	 [1]	 1	 X	bit	(1	=	Executable)	
	 [0]	 1	 V	bit	(1	=	Valid)	

Commentary	We	do	not	include	a	“Referenced	Bit”	as	is	done	in	some	systems.	The	
purpose	of	the	Referenced	Bit	is	to	allow	software	to	implement	a	least-recently-
used	algorithm	(or	more	likely,	an	approximation	thereto),	in	order	to	select	which	
pages	are	candidates	for	paging	out	to	backing	store.	However,	updating	and	
maintaining	such	a	least	recently	used	bit	requires	the	MMU	to	write	PTEs	back	to	
the	page	table.	In	Blitz-64,	the	MMU	only	reads	from	the	page	table.	

When	an	executing	program	attempts	to	access	memory,	it	will	generate	a	36-bit	
“program-generated	address”	and	will	use	it	to:	

	 •	LOAD	
	 •	STORE	
	 •	FETCH	(i.e.,	read	an	instruction	for	execution)	

	With	30	bits	of	physical	page	number	and	14	bits	of	offset,	this	allows	addressing	up	to	16	46

TiBytes	of	physical	memory,	since	
	 244	=	17,592,186,044,416	

However,	in	the	basic	implementation,	physical	addresses	are	limited	to	35	bits	and	only	32	
GiBytes	can	be	addressed,	since	
	 235	=	34,359,738,368	
This	range	accommodates	16	GiBytes	of	physical	memory	followed	by	16	GiBytes	of	memory-
mapped	I/O.	As	such,	only	the	lower	35-14=21	bits	of	the	Physical	Page	Number	will	be	non-zero,	
i.e.,	bits	[54:34].	The	upper	9	bits	[63:55]	should	be	zero	and	will	be	ignored	on	systems	that	don’t	
exceed	32	GiBytes	of	installed	physical	main	memory.	

In	systems	accommodating	more	main	memory	than	this,	the	upper	9	bits	of	a	Physical	Page	
Number	can	be	non-zero.	However,	program-generated	addresses	are	still	limited	to	36	bits	and	
virtual	addresses	are	still	limited	to	35	bits.	This	limits	every	virtual	address	space	to	32	GiBytes.

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	226 344

Chapter	8:	Memory,	Address	Spaces,	and	Page	Tables	

The	Memory	Management	Unit	(MMU)	sits	between	the	core	and	main	memory.	The	
program-generated	address	will	be	put	through	the	MMU	along	with	the	type	of	
access	required	(LOAD/STORE/FETCH)	and	the	current	privilege	mode	(kernel	or	
user).	

The	MMU	will	either	generate	an	exception	or	will	translate	the	address	into	a	
physical	address.	(If	a	TLB	is	implemented,	the	translation	may	be	performed	using	
the	TLB	registers.)	

MMU:	Basic	Operation	

We	next	describe	the	operation	of	the	Memory	Management	Unit	(MMU).	We	begin	
by	describing	the	MMU	as	if	there	is	no	TLB	cache	and	each	memory	access	requires	
a	page	table	lookup.	

The	MMU	starts	with	a	virtual	address	and	the	type	of	operation	requested	(LOAD,	
STORE,	or	FETCH).	It	may	generate	any	one	of	these	exceptions:	

•	Unaligned	LOAD/STORE	Exception	
•	Page	Illegal	Address	Exception	
•	Page	Table	Exception	
•	Page	Invalid	Exception	
•	Page	Fetch	Exception	
•	Page	Write	Exception	
•	Page	Copy-On-Write	Exception	
•	Page	First	Dirty	Exception	

If	the	operation	is	LOAD.H,	LOAD.W,	LOAD.D,	STORE.H,	STORE.W,	or	STORE.D	and	the	
address	is	not	aligned	properly,	then	an	“Unaligned	LOAD/STORE	Exception”	will	be	
triggered.	Whenever	an	exception	is	triggered,	the	instruction	execution	is	aborted	
and	a	trap	occurs.	

If	the	core	is	currently	running	in	user	mode	and	the	address	has	bit	[35]	=	0,	then	
we	have	an	illegal	attempt	to	access	a	physical	memory	or	memory-mapped	I/O	
address.	A	“Page	Illegal	Address	Exception”	will	be	triggered.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	227 344

Chapter	8:	Memory,	Address	Spaces,	and	Page	Tables	

Otherwise,	the	MMU	will	walk	the	page	table	in	order	to	obtain	the	address	of	the	
data.	This	involves	Uirst	reading	a	page	table	entry	(PTE)	from	the	root	page	and	then	
reading	a	PTE	from	the	second	level	index	page,	as	shown	in	the	following	diagram.	

FIGURE:	“Mapping”	

First,	the	csr_pgtable	register	is	used	to	obtain	the	address	of	the	root	index	page.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	228 344

Chapter	8:	Memory,	Address	Spaces,	and	Page	Tables	

If	csr_pgtable	contains	0,	a	“Page	Table	Exception”	will	be	signaled. 	But	assuming	47

csr_pgtable	is	not	0,	the	address	it	contains	will	used	to	locate	and	read	an	entry	
from	the	root	index	page. 	48

The	VPN[1]	Uield	of	the	virtual	address	will	be	used	to	select	a	PTE	within	the	root	
page	and	that	PTE	will	be	read	from	physical	memory.	

Within	the	root	page,	each	entry	will	use	only	the	following	two	Uields.	(The	other	
Uields	will	be	ignored	by	the	MMU	and	will	presumably	be	zero.)	

	 Physical	Page	Number	
	 Valid	Bit	

The	VALID	(V)	bit	will	be	1	if	the	PTE	points	to	a	second	level	index	page,	and	0	if	
not.	If	the	MMU	encounters	a	0	valid	bit,	it	will	trigger	a	“Page	Invalid	Exception”.	

In	the	second	step,	the	MMU	will	extract	the	physical	page	number	of	the	second	
level	index	page	and	will	use	the	VPN[2]	Uield	to	select	a	PTE	within	the	second	level	
page. 	That	PTE	will	be	read	from	memory.	49

If	the	VALID	(V)	bit	of	the	second	PTE	is	0,	a	“Page	Invalid	Exception”	will	be	
triggered.	

The	address	of	the	data	page	will	be	extracted	from	this	PTE	and	a	physical	address	
will	be	constructed	using	the	offset	Uield	from	the	virtual	address.	

	Presumably	this	is	a	kernel	bug;	a	virtual	address	should	not	be	generated	unless	the	kernel	has	47

already	created	a	page	table	and	set	csr_pgtable	to	point	to	it.	The	test	for	null	only	checks	bits	
[43:14],	i.e.,	the	Physical	Page	Number	(PPN)	of	the	root	node.

	Within	csr_pgtable,	the	upper	20	bits	(which	include	the	ASID)	will	be	ignored,	to	form	an	48

address	of	44	bits,	i.e.,	an	address	within	the	16	TiByte	physical	memory	area.	The	lower	14	bits	
will	also	be	ignored	and	zeros	will	be	used.	This	forces	the	address	of	the	root	page	to	be	page-
aligned,	regardless	of	what	csr_pgtable	contains.

	More	precisely,	30	bits	are	extracted	from	bit	positions	[63:34]	in	the	“Physical	Page	Number”	in	49

the	top	level	PTE.	These	upper	30	bits	are	used	to	construct	the	address	of	the	second	level	PTE.	
The	10	bits	of	the	VPN[1]	Uield	are	shifted	3	bits	to	give	a	doubleword	aligned	offset.	This	is	
extended	to	14	bits	[13:0]	by	adding	a	zero	for	bit	[13].	Together,	the	30	bit	page	number	[43:14]	
and	the	offset	[13:0]	give	a	44	bit,	doubleword	aligned	address	in	physical	memory,	which	will	
contain	the	second	level	PTE.

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	229 344

Chapter	8:	Memory,	Address	Spaces,	and	Page	Tables	

If	the	requested	operation	is	LOAD,	then	the	operation	will	read	from	memory	with	
no	further	ado.	

If	the	requested	operation	is	FETCH	and	the	EXECUTE	(X)	bit	is	1,	the	MMU	will	read	
from	memory.	If	the	EXECUTE	(X)	bit	is	0,	a	“Page	Fetch	Exception”	will	be	triggered.	

Finally,	if	the	requested	operation	is	STORE	then	the	W,	C,	and	D	bits	will	be	checked,	
as	follows:	

W:	Writable	 C:	Copy-on-write	 D:	Dirty	 	
0	 …	 …	 Page	Write	Exception	
1	 0	 0	 Page	First	Dirty	Exception	
1	 0	 1	 The	operation	is	performed	
1	 1	 0	 Page	Copy-On-Write	Exception	
1	 1	 1	 The	operation	is	performed	

We	can	explain	this	as	follows:	

If	the	page	is	not	writable	(W=0)	and	the	user	tries	to	write	into	it,	then	it	is	a	user	
error	and	the	kernel	will	need	to	deal	with	the	error	(Page	Write	Exception).	When	
the	page	is	Uirst	written	(D=0),	it	may	be	necessary	for	the	kernel	to	update	the	page	
table	in	memory	to	indicate	that	if	the	page	is	to	be	evicted,	it	must	Uirst	be	saved	to	
the	backing	storage	(Page	First	Dirty	Exception).	Otherwise	if	the	page	has	already	
been	marked	dirty,	the	operation	can	be	performed	without	kernel	involvement.	

If	the	page	is	shared	using	copy-on-write	(C=1),	then	upon	the	Uirst	write	(D=0)	it	is	
necessary	for	the	kernel	to	make	a	copy	of	that	page	(Page	Copy-On-Write	
Exception).	After	that,	the	kernel	can	mark	the	page	as	having	been	copied	by	setting	
the	D	bit.	Otherwise	(D=1),	the	page	has	already	been	copied,	so	the	operation	can	
proceed	without	kernel	involvement.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	230 344

Chapter	8:	Memory,	Address	Spaces,	and	Page	Tables	

We	can	summarize	the	MMU	interface	as	follows:	

Memory	Management	Unit	(MMU)	

	 Input:	
	 	 The	current	mode	(Kernel	or	User)	
	 	 The	36	bit	program-generated	address:	
	 	 	 MSBit:	 Bit	[35]	
	 	 	 	 	 	 0=kernel	region,	i.e.,	unmapped	
	 	 	 	 	 	 1=virtual	region,	i.e.,	mapped	
	 	 	 VPN:	 Bits	[34:14]	page	number	(21	bits)	
	 	 	 Offset:	 Bits	[13:0]	offset	into	page	(14	bits)	
	 	 Is	this	a	FETCH	attempt?	(1	bit)	
	 	 Is	this	a	STORE	attempt?	(1	bit)	
	 	 Alignment	requirement:	
	 	 	 •	Doubleword	
	 	 	 •	Word	
	 	 	 •	Halfword	
	 	 	 •	None	
	 	 csr_pgtable	
	 	 	 •	ASID	(Address	Space	ID)	
	 	 	 •	Address	of	the	page	table	root	node	

	 Output:	
	 	 Status:	
	 	 	 •	Null	Address	Exception	(Address	<	8)	
	 	 	 •	Unaligned	LOAD/STORE	Exception	(Address	not	properly	aligned)	
	 	 	 •	Page	Illegal	Address	Exception	(User	mode	to	access	kernel	space)	
	 	 	 •	Page	Table	Exception	(Bad	csr_pgtable)	
	 	 	 •	Page	Invalid	Exception	(Either	index	page	or	PTE	has	V=0)	
	 	 	 •	Page	Write	Exception	(Attempt	to	write	an	unwritable	page)	
	 	 	 •	Page	Fetch	Exception	(Attempt	to	execute	an	un-executable	page)	
	 	 	 •	Page	Copy-On-Write	Exception	(Attempt	to	write	a	copy-on-write	page)	
	 	 	 •	Page	First	Dirty	Exception	(Write	to	a	previous	unmodiUied	page)	
	 	 	 •	All	okay	
	 	 The	physical	address	(35	bits)	
	 	 	 (If	there	is	an	exception,	we	don’t	care	about	the	address	returned.)	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	231 344

Chapter	8:	Memory,	Address	Spaces,	and	Page	Tables	

The	precedence	of	the	exceptions	is:	

•	Null	Address	Exception	 ←	highest	
•	Unaligned	LOAD/STORE	Exception	
•	Page	Illegal	Address	Exception	
•	Page	Table	Exception	
•	Page	Invalid	Exception	
•	Page	Fetch	Exception	
•	Page	Write	Exception	
•	Page	Copy-On-Write	Exception	
•	Page	First	Dirty	Exception	

What	if	we	have	several	violations	at	once?	For	example,	what	if	there	is	an	
alignment	violation,	and	the	address	falls	in	kernel	space	while	running	in	user	
mode,	and	the	csr_pgtable	register	is	null?	We’ve	got	3	things	wrong.	In	such	a	case,	
only	the	Unaligned	LOAD/STORE	Exception	will	be	signaled.	The	Page	Table	
Exception	and	Page	Illegal	Address	Exception	will	be	ignored.	

The	last	6	exceptions	are	mutually	exclusive	and	these	errors	cannot	arise	
simultaneously. 	50

Here	are	some	example	scenarios:	

Con]lict:	Null	Address	and	Unaligned	LOAD/STORE	
Example:	A	LOADD	instruction	attempting	to	load	from	address	0x0_0000_0001	
while	running	in	kernel	mode.	
Result:	Null	Address	Exception	

Con]lict:	Null	Address	and	Page	Illegal	Address	
Example:	A	LOADD	instruction	attempting	to	load	from	address	0x0_0000_0000	
while	running	in	user	mode.	
Result:	Null	Address	Exception	

Con]lict:	Unaligned	LOAD/STORE	and	Page	Illegal	Address	

	If	there	is	a	Page	Table	Exception,	then	there	is	no	Page	Table	Entry	(PTE),	so	the	remaining	5	50

exceptions	cannot	occur.	If	the	PTE	is	invalid,	then	the	Ulags	(Copy-on-write,	Dirty,	Writable,	
Executable)	do	not	exist,	so	the	remaining	4	exceptions	cannot	occur.	If	there	is	a	Fetch	Exception,	
the	operation	is	a	FETCH	and	not	a	STORE,	so	the	remaining	3	exceptions	cannot	occur.	Finally,	if	
one	of	the	last	there	exceptions	is	signalled,	then	the	operation	must	have	been	a	STORE	and	the	
outcome	—	which	was	described	above	—	can	result	in	at	most	one	of	the	Uinal	3	exceptions.

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	232 344

Chapter	8:	Memory,	Address	Spaces,	and	Page	Tables	

Example:	A	LOADD	instruction	attempting	to	load	from	address	0x0_0000_1111	
while	running	in	user	mode.	
Result:	Unaligned	LOAD/STORE 	51

NOTE:	The	following	exceptions	are	not	suppressed	when	running	in	Kernel	Mode:	

Page	Fetch	Exception	
Page	Write	Exception	
Page	Copy-On-Write	Exception	
Page	First	Dirty	Exception	

TLB:	Translation	Lookaside	Buffer	

Previously,	we	described	the	MMU	as	if	there	is	no	TLB	cache,	but	there	would	
almost	certainly	be	a	Translation	Lookaside	Buffer	(TLB).	

Although	the	presence	of	a	TLB	is	theoretically	optional,	in	practice	each	core	will	
have	its	own	set	of	TLB	registers	to	reduce	accesses	to	memory	that	would	
otherwise	be	needed	to	fetch	Page	Table	Entries	(PTEs)	from	the	in-memory	page	
table.	

The	discussion	below	is	intended	to	give	you	an	idea	of	how	a	TLB	would	work.	

Each	core	contains	a	private	set	of	TLB	registers.	These	registers	constitute	the	TLB	
cache	and	are	not	directly	accessible	by	software.	

The	number	of	TLB	registers	associated	with	one	core	is	implementation	dependent.	
For	example,	there	might	be	128	TLB	registers.	

Each	TLB	register	contains	a	TLB	entry,	which	has	the	Uields	shown	in	the	following	
diagram :	52

FIGURE:	“TLB	Entry”	
The	TLB	is	a	set-associative	memory,	keyed	on	“ASID	||	VirtPageNumber”,	i.e.,	the	
most	signiUicant	37	bits	of	the	TLB	entries.	

	This	decision	is	arbitrary;	it	is	hard	to	say	which	exception	is	more	applicable	in	this	case.51

	This	layout	is	merely	a	suggestion	and	implementations	may	lay	out	the	TLB	entry	differently.52

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	233 344

Chapter	8:	Memory,	Address	Spaces,	and	Page	Tables	

Whenever	a	LOAD,	STORE,	or	FETCH	operation	occurs,	the	MMU	will	Uirst	consult	
the	TLB	cache	to	see	if	it	contains	a	matching	PTE.	If	so,	the	MMU	uses	that	and	
avoids	reading	from	the	in-memory	page	table.	

The	MMU	uses	the	Address	Space	IdentiUier	(ASID)	from	csr_pgtable	and	the	virtual	
page	number	from	from	virtual	address,	to	construct	a	“search	key”.	The	TLB	cache	
is	an	associative	memory	and	this	key	is	used	to	retrieve	a	TLB	entry	with	a	
matching	key.	

If	a	matching	TLB	entry	is	found,	then	it	is	used.	This	is	called	a	cache	hit. 	A	53

physical	address	is	constructed	and	the	bits	(Copy-On-Write,	Dirty,	Writable,	
Executable,	and	Valid)	are	used	as	described	earlier.	Either	an	exception	is	signaled	
or	the	memory	operation	is	performed.	

However,	if	no	matching	entry	is	found,	the	MMU	will	then	access	the	in-memory	
page	table.	This	was	described	above.	In	addition,	the	MMU	will	construct	an	TLB	

	The	TLB	registers	(which	are	a	cache	of	page	table	entries)	should	not	be	confused	with	memory	53

caches,	such	as	L1,	L2,	and	L3	which	are	a	cache	of	main	memory	data.	A	hit	in	the	cache	of	page	
table	entries	has	nothing	to	do	with	a	hit	in	the	L1,	L2,	or	L3	memory	caches,	although	both	can	be	
said	to	be	“cache	hits”.

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	234 344

Chapter	8:	Memory,	Address	Spaces,	and	Page	Tables	

entry	and	add	it	to	the	cache.	Since	the	TLB	cache	is	a	Uixed	small	size,	this	means	
that	an	existing	entry	must	be	evicted.	

The	TLB	cache	—	at	least	as	we	are	describing	it	here	—	will	implement	the	least-
recently-used	algorithm	in	hardware.	

To	do	this,	the	TLB	will	operate	as	a	stack.	In	other	words,	the	TLB	registers	are	
organized	as	a	stack	of	memory	registers,	with	TLB	register	0	at	the	top	of	the	stack	
and	TLB	register	127	at	the	bottom	(assuming	128	registers	in	the	cache).	

Entry	0,	at	the	top	of	the	stack,	will	be	the	most	recently	used	entry.	The	entry	at	
the	bottom	of	the	stack	(e.g.,	entry	127)	is	the	least-recently-used	entry,	and	will	be	
the	entry	that	gets	evicted	(i.e.,	discarded)	when	a	new	entry	is	pushed	onto	the	
stack	top.	

When	there	is	a	cache	miss,	the	entire	TLB	register	array	will	be	shifted	down.	The	
last	entry	(e.g..,	entry	127)	will	be	discarded.	The	newly	constructed	entry	will	be	
added	as	entry	0.	In	other	words,	the	new	entry	is	pushed	onto	the	top	of	the	stack.	

Furthermore,	in	order	to	maintain	the	proper	order,	any	time	a	cache	hit	occurs,	the	
matching	entry	must	be	removed	from	its	place	in	the	stack	and	moved	to	the	top	of	
the	stack.	All	entries	from	the	previous	top,	down	to	the	matching	entry,	are	shifted	
one	position	down,	making	room	for	the	matching	entry	to	be	moved	into	the	top	
position.	

The	TLB	entries	contain	a	VALID	bit	and,	upon	power-on-reset	all	VALID	bits	are	set	
to	0.	Whenever	the	VALID	bit	is	0	(indicating	the	entry	is	invalid),	the	entry	is	
ignored.	A	cache	hit	can	only	return	a	valid	entry.	

There	is	an	important	difference	between	the	VALID	bit	in	a	PTE	in	the	in-memory	
page	table	and	the	VALID	bit	in	a	TLB	entry.	For	the	page	table,	an	invalid	entry	
means	the	page	is	not	mapped	into	the	virtual	address	space.	Any	attempt	to	access	
that	page	will	require	the	kernel	to	determine	whether	a	page	should	be	allocated	or	
whether	the	thread	should	be	aborted.	For	the	TLB	entries,	an	invalid	entry	just	
means	that	the	TLB	register	is	not	in	use.	When	there	is	a	cache	hit	for	the	TLB,	the	
returned	entry	will	always	be	valid.	

Whenever	the	MMU	performs	a	walk	of	the	in-memory	page	table	and	retrieves	an	
invalid	PTE,	it	will	signal	a	“Page	Invalid	Exception”.	The	MMU	will	not	update	the	
TLB	cache.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	235 344

Chapter	8:	Memory,	Address	Spaces,	and	Page	Tables	

Whenever	the	kernel	updates	a	PTE	in	the	in-memory	page	table,	we	have	a	
situation	where	the	cached	TLB	entry	becomes	out-of-date.	To	deal	with	this,	the	
kernel	must	invalidate	the	old	TLB	entry	by	setting	its	VALID	bit	to	0.	

This	is	the	purpose	of	the	TLBFLUSH	instruction.	This	instruction	will	mark	any	
matching	TLB	entry	as	invalid .	Later,	when	the	same	virtual	address	is	used,	the	54

MMU	will	get	a	cache	miss	and	will	respond	by	reading	the	PTE	from	the	in-memory	
page	table	and	adding	to	the	TLB	cache. 	55

From	time	to	time,	the	kernel	may	wish	to	make	major	changes	to	an	in-memory	
page	table.	Perhaps	the	virtual	address	space	is	deleted	altogether,	or	perhaps	a	
large	number	of	PTEs	are	modiUied.	In	such	a	case,	it	will	be	necessary	for	the	kernel	
to	invalidate	all	the	cached	entries	for	a	given	address	space.	This	is	accomplished	
with	the	TLBCLEAR	instruction.	This	instruction	simply	marks	as	invalid	all	TLB	
entries	that	have	an	ASID	that	matches	the	ASID	from	the	csr_pgtable	register.	

When	a	LOAD,	STORE,	or	FETCH	occurs,	the	MMU	will	check	the	TLB.	If	the	TLB	
contains	a	matching	entry,	then	that	PTE	will	be	used	and	a	walk	of	the	page	table	is	
avoided.	Whenever	a	TLB	entry	is	successfully	retrieved,	it’s	also	possible	that	the	
csr_pgtable	register	happens	to	contain	zero,	which	would	normally	cause	a	Page	

	There	can	be	at	most	one	matching	entry;	the	cache	should	never	contain	more	than	one	valid	54

entry	with	the	same	key.

	Ideally,	when	a	new	entry	must	be	added	to	the	TLB	stack	(evicting	an	existing	entry	from	the	55

cache),	we’d	like	to	reuse	an	entry	that	was	previously	marked	invalid.	So,	whenever	a	cache	miss	
occurs	and	a	new	entry	is	to	be	pushed	onto	the	TLB	stack	top,	instead	of	shifting	all	entries	down	
and	discarding	the	last	entry,	the	shifting	should	only	occur	above	the	Uirst	invalid	entry,	thereby	
evicting	and	discarding	the	invalid	entry.	

An	alternative	approach	to	the	TLBFLUSH	instruction	would	be	to	move	the	invalidated	entry	to	
the	bottom	of	the	TLB	stack,	so	that	whenever	an	entry	must	be	evicted	in	the	future,	the	invalid	
entry	will	be	discarded.	However,	this	is	impractical	for	the	TLBCLEAR	operation,	which	must	
invalidate	a	number	of	entries	all	at	once.

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	236 344

Chapter	8:	Memory,	Address	Spaces,	and	Page	Tables	

Table	Exception.	Whether	or	not	an	exception	will	occur	in	this	situation	is	
speciUically	left	unspeciUied	and	implementation	dependent. 	56

It	is	also	possible	that	the	TLB	cache	becomes	“out	of	synch”	with	the	page	table.	For	
example,	this	could	happen	if	the	kernel	failed	to	Ulush	the	TLB	after	switching	to	a	
new	task	and	reloading	csr_pgtable.	In	such	a	case,	the	TLB	would	return	a	PTE	that	
is	completely	different	from	the	PTE	in	the	in-memory	page	table.	Or	perhaps	a	walk	
of	the	page	table	pointed	to	by	csr_pgtable	might	encounter	a	missing	index	page	
and	cause	a	Page	Invalid	Exception,	while	the	TLB	returns	a	perfectly	serviceable	
PTE.	

Obviously,	in	such	cases,	the	contents	of	the	TLB	will	be	used.	No	walk	of	the	in-
memory	page	table	will	occur	and	such	discrepancies	will	be	ignored.	

To	summarize:	If	a	TLB	cache	is	implemented	and	a	cached	entry	in	the	TLB	
provides	a	different	result	than	a	walk	of	the	page	table	would	provide,	the	in-
memory	page	table	is	ignored	and	the	TLB	result	prevails.	

Comments	

Kernel	Access	to	User’s	Virtual	Memory	

Note	that	the	kernel	always	has	access	to	a	user’s	virtual	address	space.	This	is	
convenient	for	a	trap	handler	that	implements	a	system	call.	For	example,	a	user	
process	may	pass	pointers	to	memory	buffers	through	the	syscall	to	the	kernel	code.	
When	servicing	the	syscall,	the	kernel	can	simply	LOAD	and	STORE	from	the	virtual	
addresses	that	were	provided.	However,	since	the	user	mode	process	has	passed	in	
virtual	addresses,	the	kernel	must	go	through	memory	mapping.	

In	the	Blitz-64	design,	this	is	accomplished	easily	and	naturally.	The	kernel	simply	
uses	the	virtual	address	pointer	as	is.	Virtual	memory	mapping	occurs	regardless	of	
the	current	privilege	mode.	

	Normally,	the	csr_pgtable	register	will	be	zero	only	after	power-on-reset	until	initialization	is	56

complete.	From	then	on,	only	valid	pointers	would	ever	be	stored	into	the	register.	Null	would	
never	be	stored,	so	this	situation	is	unlikely	to	occur	in	practice.

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	237 344

Chapter	8:	Memory,	Address	Spaces,	and	Page	Tables	

Of	course,	the	user	code	may	pass	illegal	pointers	to	the	kernel.	The	kernel	really	
ought	to	check	any	virtual	address	before	using	it,	to	see	what	sort	of	an	exception	
might	be	triggered	if	the	access	is	attempted.	The	CHECKADDR	instruction	is	
provided	for	exactly	this	purpose.	

As	another	example,	a	debugger	process	may	wish	to	write	to	a	user	page	that	is	
otherwise	not	writable.	This	would	be	necessary	when	the	debugger	writes	a	
BREAKPOINT	instruction	into	a	page	of	code	that	is	marked	executable,	but	not	
writable.	Clearly,	this	must	involve	some	sort	of	kernel	involvement.	

Perhaps	the	page	in	question	is	simply	mapped	into	the	debugger	space	as	writable.	
But	if	the	action	is	to	be	done	directly	by	the	kernel,	it	must	temporarily	change	the	
page	to	writable.	In	more	detail,	the	kernel	must	change	the	PTE	entry	in	the	page	
table	to	writable	and	execute	the	TLBFLUSH	instruction	in	case	the	PTE	was	
previously	cached.	Then	the	kernel	can	issue	the	STORE,	change	the	PTE	back	to	not-
writable,	and	re-execute	the	TLBFLUSH	instruction.	

(Why	did	we	not	just	specify	in	the	Blitz-64	ISA	something	like	“write	permission	
checking	is	disabled	whenever	the	core	is	running	in	kernel	mode”?	Because	the	
core	might	be	using	separate	data	and	instruction	caches	and	an	inconsistency	might	
arise.	Scenarios	like	this	are	explored	in	detail	in	a	later	section	concerning	caches.)		

Regarding	the	16	KiByte	Page	Size	

Several	page	sizes	were	considered	in	the	design	of	Blitz-64.	Traditionally,	pages	
have	been	4	KiBytes;	the	selection	of	16	KiBytes	is	somewhat	radical.	

Here	are	some	arguments	in	favor	of	the	larger	page	size:	

•	TLB	entries	need	only	be	loaded	~¼	times	as	often,	compared	to	systems	with	
page	size	of	4	KiBytes. 	57

•	Fewer	TLB	registers	are	needed.	A	TLB	cache	with	¼	the	size	will	cover	the	
same	amount	of	virtual	address	space.		

•	A	two	level	page	table	becomes	feasible.	In	other	systems	with	a	smaller	page	
size,	a	page	table	of	at	least	three	levels	is	required.	

	Assuming	good	locality-of-reference,	of	course.57

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	238 344

Chapter	8:	Memory,	Address	Spaces,	and	Page	Tables	

•	With	a	two	level	page	table,	the	hardware	response	to	a	TLB	cache	miss	is	
substantially	faster,	requiring	2	memory	LOADs,	versus	3	LOADs.	

•	Whenever	a	page-related	exception	occurs,	the	kernel	must	search	the	in-
memory	page	table.	The	algorithm	to	search	the	page	table	will	be	faster	with	
a	two	level	table	than	a	three-level	table,	but	the	difference	is	minimal.	

•	For	large	processes,	the	page	table	takes	~¼	the	space,	since	it	only	needs	¼	as	
many	PTEs.	Furthermore,	initializing	such	a	page	table	will	be	4	times	faster.	

•	Internal	fragmentation	(i.e.,	lost	space	inside	the	last	page	at	the	end	of		
sections)	is	not	much	of	a	problem.	Assuming	3	sections	per	process	
(i.e.,	.data,	.text,	and	stack),	8	KiBytes	on	average	lost	per	page,	and	200	
processes,	we	only	lose	0.5%	of	1	GiByte.)	

•	The	total	size	of	page	tables	is	small.	(Assuming	3	pages	per	process	×	16	
KiBytes	per	page	×	200	processes	=	1%	of	1	GiByte.)	

•	Every	process	with	data	plus	code	size	under	32	MiBytes	requires	only	3	pages	
(48	KiBytes)	for	its	page	table. 	58

On	the	other	hand,	there	are	some	drawbacks	to	a	larger	page	size:	

•	Each	virtual	address	space	will	consume	(i.e.,	waste)	more	physical	memory	
with	a	larger	page	size,	than	with	a	smaller	size.	Let’s	assume	that	most	
programs	have	three	sections/segments	(.code	and	.data	in	low	memory	and	
stack	in	high	memory).	On	average,	half	of	the	last	page	in	these	segments	will	
be	wasted.	So,	about	3	×	16,384	×	½	=	24,576	bytes	of	virtual	memory	will	be	
unnecessarily	added	to	each	address	space.	There	is	also	waste	in	the	second	
level	index-pages,	the	amount	of	which	is	dependent	on	the	size	of	the	virtual	
address	space.	If	we	assume	that,	on	average,	half	a	page	is	wasted	in	both	
high	and	low	memory,	we	have	2	×	16,384	×	½	=	16,384.	Thus,	we	estimate	the	
total	waste	to	be	40,960	bytes	per	process.	In	a	system	with	(say)	200	
processes,	this	will	waste	about	8,000,000	bytes.	In	a	system	with	2	GiBytes	of	
main	memory,	this	is	less	than	0.5%.	

	One	second-level	index	page	covering	the	bottom	of	the	virtual	address	space	(where	the	.data	58

and	.text	sections	reside)	will	cover	2,048	×	16,385	=	32	MiBytes.	Along	with	a	page	to	cover	high	
memory	and	the	root	index	page,	we	have	a	total	of	3	pages	in	the	page	table.

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	239 344

Chapter	8:	Memory,	Address	Spaces,	and	Page	Tables	

•	Copying	/	initializing	data	pages	each	time	a	virtual	address	space	is	created	
will	require	more	time.	Assume	two	data	sections	(.text	and	.data)	in	low	
memory,	with	half	of	the	last	page	being	unused.	We	must	initialize	2	×	2,048	
bytes	for	4	KiByte	pages	and	2	×	8,192	bytes	for	16	KiByte	pages.	Assuming	we	
need	to	initialize	/clear	the	entire	page	for	the	stack	section,	we	must	initialize	
4,096	bytes	for	4	KiByte	pages	and	16,384	bytes	for	16	KiByte	pages.	In	
summary,	for	each	new	address	space,	we	will	need	to	initialize	8,192	versus	
32,768	bytes,	which	is	4	times	as	many	bytes	for	the	larger	page	size.	To	create	
a	new	address	space,	we	are	presumably	reading	in	several	kilobytes	of	code	
and	data	from	a	Uile.	It	is	unclear	whether	the	cost	of	zeroing	an	additional	
24,576	bytes	is	signiUicant.	

•	Many	address	spaces	will	be	very	small.	Creating	a	mostly	empty	page	table	
requires	more	space	and	more	time	with	a	larger	page	size,	compared	to	a	
smaller	page	size.	Roughly	speaking,	we	can	say	a	larger	page	size	will	waste	
as	much	as	4	times	as	much	memory	with	additional,	unused	page	table	
entries .	Since	we	need	to	initialize	these	unused	PTEs,	up	to	4	times	as	much	59

time	will	be	required	to	setup	the	virtual	address	space.	

Examples	of	System	Memory	Requirements	

To	give	a	feel	for	potential	Blitz-64	usage,	we	show	some	example	virtual	address	
spaces.	

Minimal	process	(112	KiBytes)	
	 1	page	for	code	and	constants	=	16	KiBytes	(~1K	lines	of	code)	
	 1	page	for	data	=	16	KiBytes	
	 1	page	for	stack	=	16	KiBytes	
	 3	pages	for	page	table	=	48	KiBytes	
	 1	page	for	kernel	data	and	stack	=	16	KiBytes	
	 	 ⇒	7	pages	(working	set	cannot	exceed	3	TLB	entries)	

	In	other	words,	many	entries	in	the	lowest	level	index	pages	will	be	unused	and	will	need	to	be	59

initialized	to	“invalid”.

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	240 344

Chapter	8:	Memory,	Address	Spaces,	and	Page	Tables	

Small	process	(512	KiBytes)	
	 16	pages	for	code	and	constants	=	256	KiBytes	(~10K	lines	of	code)	
	 8	pages	for	data	=	128	KiBytes	
	 4	pages	for	stack	=	64	KiBytes	
	 3	pages	for	page	table	=	48	KiBytes	
	 1	page	for	kernel	data	and	stack	=	16	KiBytes	
	 	 ⇒	32	pages	

Large	process	(48	MiBytes)	
	 2048	pages	for	code	and	constants	=	32	MiBytes	(~1M	lines	of	code)	
	 1024	pages	for	data	=	16	MiBytes	
	 16	threads	@	4	pages	for	stack	=	1	MiBytes	
	 4	pages	for	page	table	=	64	KiBytes	
	 1	page	for	kernel	data	and	stack	=	16	KiBytes	
	 	 ⇒	~3200	pages	

Mega	process	(400	MiBytes)	
	 16Ki	pages	for	code	and	constants	=	256	MiBytes	(~10M	lines	of	code)	
	 8Ki	pages	for	data	=	128	MiBytes	
	 128	threads	@	4	pages	for	stack	=	8	MiBytes	
	 16	pages	for	page	table	=	256	KiBytes	(<	0.1%)	
	 1	page	for	kernel	data	and	stack	=	16	KiBytes	
	 	 ⇒	~25,000	pages	

Examples	of	installed	physical	memory	
				1	MiByte	
	 	 =	64	pages	(0	megapages)	
	 	 Accommodates	8	minimal	processes.	
				512	MiBytes	
	 	 =	32Ki	pages	(or	16	megapages).	
	 	 Accommodates	1,000	small	processes.	
	 	 Accommodates	200	small,	8	large	processes.	
				4	GiBytes	
	 	 =	256	Ki	pages	(or	128	megapages).	
	 	 Accommodates	5	mega,	20	large,	2,000	small	processes.	

Shared	Core	Functions	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	241 344

Chapter	8:	Memory,	Address	Spaces,	and	Page	Tables	

The	Blitz-64	design	is	tuned	to	support	a	set	of	globally	shared	functions.	The	idea	is	
that	a	collection	of	functions	is	so	widely	used	by	user	programs	that	it	makes	sense	
to	make	these	functions	available	to	all	tasks	in	a	uniform	way,	as	a	sort	of	universal,	
shared	library.	

These	are	called	the	“shared	core	functions”	and	the	pages	containing	the	
functions	will	be	mapped	into	every	virtual	address	space,	whether	or	not	the	
functions	are	used.	The	maximum	virtual	address	space	is	so	large	that	a	small	
number	of	pages	set	aside	for	the	shared	core	functions	does	not	make	a	signiUicant	
difference.	

In	this	discussion,	we	describe	how	functions	are	shared.	We	can	also	place	heavily	
used	methods	into	the	shared	core	function	library.	Thus,	commonly	used	classes	
need	not	be	included	in	every	executable	program.	

It	is	envisioned	that	there	will	be	several	hundred	shared	functions/methods.	As	an	
example,	imagine	that	2,500	functions	are	placed	in	the	shared	core	library,	with	
each	consuming	and	average	of	200	bytes	each.	This	number	of	functions	can	be	
accommodated	with	32	pages,	consuming	512	KiBytes	of	the	virtual	address	space.	

The	shared	core	functions	will	be	placed	in	the	very	uppermost	pages	of	the	address	
space,	which	end	at	address	0xF_FFFF_FFFF.	In	our	example,	setting	aside	32	pages	
out	of	2,097,152	possible	pages	in	the	address	space	has	no	signiUicant	cost.	

The	pages	of	the	shared	core	functions	will	be	marked	“read/execute”	so	that	they	
can	be	freely	shared	by	all	virtual	address	spaces.	Since	the	pages	are	shared	and	
assumed	to	be	memory-resident	at	all	times	anyway,	there	is	essentially	no	overhead	
for	individual	tasks.	

Regardless	of	how	many	pages	are	consumed	by	the	shared	core	functions,	when	
loading	a	program	to	be	executed,	the	kernel	will	typically	initialize	the	stack	pointer	
to	somewhere	below	the	shared	core	function	area.	

To	facilitate	linking	and	the	dynamic	connection	between	separately	compiled	
programs	and	the	shared	library	functions,	there	will	be	a	“dispatch	table”	(i.e.,	a	
branch	or	jump	table)	which	will	consist	of	one	entry	per	shared	core	function.	

Each	entry	of	the	dispatch	table	is	8	bytes.	Each	entry	will	contain	a	JUMP	to	the	Uirst	
instruction	of	the	function.	If	the	function	itself	is	located	close	enough	(i.e.,	within	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	242 344

Chapter	8:	Memory,	Address	Spaces,	and	Page	Tables	

32	pages,	or	512	KiBytes),	a	single	JAL	instruction	will	sufUice.	Otherwise,	the	JUMP	
will	require	two	instructions,	i.e.,	8	bytes.	

The	dispatch	table	will	occupy	the	last	page	of	the	address	space.	If	the	number	of	
functions	exceeds	2,048,	the	dispatch	table	will	occupy	the	last	two	pages.	

	 First	page	of	dispatch	table:	
	 	 Number	of	entries:	 2,048	
	 	 Entry	0:	 F_FFFF_C000	
	 	 Entry	2047:	 F_FFFF_FFF8	
	 Additional	page	(if	necessary):	
	 	 Number	of	entries:	 2,048	
	 	 Entry	2,048:	 F_FFFF_8000	
	 	 Entry	4,095:	 F_FFFF_BFF8	

To	call	(i.e.,	invoke)	a	shared	core	function,	user	code	can	contain	a	CALL	instruction	
to	the	dispatch	table	address.	From	there,	the	JUMP	instruction	will	take	execution	to	
the	Uirst	instruction	of	the	function.	

The	purpose	of	using	a	dispatch	table	is	to	allow	simple	linking	between	arbitrary	
user	mode	programs	and	the	shared	core	function	library.	Each	shared	core	function	
is	assigned	an	offset	in	the	dispatch	table	which	will	never	change.	There	will	be	a	
KPL	header	Uile	declaring	each	of	the	shared	core	functions	as	an	“external”	function.	
This	allows	the	KPL	compiler	to	perform	type	checking	on	the	function	invocations.	
A	simple	assembly	Uile	will	equate	each	function	name	with	the	address	of	the	
corresponding	dispatch	table	entry.	The	user	mode	programs	do	not	need	to	know	
the	exact	location	or	size	of	the	functions	themselves,	and	these	can	be	changed	
without	needing	to	recompile	user	mode	programs.	Functions	can	be	modiUied	and	
new	functions	can	be	added	to	the	shared	core	function	library	without	requiring	
user	mode	programs	to	be	recompiled.	

To	invoke	a	share	core	function,	the	code	will	Uirst	“call”	to	an	address	in	the	dispatch	
table,	and	then	a	JUMP	instruction	will	take	execution	to	the	Uirst	instruction	of	the	
function.	

Notice	that	a	CALL	to	a	shared	core	function	can	always	be	implemented	with	a	
single	JALR	instruction.	(This	is	because,	using	register	“r0”	and	a	negative	offset,	
each	of	the	4,096	entries	in	the	dispatch	table	can	be	reached	with	a	single	
instruction.)	From	there,	a	single	instruction	will	take	execution	to	the	function	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	243 344

Chapter	8:	Memory,	Address	Spaces,	and	Page	Tables	

itself.	(This	is	because	the	JALR	instruction	contains	a	20	bit	offset	and	can	jump	
-524,288	…	+524,287	bytes	relative	to	the	PC.)	

Thus,	the	overhead	for	invoking	a	shared	core	function	is	a	single	instruction! 	60

Private	and	Shared	Memory	

A	multi-core	system	in	which	the	cores	share	a	common	block	of	main	memory	is	
called	a	Shared	Memory	Multiprocessor	(SMP). 	In	a	typical	multicore	system,	61

there	is	a	single	large	block	of	physical	memory	and	this	block	is	mapped	to	the	
same	location	in	all	cores,	thus	making	it	fully	and	symmetrically	shared.	

The	Blitz-64	architecture	supports	both	private	and	shared	memory.	

A	multicore	system	may	have	only	shared	memory	and	have	no	private	memory.	
This	is	expected	to	be	a	common	design	choice,	mirroring	other	SMP	computers.	The	
shared	physical	memory	will	be	located	at	the	same	physical	addresses	in	all	cores.	

On	the	other	hand,	a	multicore	system	may	have	only	private	memory	and	no	shared	
memory.	In	this	design,	each	core	will	have	its	own	block	of	private	memory.	

Finally,	a	Blitz-64	system	may	have	a	mix	of	both	private	and	shared	memory.	In	such	
a	design,	the	private	memory	might	be	devoted	to	containing	the	kernel	code	and	the	
code	of	the	share	core	functions.	The	beneUit	of	this	is	that	any	cache	loads	from	this	
region	will	be	entirely	local	and	therefore	faster. 	62

	Since	some	function	invocations	might	be	far	away	and	require	two	instructions,	we	can	actually	60

say	the	overhead	is	at	most	one	instruction	for	shared	core	functions.

	Other	authors	use	SMP	to	stand	for	“Symmetric	Multiprocessing”,	where	all	cores	are	identical	61

and	connected	symmetrically.

	If	all	private	memories	contain	the	identical	data,	then	these	addresses	can	be	mapped	into	62

virtual	space	with	no	problem.	For	example,	the	shared	core	functions	would	typically	be	mapped	
into	the	highest	pages	of	the	virtual	address	spaces.	When	a	cache	fault	occurs	and	the	data	must	
be	loaded,	the	virtual	address	will	be	mapped	into	a	physical	address	within	private	memory.	It	
will	not	matter	which	core	is	executing,	since	all	private	memories	contain	identical	data.

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	244 344

Chapter	8:	Memory,	Address	Spaces,	and	Page	Tables	

Private	memory,	if	present,	will	always	start	at	address	0.	The	cores	need	not	have	
the	same	amount	of	private	memory,	although	we	normally	expect	all	cores	in	a	
given	computer	to	have	the	same	amount.	

Shared	memory,	if	it	exists,	will	always	follow	private	memory.	The	shared	memory	
will	be	located	at	the	same	address	in	all	cores.	If	no	cores	have	private	memory,	the	
shared	physical	memory	will	be	placed	at	address	0.	

LOAD	/	STORE	Atomicity	

In	Blitz-64,	all	LOAD	and	STORE	operations	are	required	to	be	properly	aligned.	This	
means	that	the	data	involved	can	never	cross	a	cache	line .	Since	the	data	in	63

question	will	reside	entirely	within	a	single	cache	line,	

Every	LOAD	and	STORE	instruction	is	atomic.	

One	core	(call	it	“A”)	may	STORE	a	value	and	another	core	(call	it	“B”)	may	LOAD	or	
FETCH	from	the	same	address.	By	“atomic”,	we	mean	that	if	another	core	looks	at	the	
same	address,	it	will	either	see	the	data	as	it	was	before	the	modiUication	or	as	it	is	
after	the	modiUication.	But	it	will	never	retrieve	a	value	that	is	partly	modiUied	and	
partly	unmodiUied. 	64

If	instead,	some	data	value	is	not	aligned,	it	might	possibly	cross	a	cache	line	
boundary.	In	other	words,	the	value	could	reside	partly	in	one	cache	line	and	partly	
in	the	following	cache	line.	An	update	to	the	data	value	by	core	A	will	need	to	modify	
both	cache	lines.	Now	consider	what	might	happen	at	core	B.	It	may	be	that	one	of	
the	cache	lines	is	present	in	the	cache	of	B,	but	the	other	line	is	not	present.	
Of	course	the	updates	will	not	be	instantaneous.	If	core	B	looks	at	the	data	in	a	given	
cache	line,	it	will	either	see	the	data	before	a	change	or	after	the	modiUication.	

As	an	example,	assume	that	some	data	item	crosses	a	cache	boundary.	When	core	A	
updates	the	data	value,	the	modiUications	to	the	cache	lines	must	propagate	to	other	
cores.	

	In	this	section,	the	terms	“cache	line”	and	“cache	block”	are	used	synonymously.	Elsewhere,	63

“cache	block”	is	used	to	refer	only	to	the	data	in	a	cache	line,	while	a	“cache	line”	includes	address	
key	and	control	bits	as	well	as	the	block	of	data.

	We	are	implicitly	mandating	that	cache	lines	must	be	at	least	8	bytes	long.64

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	245 344

Chapter	8:	Memory,	Address	Spaces,	and	Page	Tables	

Blitz-64	allows	for	a	relaxed	memory	model,	which	means	these	changes	may	
propagate	at	different	speeds.	Thus	it	is	possible	that	core	B	will	see	part	of	the	data	
as	it	was	before	the	modiUication	and	the	other	part	of	the	data	as	it	was	after	the	
modiUication.	Thus,	core	B	could	effectively	retrieve	a	value	that	was	never	actually	
stored	by	any	core!	

Of	course	some	shared	data	is	sometimes	very	large	and	must	necessarily	lie	in	
multiple	cache	lines.	

To	control	synchronization,	we	assume	the	kernel	uses	locks	and	respects	the	
locking	protocol .	Before	accessing	any	shared	data,	we	assume	the	kernel	has	65

acquired	the	appropriate	lock,	giving	the	core	exclusive	use	of	that	data.	

But	even	though	locks	are	used,	we	still	have	the	problem	of	cache	lines	being	out-
of-date,	which	we	now	turn	our	attention	to	in	the	following	sections.	

A	Relaxed	Memory-Model	

In	a	Shared	Memory	Multiprocessor	(SMP)	model,	several	cores	share	physical	
memory.	

In	the	basic,	simplest	model	of	memory,	every	memory	location	has	exactly	one	
value	—	or	at	least	behaves	in	a	functionally	equivalent	way.	Any	STORE	to	some	
location	(say	X)	will	become	immediately	visible	to	all	cores.	Any	subsequent	LOAD	
or	FETCH	from	address	X	by	any	core	can	only	return	the	most	recent	value,	and	
never	any	prior	value.	If	one	core	updates	two	locations	one	after	the	other	(say	X	
Uirst,	followed	by	a	STORE	to	Y),	then	all	cores	must	observe	those	updates	in	that	
order.	

In	short,	such	a	system	behaves	as	if	there	are	no	caches.	Every	address	is	stored	in	
only	one	location	and	every	memory	operation	is	executed	in	linear	order,	one	after	

	The	locking	protocol	requires	that	a	lock	is	acquired	before	the	shared	data	is	read	or	65

modiUied	and	the	lock	is	released	afterwards.	The	code	between	the	acquire	and	the	release	
operations	is	called	a	critical	section	and	the	shared	data	is	only	accessed	within	a	critical	section,	
i.e.,	when	the	relevant	lock	is	held.

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	246 344

Chapter	8:	Memory,	Address	Spaces,	and	Page	Tables	

the	other.	But	of	course	caches	—	which	complicate	things	—	are	necessary	for	
performance.	

To	improve	efUiciency,	the	same	cache	block	will	often	be	held	in	multiple	caches	at	
different	cores.	To	deal	with	this,	many	common	cache	protocols	(such	as	MSI,	MESI,		
MOESI,	…)	are	designed	to	preserve	the	invariants	discussed	above,	allowing	the	
programmer	to	ignore	cacheing,	without	risking	incorrect	results.	In	other	words,	
the	caching	is	transparent.	While	caches	will	affect	performance,	they	will	not	affect	
functionality	or	results.	

But	there	is	a	cost	to	making	cacheing	fully	transparent .	To	address	this,	Blitz-64	66

adopts	a	relaxed	memory	model.	

The	Blitz-64	Memory	Model:		Blitz-64	accommodates	a	relaxed	
memory	model.	Local	caches	are	assumed	to	exist	and	the	results	of	
updates	to	memory	(i.e.,	STOREs)	are	not	assumed	to	propagate	to	
other	cores	instantly	or	in	the	order	actually	executed.	

The	relaxed	memory	model	of	Blitz-64	does	not	assume	a	memory	in	which	each	
address	contains	exactly	one	value	at	any	instant	or	that	all	cores	see	exactly	the	
same	value.	This	is	different	from	systems	with	transparent	caching,	which	require	a	
cache	protocol	that	guarantees	that	it	appears	to	all	cores	that,	at	every	instant,	
every	memory	location	has	exactly	one	value.	

Instead,	Blitz-64	assumes	that	cores	have	local	caches	which	are	not	transparent.	
Although	any	update	to	a	memory	address	by	one	core	will	eventually	be	seen	by	
other	cores,	cache	propagations	take	non-zero	time.	Some	cores	may	still	see	the	old	
values	while	other	cores	are	already	seeing	the	new	value.	

Since	cache	propagation	is	not	instant,	some	cache	lines	may	contain	older	values	
and	still	remain	valid	in	the	Blitz-64	memory	model.	As	a	result,	one	core	may	fetch	
data	that	is	old,	out-of-date,	and	seemingly	made	in	an	inconsistent	order	with	
respect	to	other	cores	and	other	memory	locations.	

Like	all	systems,	Blitz-64	requires	the	cache	protocol	to	implement	a	coherent	
memory	model.	

	Generally	speaking,	this	cost	is	in	additional	bus	trafUic	imposed	by	the	cache	coherence	protocol	66

and	the	additional	overhead	of	the	snooping	required	of	the	individual	caches.

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	247 344

Chapter	8:	Memory,	Address	Spaces,	and	Page	Tables	

By	“coherent”,	we	require	that	a	sequence	of	writes	of	values	by	one	core	to	any	
single	location	will	be	observed	by	all	cores	has	happening	in	the	same	order,	i.e.,	in	
the	order	they	were	actually	performed.	If	a	core	sees	the	new	value	in	location	X,	it	
will	never	subsequently	see	an	old	value	in	that	location.	

The	behavior	of	LOADs,	STOREs,	and	FETCHes	made	exclusively	by	one	core	must	
always	respect	the	order	in	which	they	appear.	By	“respect”,	we	mean	that	any	
reordering	performed	by	the	compiler	or	an	out-of-order	core	must	be	transparent	
and	will	not	be	observable	by	that	core.	

However,	since	the	core	doing	the	reordering	may	not	fully	understand	the	
interdependencies	of	the	data,	the	reordering	may	be	visible	at	other	cores.	

Consequently,	an	additional	mechanism	—	the	FENCE	instruction	—	is	required	to	
prevent	a	core	from	reordering	certain	operations	and	to	constrain	the	order	in	
which	changes	are	propagated	to	other	cores.	

With	the	Blitz-64	relaxed	memory	model,	if	multiple	addresses	are	involved,	it	is	
possible	and	acceptable	that	the	updates	made	by	one	core	(call	it	A)	do	not	appear	
to	another	core	(B)	as	being	made	in	the	same	order.	For	example,	if	core	A	writes	a	
new	value	to	address	X	followed	by	writing	a	new	value	to	address	Y,	some	other	
core	(such	as	B)	might	see	the	new	value	when	reading	from	Y	but	subsequently	see	
the	old	value	when	reading	from	X!	

Of	course,	the	software	really	ought	to	use	locks	and	the	FENCE	instruction	(as	
discussed	below)	to	prevent	such	confusing	scenarios.	

FENCE	and	Memory	Synchronization	

An	out-of-order	core	(which	is	sometimes	called	a	superscalar	core)	may	execute	
the	instructions	in	a	slightly	different	order	than	they	actually	appear	in	the	
instruction	stream.	This	dynamic	rescheduling	of	instructions	is	done	to	improve	
performance	and	more	efUiciently	utilize	the	hardware’s	circuits	and	functional	
units.	The	execution	of	the	reordered	instructions	must	be	transparent	and	the	
results	indistinguishable.	Reordering	by	the	core	is	allowable	only	when	there	are	no	
data	dependencies	between	the	reordered	instructions.	

For	example,	consider	this	instruction	sequence:	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	248 344

Chapter	8:	Memory,	Address	Spaces,	and	Page	Tables	

movi r7,0x1234567890
div r1,r2,r3
addi r1,r1,r7

Since	there	are	no	registers	used	in	common	by	both	the	MOVI	and	DIV	instructions,	
the	order	of	these	two	instructions	doesn’t	matter.	The	core	is	free	to	begin	the	DIV	
instruction	Uirst.	In	fact,	this	is	probably	a	good	idea	since	DIV	will	take	longer	than	
MOVI	to	complete.	But	the	ADD	cannot	begin	until	both	MOVI	and	DIV	have	
completed.	

However,	the	core	may	not	fully	understand	all	data	dependencies,	especially	in	the	
presence	of	concurrent	algorithms	and	multiple	cores.	

On	a	single	core	system,	the	FENCE	instruction	can	be	used	to	make	sure	that	an	
out-of-order	core	(which	might	be	reordering	instructions	for	the	sake	of	
performance)	does	not	violate	some	ordering	and/or	synchronization	requirements	
that	must	be	respected,	but	which	cannot	be	inferred	from	a	myopic	analysis	of	the	
instruction	stream.	

The	FENCE	instruction	requires	that	any	instruction	that	occurs	
before	the	FENCE	is	completed	before	beginning	the	execution	of	any	
instruction	after	the	FENCE.	

FENCE	instructions	can	be	used	to	limit	and	restrict	any	instruction	reordering	an	
out-of-order	core	or	compiler	might	otherwise	attempt. 	67

For	multi-core	systems,	the	FENCE	requirement	is	expanded	to	include	inter-core	
interactions.	The	FENCE	instruction	affects	the	instructions	on	the	core	that	
executes	the	FENCE,	but	the	FENCE	instruction	is	required	to	do	more	in	multi-core	
systems.	

	We	also	assume	that	a	“fence	statement”	is	available	to	the	compiler.	This	is	true	in	the	KPL	67

programming	language.	The	presence	of	a	fence	statement	in	the	KPL	code	will	restrict	the	
reorderings	that	the	compiler	might	consider,	as	well	as	insert	a	FENCE	instruction.

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	249 344

Chapter	8:	Memory,	Address	Spaces,	and	Page	Tables	

To	address	the	problem	of	some	data	being	old	and	out-of-date	in	the	caches	of	other	
cores,	the	following	additional	requirement	is	added:	

The	FENCE	instruction	requires	all	memory	updates	performed	by	
the	core	to	be	fully	propagated	to	other	cores	before	execution	
proceeds.	

In	other	words,	after	the	FENCE	instruction	is	completed,	it	must	be	impossible	for	
any	other	core	to	see	an	old,	out-of-date	value	for	any	memory	location	that	was	
updated	by	the	core	before	that	core	executed	the	FENCE	instruction.	All	STORE	
operations	must	be	fully	performed	and	all	old,	out-of-date	values	must	be	purged	
from	all	caches	before	the	FENCE	instruction	can	be	retired. 	68

Note	that	we	speciUically	do	not	place	the	following	requirement	on	the	FENCE:	“All	
LOADs	and	FETCHes	that	occur	after	the	FENCE	must	retrieve	the	most	recent,	up-
to-date	value.”	Such	a	requirement	would	impose	an	additional	burden	on	the	
implementation.	Assuming	that	locks	are	used	rigorously	and	properly	to	protect	
shared	data	in	a	multi-core	system,	the	requirement	to	propagate	STOREs	is	
sufUicient	to	ensure	the	shared	data	is	always	accessed	exclusively.	

Commentary		The		speciUication	of	FENCE,	as	given	above,	imply	that	the	following	
are	true:	

(1)	All	memory	operations	that	appear	before	the	FENCE	are	truly	completed	
before	the	FENCE.	

(2)	All	memory	operations	that	appear	after	the	FENCE	are	truly	not	started	
until	after	the	FENCE.	

These	requirements	impact	changes	to	shared	memory	and	the	timing	of	when	
those	changes	become	visible	to	other	cores.	

	For	example,	a	write	buffer	must	be	emptied	and	STORES	must	be	propagated	before	execution	68

proceeds.

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	250 344

Chapter	8:	Memory,	Address	Spaces,	and	Page	Tables	

Transparent	Cache	Protocol	

Imagine	a	very	simple	multi-core	system	in	which	private	caches	do	not	exist:	there	
is	only	main	memory. 	This	is	a	perfectly	reasonable	implementation	for	smaller	69

systems	where	simplicity	is	favored	over	performance.	Every	time	a	FETCH,	LOAD,	
or	STORE	is	executed,	the	operation	is	performed	directly	on	the	main	memory.	In	
such	a	simple	system,	it	is	not	possible	for	an	address	to	simultaneously	contain	two	
values,	since	there	is	only	one	location	in	which	the	value	can	be	stored.	In	such	a	
system,	the	problem	of	out-of-date	data	is	impossible.	The	requirement	that	“all	
previous	memory	operations	become	visible	to	all	cores”	happens	implicitly	with	
every	STORE	operation.	

Some	computer	designs	include	private,	per-core	local	caches,	but	the	cache	
protocol	will	be	designed	in	such	a	way	that	all	updates	to	data	are	immediately	
propagated	to	other	caches.	Such	an	“instant	propagation”	protocol	will	guarantee	
that	every	memory	address	will	appear	to	have	exactly	one	value.	In	this	design	
approach,	cacheing	is	entirely	transparent	—	data	is	never	out-of-date	—	and	its	
presence	does	not	affect	the	result.	Aside	from	performance	impacts,	the	behavior	is	
identical	to	the	simpler	design	without	any	private	caches	at	all. 	70

Linearizability	

A	strictly	linearizable	cache	protocol	is	deUined	as	follows.	Although	the	actual	
order	in	which	operations	occur	is	not	fully	constrained,	there	must	exist	a	total	
order	for	all	LOADs	and	STOREs. 	The	results	of	a	strictly	linearizable	protocol	are	71

the	same	as	if	all	operations	had	been	performed	sequentially,	one	after	the	other	in	
that	order,	on	a	system	without	any	cacheing.	

	A	memory-side	cache	(often	called	the	L3	cache)	is	a	cache	which	sits	between	main	memory	69

and	the	bus	that	connects	to	the	private	caches.	All	accesses	to	main	memory	must	pass	though	the	
L3	cache.	In	our	discussion	of	cache	synchronization,	we	are	focussing	on	private,	per-core	caches	
and	we	ignore	memory-side	caches.	While	the	L3	cache	can	contain	a	different	value	than	main	
memory	—	implying	that	one	value	is	out-of-date	—	all	cores	will	always	see	the	same	value,	and	
that	will	be	the	value	in	the	L3	cache,	which	is	the	most	current	value.

	Imagine	a	program	that	goes	through	memory	byte-by-byte	writing	to	sequential	bytes,	one-by-70

one.	Each	STORE	instruction	updates	a	single	byte	within	some	cache	line.	For	each	STORE,	it	is	
necessary	to	notify	all	other	caches	to	make	certain	they	invalidate	any	copy	of	this	cache	line	they	
hold	in	their	private	caches.	This	overhead	can	impose	a	huge	burden	on	bus	trafUic.

	Of	course	this	total	order	must	respect	the	order	in	which	the	LOADs	and	STOREs	on	any	one	71

core	are	performed.

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	251 344

Chapter	8:	Memory,	Address	Spaces,	and	Page	Tables	

The	“no	cache”	and	the	“instant	propagation”	protocols	described	in	previous	
paragraphs	are	strictly	linearizable.	However	the	strictly	linearizable	protocol	
allows	added	Ulexibility	in	the	ordering	of	two	operations	that	are	performed	by	
different	cores.	Another	way	to	say	this	is	that	cache	propagations	can	be	delayed,	as	
long	as	the	outcome	is	guaranteed	to	be	the	identical	to	the	result	on	a	no-cache	
system	in	which	the	cores	run	at	variable	and	indeterminate	speeds.	

While	a	linearizable	cache	protocol	is	ideal,	there	is	a	cost	to	making	cacheing	
entirely	transparent.	

So	in	some	modern	systems	—	including	Blitz-64	—	strict	linearizability	is	
sacriUiced.	Updates	to	the	cache	are	not	required	to	propagate	immediately.	The	
cache	at	some	core	can	continue	to	use	out-of-date	data	at	the	same	time	that	the	
core	is	seeing	and	using	updated	values	in	other	cache	lines.	

The	relaxed	memory	model	of	Blitz-64	allows	the	same	cache	line	in	the	caches	at	
two	different	cores	to	contain	different	data. 	In	short,	the	cache	protocol	can	allow	72

some	core	to	continue	to	see	an	old,	out-of-date	value	for	some	time,	while	other	
cores	are	seeing	the	new,	updated	value.	This	allows	for	improved	performance,	but	
opens	the	door	to	confusion	when	two	cores	are	accessing	the	same	address	in	a	
shared	address	space. 	73

Locking	Example	

To	perform	synchronization	and	concurrency	control,	all	shared	data	really	ought	to	
be	protected	by	locks.	Program	correctness	cannot	be	guaranteed	without	proper	
locking.	

	In	Blitz-64,	the	following	restriction	holds:	It	must	be	clear	which	value	is	most	recent.	We	do	72

not	allow	two	cores	to	STORE	into	a	single	location	where	neither	STORE	has	precedence.	While	
changes	may	not	propagate	immediately,	the	values	retrieved	from	a	single	location	are	required	to	
be	sequentially	ordered.	Assume	that	one	core	stores	6	while	another	core	stores	7	into	the	same	
location.	Then	either	the	6	is	stored	Uirst	(in	which	case	it	is	never	possible	for	any	core	to	read	7	
followed	by	reading	6)	or	7	is	stored	Uirst	(in	which	case	it	is	never	possible	for	any	core	to	read	6	
followed	by	reading	7).

	It	would	get	even	more	problematic	if	the	cache	protocol	allowed	the	updates	to	be	propagated	73

in	an	unconstrained,	arbitrary	order.	It	would	then	become	possible	that	one	core	can	see	changes	
made	in	an	order	that	is	different	from	the	order	in	which	the	other	core	actually	made	them.	But	
as	mentioned,	this	is	not	allowed	in	the	Blitz-64	memory	model.

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	252 344

Chapter	8:	Memory,	Address	Spaces,	and	Page	Tables	

To	accommodate	the	Blitz-64	memory	model,	a	FENCE	instruction	
should	be	used	within	the	locking	functions.	

The	FENCE	is	used	to	make	sure	that	all	operations	which	are	to	be	done	after	a	lock	
is	acquired	are	truly	not	begun	until	after	the	lock	has	been	properly	acquired.	
FENCE	is	also	used	before	a	lock	is	released	to	ensure	that	all	instructions	that	
should	be	executed	in	the	critical	section	(i.e.,	before	the	release)	are	truly	
completed	before	the	lock	is	freed.	

This	is	required	to	prevent	an	out-of-order	processor	or	the	relaxed	cache	protocol	
from	violating	the	locking	protocol	that	programmers	depend	on.	

As	an	example,	consider	the	following	code:	

Acquire	Lock 	74

	 Wait	for	lock	to	become	0	
	 lock	←	1	
	 FENCE	

Critical	Section	
	 Access	shared	variable	X	

Release	Lock	
	 FENCE	
	 lock	←	0	

Some	shared	data	(which	we	will	call	X)	is	protected	by	a	lock,	represented	by	
variable	lock.	We	assume	the	usual	locking	convention	that	any	core	wishing	to	
examine	or	modify	X	must	Uirst	acquire	the	lock.		

Imagine	that	core	A	grabs	the	lock	and	updates	X.	While	the	lock	is	held,	the	value	of	
X	will	pass	through	some	“inconsistent	states”,	but	before	the	lock	is	released,	the	
core	will	set	X	to	a	“consistent	state”,	ready	for	other	cores	to	see	and	use.	

So	what	happens	after	core	A	releases	the	lock?	It	is	perfectly	legitimate	for	some	
other	core	(call	it	B)	to	acquire	the	lock	and	then	retrieve	the	value	of	X.	But	core	B	

	The	“wait”	and	the	“set	lock”	operations	must	be	done	together	atomically,	but	those	details	are	74

ignored	here.

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	253 344

Chapter	8:	Memory,	Address	Spaces,	and	Page	Tables	

must	not	see	an	out-of-date	value;	it	must	see	the	Uinal	value	of	X	and	not	some	
earlier,	inconsistent	state.	

Updates	to	lock	and	updates	to	the	shared	variable	X	must	propagate	and	become	
visible	to	all	cores	in	a	timely,	controlled,	and	correct	way.	The	FENCE	instruction	
has	been	used	to	guarantee	this.	

What	would	happen	without	the	FENCE	instructions?	The	locking	will	not	work	
properly,	given	the	relaxed	memory	model	of	Blitz-64.	Core	A	(which	initially	holds	
the	lock)	will	update	X	before	releasing	the	lock	and	updating	lock.	Unfortunately,	
core	B	might	observe	the	update	to	lock	before	the	update	to	X.	Such	a	scenario	
could	allow	core	B	to	see	a	premature,	inconsistent	state	of	X.	This	defeats	the	idea	
of	locking	and	would	be	a	total	disaster.	

The	FENCE	instruction	requires	that	all	changes	by	one	core	must	be	propagated	to	
all	cores	at	the	time	of	the	FENCE.	

In	the	code	above,	any	core	(such	as	A)	acquiring	the	lock	must	set	lock	to	1	before	X	
can	be	accessed.	The	FENCE	instruction	in	the	acquire	code	guarantees	that	all	other	
cores	will	see	the	lock	as	being	set	—	and	must	therefore	be	outside	of	their	critical	
sections	—	before	core	A	can	proceed	to	access	X.	

At	the	end	of	its	critical	section,	core	A	updates	X	and	then	executes	a	FENCE	before	
updating	and	releasing	the	lock.	The	FENCE	in	the	release	code	guarantees	that	all	
changes	to	X	will	be	propagated	to	other	cores	before	core	A	can	proceed	to	the	
instruction	after	the	FENCE	which	then	releases	the	lock.	All	changes	to	X	must	be	
delivered	to	other	cores 	before	the	code	can	begin	to	release	the	lock.	Therefore,	75

no	other	core	can	observe	an	older	value	of	X	after	observing	the	updated	(released)	
value	of	lock.	

In	conclusion,	if	FENCE	is	used	within	the	code	to	acquire	and	release	locks	as	
shown	above,	and	if	locks	are	always	used	to	protect	all	shared	data,	then	
concurrently	accessed	data	will	be	properly	protected	and	behave	as	expected.	The	
results	obtained	will	be	consistent	with	a	linearizable	memory	model	and	the	fact	
that	the	memory	model	is	relaxed	will	become	invisible.	

	Or,	at	least	any	old	values	must	be	made	invisible.75

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	254 344

Chapter	8:	Memory,	Address	Spaces,	and	Page	Tables	

More	Discussion	/	Implementation	

Clearly,	the	FENCE	instruction	must	prevent	any	reordering	of	instructions	on	the	
core	executing	the	FENCE.	More	precisely,	memory	operations	(LOAD,	STORE,	
FETCH)	that	appear	before	the	FENCE	instruction	must	not	be	moved	past	the	
FENCE	instruction	and	memory	operations	that	occur	after	the	FENCE	must	not	be	
initiated	before	the	FENCE.	In	other	words,	the	core	executing	the	FENCE	must	not	
reorder	instructions	around	the	FENCE	instruction. 	76

We	must	also	ensure	that	any	STORE	appearing	before	a	FENCE	will	be	propagated	
to	other	cores	so	that	no	other	LOAD	or	FETCH	on	any	core	after	the	FENCE	is	
encountered	can	possibly	retrieve	an	earlier,	out-of-date	value.	

On	the	other	hand,	there	is	no	possibility	of	another	core	prematurely	getting	a	value	
STOREd	after	the	FENCE,	since	the	STORE	instruction	is	not	permitted	to	begin	until	
after	the	FENCE.	

We	must	also	ensure	that	any	LOAD	or	FETCH	that	occurs	after	a	FENCE	must	
retrieve	the	most	up-to-date	copy	of	any	data.	Obviously,	there	is	no	danger	of	a	
LOAD	or	FETCH	that	occurs	before	the	FENCE	getting	a	value	that	was	STORED	any	
time	after	the	FENCE.	

Both	may	require	invalidating	any	cache	lines	that	could	possibly	contain	old,	out-of-
date	data.	

To	illustrate,	imagine	a	cache	line	that	is	held	both	in	the	cache	of	core	A	and	in	the	
cache	of	some	other	cores,	and	that	this	line	is	updated	by	A	before	a	FENCE	
instruction.	(For	example,	the	shared	data	might	be	a	lock	which	is	getting	set,	
followed	by	a	FENCE	instruction	before	the	critical	section	is	entered.)	The	FENCE	
must	cause	any	cache	line	that	A	updated	to	be	either	updated	or	invalidated	in	all	
other	private	caches	that	happen	to	contain	that	same	line,	since	the	other	cores’	
caches	might	previously	have	contained	different	(i.e.,	older)	values.	(For	example,	
they	might	have	previously	seen	the	lock	as	“unset”	,	but	they	must	now	see	the	lock	
as	being	“set”.)	After	that,	the	only	value	stored	anywhere	will	be	the	value	held	in	
A’s	cache,	which	is	necessarily	up-to-date.	This	new	value	may	or	may	not	also	

	In	theory,	any	data	pre-fetched	into	the	core’s	pipeline	must	be	Ulushed	whenever	a	FENCE	is	76

encountered	since	that	might	be	out-of-date.	But	we	can	avoid	clearing	the	instruction	prefetch	
buffer	as	long	as	the	prefetch	buffer	is	cleared	whenever	the	core	issues	a	STORE	that	invalidates	
any	line	in	the	core’s	i-cache.

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	255 344

Chapter	8:	Memory,	Address	Spaces,	and	Page	Tables	

appear	in	other	caches,	depending	on	whether	the	FENCE	is	implemented	by	
invalidating	the	other	cores’	caches	or	updating	them	with	the	new	value.	

The	implementation	gets	more	complex	if	it	allows	the	possibility	that	a	cache	line	
updated	by	core	A	can	subsequently	migrate	to	another	cache	before	the	FENCE	
without	invalidating	some	other,	older	copies	in	other	cores.	Failure	to	invalidate	the	
contents	in	these	other	cores	would	violate	the	requirements	of	FENCE.	

For	example,	there	may	be	several	variables	coincidentally	occupying	the	same	
cache	line.	Assume	that,	after	A	updates	the	cache	line,	some	other	core	(call	it	B)	
grabs	the	line	for	some	unrelated	usage,	thereby	invalidating	A’s	copy.	Now	B	has	the	
most	recent	copy	and	A	no	longer	contains	the	line.	On	top	of	this,	imagine	that	some	
other	core	(C)	may	happen	to	contain	an	older	version	of	this	very	same	cache	line.	
The	cache	line	at	C	is	old	and	out-of-date,	but	since	no	FENCE	has	occurred,	this	old	
cache	line	has	not	been	invalidated.	C	is	just	looking	at	an	older	copy	of	the	data.	
(Perhaps	the	cache	line	contains	several	variables,	each	protected	by	different	locks.	
Since	the	locking	protocols	are	respected,	the	data	that	C	is	seeing	is	not,	itself,	out-
of-date	at	all.	Only	the	data	elsewhere	on	the	line	is	out-of-date.)	

Now	assume	A	issues	a	FENCE	operation.	It	required	that	this	old,	out-of-date	cache	
line	in	core	C	must	be	invalidated,	even	though	this	cache	line	is	no	longer	present	in	
A.	

In	order	to	implement	the	Blitz-64	requirements	correctly,	it	seems	necessary	to	do	
one	of	the	following:	

(1)	Invalidate	any	and	all	cache	lines	that	could	possibly	be	out-of-date	in	
any	core,	whenever	a	FENCE	instruction	is	executed	on	any	core.	

(2)	Never	migrate	an	updated	cache	line	from	one	core	to	another	without	
updating	or	invalidating	any	and	all	other	copies.	More	precisely,	if	
other	private	caches	may	contain	older,	out-of-date	copies	of	the	cache	
line,	these	same	cache	lines	must	either	be	updated	or	invalidated	at	
the	time	the	current,	most	recent	value	of	the	cache	line	is	migrated	
from	one	core	to	another.	

Option	(2)	is	preferable	in	terms	of	performance.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	256 344

Chapter	8:	Memory,	Address	Spaces,	and	Page	Tables	

Self-Modifying	Code	

Another	issue	that	can	arise	with	caches	is	the	fact	that	cores	often	have	separate	
caches	for	instructions	and	data.	The	so-called	i-cache	holds	instructions	and	the	d-
cache	holds	data.	

A	program	that	does	instruction	modi]ication	alters	its	own	code	during	execution.	
In	other	words,	the	code	will	STORE	into	some	memory	location	and	then	FETCH	
from	that	same	location	at	some	later	time.	

The	kernel	regularly	writes	data	to	pages	that	will	be	subsequently	executed,	so	we	
must	consider	it	to	be	self-modifying. .	It	is	not	entirely	uncommon	for	a	user	mode	77

process	to	modify	its	own	code	while	it	executes,	although	this	is	often	frowned	

	One	example	is	the	“exec”	syscall,	in	which	the	kernel	loads	an	executable	Uile	into	memory,	77

treating	it	as	data.	Later,	the	instructions	that	were	loaded	will	be	executed.	

Another	example	is	dynamically	loaded	I/O	drivers.	A	kernel	may	download	code	from	the	internet	
to	deal	with	some	new	device	and,	after	moving	this	code	into	memory,	invoke	this	code.	Since	no	
kernel	rebuild	or	reboot	is	required,	this	is	an	example	of	self-modifying	code.	

A	kernel	capable	of	downloading	kernel	patches	and	dynamically	applying	them	—	while	very	
risky	from	a	security	viewpoint	—	is	a	third	example.

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	257 344

Chapter	8:	Memory,	Address	Spaces,	and	Page	Tables	

upon. 	In	some	cases,	user	mode	code	might	even	be	prohibited	from	instruction	78

modiUication. 	79

In	any	case,	we	could	now	have	a	situation	in	which	data	from	the	same	address	is	
held	simultaneously	in	two	different	caches	(the	i-cache	and	the	d-cache).	
Consequently,	there	is	a	need	to	synchronize	these	caches	from	time	to	time.	

The	FENCE	instruction	also	guarantees	that	any	writes	to	the	d-cache	will	be	
propagated	to	the	i-cache.	After	a	FENCE,	the	i-cache	must	never	hold	out-of-date	
values.	The	FENCE	instruction	must	also	Ulush	and	invalidate	any	instruction	that	
was	previously	fetched	and	sitting	in	the	pipeline	(or	some	prefetch	buffer)	awaiting	
execution.	

	One	example	involves	the	implementation	of	dynamically	loaded	library	functions.	The	idea	is	78

that	the	CALL	to	such	a	function	is	actually	directed	at	a	dynamic	loader;	upon	the	Uirst	invocation,	
the	function	is	loaded	and	the	site	of	the	CALL	instruction	is	overwritten	so	that	subsequent	
invocations	go	directly	to	the	now-resident	function.	

Another	example	involves	just-in-time	compilation.	The	idea	is	that	the	original	code	is	expressed	
in	some	high-level	form;	upon	the	Uirst	invocation,	a	resident	compiler	is	called	to	generate	
machine	code,	which	will	then	be	executed.	Both	the	code	and	the	compiler	might	live	and	run	
within	a	single	user	mode	address	space.	

Another	more	esoteric	example	might	involve	some	research-oriented	simulation	program	that	
uses	a	genetic	algorithm	to	evolve	code	via	natural	selection,	treating	the	address	space	as	a	
sandbox	environment.	I’m	sure	there	are	other	ideas	I	don’t	know.

	In	the	case	of	malware,	a	virus	might	enter	the	virtual	address	space	of	some	innocent	process	79

as	data	and	subsequently	get	executed.	If	the	user	process	has	some	critical	security	clearance,	
then	the	malware	code	can	do	its	dirty-work.	This	is	an	excellent	reason	to	forbid	security-critical	
processes	from	containing	pages	that	are	both	writable	and	executable	or	ever	adding	“writable”	
privileges	to	any	page.

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	258 344

Chapter	8:	Memory,	Address	Spaces,	and	Page	Tables	

In	a	multi-core	system,	any	modiUications	by	the	core	executing	the	FENCE	must	be	
propagated	to	the	i-caches	—	as	well	as	the	d-caches	—	of	all	other	cores. 	This	80

includes	instructions	sitting	in	the	pipelines	of	other	cores. 	81

Within	a	single	core,	this	could	be	implemented	by	having	the	i-cache	constantly	
snooping.	Whenever	the	CORE	executes	a	STORE	to	a	line	that	happens	to	be	held	in	
the	i-cache,	that	line	must	be	invalidated.	Whenever	an	invalidate	or	update	comes	
in	from	another	core,	the	i-cache	must	respond,	just	as	the	d-cache	must.	Finally,	
whenever	the	i-cache	must	FETCH	a	new	line,	it	must	look	in	the	d-cache	as	well	as	
the	L2	cache.	

Invalidating	Data	in	the	Pipeline	

At	any	moment	in	time,	a	core	will	contain	a	number	of	instructions	which	are	in	
various	stages	of	decoding	and	execution	within	the	instruction	pipeline.	In	
particular,	a	core	will	normally	contain	an	instruction	prefetch	buffer	which	
contains	a	number	of	instructions	that	have	been	fetched	from	the	i-cache	but	whose	
execution	has	not	yet	begun.	The	instructions	in	the	prefetch	buffer	may	or	may	not	
ultimately	get	executed,	depending	on	branch	instructions	and	conditional	
execution,	but	they	have	been	FETCHed	from	main	memory	and	are	effectively	
cached.	

In	this	section,	we	talk	more	generally	about	all	instruction	and	data	bytes	anywhere	
within	the	instruction	pipeline	of	a	core.	The	instruction	prefetch	buffer	is	one	
example	of	data	effectively	pre-cached	in	a	core’s	pipeline.	A	core	may	also	
speculatively	prefetch	data	from	the	d-cache.	In	either	case,	the	core’s	pipeline	may	
contain	a	value	that	is	effectively	cached	and	may	differ	from	values	for	that	same	
byte	that	have	been	modiUied	by	other	cores	and	held	in	other	caches.	

	Since	the	i-cache	cannot	be	written	to,	propagation	in	the	reverse	direction	is	not	an	issue.80

	It	is	a	far-fetched	example,	but	consider	a	scenario	where	core	A	modiUies	an	instruction	in	81

memory	and	executes	a	FENCE.	Assume	that	core	B	has	already	fetched	the	previous	value	of	this	
same	instruction	and	it	is	already	in	core	B’s	pipeline	awaiting	execution.	A	correct	multi-core	
system	must	make	sure	that	the	old	instruction	is	not	executed	after	the	FENCE	has	completed.	A	
design	in	which	the	FENCE	instruction	simply	delays	enough	cycles	for	the	pipelines	on	all	other	
cores	to	be	completely	exhausted	is	adequate	to	handle	this,	as	long	as	the	i-caches	are	also	Ulushed	
as	discussed.

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	259 344

Chapter	8:	Memory,	Address	Spaces,	and	Page	Tables	

Of	course,	it	is	totally	unacceptable	to	execute	an	instruction	on	core	B	after	core	A	
has	modiUied	that	instruction	and	a	FENCE	instruction	has	been	used.	Therefore	
when	discussing	the	FENCE	instruction,	we	must	consider	data	present	in	pipelines.	

Given	that	the	instruction	prefetch	buffer	has	a	Uinite	size,	we	can	stipulate	that	any	
data	the	pipeline	contains	will	be	consumed	within	the	execution	of	a	small	number	
of	instructions.	For	example,	let	us	assume	that	the	prefetch	buffer	can	hold	20	
instructions;	then	after	the	execution	of	20	instructions,	any	old,	out-of-date	data	in	
the	pipeline	will	be	exhausted	and	new	instructions	and	data	must	be	fetched	from	
the	i-cache	and	d-cache.	

We	expect	the	execution	of	the	FENCE	instruction	to	be	fairly	common;	after	all,	the	
kernel	must	use	it	on	every	lock	“acquire”	and	“release”	operation	and	it’s	
reasonable	to	assume	that	a	minimum	of	four	FENCEs	are	required	on	every	core	at	
every	timer	interrupt	(i.e.,	every	“tick”). 	82

In	the	simplest	design	approach,	the	cache	protocol	would	clear	every	core’s	
pipeline	for	each	and	every	FENCE	operation.	It’s	probably	unacceptable	to	
introduce	a	20	instruction	delay	into	all	cores	whenever	any	single	core	issues	a	
FENCE,	but	deUinitely	not	out	of	the	question	for	simpler	systems.	

In	another	approach,	the	FENCE	instruction	would	be	implemented	by	simply	
making	the	core	that	executed	the	FENCE	wait.	The	idea	is	that	all	processing	on	the	
core	would	be	suspended	until	all	inconsistencies	involving	that	core’s	caches	have	a	

	For	example,	the	previously	executing	process	must	acquire	a	lock	before	changing	its	status	82

from	RUNNING	to	READY;	the	scheduler	releases	that	lock	and	acquires	the	lock	of	another	
process	in	order	to	change	its	status	from	READY	to	RUNNING;	and	Uinally	the	new	process	must	
release	that	lock.

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	260 344

Chapter	8:	Memory,	Address	Spaces,	and	Page	Tables	

chance	to	propagate.	This	gives	any	changes	made	by	the	core	enough	time	to	
propagate	to	other	caches	so	that	no	cache	can	contain	an	old,	out-of-date	values.	
Also,	the	core	will	need	to	wait	until	the	other	cores	have	had	a	chance	to	exhaust	
and	consume	all	the	pre-fetched	data	in	their	pipelines.	So	one	core	must	wait	for	20	
instructions. 	83

If	the	implementation	assumes	that	all	data	in	a	core’s	prefetch	buffer	is	always	
present	in	its	i-cache,	a	third,	more	sophisticated	implementation	of	FENCE	would	
be	to	empty	the	prefetch	buffer	only	whenever	any	line	in	the	core’s	i-cache	is	
invalidated.	That	is,	whenever	a	FENCE	instruction	from	another	core	forces	any	line	
in	a	core’s	i-cache	to	be	invalidated,	then	that	core	must	also	unconditionally	empty	
its	entire	prefetch	buffer.	

An	even	more	complex	implementation 	would	involve	keeping	track	of	which	84

cache	lines	are	represented	in	the	core’s	prefetch	buffer.	The	idea	is	that	the	prefetch	
buffer	would	only	be	cleared	when	one	of	those	particular	lines	is	invalidated. 	85

Summary	

We	risk	correctness	unless	we	empty	the	caches	and	the	execution	pipeline	of	any	
core	whose	local,	private	caches	might	possibly	contain	an	out-of-date	data	at	the	
time	of	a	FENCE.	

We	stipulate	the	following:	

A	FENCE	instruction	on	any	core	must	invalidate	out-of-date	data	
kept	in	the	private	caches	(both	d-caches	and	i-caches)	of	all	other	

	More	precisely,	the	core	must	Uirst	wait	until	all	cache	inconsistencies	are	eliminated,	then	it	83

must	wait	additional	time	(such	as	20	instructions)	giving	the	pipelines	on	other	cores	a	chance	to	
Uinish,	so	that	no	out-of-date	data	can	possibly	exist	anywhere	in	any	other	core.

	Since	code	modiUication	is	fairly	rare,	the	approach	described	in	this	paragraph	seems	like	84

overkill.

	An	even	more	targeted	implementation	would	involve	adding	hardware	to	remember,	for	each	85

byte	in	the	pipeline,	from	exactly	which	cache	line	it	originated.	Then	we	could	use	this	to	limit	
pipeline	Ulushing	even	further.	The	idea	is	that	a	“FENCE	bubble”	would	be	inserted	into	the	
pipeline	of	every	core	whenever	a	FENCE	is	executed	on	any	core.	If	the	pipeline	contains	a	
prefetched	byte	before	that	FENCE	bubble	which	came	from	a	cache	line	that	has	since	been	
invalidated,	we	would	only	need	to	Ulush	the	pipeline	from	that	point	on,	forcing	a	reload	of	the	
byte	and	its	the	new	value.	However,	this	sounds	overly	expensive	and	complicated.

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	261 344

Chapter	8:	Memory,	Address	Spaces,	and	Page	Tables	

cores.	If	data	is	invalidated	in	a	core’s	private	cache,	and	there	is	any	
possibility	that	the	same	data	is	also	sitting	in	the	core’s	execution	
pipeline,	execution	must	stop	and	the	pipeline	must	be	cleared.	

More	precisely,	we	are	referring	to	any	instructions	(FETCHed	from	the	i-cache)	and	
any	data	(LOADed	from	the	d-cache)	present	in	the	pipeline	at	any	stage	of	
incomplete,	non-retired	execution.	This	includes	the	prefetch	pipeline	as	well	as	any	
data	speculatively	prefetched.	The	invalidated	bytes	and	everything	behind	them	in	
the	pipeline	must	be	removed.	Instructions	and	data	prefetched	and	sitting	in	front	
of	the	invalidated	data	is	allowed	to	remain	in	the	pipeline.	

The	simplest	implementation	is	to	clear	every	core’s	pipeline	every	time	there	is	any	
FENCE	operation.	However,	this	could	result	in	an	unacceptable	slowdown,	since	
there	might	be	a	lot	of	unnecessary	pipeline	Ulushing.	

We	described	a	more	reasonable	implementation,	which	is	to	clear	the	entire	
pipeline	but	only	whenever	any	line	in	the	d-cache	or	i-cache	is	invalidated	as	a	
result	of	a	FENCE	operation.	If	no	line	in	the	private	caches	is	invalidated,	there	is	no	
reason	to	clear	the	pipeline. 	86

Out-of-Date	TLB	Registers	

The	Translation	Lookaside	Buffer	(TLB)	registers	are	effectively	a	cache	of	data	
retrieved	from	memory,	namely	page	table	entries	(PTEs)	that	have	been	cached	in	
the	TLB	to	improve	performance.	As	such,	the	TLB	may	become	out-of-date	
whenever	changes	are	made	to	the	in-memory	page	table.	

The	FENCE	operation	is	not	required	or	expected	to	affect	the	TLB	
registers.	

Instead,	the	instructions	—	TLBFLUSH	and	TLBCLEAR	—	are	used	to	invalidate	TLB	
entries.	

	It	is	crucial	to	note	that	this	assumes	that	any	byte	in	the	pipeline	that	came	from	a	per-core	86

local	cache	must	still	be	resident	in	the	local	cache	and	therefore	subject	to	potential	invalidation	
by	some	other	core’s	FENCE	operation.	Fortunately,	this	requirement	is	easily	met.	If	instructions	
and	data	in	the	pipeline	always	come	from	the	i-cache	and	d-cache	and	lines	in	these	caches	are	
evicted	based	on	the	least-recently-used	algorithm,	then	this	requirement	will	be	met.	Since	the	
pipeline	is	not	too	large,	the	relevant	lines	can	not	yet	have	been	evicted.

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	262 344

Chapter	8:	Memory,	Address	Spaces,	and	Page	Tables	

At	this	time,	the	Blitz-64	ISA	only	mandates	that	the	TLBFLUSH	and	
TLBCLEAR	instructions	only	affect	the	TLB	registers	on	the	current	
core.	However,	this	is	still	under	consideration	and	the	ISA	may	be	
modiYied.	

The	alternative	is	to	require	a	TLBFLUSH	or	TLBCLEAR	operation	to	affect	the	TLB	
registers	on	all	cores.	

Consider	the	following	scenario.	Two	user	mode	threads	are	executing	
simultaneously	using	a	single,	shared	address	space.	Assume	each	thread	is	
executing	on	a	different	core.	Imagine	that	one	thread	requests	a	kernel	operation	
that	causes	a	change	to	the	address	space.	As	part	of	the	operation,	the	kernel	will	
naturally	issue	a	TLBFLUSH	or	TLBCLEAR	operation	to	get	rid	of	old,	out-of-date	
Page	Table	Entries	(PTEs)	cached	in	the	TLB.	But	what	about	the	TLB	resisters	on	
the	other	core?	They	must	also	be	invalidated!	Perhaps	the	Uirst	core	must	interrupt	
all	other	cores	to	request	they	execute	TLBFLUSH/TLBCLEAR	operations.	But	the	
other	cores	are	most	likely	not	using	the	affected	address	space.	Such	interruptions	
would	be	very	common	but	will	result	in	nothing	but	wasted	time	on	all	other	cores!	
The	obvious	solution	—	to	put	all	threads	operating	within	a	given	address	space	on	
the	same	core	—	tends	to	defeat	the	very	purpose	of	having	more	than	one	core.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	263 344

Chapter	9:	Power-On-Reset	and	the	
Boot	Sequence	

Quick	Summary	

•	After	power-on,	certain	registers	will	be	initialized	before	execution	begins.	
•	Execution	begins	with	the	“BootLoader”	program	in	the	“Boot	ROM	Area”.	
•	Details	of	the	BootLoader	program	are	implementation	dependent.	
•	Security	issues	around	the	boot	process	are	discussed.	

Power-On-Reset	

A	“power-on-reset”	occurs	whenever:	

•	The	processor	core	is	Uirst	powered	up	
•	The	RESET	button	(if	one	exists)	is	pressed	
•	The	RESTART	machine	instruction	is	executed	

Before	the	Uirst	instruction	is	executed,	hardware	will	set	the	following	registers	to	
these	initial	values:	

	 csr_instr	←	0x0000_0000_0000_0000	
	 csr_cycle	←	0x0000_0000_0000_0000	
	 csr_status	←	0x0000_0000_0000_0001	
	 Program	Counter	(PC)	←	0x4_0000_0000	

With	this	value	for	csr_status,	that	the	following	conditions	will	be	true:	

	 Kernel	Mode:	Enabled	
	 Interrupts:	Disabled	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	264 344

Chapter	9:	Power-On-Reset	and	the	Boot	Sequence	

The	PC	is	set	to	the	Uirst	word	of	the	Boot	ROM	Area,	which	is	the	memory-mapped	
I/O	area	where	the	BootLoader	program	is	stored.	

	 Boot	ROM	Area	
	 	 Starting	Address:	 0x4_0000_0000	
	 	 Size	in	bytes:	 1	MiBytes	
	 	 Size	in	pages:	 64	
	 	 Next	Available	Address:	 0x4_0010_0000	

Any	pending	interrupts	will	be	cleared	at	power-on-reset.	

All	memory-mapped	I/O	devices	will	be	sent	a	“reset”	signal	and	will	go	into	their	
initial	states.	

The	Secure	Storage	Limit	Register	will	be	set	to	0.	

All	other	other	programmer-visible	state	of	the	core	(i.e.,	the	general	purpose	
registers	and	all	other	CSRs)	will	have	undeUined	values. 	87

The	BootLoader	Program	

It	is	assumed	that	a	program	(called	the	BootLoader)	has	been	pre-installed	in	the	
Boot	ROM	Area.	

Upon	start-up	(i.e.,	a	“power-on-reset”),	instructions	will	be	fetched	from	the	Boot	
ROM	Area,	beginning	with	the	instruction	stored	in	the	Uirst	word	of	the	Boot	ROM	
Area.	Thus	the	entry	point	of	the	BootLoader	after	a	power-on-reset	is	its	Uirst	word,	
located	at	address	0x4_0000_0000.	

A	“warm	reboot”	(also	called	a	“soft	reset”)	occurs	when	the	kernel	branches	into	
the	BootLoader	directly,	with	the	intent	to	reboot	exactly	as	if	a	power-on-reset	had	
occurred.	This	branch	is	made	to	a	second	entry	point,	in	case	there	are	subtle	
distinctions	between	cold	and	warm	booting.	

	Of	course	the	read-only	CSRs	will	have	their	expected	values.87

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	265 344

Chapter	9:	Power-On-Reset	and	the	Boot	Sequence	

After	a	kernel	crash	(e.g.,	a	“Kernel	Exception”),	the	trap	handler	may	end	by	
branching	directly	to	the	BootLoader.	In	this	case,	a	third	entry	point	is	used.	This	is	
called	the	“kernel-crash”	entry	point.	

	 BootLoader	Entry	Points	
	 	 Power-on-reset	entry	point:	 0x4_0000_0000	
	 	 Warm-reboot	entry	point:	 0x4_0000_0008	
	 	 Kernel-crash	entry	point:	 0x4_0000_0010	

In	all	cases,	the	behavior	of	the	BootLoader	will	be	almost	identical. 	88

Commentary		Since	instructions	can	be	fetched	from	the	Memory	Mapped	I/O	area,	
there	is	no	need	to	remap	the	physical	address	space,	as	is	done	in	some	systems.	
Also,	there	is	no	particular	reason	to	make	the	BootLoader	code	relocatable. 	89

We	don’t	specify	the	exact	behavior	of	the	BootLoader	program	here,	but	perhaps	it	
will	begin	by	probing	the	physical	memory	to	determine	the	size	of	installed	
physical	main	memory.	

Probing	Memory	to	Find	Its	Size	

The	size	of	installed	physical	memory	is	assumed	to	be	a	power	of	two,	e.g.,	256	
MiBytes.	Thus,	it	will	take	at	most	30	probes	to	determine	the	installed	memory	size:	

	 25	=	32	
	 26	=	64	
	 27	=	128	
	 	 …	
	 234	=	16	Gi	

To	probe	a	memory	doubleword,	the	BootLoader	should:	

	To	support	kernel	development,	the	code	at	the	“kernel-crash	entry	point”	might	be	specially	88

tailored	for	debugging.

	Relocatable	code	is	code	that	will	run	correctly	regardless	of	where	it	is	placed	in	memory.	This	89

is	done	by	making	all	addresses	PC-relative.	For	the	purposes	of	debugging,	it	may	be	useful	to	
make	the	BootLoader	relocatable.	During	debugging	of	the	BootLoader	itself,	it	might	be	
convenient	to	place	the	BootLoader	in	a	writable	area	of	main	memory,	to	accommodate	
breakpoints,	and	so	forth.

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	266 344

Chapter	9:	Power-On-Reset	and	the	Boot	Sequence	

	 •	Read	the	previous	existing	value	and	save	it.	
	 •	Write	0xFFFF_FFFF_FFFF_FFFF.	
	 •	Read	the	value	back	&	check	that	it	is	unchanged.	
	 •	Write	0x0000_0000_0000_0000.	
	 •	Read	the	value	back	&	check	that	it	is	unchanged.	
	 •	Restore	the	previous	value. 	90

By	convention,	the	BootLoader	is	free	to	use	the	uppermost	1	MiByte	of	physical	
memory	for	its	R/W	data.	The	kernel	image	will	be	loaded	into	low	physical	memory	
so	there	should	be	no	overlap.	

Before	loading	the	kernel,	the	BootLoader	may	perform	other	operations,	such	as:	

	 •	Check	and	verify	that	all	physical	memory	bytes	function	correctly.	
	 •	Initialize	various	memory-mapped	I/O	devices.	
	 •	Turn	on	LEDs,	e.g.,	to	indicate	the	core	is	booting.	
	 •	Print	messages	on	the	display	or	serial	UART	line.	
	 •	Allow	for	interactive	use,	debugging,	selection	of	kernel	source,	etc.	

The	BootLoader	will	determine	on	which	device	the	kernel	image	is	stored	(e.g.,	on	a	
microSD	card)	and	read	the	kernel	into	main	memory.	

Presumably,	the	kernel	will	be	loaded	starting	at	location	0x0_0000_0008. 	Note	91

that	there	is	no	privilege	checking	for	physical	memory:	All	pages	have	FETCH,	
READ,	and	EXECUTE	permission.	

	The	reason	for	saving	the	pre-existing	value	is	that	the	BootLoader	may	be	invoked	after	a	90

kernel	crash	and	the	pre-existing	memory	contents	may	be	important.	For	example,	the	
BootLoader	may	be	passed	a	pointer	to	an	area	of	memory	where	the	kernel	has	stored	
information	about	the	crash.	This	may	include	register	state,	as	well	as	other	data.	The	BootLoader	
may	be	tasked	with	displaying	this	info	before	rebooting.	The	BootLoader	might	also	need	to	pass	
this	information	on	to	the	reincarnated	kernel	after	the	reboot.	The	re-incarnated	kernel	may	
enter	a	“kernel	debugging	mode”	in	which	the	previous	contents	of	the	memory	can	be	queried.	In	
either	case,	the	BootLoader	must	preserve	the	pre-existing	memory	contents.

	Recall	that	the	Uirst	8	bytes	of	memory	are	reserved	and	never	used.	Any	attempt	to	access	the	91

Uirst	8	bytes	will	result	in	a	Null	Address	Exception.

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	267 344

Chapter	9:	Power-On-Reset	and	the	Boot	Sequence	

By	convention,	the	kernel	will	contain	the	following	entry	points:	

	 	 Power-on-reset	entry	point:	 0x0_0000_0008	
	 	 Warm-reboot	entry	point:	 0x0_0000_0010	
	 	 Kernel-crash	entry	point:	 0x0_0000_0018	

The	kernel	(as	stored	in	an	executable	Uile	to	be	loaded),	will	contain	additional	
information,	generally	including:	

	 •	size	
	 •	entry	point 	92

	 •	error	checking	code	

The	BootLoader	will	check	to	make	sure	the	kernel	was	loaded	correctly	and	the	
computed	error	checking	code	matches	the	expected	value.	Note	that	the	error	
checking	mentioned	here	(in	which	the	expected	code	value	is	read	in	from	an	
external	source	along	with	the	kernel	image)	is	only	useful	in	guarding	against	
accidental,	non-malicious	errors,	such	as	data	corruption	due	to	transient	electrical	
noise.	Any	malicious	user	who	can	corrupt	the	kernel	image	will	also	update	the	
error-checking	code	mentioned	here.	

Finally,	the	BootLoader	will	complete	by	branching	to	the	kernel’s	entry	point.	

We	have	just	described	a	straightforward	booting	chain,	which	doesn’t	involve	
multiple	boot	phases.	While	nothing	precludes	a	complex	boot	chain,	the	approach	
described	here	will	be	adequate	for	many	systems.	

The	BootLoader	should	not	contain	functions	that	are	used	by	the	kernel.	The	
reasons	for	this	are	(1)	Different	implementations	will	have	different	BootLoader	
programs.	Depending	on	the	BootLoader	code	would	tie	the	kernel	to	a	speciUic	
implementation.	(2)	There	may	be	performance	issues.	The	BootLoader	is	located	in	
the	Boot	ROM,	which	is	in	the	memory-mapped	I/O	area.	Thus,	the	ROM	is	
functioning	as	a	sort	of	I/O	device	and	may	not	operate	as	quickly	as	main	
memory. 	93

	This	should	be	equal	to	the	Power-on-reset	entry	point,	0x0_0000_0008.92

	For	example,	instructions	fetched	from	the	ROM	might	not	be	cachable	in	the	i-cache.	There	is	no	93

particular	need	to	make	the	BootLoader	run	quickly	since	its	performance	will	almost	always	be	
limited	by	the	time	required	to	read	the	kernel	image	from	an	external	device.	Therefore,	any	code	
within	the	BootLoader	may	not	execute	at	a	speed	acceptable	for	kernel	performance.

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	268 344

Chapter	9:	Power-On-Reset	and	the	Boot	Sequence	

There	is	one	situation	in	which	it	may	be	acceptable	for	the	kernel	to	invoke	
functions	residing	within	the	BootLoader	code.	When	the	kernel	fails	
catastrophically	(e.g.,	a	Kernel	Exception	occurs),	the	BootLoader	I/O	functions	
might	be	used	to	print	error	messages.The	BootLoader	may	have	a	speciUic	interface	
for	use	during	kernel	errors.	The	BootLoader	may	contain	a	primitive	user-interface	
to	allow	some	state	to	be	recovered	from	the	crashed	kernel.	For	example,	a	branch	
to	the	kernel-crash	entry	point	may	assume	that	the	registers	contain	certain	values,	
such	as:	

	 •	Numeric	crash	code,	indicating	the	nature	of	the	crash	
	 •	Pointer	to	area	of	memory	containing	additional	data	
	 •	Size	of	memory	area	

These	values	could	be	passed	as	parameters	to	the	re-incarnated	kernel,	for	use	in	
debugging	and	crash	reporting.	

A	warm	reboot	(i.e.,	soft	reset)	occurs	whenever	a	program	branches	back	to	the	
BootLoader,	i.e.,	to	address	0x4_0000_0008.	Before	doing	so,	the	core	must	be	in	
kernel	mode	and	have	interrupts	disabled.	

Note	that	the	power-on	sequence	may	result	in	some	I/O	devices	receiving	a	“reset”	
signal.	Such	a	reset	signal	is	not	assured	during	a	soft	reset.	The	kernel	should	
contain	code	during	its	initialization	phase,	to	query	and	reset	all	I/O	devices,	in	
order	to	avoid	complications	during	a	soft-reset.	Upon	soft-reset,	neither	the	
BootLoader	nor	the	kernel	can	assume	that	the	I/O	devices	have	received	their	
proper	reset	signals.	

For	this	reason,	it	is	usually	preferable	to	execute	the	RESTART	instruction,	rather	
than	branch	to	the	“Warm	Reset	Entry	Point”.		

The	BootLoader	is	free	to	pass	information	to	the	Kernel.	The	BootLoader	can	do	
this	by	initializing	some	variables	in	the	global	static	data	area	of	the	Kernel,	which	
is	at	the	beginning	of	memory,	or	the	BootLoader	can	pass	parameters	directly	in	
registers.	

For	example,	the	BootLoader	would	normally	pass	the	size	of	installed	memory,	
information	about	the	hardware	conUiguration	that	the	kernel	will	Uind	itself	running	
in,	and	possibly	information	about	the	current	state	of	various	I/O	devices	or	
information	about	a	previous	kernel	crash.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	269 344

Chapter	9:	Power-On-Reset	and	the	Boot	Sequence	

Contrast	with	Traditional	Booting	

In	some	computers,	code	in	the	BIOS	will	read	in	the	Master	Boot	Record	(MBR)	and	
then	jump	to	code	in	the	sector	just	loaded.	In	other	approaches,	the	Uirmware	itself	
will	be	capable	of	understanding	the	Uile	system	and	will	ignore	the	code	within	the	
MBR.	

In	some	systems,	there	is	a	“boot	chain”,	in	which	there	is	a	sequence	of	programs	
executed	one	after	the	other,	until	Uinally	the	full	kernel	is	loaded	and	executed.	For	
example,	the	BIOS	reads	in	the	MBR;	the	code	in	the	MBR	reads	in	another	(second	
level)	boot	loader	from	the	disk;	and	then	the	second	level	boot	loader	reads	in	the	
kernel.	

In	any	case,	the	Uirst	step	must	necessarily	involve	executing	code	stored	in	some	
form	of	non-volatile	memory	and	that	code	must	be	capable	of	understanding,	
controlling,	and	reading	from	any	device	from	which	the	system	can	boot.	This	is	
true	of	Blitz-64	as	well.	

The	Blitz-64	architecture	does	not	mandate	whether	there	shall	be	a	complex,	multi-
phase	boot	chain,	or	whether	a	simple	program	burned	into	on-chip	ROM	will	do	all	
the	work	of	loading	and	starting	the	kernel.	

Security	Issues	Around	Booting	

We	know	that	the	Master	Boot	Record	(MBR)	in	traditional	systems	was	a	point	of	
vulnerability	and	a	potential	target	of	malware.	If	the	MBR	becomes	corrupted	by	
malware,	it	can	open	the	door	for	a	corrupted	version	of	the	kernel	to	be	loaded.	

However,	the	entire	boot	chain	including	the	code	in	the	ROM	—	whether	it	is	the	
BIOS	of	a	traditional	system	or	the	BootLoader	code	in	Blitz-64	—	is	also	very	
critical,	perhaps	even	more	critical	than	the	MBR.	If	the	BootLoader	program	has	
been	maliciously	tampered	with,	then	nothing	that	executes	afterward	can	be	
trusted.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	270 344

Chapter	9:	Power-On-Reset	and	the	Boot	Sequence	

Because	it	is	the	Uirst	code	that	executes,	the	BootLoader	is	therefore	the	most	
trusted	piece	of	software	in	the	computer	system,	more	trusted	than	the	kernel	
itself.	The	kernel	can	trust	that	the	BootLoader	will	“do	the	right	thing”	when	
executed.	But	the	BootLoader	must	be	very	cautious	about	trusting	any	kernel	code	
or	functionality.	

For	security	reasons,	the	BootLoader	should	avoid	communication	with	other	
entities.	(For	example,	it	is	very	risky	to	receive	instructions	or	commands	over	the	
internet.)	If	the	BootLoader	must	communicate,	the	security	and	integrity	of	the	
communication	and	identity	of	the	other	parties	must	be	carefully	and	securely	
veriUied.	Otherwise	the	bad	guys	can	impersonate	legitimate	sources	and	can	send	
commands	that	exploit	weaknesses	in	the	BootLoader.	

In	all	ISAs,	careful	thought	must	given	to	guarding	against	malware.	In	systems	using	
the	Blitz-64	architecture,	the	BootLoader	must	remain	secure	at	all	times.	Putting	
the	BootLoader	in	Uirmware 	—	as	opposed	to	ROM	—	must	be	done	with	utmost	94

attention	to	security,	since	it	may	inadvertently	create	a	pathway	for	the	kernel	to	be	
compromised.	

To	emphasize	that	the	memory	containing	the	BootLoader	should	be	implemented	
with	ROM	and	not	some	form	of	updatable	memory,	the	memory-mapped	I/O	region	
is	named	the	Boot	ROM	Area. 	95

The	key	to	avoiding	Uirmware	is	to	keep	the	BootLoader	small,	simple,	and	correct.	
Adding	a	bunch	of	code	to	the	BootLoader	is	not	a	good	idea,	since	it	creates	a	need	
for	some	mechanism	to	patch	the	code.		

Of	course	placing	some	of	the	BootLoader	code	in	Uirmware,	which	can	be	updated	
under	program	control,	is	very	convenient	because	bugs	can	be	Uixed	and	support	for	
new	devices	and	greater	functionality	can	be	added.	

	ROM	means	Read-Only	Memory:	once	data	is	placed	the	memory,	it	cannot	be	modiUied.	Once	94

written,	it	cannot	be	altered.	By	“Uirmware”,	we	mean	a	non-volatile	memory	device	that	will	retain	
its	data	even	when	power	is	turned	off,	but	that	can	be	altered	or	re-programmed.	Flash	memory	is	
an	example.

	This	document	cannot	control	how	the	Blitz-64	architecture	is	implemented	and	does	not	95

explicitly	prohibit	the	Boot	ROM	Area	from	being	implemented	in	updatable,	non-volatile	
memory.

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	271 344

Chapter	9:	Power-On-Reset	and	the	Boot	Sequence	

The	cost	of	placing	the	BootLoader	entirely	in	ROM	is	programming	discipline:	
Any	bugs	with	a	ROM-based	BootLoader	cannot	be	Uixed,	so	the	BootLoader	must	
work	correctly	and	be	bug-free.	

If,	instead,	the	BootLoader	is	implemented	as	Uirmware,	then	once	the	kernel	is	
compromised	—	even	once,	for	a	very	short	time	—	security	on	the	entire	system	is	
lost	forever.	Using	Uirmware	necessarily	increases	the	security	risk.	During	any	
malicious	and	successful	attack	on	the	kernel,	we	must	assume	the	malware	has	
updated	the	BootLoader	program,	replacing	it	with	a	malicious	version	which	will	
do	the	bidding	of	the	malware	upon	every	future	power-on-reset.	Thereafter,	the	
boot	process	is	forever	compromised	and	no	future	kernel	can	be	trusted.	

However	if	the	BootLoader	is	placed	in	unalterable	ROM,	then	malware	cannot	
persist	beyond	a	power-on-reset.	If	a	kernel	is	found	to	have	security	bugs	and	a	
security	breach	occurs,	then	of	course	it	is	a	bad	thing	and	perhaps	the	kernel	code	
is	forever	compromised.	But	a	repaired	kernel	can	be	created	and	distributed	to	
repair	the	security	Ulaw.	And	the	BootLoader	can	be	relied	upon	to	load	the	new,	
corrected	kernel	correctly.	

The	BootLoader	must	not	contain	secret	data.	The	BootLoader	code	is	fully	visible	to	
the	kernel	and	may	become	visible	to	arbitrary	programs,	through	bugs,	malware,	or	
oversight.	It	should	be	assumed	that	every	byte	of	the	BootLoader	is	in	the	public	
domain,	and,	in	the	spirit	of	open	software,	it	is	even	encouraged.	Any	idea	of	
keeping	the	BootLoader	code	conUidential	as	a	security	measure	is	misguided.	

As	we	should	all	remember,	“security	through	obscurity”,	is	not	security	at	all.	

For	security	purposes,	the	BootLoader	may	validate	the	kernel	after	loading	it	into	
memory.	For	example,	the	BootLoader	may	compute	a	secure	hash	of	the	kernel	
image	and	compare	it	to	a	known	value.	This	ensures	that	the	kernel	image	is	what	is	
expected	and	the	executable	Uile	containing	the	kernel	has	not	been	modiUied	in	any	
way.	

However,	the	question	is:	Where	is	this	“known	value”	to	be	kept?	There	are	several	
possible	answers:	

•	The	user	is	required	to	type	the	expected	secure	hash	value	in	to	the	
BootLoader.	This	is	the	most	secure,	but	requires	the	most	effort	by	the	user.	
Possibly	appropriate	for	military-level	security.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	272 344

Chapter	9:	Power-On-Reset	and	the	Boot	Sequence	

•	The	BootLoader	displays	the	secure	hash	value	and	asks	the	user	to	verify	its	
correctness	before	branching	to	the	kernel.	This	is	not	reliable,	since	users	will	
tend	to	ignore	such	messages	and	“accept	without	reading”.	

•	The	BootLoader	keeps	the	expected	value	in	some	form	of	stable,	nonvolatile	
storage.	While	most	convenient	to	the	user,	this	nonvolatile	storage	becomes	a	
critical	component	which	must	be	protected.	If	there	is	any	possibility	it	can	be	
altered	by	anything	but	the	BootLoader,	system	security	will	be	compromised.	

Various	approaches	to	BootLoader	/	Kernel	security	and	veriUication,	which	make	
use	of	the	“Secure	Storage”	area,	are	discussed	later	in	this	chapter.	

Simple	Systems	

In	some	embedded	systems,	there	may	be	no	OS	at	all;	perhaps	all	code	will	be	“set	
in	stone”	and	not	updatable	as	well.	This	would	be	particularly	desirable	for	systems	
that	must	be	impervious	to	malware.	In	such	cases,	the	entire	code	base	might	reside	
in	Ulash	memory	or	even	in	the	ROM	itself. 	96

ROM-Only	Systems	

In	the	simplest	ROM-only	system,	there	will	be	no	kernel	and	all	code	will	be	
burned	into	ROM.	This	might	be	appropriate	for	a	very	low	cost,	mass-produced	
microcontroller.	

It	might	also	be	appropriate	for	military	weapons	systems	and	other	critical	
embedded	applications,	in	which	extreme	efforts	must	be	taken	to	prevent	any	and	
all	cyber-attacks.	

In	a	ROM-only	system,	all	code	resides	within	the	Boot	ROM	Area	and	there	is	never	
any	branch	to	other	areas	of	memory.	The	main	memory	area	(i.e.,	bytes	within	the	
Uirst	16	GiBytes	of	the	physical	address	space)	will	only	be	used	for	storing	variables	
and	data.	

	A	system	with	no	Ulash	might	also	be	appropriate	for	simple,	low-cost	systems	where	the	96

additional	cost	and	complexity	of	an	OS	is	not	worth	it.	But	the	real	beneUit	is	that	maintenance	
costs	are	eliminated.	It	is	ridiculous	to	have	to	deal	with	Uirmware	upgrades	for	(say)	headphones.	
And	if	there	is	no	possibility	of	updates,	there	is	no	possibility	of	breaking	the	system	with	an	
update,	which	has	become	an	increasing	plague	upon	us.

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	273 344

Chapter	9:	Power-On-Reset	and	the	Boot	Sequence	

Flash-Based	Systems	

In	a	Flash-based	system	design,	the	ROM-based	code	is	solely	devoted	to	loading	a	
program	into	Ulash	memory.	Subsequently,	on	every	power-on-reset,	the	Ulash-based	
code	will	execute.	

This	accommodates	a	model	similar	to	that	used	for	the	Arduino.	The	on-board	
loader	code	is	permanently	Uixed	in	the	ROM	and	the	various	application	programs	
are	placed	in	the	Secure	Storage	Area,	which	is	implemented	with	Ulash	memory. 	97

If	the	loader	program	in	ROM	detects	a	working	connection	to	a	host	computer	at	
power-on-reset,	it	can	download	and	overwrite	the	Ulash	with	a	new	program.	
Otherwise,	the	loader	program	in	ROM	will	branch	directly	to	the	program	last	
stored	in	Ulash.	This	is	basically	the	Arduino	model. 	98

Single-Stage	Bootstrap	Systems	

In	another	system	design,	booting	the	kernel	will	be	a	single-stage	process.	

The	Boot	ROM	Area	will	contain	a	BootLoader	program.	This	BootLoader	will	locate	
the	kernel	on	some	other	device	and	will	load	it	directly.	The	Secure	Storage	will	not	
be	used.	

This	approach	might	be	appropriate	for	a	Single	Board	Computer	(SBC),	which	will	
always	boot	from	a	microSD	card.	

This	sort	of	design	might	also	be	appropriate	for	an	embedded	application	such	as	
an	automobile,	airframe,	or	weapon	system,	where	the	system	must	be	entirely	
isolated	from	the	Internet,	in	order	to	prevent	any	possibility	of	cyberattack.	A	
multitasking	kernel	is	needed	to	control	various	complex	and	interacting	functions.	
However,	because	of	the	complexity,	bugs	and	modiUications	to	all	parts	of	the	code	
must	be	accommodated.	So	all	code	—	i.e.,	the	kernel	and	the	Uilesystem	—	are	

	By	“Ulash	memory”	we	mean	any	form	of	updatable,	nonvolatile	memory.97

	In	a	related	development	model,	the	program	resides	in	Ulash	memory,	but	updates	to	the	Ulash	98

are	performed	by	plugging	in	a	microSD	card,	rather	than	through	a	communication	channel.	At	
power-on-reset,	the	ROM-based	code	will	detect	that	a	card	is	present	and	will	then	update	the	
Ulash	from	data	on	the	card.

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	274 344

Chapter	9:	Power-On-Reset	and	the	Boot	Sequence	

placed	on	a	microSD	card.	If	upgrades	and/or	bug	Uixes	are	required,	the	microSD	
card	is	simply	removed	and	replaced.		

Multi-Stage	Boot	Processes	

More	generally,	booting	an	OS	will	be	a	multi-stage	process.	A	multi-stage	process	is	
needed	to	accommodate	complex	booting	code,	which	must	understand	ornate	Uile	
systems	and	must	be	upgraded	from	time-to-time	to	accommodate	new	devices	and	
new	device	drivers.	

The	BootLoader	code	in	the	Boot	ROM	Area	is	called	the	“Low	Level	BootLoader”	
(LLBL).	The	BootLoader	code	will	locate	and	pass	control	to	the	“Second	Stage	
BootLoader”	(SSBL).	The	Second	Stage	BootLoader	resides	in	non-volatile	storage	
which,	in	Blitz-64,	is	called	the	“Secure	Storage	Area”.	The	Second	Stage	BootLoader	
will	locate	the	OS	Kernel,	load	it	in	to	memory,	and	pass	control	to	it.	

The	idea	is	to	keep	the	Low	Level	BootLoader	as	simple	as	possible	and	place	all	
complex	functionality	in	the	Second	Stage	BootLoader.	

A	“power-on-reset”	occurs	whenever	the	system	is	initially	powered	up.	If	the	
system	contains	a	reset	button,	then	pressing	this	button	will	also	initiate	a	power-
on-reset.	This	can	also	be	triggered	by	the	execution	of	the	RESTART	machine	
instruction.	

A	power-on-reset	will	have	this	effect:	

	 The	PC	will	be	loaded	with	0x4_0000_0000.	
	 The	csr_status	register	will	be	initialized	(kernel	mode,	interrupts	disabled).	
	 Any	pending	interrupts	will	be	cleared.	
	 The	Secure	Storage	Limit	register	will	be	set	to	0.	

The	BootLoader	is	a	high-security,	high-trust	system	component.	If	it	contains	bugs	
or	security	vulnerabilities,	these	may	be	exploited	to	load	a	compromised	OS	kernel.	
Furthermore,	since	the	BootLoader	is	in	ROM	(not	Ulash),	it	cannot	be	Uixed	or	
updated.	Any	Ulaws	it	contains	will	be	with	the	device	forever.	Putting	unnecessary	
or	complex	functionality	into	the	BootLoader	is	risky	and	ill-advised.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	275 344

Chapter	9:	Power-On-Reset	and	the	Boot	Sequence	

It	is	assumed	that	the	Boot	ROM	and	the	core(s)	are	bundled	together	and	will	often	
be	on	the	same	silicon.	The	Boot	ROM	is	therefore	the	obvious	place	to	put	constant	
and	unchanging	information	about	the	system’s	design	and	conUiguration.	This	
would	include	information	about	main	memory	sizes	and	details	about	memory-
mapped	I/O	devices.	

Commentary	

It	is	extremely	difUicult	for	a	core	CPU	to	distinguish	between	private	and	shared	
memory.	From	the	point	of	view	of	a	single	core,	a	byte	of	memory	functions	the	
same	regardless	of	whether	or	not	it	is	accessible	by	another	core.	

A	logical	thing	to	place	in	the	Boot	ROM	is	information	about	the	memory	system.	In	
particular,	the	starting	address	of	the	shared	memory	is	critical.	The	BootLoader	can	
determine	how	much	memory	is	installed	by	the	use	of	STORE-LOAD	cycles	to	
determine	whether	there	is	functional	memory	at	a	given	address.	However,	having	
additional	information	in	the	BootLoader	might	make	this	process	smoother.	

Another	critical	piece	of	information	is	the	location	and	size	of	the	Secure	Storage	
area.	The	Secure	Storage	is	another	memory-mapped	I/O	device	that	is	used	for	an	
additional	level	of	security	in	a	multi-level	boot	chain.	

As	mentioned	above,	a	BootLoader	can	simply	go	Uind	something	that	looks	like	an	
OS	kernel	—	perhaps	on	some	removable	microSD	card	or	disk	drive	—	load	it,	and	
jump	to	it.	

But	in	order	to	implement	any	level	of	security	for	the	boot	process,	something	more	
is	required.		With	Blitz-64,	this	is	supplied	by	the	Secure	Storage	device.	The	
BootLoader	program	will	access	Secure	Storage	to	implement	the	secure	booting	
protocol.	

In	a	single-stage	boot	process	with	no	security ,	a	minimal	BootLoader	will	only	99

need	to	perform	the	following	tasks:	

•	 Perform	basic	machine	start-up	and	error-checking	
•	 Locate	the	kernel	image	
•	 Read	the	kernel	image	from	an	external	source	

	This	is	appropriate	for	a	device	that	is	(1)	not-connected	to	the	Internet,	(2)	not	expected	to	99

have	software	updates,	and	(3)	not	mission-critical.	Think:	dishwasher,	refrigerator.

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	276 344

Chapter	9:	Power-On-Reset	and	the	Boot	Sequence	

•	 Load	the	kernel	image	into	memory	
•	 Jump	to	the	kernel	entry	point	
•	 Optionally,	the	BootLoader	might	pass	data	about	previous	kernel	crashes	to	
the	new	kernel	

However,	the	following	operations	require	substantial	amounts	of	code:	

•	 Interface	with	complex	I/O	devices,	where	the	kernel	might	be	located	
•	 Understand	complex	Uile	formats,	in	which	the	kernel	might	be	stored	
•	 Implement	various	cryptographic	techniques	to	verify	kernel	integrity	
•	 Provide	a	facility	to	securely	update	Uirmware	
•	 Implement	a	user	interface	
•	 Deal	with	complex	I/O	devices	for	user	interaction	(e.g.,	USB,	HDMI,	Bluetooth)	
•	 Provide	a	debugging	facility	to	deal	with	kernel	crashes	

For	this	reason,	a	Second	Stage	BootLoader	(SSBL)	is	anticipated.	Presumably,	the	
Second	Stage	BootLoader	will	be	Uirmware,	meaning	that	it	will	be	stored	in	the	
Secure	Storage	area.	In	this	case,	the	Low	Level	BootLoader	(LLBL)	in	Boot	ROM	
will:	

•	 Perform	basic	machine	start-up	and	error-checking	
•	 Pass	machine-speciUic	parameters	to	the	SSBL	
•	 Jump	to	the	SSBL	entry	point	
•	 Manage	Uirmware	updates	in	a	secure	way 	100

The	ISA	pre-allocates	are	block	of	1	MiByte	for	the	Boot	ROM	area	and	1	MiByte	for	
the	Secure	Storage	are.	The	amount	of	installed	memory	is	implementation	
dependent. 	101

The	Secure	Storage	Area	

Next,	we		describe	how	Secure	Storage	is	intended	to	be	used.	

	This	might	also	include	dealing	with	Uirmware	corruption	and/or	Uirmware	rollbacks.100

	Two	MiBytes	is	a	tiny	fraction	(1/8,192)	of	the	available	memory-mapped	I/O	address	space.	101

We	aim	to	keep	the	BootLoader	as	small	and	simple	as	possible,	so	this	size	should	be	adequate.	
But	setting	aside	larger	regions	for	the	ROM	or	Secure	Storage	presents	no	conceptual	issue.

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	277 344

Chapter	9:	Power-On-Reset	and	the	Boot	Sequence	

Upon	power-on-reset,	the	Secure	Storage	area	is	assumed	to	contain	the	Second	
Stage	Boot	Loader	(SSBL)	program	in	the	lower	portion	and	unused	bytes	in	the	
upper	portion.	The	Secure	Storage	is	initially	unlocked.	

The	Secure	Storage	Area	

Recall	that	the	Secure	Storage	area	works	as	follows.	

The	Secure	Storage	area	is	implemented	as	a	block	of	non-volatile	memory	(i.e.,	Ulash	
memory)	which	is	mapped	into	a	memory-mapped	I/O	region.	

In	addition,	there	is	a	Secure	Storage	Limit	Register,	which	is	mapped	into	the	Uirst	
doubleword	of	the	Secure	Storage	area.	

The	Secure	Storage	memory	has	two	states:	“locked”	and	“unlocked”.	In	the	locked	
state,	the	memory	can	only	be	read,	while	in	the	unlocked	state,	it	can	be	modiUied.	

More	precisely,	all	Secure	Storage	bytes	below	the	current	value	of	the	Limit	Register	
are	in	the	locked	state	and	cannot	be	modiUied.	All	bytes	above	the	Limit	Register	are	
unlocked	and	can	be	freely	read	and	modiUied.	

Upon	power-on-reset,	the	Secure	Storage	Limit	Register	is	initialized	to	zero,	which	
puts	all	the	Secure	Storage	bytes	in	the	unlocked	state.	A	subsequent	STORE	into	the	
Secure	Storage	Limit	Register	will	switch	the	Secure	Storage	to	the	locked	state.	
More	precisely,	a	write	to	the	Limit	Register	will	make	the	Uirst	portion	of	the	Secure	
Storage	locked.	The	exact	value	written	to	the	Limit	Register	determines	how	many	
bytes	are	to	be	locked	and	how	many	are	to	remain	unlocked.	

Since	the	Limit	Register	itself	occupies	the	very	Uirst	bytes	in	the	Secure	Storage	
area,	once	it	is	written	to,	the	Limit	Register	itself	will	also	be	in	the	locked	region,	
preventing	any	further	changes	in	which	portion	of	the	Secure	Storage	is	locked	and	
which	is	unlocked.	

Since	the	Limit	Register	is	no	longer	modiUiable,	the	Secure	Storage	area	will	remain	
locked	as	long	as	the	device	is	powered	up. 	102

	More	precisely,	until	a	power-on-reset	signal	is	received.102

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	278 344

Chapter	9:	Power-On-Reset	and	the	Boot	Sequence	

The	Low	Level	Boot	Loader	program	will	verify	the	Second	Stage	Boot	Loader	
program	is	correct.	If	everything	looks	good,	it	will	proceed	to	lock	the	lower	portion	
of	the	Secure	Storage	area	and	branch	to	the	Second	Stage	Boot	Loader,	leaving	the	
upper	portion	of	the	Secure	Storage	area	updatable.	

Since	the	Low	Level	Boot	Loader	is	in	ROM,	it	must	be	reliable	and	cannot	be	
repaired	or	replaced.	Therefore,	it	really	should	not	interface	with	I/O	devices.	The	
I/O	devices	connected	to	a	processor	may	vary	from	system	to	system.	Furthermore,	
I/O	devices	change	over	time	and	require	updates	to	software	drivers.	

The	Second	Stage	Boot	Loader	(SSBL)	is	expected	to	be	a	large	and	complex	piece	of	
software.	

It	will,	among	other	things,	validate	the	OS	Kernel.	It	must	check	to	make	sure	the	OS	
Kernel	has	not	been	tampered	with	or	altered	by	malware.	Thus,	it	must	securely	
maintain	and	protect	the	secure	hash	keys 	of	the	various	kernel	versions	that	it	103

knows	about.	If	there	are	issues,	it	must	interact	with	the	user,	e.g.,	to	install	new	
kernel	versions,	or	roll-back	to	earlier	kernel	versions.	

To	perform	its	duties,	the	Second	Stage	Boot	Loader	(SSBL)	will	need	to	contain	
information	about:	

•	 The	devices	where	a	kernel	might	be	stored.	
•	 The	Uile	systems	on	those	devices.	
•	 The	user	interface	devices	and	interfaces.	

Periodically,	updates	to	the	Second	Stage	Boot	Loader	code	will	be	required,	for	
these	reasons:	

•	 A	new	version	of	the	OS	Kernel	is	distributed	with	a	new	secure	hash	key.	
•	 A	new	Uile	system	has	been	implemented	and	the	SSBL	must	interface	to	it.	
•	 A	new	device	has	been	implemented	and	the	SSBL	must	interface	to	it.	
•	 Changes	are	made	to	the	user	interface	used	by	the	SSBL.	
•	 A	bug	in	the	SSBL	must	be	repaired.	

	To	quote	Wikipedia,	“A	cryptographic	hash	function	…	is	a	mathematical	algorithm	that	maps	103

data	of	an	arbitrary	size	(often	called	the	‘message’)	to	a	bit	array	of	a	Uixed	size	(the	‘hash	value’,	
‘hash’,	or	‘message	digest’).	It	is	a	one-way	function,	that	is,	a	function	for	which	it	is	practically	
infeasible	to	invert	or	reverse	the	computation.	Blitz-64	primarily	uses	the	SHA-256	secure	hash	
function,	which	produces	a	256	bit	(32	byte)	key.

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	279 344

Chapter	9:	Power-On-Reset	and	the	Boot	Sequence	

Periodically,	messages	must	be	sent	to	the	Uirmware.	These	messages	must	be	acted	
on	before	the	Secure	Storage	area	is	locked,	or	else	they	will	have	no	lasting	effect.	
However,	since	the	Low	Level	Boot	Loader	will	lock	secure	storage	before	it	
branches	to	the	Second	Stage	Boot	Loader	and	since	the	Low	Level	Boot	Loader	will	
never	access	any	I/O	devices,	the	messages	must	be	passed	in	the	Secure	Storage	
area	itself.	

Every	update	to	the	Second	Stage	Boot	Loader	will	follow	these	steps:	

•	 While	running	the	OS	kernel,	some	app	will	move	a	newly	received	message	
into	Secure	Storage	at	an	address	above	the	current	Secure	Storage	Limit.	

•	 A	power-on-reset	is	required,	reseting	the	Secure	Storage	Limit	register	and	
making	the	entire	Secure	Storage	area	updatable.	

•	 The	Low	Level	Boot	Loader	in	Boot	ROM	will	run,	before	any	other	code	runs.	
•	 The	Low	Level	Boot	Loader	will	see	the	message	previously	stored	in	the	
Secure	Storage	area	and	will	process	it.	

•	 Using	public-private	(asymmetric)	encryption,	the	Low	Level	Boot	Loader	will	
verify	that	the	message	is	from	a	trusted	authority.	Using	a	secure	hash	
function	(such	as	SHA-256),	it	will	verify	that	the	message	has	not	been	
tampered	with.	

•	 The	Low	Level	Boot	Loader	will	update	the	Secure	Storage	area	as	directed	by	
the	message.	This	could	be	in	the	form	of	replacing	the	Second	Stage	Boot	
Loader	code,	or	by	adding	new	secure	hash	keys	for	new	versions	of	the	OS	
kernel.	

•	 The	Low	Level	Boot	Loader	remove	the	message	from	the	Secure	Storage	area.	
•	 The	Low	Level	Boot	Loader	will	lock	Secure	Storage	by	writing	to	the	Secure	
Storage	Limit	register.	

•	 Finally,	the	Low	Level	Boot	Loader	branch	to	the	Second	Stage	Boot	Loader.	

When	the	next	power-on-reset	occurs,	the	Low	Level	Boot	Loader	will	see	that	there	
is	no	new	message.	It	will	then	lock	Secure	Storage	and	branch	to	the	Second	Stage	
Boot	Loader	program.	

It	is	likely	the	Secure	Storage	and	the	core	will	be	integrated	and	located	on	the	same	
chip.	Nevertheless,	they	are	separate	modules.	The	Secure	Storage	Limit	register	can	
be	located	either	within	the	core	module	or	within	the	Secure	Storage	module.	The	
important	thing,	of	course,	is	that	the	register	and	the	write-protection	circuitry	
must	be	located	“on	the	side	of	the	Secure	Storage”,	by	which	we	mean	there	must	be	
no	pathways	to	write	the	Secure	Storage	that	do	not	Uirst	go	through	the	limit	
register	and	the	write-protection	mechanism.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	280 344

Chapter	9:	Power-On-Reset	and	the	Boot	Sequence	

As	an	example	of	a	potential	vulnerability,	imagine	that	the	DMA	controller	or	some	
other	device	that	updates	memory	is	able	to	write	to	the	Secure	Storage	area	
without	Uirst	going	through	the	write-protection	circuitry.	This	would	provide	a	way	
to	circumvent	this	critical	security	mechanism.	

Memory-mapped	I/O	devices	are	not	involved	in	the	cache	system.	Caching	occurs	
only	for	physical	main	memory,	which	lies	below	address	0x4_0000_0000.	While	it	
might	be	tempting	to	allow	the	Secure	Storage	memory	to	participate	in	caching,	this	
is	disallowed,	since	it	might	introduce	subtle	security	vulnerabilities. 	104

Verifying	the	Kernel	Code	

The	boot	process	will	load	a	kernel	image	into	main	memory.	Before	branching	to	it,	
the	boot	process	must	verify	that	the	image	it	has	just	loaded	is	the	real,	correct	
image.	We	must	ensure	that	the	kernel	image	has	not	been	corrupted	or	altered	by	
malicious	software.	

In	order	to	achieve	this,	the	BootLoader	will	compute	a	secure	message	digest	and	
compare	it	with	a	known,	expected	value. 	105

Secure	Message	Digests	

A	secure	message	digest	(also	called	a	secure	hash)	is	a	short,	Uixed	size	binary	
value	which	is	computed	from	all	the	bytes	in	a	much	longer	string	of	bytes.	There	
are	a	number	of	different	secure	hash	algorithms.	For	example,	with	the	SHA-256	
algorithm,	the	message	digest	is	a	256	bit	value.	

	Although	we	cannot	see	how	this	could	happen,	perhaps	the	cache	contents	could	become	104

outdated,	allowing	the	core	to	fetch	incorrect	data	from	a	location	in	the	Secure	Storage	area	that	is	
assumed	to	have	been	updated,	locked,	and	guaranteed	to	be	correct.	Or	perhaps	a	delayed	write-
back/write-through	from	the	cache	to	the	Secure	Storage	area	could	delay	the	updating	of	the	
Secure	Storage	Limit	register	,	thereby	leaving	the	Secure	Storage	area	vulnerable	to	malicious	
updates	for	a	short	window	of	time.

	In	the	case	of	a	single-stage	boot	chain,	the	code	that	loads	the	kernel	executable	will	be	105

resident	in	the	Boot	ROM	Area.	In	the	case	of	a	multi-stage	process,	the	code	will	be	in	Uirmware,	
i.e.,	in	the	Secure	Storage	area.	For	this	discussion,	it	doesn’t	matter	and	we	will	just	talk	about	the	
BootLoader	program,	regardless	of	whether	it	is	in	Boot	ROM	or	is	Second	Stage	Boot	Loader	
(SSBL)	code.

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	281 344

Chapter	9:	Power-On-Reset	and	the	Boot	Sequence	

The	secure	hash	algorithm	is	designed	in	such	a	way	that	any	change	in	the	long	byte	
sequence	will	alter	the	digest	value	(with	extremely	high	probability).	Furthermore,	
given	a	particular	digest	value,	it	is	extremely	difUicult	to	create	a	string	that	will	
hash	to	that	digest	value.	

An	example	usage	would	be	to	make	sure	a	kernel	executable	image	has	not	been	
modiUied	by	a	malicious	actor	or	cyberattack.	If	the	kernel	image	is	scanned	and	a	
digest	value	is	computed	that	matches	a	stored	“expected	value”,	then	(with	
extremely	high	probability)	this	kernel	image	must	be	exactly	the	one	and	only	same	
byte	string	that	was	used	to	produce	the	expected	value	in	the	Uirst	place.	The	secure	
hash	system	allows	us	to	be	sure	the	kernel	has	not	been	modiUied.	

	In	Blitz-64,	we	prefer	and	recommend	the	SHA-256	secure	message	algorithm.	

The	BootLoader	can	easily	compute	a	secure	hash	of	any	potential	kernel	image	it	
has	loaded,	but	the	question	is:	Where	does	the	BootLoader	get	the	“expected	value”	
with	which	the	computed	value	must	be	compared?	

In	other	words,	the	BootLoader	needs	a	secure,	non-volatile	storage	in	which	to	
store	expected	hash	values.	Moreover,	to	prevent	malware	from	changing	the	
expected	value	and	then	substituting	a	modiUied	kernel,	the	expected	value	must	be	
stored	in	a	place	that	cannot	be	modiUied	by	any	software	other	than	the	BootLoader.	

This	place	is	the	Secure	Storage	area.	

The	Secure	Storage	area	need	only	be	large	enough	(e.g.,	32	bytes	in	the	case	of	
SHA-256)	to	store	a	single	secure	message	digest	value,	although	the	Secure	Storage	
area	is	expected	to	be	much	larger.	To	accommodate	the	loading	of	several	different	
versions	of	the	kernel,	several	secure	message	digest	values	would	need	to	be	stored.	
The	idea	is	that	the	BootLoader	would	accept	any	kernel	executable	if	its	secure	
message	digest	matches	any	of	the	stored	values.	

The	expected	secure	message	digest	of	the	kernel	will	be	placed	in	the	Secure	
Storage	area.	The	BootLoader,	as	part	of	its	functionality,	must	always	lock	the	
Secure	Storage	before	branching	to	any	non-BootLoader	code,	so	that	no	other	
software	can	possibly	modify	the	expected	message	digest	values	stored	in	the	
Secure	Storage	area.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	282 344

Chapter	9:	Power-On-Reset	and	the	Boot	Sequence	

On	typical	power-on-resets	and	soft-resets,	the	BootLoader	will	simply	compute	the	
message	digest	for	the	kernel	executable,	retrieve	the	expected	message	digest	from	
Secure	Storage,	and	compare	them	to	verify	that	the	kernel	being	loaded	has	not	
been	corrupted.	

Normally,	the	version	of	the	kernel	to	be	loaded	will	be	the	same	version	as	last	time,	
so	there	is	rarely	a	need	to	store	a	new	expected	value.	But	occasionally	the	user	will	
need	to	install	a	new	version	of	the	kernel.	In	that	case,	the	computed	secure	digest	
will	not	match	the	stored	expected	value.	We	need	a	way	to	update	the	stored	
expected	value.	

In	one	approach,	the	BootLoader	might	require	the	user	to	manually	type	in	the	
expected	secure	hash	value.	The	BootLoader	will	then	store	the	new	value	in	the	
non-volatile	Secure	Storage	memory	area	before	it	locks	it.	With	every	new	version	
of	the	kernel,	the	user	must	type	in	a	secure	hash	value	to	validate	the	kernel	
version.	

Of	course	this	secure	hash	value	for	the	kernel	is	a	cryptographic	key	which	must	be	
securely	validated	and	protected	from	alteration	or	spooUing,	to	prevent	the	user	
from	seeing	a	false	key. 	106

In	order	for	the	BootLoader	to	be	able	to	store	a	new	key,	a	hard	restart	is	required,	
i.e.,	a	power-on-reset	signal	must	be	generated.	This	will	always	and	deUinitely	cause	
the	BootLoader	code	from	the	Boot	ROM	Area	to	be	executed,	with	no	intervening	
software	possible.	

However,	requiring	intervention	by	users	when	it	comes	to	veriUication	of	a	new	
kernel’s	message	digest	is	risky.	Instead,	we	need	a	way	to	completely	automate	the	
updating	of	kernel	versions.	

Secure	Distribution	of	New	Message	Digests	

Presumably	new	versions	of	the	kernel	software	are	distributed	by	a	single	trusted	
source	and	the	goal	is	to	prevent	any	bad	actor	from	impersonating	the	trusted	
source.	We	must	make	sure	the	BootLoader	never,	ever	boots	to	a	compromised	
version	of	the	kernel.	

	If	this	is	too	onerous,	the	BootLoader	might	simply	alert	the	user	that	the	kernel	image	has	106

changed	and	ask	the	user	whether	this	is	intended.	If	the	user	agrees,	the	hash	value	just	computed	
for	the	new	version	will	be	written	to	Secure	Storage	and	saved	as	a	new	“expected	value”.

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	283 344

Chapter	9:	Power-On-Reset	and	the	Boot	Sequence	

Here	we	describe	an	approach	to	distributing	secure	hash	keys	(i.e.,	secure	message	
digests)	using	a	public-private	key	encrypted	communication	channel.	

In	the	public-private	encryption	technique,	there	are	two	keys.	One	key	(the	private	
key)	is	used	to	encrypt	the	message	and	the	other	key	(the	public	key)	can	be	used	
to	decrypt	the	message.	

The	BootLoader	software	will	have	the	public	key	hardcoded	directly	into	it.	The	
public	key	is	not	a	secret.	The	private	key	will	be	kept	remotely,	by	the	organization	
authorized	update	the	kernel.	For	example,	the	private	key	will	be	held	by	the	
trusted	company	that	creates	and	distributes	new,	authorized	versions	of	the	kernel.	

In	the	public-private	key	system,	the	communication	is	both	kept	private	and	
protected	from	corruption. 	We	must	protect	against	spooUing:	we	must	be	certain	107

that	the	message	came	from	the	sender	it	claims	to	have	come	from.	Public-private	
key	systems	do	this,	since	they	guarantee	the	message	has	not	be	altered	and	that	it	
comes	only	from	the	organization	holding	the	other	(private)	key.	

From	time	to	time	the	trusted	authority	will	communicate	with	the	existing	kernel	
instructing	is	to	install	a	new	version	of	the	kernel.	The	existing,	old	version	of	the	
kernel	will	download	the	new	executable	Uile	and	store	it	on	the	boot	device.	This	
communication	will	also	contain	a	special	message	to	be	delivered	to	the	
BootLoader.	

The	message	to	the	BootLoader	will	command	it	to	boot	to	a	new	version	of	the	
kernel	image.	The	message	will	consist	of	two	items:	(1)	the	name/Uilename/version	
number	of	the	new	kernel,	and	(2)	the	corresponding	secure	message	digest	for	that	
version.	The	sole	purpose	of	the	message	is	to	instruct	the	BootLoader	to	update	the	
Secure	Storage	area	to	save	a	new	secure	hash	key	for	the	new	version	of	the	kernel	
code.	

	In	this	case,	we	care	only	about	protection	from	corruption;	privacy	is	not	required.107

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	284 344

Chapter	9:	Power-On-Reset	and	the	Boot	Sequence	

The	message	to	the	BootLoader	will	be	encrypted	using	the	private	key.	Only	the	
authorized	and	trusted	organization	can	create	a	valid	encrypted	message	in	this	
way.	The	message	will	be	decrypted	by	the	BootLoader	using	the	public	key. 	108

The	BootLoader	must	receive	the	message	and	process	it	after	a	power-on-reset,	
since	only	at	that	time	will	the	Secure	Storage	area	be	unlocked.	Thus,	the	
BootLoader	will	look	for	an	incoming	message	every	time	it	runs	after	a	power-on-
reset.	If	an	incoming	message	is	found,	it	will	be	processed.	

The	message	can	be	communicated	to	the	BootLoader	in	several	ways.	One	approach	
is	to	place	the	message	in	a	Uile	with	a	Uixed,	well-known	name,	such	as	
“BootLoaderNewKey”.	Upon	power-on-reset,	the	BootLoader	will	read	from	this	Uile.	
This	might	be	appropriate	for	a	single-stage	boot	sequence,	since	the	BootLoader	
code	—	which	is	in	the	Boot	ROM	Area	—	will	already	be	capable	of	understanding	
the	Uile	system	and	the	device	on	which	it	is	stored,	since	it	will	be	capable	of	reading	
the	kernel	executable	Uile.	

Another	approach	is	for	the	message	to	be	stored	directly	in	the	Secure	Storage	area.	
Of	course,	it	can	just	be	stored	directly	above	the	current	value	of	the	Secure	Storage	
Limit	Register.	Recall,	that	writing	is	always	allowed	to	memory	addresses	above	the	
limit,	but	the	memory	below	the	limit	is	in	the	locked	state	and	cannot	be	altered,	
even	by	the	kernel.	

The	process	of	updating	a	kernel	involves	(1)	downloading	the	new	kernel	
executable	Uile	and	the	associated	encrypted	message	for	the	BootLoader;	(2)	
placing	the	message	in	a	place	where	the	BootLoader	will	Uind	it;	and	(3)	performing	
a	power-on-reset	by	executing	a	RESTART	command.	

The	BootLoader	does	the	rest.	

	In	order	to	reduce	the	likelihood	of	the	private	key	being	discovered	by	a	bad	actor	who	is	108

viewing	the	message	trafUic,	the	quantity	of	data	encrypted	by	the	private	key	should	always	be	
kept	to	a	minimum.	The	private	key	held	by	the	trusted	organization	for	the	purpose	of	validating	
new	kernel	versions	should	only	be	used	for	this	purpose	and	the	encoded	data	should	be	kept	as	
concise	and	non-redundant	at	possible,	with	all	repeated,	formulaic,	or	boilerplate	information	
eliminated.

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	285 344

Chapter	9:	Power-On-Reset	and	the	Boot	Sequence	

The	result	is	that	—	without	obtaining	the	private	key	of	the	organization	trusted	
with	distributing	new	kernel	images	—	it	is	impossible	to	boot	into	a	corrupted	or	
compromised	kernel.	Only	“ofUicial”	kernels	will	boot. 	109

	For	added	security,	perhaps	the	Low	Level	Boot	Loader	(LLBL)	code	running	in	the	Boot	ROM	109

Area	should	begin	by	immediately	verifying	that	the	Secure	Storage	Limit	Register	is	zero	(as	
expected)	to	verify	that	a	power-on-reset	has	truly	just	occurred.	It	is	perhaps	conceivable	that	if	
not,	malicious	code	running	simultaneously	might	be	able	to	interfere	somehow.

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	286 344

Chapter	10:	Memory-Mapped	I/O	

Quick	Summary	

•	Each	I/O	device	is	allocated	one	or	more	pages.	
•	The	memory-mapped	I/O	pages	are	located	in	a	dedicated	region	of	addresses.	
•	The	memory-mapped	I/O	region	is	16	GiBytes	(1	Mi	Pages).	
•	The	memory-mapped	I/O	region	begins	at	address	0x4_0000_0000.	
•	The	memory-mapped	I/O	region	is	part	of	the	physical	address	region.	
•	Code	running	in	kernel	mode	has	full	access	to	the	memory-mapped	I/O	region.	
•	The	pages	may	optionally	be	mapped	into	virtual	address	spaces.	
•	The	Boot	ROM	Area	is	treated	as	a	memory-mapped	I/O	region.	

Overview	

I/O	devices	are	memory-mapped,	which	means	they	are	accessed	with	LOAD	and	
STORE	instructions.	Instructions	can	also	be	FETCHed	from	memory-mapped	I/O	
regions.	For	example,	instructions	are	fetched	from	the	Boot	ROM	Area.	

Each	device	is	assigned	to,	and	located	within,	one	or	more	pages.	In	other	words,	
the	starting	address	for	a	device’s	address	range	will	be	page-aligned	and	the	
amount	of	address	space	it	consumes	will	be	a	multiple	of	the	page	size	(i.e.,	16	
KiBytes).	

In	the	layout	of	the	memory-mapped	I/O	region,	the	various	I/O	devices	will	be	
ordered	and	laid	out	sequentially,	one	after	the	other.	They	will	not	overlap.	There	is	
no	reason	to	leave	space	between	the	regions.	If	there	is	an	expectation	that	a	region	
will	grow	(i.e.,	a	device	will	need	additional	pages),	then	those	pages	should	be	pre-
allocated.	

The	exact	layout	of	the	memory-mapped	I/O	regions	is	implementation-dependent.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	287 344

Chapter	10:	Memory-Mapped	I/O	

Allocating	the	memory-mapped	I/O	address	space	in	units	of	pages	allows	the	
kernel	to	use	address	translation	(i.e.,	the	Memory	Management	Unit	and	the	TLB	
registers)	to	map	the	pages	into	various	virtual	address	spaces.	Thus,	the	kernel	can	
make	an	individual	memory-mapped	I/O	device	available	to	one	address	space,	but	
not	to	another.	It	also	allows	the	kernel	to	set	the	permissions	on	each	memory-
mapped	I/O	page	as	desired.	

Like	normal	memory	pages,	I/O	pages	that	are	mapped	into	virtual	spaces	may	have	
any	combination	of	permissions	(read-only	or	also	writable	and/or	executable).	If	a	
page	is	not	readable,	then	it	will	simply	not	be	mapped	into	a	virtual	address	space	
of	the	user	mode	address	space.	If	it	is	mapped,	then	it	will	be	readable.	In	addition,	
the	kernel	may	mark	it	as	writable	and/or	executable.	By	not	mapping	a	memory-
mapped	I/O	page	into	a	virtual	address	space,	the	kernel	prevents	user	mode	code	
from	accessing	the	device.	

In	this	document,	we	do	not	fully	specify	the	nature	of	all	I/O	devices	available	on	a	
Blitz-64	system.	In	fact,	different	implementations	will	have	different	devices.	In	
other	words,	which	devices	are	present	and	how	they	function	will	vary	between	
implementations.	

Each	implementation	must	specify:	

	 •	Which	I/O	devices	are	present	
	 •	Where	each	device	is	located	
	 •	How	many	pages	are	allocated	to	each	device	
	 •	Exactly	how	the	device	functions	and	how	it	is	used	

Here,	we	give	a	general	outline	of	typical	memory-mapped	I/O	devices.	The	exact	
details	are	implementation	dependent.	

Boot	ROM	Area	

Starting	Address:	 0x4_0000_0000	
Size:	 0x0_0010_0000	(1	MiByte)	
Number	of	Pages:	 64	
Next	Available	Address:	 0x4_0010_0000	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	288 344

Chapter	10:	Memory-Mapped	I/O	

This	is	the	location	of	the	“BootLoader”,	the	initial	program	which	is	executed	when	
the	core	is	powered	up.	

The	Boot	ROM	Area	described	here	must	be	implemented	with	ROM.	(Read-Only	
Memory	(ROM)	is	memory	whose	contents	are	Uixed	and	cannot	be	altered.)	This	
area	must	not	implemented	with	Ulash	memory,	which	can	be	updated. 	110

The	BootLoader	program	and	the	exact	contents	of	this	area	are	implementation	
dependent.	The	BootLoader	program	will	be	tailored	to	the	system	containing	the	
Blitz-64	core.	

The	starting	address	for	this	region	is	mandatory	and	Uixed.	The	number	of	bytes	
actually	implemented	may	be	less	than	the	1	MiByte	range	—	this	is	implementation	
dependent	—	although	setting	aside	the	region	as	speciUied	above	is	strongly	
recommended.	

In	a	multi-core	system,	there	may	be	one	Boot	ROM	Area	shared	by	all	cores	or	each	
core	may	have	its	own	separate	Boot	ROM	Area.	This	is	implementation	dependent.	

The	intended	use	of	this	area	and	various	considerations	are	discussed	in	the	
chapter	“Power-On-Reset	and	the	Boot	Sequence”.	

Secure	Storage	Area	

Starting	Address:	 0x4_0010_0000		
Next	Available	Address:	 0x4_0020_0000	
Size:	 0x0_0010_0000	(1	MiByte)	
Number	of	Pages:	 64	

	As	a	practical	manufacturing	concern,	the	Boot	ROM	Area	might	be	implemented	with	Ulash-110

type	memory	that	can	be	loaded	when	the	system	is	manufactured.	The	key	point	is	that	once	
written	and	released	into	the	Uield,	the	Boot	ROM	Area	cannot	be	modiUied	by	instruction	execution	
or	any	programmatic	behavior	of	the	system.	

For	example,	the	Boot	ROM	Area	might	be	writable	using	an	electrical	connection	that	is	made	
during	the	manufacturing	process.	But	once	the	product	is	delivered,	the	Boot	ROM	Area	must	not	
be	modiUiable	without	physical	contact	to	directly	manipulate	the	device.	The	inviolability	of	the	
Boot	ROM	Area	is	crucial	for	system	security	and	integrity.	However,	the	measures	described	in	
this	ISA	do	not	attempt	to	protect	a	Blitz-64	system	against	direct	physical	meddling.

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	289 344

Chapter	10:	Memory-Mapped	I/O	

Typically,	the	boot	process	will	be	a	two-part	process.	The	Uirst	part	is	the	Low	Level	
Boot	Loader	(LLBL),	which	is	a	program	residing	in	Boot	ROM.	The	LLBL	will	invoke	
the	Second	Stage	Boot	Loader	(SSBL),	which	is	a	program	residing	in	Ulash	memory,	
and	more	particularly	in	the	Secure	Storage	area	described	here.	The	SSBL	will	load	
and	jump	to	the	OS	Kernel.	

The	Secure	Storage	functions	much	like	main	memory:	It	is	a	large	chunk	of	byte-
addressable	memory	that	can	be	read	and	written,	and	instructions	can	be	fetched	
from	this	area,	as	well.	The	number	of	bytes	actually	implemented	may	be	less	than	
the	1	MiByte	range	—	this	is	implementation	dependent	—	although	the	range	itself	
is	mandatory	and	Uixed.	

In	terms	of	reading	data	and	fetching	instructions,	it	functions	exactly	like	other	
memory:	there	are	no	special	restrictions	and	any	byte	can	be	retrieved.	

In	terms	of	writing,	there	is	a	crucial	difference	with	main	memory.	The	Secure	
Storage	area	has	a	lock	capability	which	allows	bytes	to	be	“write-protected”.	The	
bytes	can	be	written	until	they	become	locked	and	after	that,	writes	are	ignored.	
From	that	time	on,	the	memory	functions	like	ROM.	

The	write	protection	is	controlled	by	a	special	register	called	the	“Secure	Storage	
Limit	Register”.	This	register	contains	an	address.	Any	byte	located	below	the	
Secure	Storage	Limit	is	locked	and	cannot	be	updated.	Any	byte	whose	address	is	
greater	than	or	equal	to	the	Secure	Storage	Limit	may	be	updated	freely	and	without	
restriction.	

The	Secure	Storage	Limit	Register	is	set	to	zero	on	startup.	That	is,	a	power-on-reset	
will	initialize	the	Secure	Storage	Limit	Register	to	0x0000_0000_0000_0000.	A	value	
of	zero	implies	that	the	entire	Secure	Storage	area	is	unlocked.	Any	byte	can	be	
written.	

The	Secure	Storage	Limit	register	is	mapped	to	the	Uirst	doubleword	of	the	Secure	
Storage	Area.	That	is,	the	Uirst	8	bytes	of	the	Secure	Storage	Area	are	special	in	that	
any	write	to	them	is	a	write	to	the	Secure	Storage	Limit	Register.	The	remaining	
bytes	of	the	Secure	Storage	Area	function	as	described	above.	The	Secure	Storage	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	290 344

Chapter	10:	Memory-Mapped	I/O	

Limit	Register	is	readable	and	can	be	obtained	at	any	time	by	reading	the	Uirst	8	
bytes	of	the	Secure	Storage	Area. 	111

Note	that	since	the	Secure	Storage	Limit	Register	is	at	the	beginning	of	the	Secure	
Storage	area,	if	any	of	the	Secure	Storage	area	is	locked,	then	the	Secure	Storage	
Limit	Register	itself	will	be	locked.	The	Uirst	write	to	the	Secure	Storage	Limit	
register	will	lock	some	or	all	of	the	Secure	Storage	area,	but	will	surely	lock	the	
Secure	Storage	Limit	Register	itself. 	112113

In	a	multi-core	system,	there	may	be	one	Secure	Storage	area	shared	by	all	cores	or	
each	core	may	have	its	own	separate	Secure	Storage	area.	This	is	implementation	
dependent.	The	starting	address	and	size	of	this	region	is	implementation	although	
the	values	speciUied	above	are	recommended.	

The	intended	use	of	this	area	and	various	considerations	are	discussed	in	the	
chapter	“Power-On-Reset	and	the	Boot	Sequence”.	

Simple	Serial	Communication	

Status:	 Present	in	emulator;	not	a	realistic	device	
Starting	Address:	 0x4_0020_0000	<	suggestive	only	>	
Next	Available	Address:	 0x4_0020_4000	
Size:	 0x0_0000_4000	(16	KiBytes)	
Number	of	Pages:	 1	

	The	Secure	Storage	Limit	register	is	a	36-bit	doubleword	aligned	address.	Any	other	bits	111

outside	of	[35:3]	shall	be	ignored	for	the	purpose	of	imposing	write-protection.	Presumably,	all	64	
bits	will	be	written	into	the	Uirst	8	bytes	of	Ulash	and	all	bits	will	be	retrievable,	but	this	is	not	
required.

	A	write	to	the	register	with	an	address	below	the	start	of	the	Secure	Storage	area	would	be	112

possible,	but	would	accomplish	nothing,	so	we	ignore	such	a	thing.

	A	speciUic	implementation	may	limit	the	Secure	Storage	Limit	Register	to	holding	only	certain	113

values.	For	example,	the	register	may	be	required	to	be	(say)	page	aligned.	Such	a	restriction	is	an	
implementation	dependency.	If	a	write	is	made	to	such	register,	then	the	actual	value	stored	will	be	
rounded	up	to	the	next	legal	value.	In	this	example,	the	value	will	be	rounded	up	to	the	next	page	
boundary.	Such	a	limitation	might	be	useful	to	accommodate	the	nature	of	the	non-volatile	storage	
being	used.

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	291 344

Chapter	10:	Memory-Mapped	I/O	

This	device	is	a	highly	idealized	version	of	a	Universal	Asynchronous		Receive	
Transmit	(UART)	serial	communication	channel.	It	is	present	in	the	emulator	to	
facilitate	software	development.	Hardware	implementations	will,	of	course,	use	
actual	UART	devices,	not	this	idealized	device.	

The	purpose	of	this	device	is	to	allow	the	kernel	to	communicate	with	the	user.	This	
device	assumes	the	BLITZ-64	core	is	being	emulated.	There	is	no	attempt	to	mimic	
the	behavior	of	a	real	UART	serial	communication	device;	instead	the	goal	is	to	make	
communication	as	simple	as	possible.	

This	device	is	used	to	SEND	characters	to	the	user	and	RECEIVE	characters	from	the	
user.	

Bytes	sent	to	the	user	will	normally	be	displayed	by	the	emulator	software	and	bytes	
received	from	the	user	will	generally	be	typed	into	the	emulator	by	a	user	at	a	
keyboard.	This	allows	the	human	user	to	communicate	with	a	running	Blitz	
program.	

However,	bytes	sent	may	also	be	piped	to	a	host	Uile.	Likewise,	bytes	received	may	
come	from	a	host	Uile.	Normally,	a	user	will	work	interactively	with	the	emulator,	but	
the	I/O	may	be	redirected	to	or	from	host	Uiles	in	order	to	facilitate	automatic	testing	
of	Blitz	code	(e.g.,	automated	testing	of	student	code,	regression	testing,	etc.).	

By	“character”,	we	mean	a	single	byte.	This	byte	will	generally	be	an	ASCII	character.	
However,	the	emulator	handles	all	bytes	without	interpretation	and	the	byte	could	
be	part	of	a	multi-byte	UTF-8	sequence.	Rendering	the	bytes	as	Unicode	character	
strings	is	done	by	the	host	OS.	Typically,	valid	UTF-8	sequence	will	be	displayed	
properly.You	can	safely	assume	that	the	common	control	characters	(e.g.,	\n,	\t)	are	
handled	properly.	For	example,	on	the	Apple	Mac	“Terminal”	app,	the	alert	control	
character	(\a)	will	typically	make	a	“beep”	or	“bonk”	sound.	

The	Simple	Serial	device	does	no	UTF-8	checking	or	processing.	It	is	the	
responsibility	of	the	Blitz	code	to	send	valid	UTF-8	sequences	if	the	output	is	
intended	to	be	rendered	as	Unicode	characters.	It	is	the	responsibility	of	the	host	OS	
to	accept	all	byte	sequences,	including	invalid		UTF-8	bytes	sequences.	

As	far	as	the	Blitz-64	code	goes,	the	communication	is	instantaneous	and	takes	zero	
cycles.	No	interrupts	or	exceptions	will	be	generated.	

To	receive	a	character	from	the	user:	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	292 344

Chapter	10:	Memory-Mapped	I/O	

	 LOADD	the	character	from	location	0x4_0010_4000	(doubleword,	not	byte)	
	 This	will	suspend	the	emulator,	waiting	for	input.	

To	receive	an	integer	from	the	user	(entered	in	hex):	
	 LOADD	the	value	from	location	0x4_0010_4008	
	 This	will	suspend	the	emulator,	waiting	for	input.	

To	receive	an	integer	from	the	user	(entered	in	decimal):	
	 LOADD	the	value	from	location	0x4_0010_4010	
	 This	will	suspend	the	emulator,	waiting	for	input.	

To	receive	a	line	of	input	from	the	user:	
	 First,	STORED	the	physical	address	of	the	buffer	area	into	0x4_0010_4018	
	 Second,	STORED	the	length	of	the	buffer	area	into	0x4_0010_4020	
	 The	act	of	storing	the	length	will	suspend	the	emulator,	waiting	for	input.	
	 Characters	will	be	read	and	placed	in	the	buffer	until	a	NEWLINE	is	encountered.	
	 The	NEWLINE	will	be	placed	in	the	buffer	and	a	NULL	(0x00)	character	will	
	 	 be	added	after	the	NEWLINE.	
	 If	the	buffer	is	not	large	enough,	only	length-1	characters	(and	the	Uinal	NULL	
	 	 character)	will	be	added,	so	as	not	to	overrun	the	buffer.	

To	send	a	character	to	the	user:	
	 STORED	the	byte	into	location	0x4_0010_4000.	
		 This	memory	location	is	a	doubleword,	not	a	byte,	so	don’t	use	STOREB.)	

To	print	an	integer	in	hex:	
	 STORED	the	value	into	0x4_0010_4008	
		 The	value	is	printed	in	exactly	16	characters,	e.g.,	“00000000ABCD1234”.	

To	print	an	integer	in	decimal:	
	 STORED	the	value	into	0x4_0010_4010	
		 The	value	is	printed	as,	for	example.,	“-1234”.	

To	send	a	string	of	characters	to	the	user	(byte	count):	
	 First,	STORED	the	physical	address	of	the	character	string	into	0x4_0010_4018	
	 Second,	STORED	the	length	into	location	0x4_0010_4028.	
	 The	length	is	in	bytes,	not	in	characters.	This	only	differs	when	
	 non-ASCII	UTF-8	characters	are	present,	
	 The	act	of	storing	the	length	will	cause	the	bytes	to	be	sent.	
	 The	number	of	bytes	sent	is	determined	by	the	length.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	293 344

Chapter	10:	Memory-Mapped	I/O	

To	send	a	string	of	characters	to	the	user	(null	terminated):	
	 First,	STORED	the	physical	address	of	the	character	string	into	0x4_0010_4018	
	 Second,	STORED	the	length	into	location	0x4_0010_4030.	
	 The	length	is	in	bytes,	not	in	characters.	This	only	differs	when	
	 non-ASCII	UTF-8	characters	are	present.	
	 The	act	of	storing	the	length	will	cause	the	bytes	to	be	sent.	
	 The	number	of	bytes	sent	is	determined	by	the	length,	
	 	 except	that	the	an	occurrence	of	\0	will	stop	the	transmission.	
	 The	\0	byte	will	not	be	sent.	

Additional	Notes	

When	reading	characters	one-by-one	(i.e.,	reading	from	0x4_0010_4000),	the	
characters	will	be	returned	as	a	value	lying	between	0	and	255.	If	the	user	has	
selected	raw	mode,	there	will	be	no	indication	of	end-of-Uile.	Instead,	if	the	user	
types	control-D	(the	normal	Unix/Linux	EOF	character),	the	ASCII	character	for	
control-D	(namely	0x04)	will	be	delivered	to	the	program.	Otherwise	(if	the	mode	is	
“cooked”	or	the	input	is	coming	from	a	Uile),	for	end-of-Uile,	the	value	-1	
(0xFFFF_FFFF_FFFF_FFFF)	will	be	delivered	to	the	program.	The	EOF	condition	is	
not	cleared,	so	subsequent	calls	will	detect	EOF.	

When	reading	a	string	of	characters	(either	from	a	Uile	or	from	stdin),	attempting	to	
read	at	the	end-of-Uile	will	trigger	a	user	error	and	halt	execution.	When	the	input	is	
coming	from	stdin,	the	input	will	be	accepted	in	“cooked”	mode,	regardless	of	the	
input	mode	selected.	

When	reading	a	hex	or	decimal	input	number	and	the	input	is	coming	from	stdin,	the	
input	will	be	accepted	in	“cooked”	mode,	regardless	of	the	input	mode	selected.	

DMA	Controller	

Status:	 Mandatory	in	all	implementations	
Starting	Address:	 0x4_0020_4000	<	suggestive	only	>	
Next	Available	Address:	 0x4_0020_8000	
Size:	 0x0_0000_4000	(16	KiBytes)	
Number	of	Pages:	 1	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	294 344

Chapter	10:	Memory-Mapped	I/O	

Background	

A	Direct	Memory	Access	(DMA)	controller	is	capable	of	moving	large	blocks	of	data	
from	one	location	in	the	physical	address	space	to	another	location.	This	includes	
both	installed	physical	memory	and	the	memory-mapped	I/O	device	region.	

Such	operations	are	useful	in	moving	sectors/pages/blocks	both	to	and	from	I/O	
device	buffers.	A	DMA	controller	can	also	be	used	to	copy	pages	from	one	address	
space	to	another	(e.g.,	to	duplicate	a	copy-on-write	page).	The	DMA	controller	can	
also	be	used	to	zero-out	memory	pages,	which	may	be	necessary	for	newly	allocated	
pages	to	prevent	information	leakage	from	one	address	space	into	an	unrelated	
address	space.	

Of	course	these	data	moving	tasks	can	be	done	directly	by	the	core.	However,	this	is	
not	the	best	approach,	since	the	core	will	not	be	usable	during	the	operation.	
Furthermore,	since	an	instruction	loop	is	required,	copying	by	the	core	will	be	
relatively	slow.	The	DMA	controller	avoids	instruction	execution	and	performs	the	
repetitive	LOAD-STORE	cycle	directly	in	hardware,	which	can	drive	the	memory	bus	
at	its	maximum	bandwidth.	

Generally	speaking,	a	DMA	controller	will	interleave	accesses	to	the	memory	bus	
with	the	accesses	being	made	by	the	core,	to	avoid	locking	up	the	core.	The	presence	
of	DMA	activity	may	slow	the	core,	since	LOADs,	STOREs,	and	FETCHes	that	cannot	
be	served	by	caches	may	have	increased	latency	times	due	to	bus	contention.	
However,	the	core	will	continue	to	operate	during	DMA	operations,	freeing	the	core	
to	do	things	the	DMA	controller	cannot	do.	

A	DMA	controller	is	said	to	be	“programmed”	to	performed	a	task.	The	DMA	
controller	is	commanded	by	the	core	to	perform	a	task	and,	when	complete,	it	
signals	an	interrupt	to	the	core.	By	“programmed”	we	mean	that	the	DMA	controller	
is	issued	a	command	or	series	of	commands.	These	commands	are	given	by	writing	
predetermined	values	to	predetermined	words	within	the	memory-mapped	region	
occupied	by	the	DMA	controller.	

The	Blitz-64	Direct	Memory	Access	(DMA)	controller	is	capable	of	the	following	
tasks:	

	 •	Move	a	large	block	of	memory	
	 •	Zero	a	large	block	of	memory	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	295 344

Chapter	10:	Memory-Mapped	I/O	

	 •	Perform	secure	hashing	(using	SHA-256)	
	 •	Perform	AES	encryption	and	decryption	

This	device	can	perform	one	task	at	a	time	and	is	either	“busy”	or	“free”.	There	is	no	
queue	of	waiting	tasks.	

A	“device	register”	is	doubleword	in	the	DMA	controller’s	page.	Each	“register"	is	
64	bits	and	is	located	at	a	doubleword	aligned	address.	The	device	is	controlled	by	
storing	into	“registers”	and	the	results	are	obtained	by	reading	from	the	“registers”.	

Here	are	the	device	registers:	

	 offset	 decimal	 	 name	
	 0000	 0	 write-only	 DMA_COMMAND	
	 0008	 8	 r/o	 DMA_STATUS	
	 0010	 16	 write-only	 DMA_START_ADDR	
	 0018	 24	 write-only	 DMA_TARGET_ADDR	
	 0020	 32	 write-only	 DMA_BYTECOUNT	
	 0028	 40	 r/o	 DMA_SHA256_0	
	 0030	 48	 r/o	 DMA_SHA256_1	
	 0038	 56	 r/o	 DMA_SHA256_2	
	 0040	 64	 r/o	 DMA_SHA256_3	
	 0048	 72	 write-only	 DMA_AES_KEY_0	
	 0050	 80	 write-only	 DMA_AES_KEY_1	
	 0058	 88	 write-only	 DMA_AES_KEY_2	
	 0060	 96	 write-only	 DMA_AES_KEY_3	

Additional	functionality	may	be	added	in	the	future;	additional	registers	will	be	
deUined	to	control	such	enhancements	at	that	time.	

The	arguments	(such	as	“starting	address”,	“byte	count”,	and	so	on)	should	be	stored	
Uirst,	in	any	order.	The	task	is	initiated	by	writing	a	command	code	into	the	
DMA_Command	register. 	114

	The	registers	should	not	be	written	while	the	device	is	busy;	if	so,	the	behavior	is	undeUined	114

and	considered	to	be	an	error.	The	status	register	“DMA_STATUS”	may	be	read	at	any	time.	Any	
attempt	to	read	the	other	registers	when	the	device	is	busy	is	undeUined	and	considered	to	be	an	
error.	Any	attempt	to	write	to	a	read-only	register,	or	read	from	a	write-only	register,	is	undeUined	
and	considered	to	be	an	error.	Any	attempt	to	read	or	write	to	an	undeUined	address	within	the	
page	is	undeUined	and	considered	to	be	an	error.	All	registers	are	doublewords;	any	attempt	to	
read	individual	bytes,	halfwords,	or	words	is	undeUined	and	considered	to	be	an	error.

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	296 344

Chapter	10:	Memory-Mapped	I/O	

Upon	completion	of	the	task,	the	DMA	controller	will	interrupt	the	core.	In	addition,	
a	status	code	will	be	available	in	the	“DMA_STATUS”	register.	

For	reference,	here	are	the	command	codes:	

hex	 decimal	 command	
0001	 1	 DMA_MOVE	 Move	memory	
0002	 2	 DMA_ZERO		 Zero	memory	
0003	 3	 DMA_SHA256_SIMPLE	 SHA256	(Simple,	only	one	chunk)	
0004	 4	 DMA_SHA256_INITIALIZE	 SHA256	(Initialize)	
0005	 5	 DMA_SHA256_CHUNK	 SHA256	(Process	next	chunk)	
0006	 6	 DMA_SHA256_FINALIZE		 SHA256	(Finalize)	
0007	 7	 DMA_AES256_PREPARE		 AES-256	Prepare	Key	
0008	 8	 DMA_AES256_EN_SIMPLE		 AES-256	Encrypt	(Simple)	
0009	 9	 DMA_AES256_EN_INITIAL		 AES-256	Encrypt	(Initial	segment)	
000a	 10	 DMA_AES256_EN_MIDDLE		 AES-256	Encrypt	(Middle	segments)	
000b	 11	 DMA_AES256_EN_FINAL		 AES-256	Encrypt	(Final	segment)	
000c	 12	 DMA_AES256_DE_SIMPLE		 AES-256	Decrypt	(Simple)	
000d	 13	 DMA_AES256_DE_INITIAL		 AES-256	Decrypt	(Initial	segment)	
000e	 14	 DMA_AES256_DE_MIDDLE		 AES-256	Decrypt	(Middle	segments)	
000f	 15	 DMA_AES256_DE_FINAL		 AES-256	Decrypt	(Final	segment)	

For	reference,	here	are	the	status	codes:	

hex	 decimal	 command	
0000	 0	 DMA_OK	 Last	operator	completed	
0001	 1	 DMA_BUSY	 Operation	in	progress	

The	addresses	(i.e.,	DMA_START_ADDR	and	DMA_TARGET_ADDR)	are	physical	
addresses	and	should	lie	within	0x0_0000_0008…0x0	and	0x7_FFFF_FFFF.	They	
must	not	be	virtual	addresses	and	the	TLB	registers	will	not	be	involved. 	115

Normally	the	addresses	will	lie	in	physical	RAM,	but	they	may	also	include	ROM,	
Secure	Storage,	and	FLASH	memory. 	116

Moving	Blocks	of	Memory	

	Addresses	are	35	bits,	with	the	“physical/virtual”	bit	assumed	to	be	0.115

	Exactly	which	Memory-Mapped	I/O	devices	can	be	operated	on	by	the	DMA	controller	depends	116

on	what	devices	are	present	and	is	therefore	implementation-dependent.	But	the	DMA	controller	
must	be	able	to	operate	on	anything	that	is	“memory-like”,	since	the	compiler	may	generate	code	
using	the	DMA	controller	to	access	such	memory.	In	particular,	the	security-related	functionality	
will	certainly	be	applied	to	the	ROM	and	SecureStorage	devices.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	297 344

Chapter	10:	Memory-Mapped	I/O	

To	move	a	block	of	memory:	

	 STORE	an	address	into	DMA_START_ADDR	
	 STORE	an	address	into	DMA_TARGET_ADDR	
	 STORE	an	integer	into	DMA_BYTECOUNT	
	 STORE	the	command	DMA_MOVE	into	DMA_COMMAND	
	 Wait	for	the	task	to	complete	

This	operation	is	primarily	intended	for	copying	entire	16	KiByte	pages,	to	support	
things	like	copy-on-write	sharing	and	moving	address	space	pages	from	private	to	
shared	memory.	

The	addresses	should	be	doubleword	aligned	and	the	number	of	bytes	to	be	moved	
should	be	a	multiple	of		8.	The	last	3	bits	of	DMA_START_ADDR,	
DMA_TARGET_ADDR,	and	DMA_BYTECOUNT	are	ignored.	

The	blocks	of	memory	should	not	overlap;	if	so	the	result	is	undeUined.	

Wait	for	Task	to	Complete	

Regardless	of	the	command,	when	the	DMA	controller	completes	a	task,	it	will	cause	
an	interrupt.	The	status	doubleword	DMA_STATUS	can	be	read	at	any	time	and	will	
tell	whether	the	DMA	controller	is	busy	or	ready	to	receive	another	command.	

To	wait	for	a	task,	the	program	might	chose	to	do	a	busy-loop,	repeatedly	querying	
DMA_STATUS.	However,	this	may	increase	bus	trafUic	and/or	slow	the	DMA	
controller	down,	as	well	as	waste	cycles,	so	this	approach	is	not	recommended	
unless	you	know	for	sure	the	wait	will	be	short.	

The	other	approach	is	to	proceed	to	other	task	and	wait	for	the	interrupt	to	trigger	
further	action.	It	is	envisioned	that	a	two	Semaphores	will	protect	the	DMA	
controller.	Semaphore	#1	will	be	used	to	make	sure	only	one	thread	is	using	the	
DMA	controller	at	a	time.	Semaphore	#2	will	be	used	to	signal	the	interrupt.	

	Semaphore	#1	will	act	as	a	“mutex”	lock,	allowing	only	one	thread	at	a	time	to	use	
the	DMA	device.	Before	using	the	DMA	device,	every	thread	must	“wait”	on	
Semaphore	#1	(i.e.,	the	“down”	or	“P”	operation).	After	the	task	is	complete	and	the	
results	have	been	retrieved	from	the	device,	the	thread	must	“signal”	the	semaphore	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	298 344

Chapter	10:	Memory-Mapped	I/O	

(i.e.,	the	“up”	or	“V”	operation),	making	the	DMA	device	free	and	available	to	other	
threads.	

Semaphore	#2	is	used	to	communicate	the	interrupt.	When	a	thread	which	is	using	
the	DMA	device	is	ready	to	wait	for	the	completion	of	the	task,	it	will	“wait”	on	
Semaphore	#2.	The	interrupt	handler	will	respond	to	the	interrupt	by	“signaling”	
Semaphore#2,	thus	waking	up	the	thread	up.	The	thread	should	then	retrieve	the	
results	and	signal	Semaphore	#1. 	117

Zeroing	Blocks	of	Memory	

To	zero	a	block	of	memory:	

	 STORE	an	address	into	DMA_START_ADDR	
	 STORE	an	integer	into	DMA_BYTECOUNT	
	 STORE	the	command	DMA_ZERO	into	DMA_COMMAND	
	 Wait	for	the	task	to	complete	

This	operation	is	primarily	intended	for	clearing	entire	16	KiByte	pages,	when	
processes	terminate	and	address	space	pages	are	recycled.	

The	addresses	should	be	doubleword	aligned	and	the	number	of	bytes	to	be	zeroed	
should	be	a	multiple	of		8.	The	last	3	bits	of	DMA_START_ADDR	and	
DMA_BYTECOUNT	are	ignored.	

Note:	This	command	uses	DMA_START_ADDR	and	not	DMA_TARGET_ADDR.	

SHA-256	

A	block	of	bytes	(the	“message”)	can	be	processed	to	yield	a	hash	value,	using	the	
SHA-256	algorithm.	The	result	of	this	operation	is	a	256	bit	(i.e.,	4	doubleword,	or	4	
×	64	bits)	hash	value.	

We	say	that	a	region	of	memory	is	“continuous”	if	a	single	starting	address	and	byte	
count	sufUice	to	locate	the	region	in	memory.	If	the	region	happens	to	span	multiple	

	With	this	approach,	any	thread	which	sends	a	command	to	the	DMA	device	must	always	wait	on	117

Semaphore	#2,	or	else	signals	from	previous	tasks	will	accumulate	and	prematurely	terminate	
future	unsuspecting	threads.	Furthermore,	that	wait	must	occur	before	Semaphore	#1	is	signaled.	
If	there	are	some	situations	where	some	threads	using	the	DMA	controller	will	not	be	waiting,	then	
an	alternate,	more	complex	design	will	be	required.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	299 344

Chapter	10:	Memory-Mapped	I/O	

pages,	then	all	those	pages	must	be	adjacent	and	sequential.	In	other	words,	no	gaps	
or	jumping	around	is	allowed.	

Alternatively,	a	block	of	bytes	could	originate	from	a	virtual	address	space.	While	it	
might	be	continuous	in	the	virtual	address	space,	it	might	happen	to	cross	page	
boundaries.	However,	the	DMA	controller	works	only	on	physical	addresses.	While	
the	block	of	bytes	is	continuous	in	the	virtual	address	space,	it	may	not	be	
continuous	in	physical	memory.	Such	a	block	must	be	broken	into	a	sequence	of	two	
or	more	“chunks”.	Each	chuck	must	be	entirely	continuous	and	can	therefore	be	
described	with	a	starting	address	and	byte	count.	

To	compute	the	hash	of	a	single,	fully	continuous	block	of	memory:	

	 STORE	an	address	into	DMA_START_ADDR	
	 STORE	an	integer	into	DMA_BYTECOUNT	
	 STORE	the	command	DMA_SHA256_SIMPLE	into	DMA_COMMAND	
	 Wait	for	the	task	to	complete	
	 READ	the	256	bit	(i.e.,	4	doubleword,	or	4	×	64	bits)	hash	value	from	
	 	 DMA_SHA256_0	…	DMA_SHA256_3. 	118

The	DMA_START_ADDR	must	be	doubleword	aligned,	but	the	DMA_BYTECOUNT	
does	not	need	to	be	a	multiple	of	8.	

On	the	other	hand,	it	may	be	that	a	User	Mode	process	has	requested	the	SHA-256	
hash	for	a	block	of	message	bytes	in	a	virtual	address	space	and	the	block	of	
message	bytes	crosses	one	or	more	page	boundaries.	In	this	case,	the	message	must	
divided	into	chunks	of	bytes	where	each	chunk	lies	wholly	within	a	continuous	
range	of	physical	memory.	

The	individual	chunks	may	be	any	length;	they	do	not	need	to	be	a	multiple	of	8	
bytes.	

The	SHA-256	algorithm	involves	an	initialization	phase	and	a	Uinalization	phase.	
Here	is	the	procedure:	

For	the	Uirst	chunk:	
	 STORE	the	command	DMA_SHA256_INITIALIZE	into	DMA_COMMAND	

	If	you	did	not	even	wonder	about	most-signiUicant/least-signiUicant	order,	then	you	have	118

escaped	the	mental	contamination	of	Little	Endian	dementia.

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	300 344

Chapter	10:	Memory-Mapped	I/O	

	 Wait	for	the	task	to	complete	
For	each	chunk:	

	 STORE	an	address	into	DMA_START_ADDR	
	 STORE	an	integer	into	DMA_BYTECOUNT	
	 STORE	the	command	DMA_SHA256_CHUNK	into	DMA_COMMAND	
	 Wait	for	the	task	to	complete	
After	the	last	chunk:	

	 STORE	the	command	DMA_SHA256_FINALIZE	into	DMA_COMMAND	
	 Wait	for	the	task	to	complete	
	 READ	the	256	bit	(i.e.,	4	doubleword,	or	4	×	64	bits)	hash	value	from	
	 	 DMA_SHA256_0	…	DMA_SHA256_3.	

The	DMA_START_ADDR	must	be	doubleword	aligned,	but	the	DMA_BYTECOUNT	
does	not	need	to	be	a	multiple	of	8.	

AES-256	

The	AES-256	algorithm	uses	a	256	bit	(i.e.,	4	doubleword,	or	4	×	64	bits)	key	to	
either	encrypt	a	message	or	decrypt	a	message.	Since	the	algorithm	is	symmetric,	
the	same	key	is	used	for	both	encryption	and	decryption.	However,	the	encryption	
algorithm	is	different	from	the	decryption	algorithm.	

The	DMA	controller	will	process	a	message	and	produce	a	result.	The	“source	
region”	is	the	block	of	memory	bytes	containing	the	message	to	be	processed.	The	
“target	region”	is	the	block	of	memory	bytes	where	the	result	of	the	encryption	or	
decryption	will	be	placed.	

A	region	of	memory	may	or	may	not	be	continuous.	

We	say	that	a	region	of	memory	is	“continuous”	if	a	single	starting	address	and	byte	
count	sufUice	to	locate	the	region	in	memory.	If	the	region	happens	to	span	multiple	
pages,	then	all	those	pages	must	be	adjacent	and	sequential.	In	other	words,	no	gaps	
or	jumping	around	is	allowed.	

Alternatively,	a	block	of	bytes	could	originate	from	a	virtual	address	space.	While	it	
might	be	continuous	in	the	virtual	address	space,	it	might	happen	to	cross	page	
boundaries.	However,	the	DMA	controller	works	only	on	physical	addresses.	While	
the	block	of	bytes	is	continuous	in	the	virtual	address	space,	it	may	not	be	
continuous	in	physical	memory.	Such	a	block	must	be	broken	into	a	sequence	of	two	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	301 344

Chapter	10:	Memory-Mapped	I/O	

or	more	“chunks”.	Each	chuck	must	be	entirely	continuous	and	can	therefore	be	
described	with	a	starting	address	and	byte	count.	

When	both	the	source	and	target	regions	consist	of	a	single	chunk,	we	have	a	
“simple”	case.	

To	encrypt	a	“simple”	continuous	block	of	memory	using	AES-256:	

	 STORE	the	key	into	DMA_AES_KEY_0	…	DMA_AES_KEY_3	
	 STORE	the	command	DMA_AES256_PREPARE	into	DMA_Command	
	 Wait	for	the	task	to	complete	
	 STORE	an	address	into	DMA_START_ADDR	(where	to	Uind	the	plaintext)	
	 STORE	an	address	into	DMA_TARGET_ADDR	(where	to	store	the	cipher-text)	
	 STORE	an	integer	into	DMA_BYTECOUNT	
	 STORE	the	command	DMA_AES256_EN_SIMPLE	into	DMA_Command	
	 Wait	for	the	task	to	complete	
	 Retrieve	the	cipher-text	from	the	target	area.	

To	decrypt	a	“simple”	continuous	block	of	memory	using	AES-256:	

	 STORE	the	key	into	DMA_AES_KEY_0	…	DMA_AES_KEY_3	
	 STORE	the	command	DMA_AES256_PREPARE	into	DMA_COMMAND	
	 Wait	for	the	task	to	complete	
	 STORE	an	address	into	DMA_START_ADDR	(where	to	Uind	the	cipher-text)	
	 STORE	an	address	into	DMA_TARGET_ADDR	(where	to	store	the	plaintext)	
	 STORE	an	integer	into	DMA_BYTECOUNT	
	 STORE	the	command	DMA_AES256_DE_SIMPLE	into	DMA_COMMAND	
	 Wait	for	the	task	to	complete	
	 Retrieve	the	plaintext	from	the	target	area.	

An	AES-256	key	is	256	bits	(i.e.,	32	bytes	=	4	doublewords).	Before	any	encryption	
or	decryption,	the	key	must	be	stored	in	the	following	DMA	registers:	

	 DMA_AES_KEY_0	
	 DMA_AES_KEY_1	
	 DMA_AES_KEY_2	
	 DMA_AES_KEY_3	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	302 344

Chapter	10:	Memory-Mapped	I/O	

This	key	must	be	prepared	before	use. 	The	DMA_AES256_PREPARE	command	119

will	convert	the	key	into	an	internal	representation,	which	will	be	stored	in	the	DMA	
controller.	This	internal	state	will	be	used	for	future	AES-256	encryptions	and	
decryptions.	

The	same	key	may	be	used	for	multiple	encryption	and	decryption	operations	and	
only	needs	to	be	prepared	once.	In	other	words,	loading	the	DMA_AES_KEY_0	…	
DMA_AES_KEY_3	registers	and	executing	the	DMA_AES256_PREPARE	command	
are	performed	Uirst,	and	need	not	be	repeated	if	the	same	key	is	used	for	multiple	
encryption/decryption	operations.	

For	all	AES-256	commands,	the	addresses	DMA_START_ADDR	and	
DMA_TARGET_ADDR	must	be	doubleword	aligned.		

The	AES	algorithm	encrypts	and	decrypts	in	units	of	16	bytes	(i.e.,	128	bits)	so	the	
DMA_BYTECOUNT	must	be	a	multiple	of	16.	This	means	the	message	to	be	
encrypted	must	be	padded	out	to	a	multiple	of	16	bytes	and	that	any	message	to	be	
decrypted	will	be	a	multiple	of	16	bytes	in	length.	

To	encrypt	a	non-continuous	block	of	memory	using	AES-256,	the	source	and	the	
target	regions	must	be	broken	into	a	set	of	chunks,	where	each	chunk	is	continuous	
and	a	multiple	of	16	bytes	in	length.	The	Uirst	chunk	must	be	be	encrypted	with	the	
DMA_AES256_EN_INITIAL	command.	The	last	chunk	must	be	encrypted	with	the	
DMA_AES256_EN_FINAL	command.	The	middle	chunks	(if	any),	which	lie	between	
the	initial	and	Uinal	chunks,	are	processed	with	a	series	of	
DMA_AES256_EN_MIDDLE	commands.	

Here	is	the	sequence.	As	mentioned,	the	preparation	of	the	key	can	be	skipped	if	
same	key	as	used	previously	is	to	be	used.	

Prepare	the	key	(optional,	if	same	key	as	last	time):	
	 STORE	the	key	into	DMA_AES_KEY_0	…	DMA_AES_KEY_3	
	 STORE	the	command	DMA_AES256_PREPARE	into	DMA_Command	
	 Wait	for	the	task	to	complete	
For	the	Uirst	chunk:	

	 STORE	an	address	into	DMA_START_ADDR	(where	to	Uind	the	plaintext)	

	Before	any	encryption	or	decryption,	the	key	must	be	“expanded”	into	something	called	the	119

“round	key”,	which	is	denoted	“w”.	The	step	takes	the	8	word	(8	×	32	=	256	bit)	key	and	initializes	
“w”	which	is	another	56	words	(i.e.,	Nb	×	Nr	words,	where	Nb	=	number	of	words	per	block	=	4,	
and	Nr	=	number	of	rounds	=	14)	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	303 344

Chapter	10:	Memory-Mapped	I/O	

	 STORE	an	address	into	DMA_TARGET_ADDR	(where	to	store	the	cipher-text)	
	 STORE	an	integer	into	DMA_BYTECOUNT	
	 STORE	the	command	DMA_AES256_EN_INITIAL	into	DMA_Command	
	 Wait	for	the	task	to	complete	
For	the	each	additional	chunk:	

	 STORE	an	address	into	DMA_START_ADDR	(where	to	Uind	the	plaintext)	
	 STORE	an	address	into	DMA_TARGET_ADDR	(where	to	store	the	cipher-text)	
	 STORE	an	integer	into	DMA_BYTECOUNT	
	 STORE	the	command	DMA_AES256_EN_MIDDLE	into	DMA_Command	
	 Wait	for	the	task	to	complete	
For	the	the	Uinal	chunk:	

	 STORE	an	address	into	DMA_START_ADDR	(where	to	Uind	the	plaintext)	
	 STORE	an	address	into	DMA_TARGET_ADDR	(where	to	store	the	cipher-text)	
	 STORE	an	integer	into	DMA_BYTECOUNT	
	 STORE	the	command	DMA_AES256_EN_FINAL	into	DMA_Command	
	 Wait	for	the	task	to	complete	
Retrieve	the	cipher-text	from	the	target	area.	

The	process	for	decryption	is	identical,	except	

	 instead	of	 use	
	 DMA_AES256_EN_INITIAL	 DMA_AES256_DE_INITIAL	
	 DMA_AES256_EN_MIDDLE	 DMA_AES256_DE_MIDDLE	
	 DMA_AES256_EN_FINAL	 DMA_AES256_DE_FINAL	

To	be	precise,	here	is	the	procedure	to	decrypt	a	series	of	chunks:	

Prepare	the	key	(optional,	if	same	key	as	last	time):	
	 STORE	the	key	into	DMA_AES_KEY_0	…	DMA_AES_KEY_3	
	 STORE	the	command	DMA_AES256_PREPARE	into	DMA_Command	
	 Wait	for	the	task	to	complete	
For	the	Uirst	chunk:	

	 STORE	an	address	into	DMA_START_ADDR	(where	to	Uind	the	cipher-text)	
	 STORE	an	address	into	DMA_TARGET_ADDR	(where	to	store	the	plaintext)	
	 STORE	an	integer	into	DMA_BYTECOUNT	
	 STORE	the	command	DMA_AES256_DE_INITIAL	into	DMA_Command	
	 Wait	for	the	task	to	complete	
For	the	each	additional	chunk:	

	 STORE	an	address	into	DMA_START_ADDR	(where	to	Uind	the	cipher-text)	
	 STORE	an	address	into	DMA_TARGET_ADDR	(where	to	store	the	plaintext)	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	304 344

Chapter	10:	Memory-Mapped	I/O	

	 STORE	an	integer	into	DMA_BYTECOUNT	
	 STORE	the	command	DMA_AES256_DE_MIDDLE	into	DMA_Command	
	 Wait	for	the	task	to	complete	
For	the	the	Uinal	chunk:	

	 STORE	an	address	into	DMA_START_ADDR	(where	to	Uind	the	cipher-text)	
	 STORE	an	address	into	DMA_TARGET_ADDR	(where	to	store	the	plaintext)	
	 STORE	an	integer	into	DMA_BYTECOUNT	
	 STORE	the	command	DMA_AES256_DE_FINAL	into	DMA_Command	
	 Wait	for	the	task	to	complete	
Retrieve	the	plaintext	from	the	target	area.	

Each	chunk	will	be	decrypted	and	stored	in	the	target	area	before	the	next	command	
is	issued.	In	some	applications,	it	may	be	the	case	that	the	initial	chunk	of	a	message	
contains	a	header	with	a	“length”	Uield	which	indicates	how	long	the	message	is.	
After	decrypting	the	Uirst	chunk,	it	may	be	desirable	to	use	this	“length”	information	
to	determine	exactly	how	much	of	the	message	to	decrypt.	

UART	Serial	Comm	

Status:	 Provisional;	details	to	be	determined	
Starting	Address:	 0x4_XXXX_XXXX				<	implementation	dependent	>	
Next	Available	Address:	 0x4_XXXX_XXXX	
Size:	 0x0_0000_4000	(16	KiBytes)	
Number	of	Pages:	 1	

This	I/O	device	corresponds	to	one	(or	more)	UART	serial	communication	interfaces	
that	are	built-in	and	implemented	on	the	same	chip	die	as	the	core.	

This	device	allows	individual	8-bit	characters	to	be	sent	and	received	over	a	
Universal	Asynchronous		Receive	Transmit	(UART)	channel,	also	known	as	a	
serial	port.	

If	the	chip	contains	multiple	UART	interfaces,	then	the	implementation	may	choose	
to	place	each	channel	in	a	separate	memory-mapped	I/O	page,	so	that	each	channel	
can	be	mapped	individually	and	separately	into	different	virtual	address	spaces.	Or	
the	implementation	may	choose	to	place	all	channels	in	a	single	page,	so	they	will	all	
be	managed	by	a	single	process,	which	will	then	route	the	individual	communication	
streams	to	separate	end-user	processes.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	305 344

Chapter	10:	Memory-Mapped	I/O	

Simple	Disk	

Status:	 Present	in	emulator	only;	not	a	realistic	device	
	 	 Provisional;	details	to	be	determined	
Starting	Address:	 0x4_XXXX_XXXX			<	implementation	dependent	>		
Next	Available	Address:	 0x4_XXXX_XXXX	
Size:	 0x0_0000_4000	(16	KiBytes)	
Number	of	Pages:	 1	

This	device	simulates	some	form	of	long-term	stable	storage,	such	as	a	disk	or	Ulash	
memory.	It	is	completely	imaginary	and	present	only	in	emulated	systems	as	a	
simpliUied	model	of	real	hardware.	

The	device	responds	to	two	commands:	READ	and	WRITE.	Each	command	is	passed:	

	 •	The	length	in	bytes	of	the	data	to	be	transferred	
	 •	The	starting	address	of	an	in-memory	buffer	area	
	 •	A	“disk	address”,	i.e.,	the	location	in	which	the	data	is	stored	

The	READ	command	will	transfer	data	from	the	stable	storage	into	memory.	The	
WRITE	command	will	transfer	data	from	the	memory	to	the	stable	storage.	

Both	instructions	will	execute	instantaneously,	with	a	delay	of	zero	instructions,	and	
will	complete	without	any	exceptions	or	interrupts.	

This	device	can	only	be	present	in	an	emulated	system.	The	stable	storage	will	be	
backed	by	a	Uile	on	the	host	computer	system.	This	device	is	intended	to	be	used	in	
the	early	phases	of	developing	a	Uile	system.	It	may	also	be	used	in	educational	
environments,	where	the	details	of	real	storage	systems	are	to	be	avoided.	

In	fully	specifying	this	device,	we	need	to	answer	the	following	questions:	

	 •	Must	the	transfer	size	be	a	multiple	of	some	sector/page	size?	
	 •	Can	the	transfer	size	be	any	arbitrary	number	of	bytes?	
	 •	Is	the	target	address	given	as	a	byte	offset	or	a	sector/page	number?	
	 •	Is	the	target	address	given	as	a	logical	sector/page	number,	i.e.,	0…N?	
	 •	Is	the	target	address	given	using	hardware	details	like	track,	head,	rotation?	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	306 344

Chapter	10:	Memory-Mapped	I/O	

Lock	Controller	

Status:	 Speculative	Idea	
Starting	Address:	 0x4_XXXX_XXXX			<	implementation	dependent	>	
Next	Available	Address:	 0x4_XXXX_XXXX	
Size:	 0x0_0000_4000	(16	KiBytes)	
Number	of	Pages:	 1	

The	device	whose	design	is	sketched	here	is	novel,	hypothetical,	unconventional,	and	
speculative.	When	considering	systems	with	≥	16	cores,	the	traditional	approach	of	
manipulating	shared	locks	through	the	use	of	atomic	operations	on	shared	memory	
may	not	scale	well.	The	idea	here	is	to	off-load	the	task	of	synchronization	to	a	
dedicated	device,	in	order	to	improve	performance.	

This	memory-mapped	I/O	device	is	used	for	synchronization	between	the	
processors	in	a	multiprocessor	system.	Consequently,	this	device	will	be	shared	by	
all	processors	in	the	system.	The	system	may	or	may	not	also	have	shared	memory	
or	other	shared	resources.	In	systems	without	shared	memory,	data	might	be	copied	
from	one	private	memory	to	another	private	memory	by	a	Direct	Memory	Access	
(DMA)	controller	with	access	to	the	private	memories	of	several	different	
processors.	

A	mutex	lock	is	normally	used	to	control	the	access	to	shared	data.	Any	code	which	
reads	and	updates	shared	data	is	said	to	be	a	critical	region.	In	many	applications,	
due	to	the	possible	unpleasant	interaction	of	concurrent	processes,	only	one	thread	
should	be	in	a	critical	region	at	any	moment.	A	mutex	lock	can	be	used	to	enforce	
this.	The	lock	is	either	held	or	free.	Before	entering	a	critical	section,	every	thread	
must	acquire	the	lock,	which	changes	it	from	“free”	to	“held”	by	that	thread.	After	
the	critical	section	has	been	completed,	the	thread	should	release	the	lock,	which	
changes	it	from	“held”	to	“free”.	

A	lock	that	is	“held”	is	sometimes	said	to	be	“set”	or	“locked”.	A	lock	that	is	“free”	is	
sometimes	said	to	be	“clear”	or	“unlocked”.	

In	a	system	with	only	a	single	core,	the	implementation	of	locks	is	straightforward.	
Whenever	one	kernel	thread	wishes	to	examine	and	acquire	a	lock,	it	can	
momentarily	disable	interrupts	(with	the	CSRCLR	instruction).	The	thread	can	check	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	307 344

Chapter	10:	Memory-Mapped	I/O	

the	state	of	the	lock	and,	if	the	lock	is	free,	the	thread	will	acquire	it	before	
reenabling	interrupts.	This	prevents	a	thread-switch	from	occurring	while	the	lock	is	
being	manipulated.	

In	a	system	with	shared	memory	and	multiple	cores,	disabling	interrupts	is	not	
sufUicient.	Other	cores,	running	concurrently,	may	still	interfere	with	the	lock-
acquire	operation.	Another	approach	is	required.	

To	address	this	need,	most	Instruction	Set	Architectures	(ISAs)	provide	instructions	
that	can	be	used	to	implement	locking.	For	example,	Blitz	includes	the	CAS	
(compare-and-set)	instruction.	The	CAS	instruction	will	perform	both	a	read	and	
write	to	a	shared	memory	location.	The	instruction	will	both	set	the	memory	
location	and	return	the	previous	value	from	the	read,	allowing	the	software	to	
determine	whether	the	“lock	acquire”	operation	was	successful	or	whether	the	lock	
was	already	held	and	the	attempt	to	gain	exclusive	access	has	failed.	Instructions	
such	as	compare-and-set	and	test-and-set	instruction	must	be	executed	
atomically. 	120

The	approach	outlined	here,	using	a	memory-mapped	I/O	device,	is	signiUicantly	
different.	It	avoids	requiring	the	shared	memory	to	support	atomic	operations	in	any	
way.	This	would	be	useful	if	there	is	no	shared	memory.	It	would	also	be	useful	if	the	
system	did	not	support	atomic	memory	operations,	perhaps	for	reasons	of	efUiciency.	

Instead	of	relying	on	atomic	instructions,	one	can	use	this	I/O	device,	whose	sole	
purpose	is	to	implement	mutex	locks.	For	example,	these	locks	might	be	used	to	
regulate	the	access	by	multiple	cores	to	regions	of	the	shared	memory.	(For	locks	
used	only	by	a	single	core,	the	technique	of	temporarily	disabling	interrupts	is	
sufUicient,	faster,	and	simpler.)	

This	memory-mapped	I/O	device	provides	32	special	“lock	registers”.	Each	register	
is	a	doubleword	(that	is,	64	bits	wide)	and	each	is	addressable	as	a	memory-mapped	
I/O	location,	just	as	any	doubleword	in	memory	is	addressable.	The	single	page	
allocated	to	this	I/O	device	will	contain	these	32	doublewords,	near	the	beginning	of	
the	page,	at	the	offsets	shown	below.	

	There	are	variations	to	this	approach.	For	example,	the	RISC-V	approach	is	called	load-120

reserved/store-conditional	(LR/SC),	which	is	also	called	“load-link/store-conditional	(LL/SC).	In	
addition,	the	RISC-V	ISA	also	includes	a	number	of	“atomic	memory	operations”,	including	
instructions	such	as	AMOADD,	which	will	read	a	value	from	memory,	add	a	number	to	it,	and	then	
store	the	result	back	in	memory	—	all	as	a	single	atomic	operation.

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	308 344

Chapter	10:	Memory-Mapped	I/O	

	 	offset	into	page	
	 								(in	hex)											

0000 - 0007	 Lock	register	#0
0008 - 000F	 Lock	register	#1
... ...

00F8 - 00FF	 Lock	register	#31
0100 - 3FFF	 undeUined	

The	memory-mapped	I/O	page	for	this	device	contains	no	other	usable	locations,	
and	the	rest	of	the	16	KiByte	page	is	unused/undeUined. 	121

Each	lock	register	behaves	similarly	to	any	normal	doubleword	of	memory.	Each	
lock	register	can	be	read	by	a	LOAD.D	instruction.	Each	lock	register	can	be	written	
by	a	STORE.D	instruction.	However,	there	are	differences,	which	will	be	described.	

Each	lock	register	will	contain	a	64	bit	signed	value.	However,	the	value	0	has	special	
meaning.	A	value	of	zero	means	that	the	lock	is	“free”	(i.e.,	not	locked	or	held	by	any	
core).	A	non-zero	value	means	the	lock	is	held	and	the	value	will	indicate	the	
identity	of	the	core	holding	the	lock.	

A	read	(e.g.,	using	a	LOAD.D)	will	return	the	value	of	the	register	and	work	as	
expected.	However,	storing	into	a	register	(e.g.,	using	a	STORE.D	instruction)	has	an	
unusual	behavior.	In	some	cases,	the	STORE	will	work;	in	other	cases,	the	STORE	will	
be	ignored	and	the	value	will	remain	unchanged.	

To	be	more	speciUic,	any	attempt	to	store	a	non-zero	value	into	a	lock	register	that		
previously	contained	any	value	other	than	zero	will	fail.		If	the	lock	register	
previously	contained	zero,	then	the	write	will	succeed	and	the	register	will	be	
updated.	But	if	the	previous	value	was	nonzero,	and	an	attempt	is	made	to	write	
another	non-zero	value	into	the	register,	then	the	write	will	be	ignored	and	the	
previous	value	will	be	unchanged.	A	write	of	zero	to	a	lock	register	will	always	work.	

Another	way	to	think	about	this	is	as	follows:	A	lock	register	works	exactly	like	any	
other	doubleword	in	memory,	except	that	any	attempt	to	store	a	non-zero	value	into	
a	register	already	containing	a	non-zero	value	will	be	ignored.	

	All	other	bytes	in	the	page	have	undeUined	behavior;	they	may	be	written	to	and	read	from,	but	121

whether	the	value	returned	by	reads	will	be	zero	or	will	be	the	value	last	written	is	not	speciUied.

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	309 344

Chapter	10:	Memory-Mapped	I/O	

The	idea	is	that	a	single	lock	register	is	used	to	represent	and	implement	a	mutex	
lock.	To	acquire	the	lock,	a	core	will	write	a	non-zero	value	to	the	register.	If	the	lock	
was	previously	free,	it	will	be	changed	from	zero	to	the	number	written.	The	core	
should	follow	the	STORE.D	instruction	by	executing	a	LOAD.D	to	look	at	the	lock’s	
value.	If	the	lock	contains	the	new	value,	then	the	lock	has	been	successfully	
acquired;	it	it	contains	any	other	value,	the	acquire	has	failed	and	must	be	retried.	
Later,	to	release	the	lock,	the	core	will	write	a	zero	into	the	lock	register.	

We	assume	that	each	core	has	a	been	assigned	a	unique	number,	which	we	will	call	
its	“core	ID”.	We	assume	that	the	cores	are	numbered	1,	2,	…	N.	The	idea	is	that	to	
acquire	a	lock	register,	a	core	will	write	its	number	into	the	lock	register	using	the	
STORE.D	instruction.	Then,	to	determine	whether	the	operation	was	successful,	the	
core	will	read	the	lock	register	using	a	LOAD.D.	If	the	number	returned	is	the	core’s	
own	ID,	then	the	lock	was	successfully	acquired.	If	the	number	is	anything	else,	then	
the	acquire	operation	failed.	If	the	number	returned	is	zero,	then	it	means	that	the	
lock	was	released	sometime	between	the	STORE.D	and	the	LOAD.D	instructions.	
Otherwise,	the	number	returned	indicates	which	core	holds	the	lock	(or,	more	
correctly,	the	identity	of	a	core	that	held	the	lock	at	some	time	in	the	recent	past,	and	
may	or	may	not	still	hold	it).	

How	can	these	locks	be	used.	Perhaps	each	lock	register	will	be	used	to	lock	a	given	
region	of	shared	memory	for	the	purpose	of	enforcing	exclusive,	sequential	access	to	
that	memory	region.	Exactly	which	critical	data	is	to	be	protected	by	each	lock	is	up	
to	the	kernel	programmer.	Perhaps	each	core	will	have	a	region	“belonging”	to	it;	
each	lock	will	be	used	to	protect	the	memory	associated	with	a	particular	core.	Or	
perhaps	one	lock	register	will	be	used	as	a	“master	lock”	to	control	access	to	a	
shared	critical	region	containing	thousands	of	“secondary”	mutex	locks.	In	order	to	
perform	an	operation	on	one	of	the	secondary	locks,	a	core	would	be	required	to	
Uirst	acquire	the	master	lock.	

There	is	nothing	particularly	special	about	specifying	the	number	of	lock	registers	to	
be	32;	it	was	chosen	arbitrarily.	Perhaps	this	will	change	in	a	future	speciUication.	

The	lock	registers	are	speciUied	to	be	64	bits	wide.	Recall	that	aligned	LOAD.D	and	
STORE.D	instructions	are	atomic.	

A	mutex	locks	is	used	to	regulate	and	synchronize	a	set	of	concurrent	“processes".	
With	the	Blitz-64	approach,	each	process	must	use	a	different	number	when	
executing	the	STORE.D	to	an	acquire	the	lock,	so	that	it	can	determine	whether	the	
STORE.D	operation	successfully	acquired	the	lock.	If	two	different	processes	are	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	310 344

Chapter	10:	Memory-Mapped	I/O	

using	the	same	number,	there	would	be	no	way	for	one	process	to	tell	whether	it	or	
the	other	process	successfully	acquired	the	lock.	

The	lock	registers	described	here	are	speciUically	designed	to	arbitrate	between	
cores,	not	between	threads	within	a	single	core.	As	we	said	above,	each	core	will	use	
a	unique	number	(e.g.,	its	“core	number”)	in	the	STORE.D	instruction	to	acquire	a	
lock.	This	approach	uses	64	bit	values.	With	this	many	bits,	we	could	easily	
accommodate	two	Uields,	one	with	the	core	number	and	the	other	with	a	thread	ID.	

Digital	I/O	Pins	and	LEDs	

Status:	 Provisional;	details	to	be	determined	
Starting	Address:	 0x4_XXXX_XXXX			<	implementation	dependent	>	
Next	Available	Address:	 0x4_XXXX_XXXX	
Size:	 0x0_0000_4000	(16	KiBytes)	
Number	of	Pages:	 1	

The	Blitz-64	chip	may	contain	a	number	of	digital	I/O	pins.	On	some	boards,	one	or	
more	of	the	output	pins	may	drive	LEDs.	

To	change	the	status	of	the	output	pins,	software	can	STORE	to	address	xxxx.	To	
query	the	current	state	of	the	output	pins,	software	can	read	from	this	same	address.	

To	query	the	status	of	the	input	pins,	software	can	LOAD	from	address	xxxx.	

In	some	implementations,	the	output	pins	may	be	operated	as	Pulse	Width	
Modulated	(PWM)	signals.	If	this	is	the	case,	then	this	device	will	contain	additional	
words	which	can	be	used	to	control	the	PWM	pins.	

In	some	implementations,	analog	input	pins	may	be	present.	If	this	is	the	case,	then	
this	device	will	contain	additional	words	which	can	be	used	to	query	the	analog	
input	pins.	

This	device	will	likely	occupy	only	a	single	page,	which	can	be	mapped	into	the	
address	space	of	a	single	“pin	controller	process”.	All	requests	to	control	and	query	
the	digital	I/O	pins	would	then	go	through	the	“pin	controller	process”.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	311 344

Chapter	10:	Memory-Mapped	I/O	

HDMI,	USB,	WiFi,	etc.	

Starting	Address:	 0x4_XXXX_XXXX			<	implementation	dependent	>	
Next	Available	Address:	 0x4_XXXX_XXXX	
Size:	 0x0_0000_4000	(16	KiBytes)	
Number	of	Pages:	 1	
Status:	 Details	to	be	determined	

If	interface	hardware	for	other	devices	is	available,	then	each	device	will	be	assigned	
to	a	memory-mapped	I/O	region.	

MicroSD	Card	Slot	

Status:	 Details	to	be	determined	
Starting	Address:	 0x4_XXXX_XXXX			<	implementation	dependent	>	
Next	Available	Address:	 0x4_XXXX_XXXX	
Size:	 0x0_0000_4000	(16	KiBytes)	
Number	of	Pages:	 1	

If	interface	hardware	for	microSD	card	slots	is	available,	then	each	slot	will	be	
assigned	to	a	memory-mapped	I/O	region.	

In	initial	implementations,	it	is	assumed	that	the	Uile	system	and	kernel	will	be	
located	on	microSD	cards.	

Each	card	slot	should	be	mapped	to	different	pages	from	the	other	slots,	so	that	each	
slot	can	be	individually	mapped	into	the	address	space	of	separate	controller	
processes.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	312 344

Chapter	10:	Memory-Mapped	I/O	

Adjacent	Core	Links	

Status:	 Provisional;	details	to	be	determined	
Starting	Address:	 0x4_XXXX_XXXX			<	implementation	dependent	>	
Next	Available	Address:	 0x4_XXXX_XXXX	
Size:	 0x0_0000_4000	(16	KiBytes)	
Number	of	Pages:	 1	

Blitz-64	is	intended	to	be	used	in	parallel	processing	arrays	where	each	node	is	a	
Blitz-64	core.	Each	core	may	occupy	a	single	chip	die	(along	with	its	local	memory	
and	other	components)	or	there	may	be	multiple	cores	on	each	die.	

The	cores	are	intended	to	be	arranged	in	a	rectangular	array.	The	array	may	be	2-
dimensional	or	3-dimensional,	or	the	cores	may	be	array	linearly	in	a	1-dimensional	
arrangement.	

When	arranged	in	a	3-dimensional	array,	the	directions	are	called	“west”,	“east”,	
“north”,	“south”,	“up”,	and	“down”.	The	size	(extent)	in	each	dimension	need	not	be	
identical.	The	cores	are	identiUied	using	a	coordinate	system	

In	a	linearly	arranged	array,	the	cores	are	numbered	0,	1,	2,	…	M.	The	western-most	
core	is	numbered	zero,	with	the	numbers	increasing	in	the	eastern	direction.	You	
can	also	think	of	“left”	as	corresponding	to	west	and	“right”	as	corresponding	to	
“east”.	

In	a	2-dimensional	array,	you	can	think	of	the	west-east	axis	as	indicating	the	
“column”	and	the	north-south	axis	as	indicating	the	“row”.	The	northern-most	core	is	
numbered	zero,	with	the	numbers	increasing	in	the	southern	direction.	

In	a	3-dimensional	array,	the	third	axis	corresponds	to	up-down.	The	uppermost	
core	is	numbered	zero,	with	the	numbers	increasing	in	the	downward	direction.	
Thus,	the	cores	are	numbered	from	code	[0,0,0]	in	the	upper	northwestern	corner,	to	
core	[M-1,N-1,P-1]	in	the	far	(lower	southeastern)	corner	where	M	is	the	number	of	
columns	in	the	west-east	direction,	N	is	the	number	of	rows	in	the	north-south	
direction,	and	P	is	the	number	of	planes	in	the	up-down	direction.	(Note	that	this	
order	corresponds	to	Cartesian	coordinates	(x,	y,	z)	and	not	the	[row,	column]	order	
of	matrices.)	

Each	core	can	communicate	directly	with	its	6	neighbors.	The	memory	mapped	I/O	
device	here	is	designed	to	support	this	communication.	The	messages	can	be	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	313 344

Chapter	10:	Memory-Mapped	I/O	

variable	length	(up	to	1	page	in	size)	and	are	buffered	so	that	a	core	need	not	wait	
for	a	transmission	to	complete.	Since	each	core	is	expected	to	have	an	independent	
clock,	the	transmission	and	corresponding	Ulow	control	is	handled	entirely	by	the	
hardware.	When	a	transmission	is	complete,	interrupts	will	be	signaled	at	both	ends.	
The	interrupt	at	the	sending	end	lets	the	software	know	that	it	can	initiate	a	new	
transmission.	The	interrupt	at	the	receiving	end	lets	the	software	know	that	it	can	
read	and	process	the	incoming	message.	

Each	of	the	six	channels	will	be	“full	duplex”,	which	means	that	the	communication	
in	one	direction	is	entirely	independent	of	the	communication	in	the	other	direction.	
Communication	can	occur	in	both	directions	simultaneously	with	no	timing	
interaction	or	performance	impact.	

Commentary	With	6	communication	links,	a	collection	of	processor	cores	may	also	
be	arranged	in	other	conUigurations,	such	as	a	6-dimensional	hypercube.	A	6-D	
hypercube	arrangement	will	accommodate	64	cores	and	the	longest	path	from	any	
core	to	any	other	core	is	only	6.	

Contrast	this	with	a	3-dimensional	array	of	64	processors	(i.e.,	4	×	4	×	4):	the	longest	
path	from	any	core	to	any	other	core	is	9	(i.e.,	3	+	3	+	3).	

The	difference	in	path	lengths	in	a	hypercube	arrangement	over	a	3-dimensional	
array	becomes	more	apparent	as	the	dimension	and	number	of	cores	increases.	For	
1,024	cores	in	a	10-D	hypercube	it	is	10::27.	The	number	of	wires	remains	
unchanged	and	is	solely	determined	by	the	number	of	cores;	each	wire	has	a	core	at	
each	end,	so	the	number	of	wires	is	cores	×	links	÷	2.	But	wiring	in	our	3-D	universe	
becomes	messy.	

The	real	world	is	3	dimensional	(although	physicists	might	correct	me)	and	many	
computations	are	tied	to	this	dimensionality,	so	practical	applications	tend	to	map	
naturally	onto	3-D	processor	arrays.	

Note	In	an	earlier	discussion	concerning	the	Lock	Controller	device,	we	discussed	
how	each	core	could	“acquire”	a	lock	by	writing	its	core	ID	number	into	special	
location	in	the	memory-mapped	I/O	device	that	is	dedicated	to	controlling	locks.	
The	Lock	Controller	uses	a	value	of	zero	to	indicate	that	a	lock	is	“free”,	so	the	
numbering	of	the	core	ID	values	must		begin	with	1.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	314 344

Chapter	10:	Memory-Mapped	I/O	

Here,	in	the	discussion	of	arrays	of	cores,	we	are	numbering	cores	so	that	the	home	/	
master	core	at	the	origin	of	a	3-D	array	is	given	the	address	[0,0,0].	If	the	array	is	
only	1-D	and	the	cores	are	laid	out	in	a	line,	they	are	given	addresses	[0],	[1],	…	[M].	
In	other	words,	the	cores	are	numbered:	

	 Array	Address	 Core	ID	for	Locking	
	 [0]	 1	
	 [1]	 2	
	 [2]	 3	
	 …	 …	

These	two	numbering	systems	are	different;	be	careful	of	confusing	them.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	315 344

Appendix	1:	Assembly	Language	

Assembling	and	Linking	

This	appendix	contains	a	brief	introduction	to	assembly	language	concepts,	as	
applied	to	Blitz-64.		

Assembly	language	is	a	sort	of	primitive	programming	language,	in	which	the	
programmer	writes	instructions	that	can	be	directly	executed	by	the	processor	core.	
Each	computer	architecture	has	its	own	assembly	language.	Programming	
convenience,	portability,	and	maintainability	are	crucially	important.	Although	all	
these	are	absent	with	assembly	language,	assembly	language	programming	
necessary	for	anyone	close	to	the	hardware.	

This	appendix	discusses	one	assembler	tool	in	particular;	the	Blitz-64	assembler.	
This	tool	exists	in	two	identical	versions.	One	version	is	written	in	C	(and	runs	on	a	
POSIX-based	host)	and	the	other	version	is	written	in	KPL	(and	runs	on	a	Blitz-64	
computer). 	122

The	basic	idea	is	that	each	machine	instruction	can	be	written	symbolically	instead	
of	given	in	binary.	An	assembler	tool	translates	the	symbolic	assembly	code	into	
binary	machine	code.	For	example,	the	assembler	translates	an	assembler	
instruction	such	as:	

addi r2,r4,100 # end = start + size

into	the	following	32	bit	machine	instruction:	

 0x01006424

	There	may	be	other	assemblers;	for	details,	consult	the	documentation	for	the	assembler	tool	122

you	are	using.

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	316 344

Appendix	1:	Assembly	Language	

An	assembly	program	is	a	text	Uile	with	one	instruction	per	line,	making	it	possible	to	
write	machine	code	in	a	human-readable,	symbolic	form.	Machine	code	speciUied	in	
binary	or	hex	is	just	too	error-prone	for	humans	to	create,	and	an	assembly	language	
is	an	improvement	over	pure	machine	code.	

In	addition	to	the	assembler	tool,	the	linker	tool	must	be	used,	in	a	step	called	
“linking”.	

Roughly	speaking,	the	purpose	of	the	assembler	is	to:	

•	 Check	the	assembly	source	Uile	for	errors,	to	make	sure	all	the	instruction	
names	are	spelled	correctly.	

•	 Determine	whether	the	required	operands	are	present	and	correctly	speciUied.	
•	 Compose	the	machine	instructions,	at	least	in	most	cases.	

And	roughly	speaking,	the	purpose	of	the	linker	is	to:	

•	 	Determine	where	in	memory	to	place	the	machine	instructions	and	data	
•	 	Evaluate	expressions	that	depend	on	memory	locations	
•	 	Determine	which	machine	instructions	will	be	used,	in	cases	where	the	
assembler	can	not	do	it	

The	assembler	translates	each	assembler	source	Uile	into	an	“object]ile”.	One	or	
more	object	Uiles	are	then	combined	by	the	linker	to	produce	an	“executable]ile”.	
Often	the	executable	Uile	is	called	the	“a.out”	Uile,	since	that	is	the	name	commonly	
given	to	the	executable	Uile.	At	runtime,	the	OS	kernel	loads	the	executable	Uile	into	
memory	and	begins	execution.	

Assembler	Syntax	

Each	line	of	the	assembly	program	contains	a	single	instruction.	Each	line	contains	
the	following	Uields:	

	 Label	—	optional	
	 Opcode	
	 Operands	—	zero	or	more	
	 Comment	—	optional	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	317 344

Appendix	1:	Assembly	Language	

The	syntax	for	a	line	is	this	(where	brackets	indicate	optional	material):	

	 [label	:]				[opcode		[operandsIfRequired]]				[#	comment]	

For	example:	

myLabel: xor r2,r4,r6 # An example instruction

A	label	consists	of	an	identiUier	symbol,	followed	by	a	colon	(“:”).	The	label	may	be	on	
a	line	alone,	or	it	may	preUix	an	instruction	or	pseudo-op.	The	label	associates	the	
symbol	with	the	address	of	whatever	follows.	

Label	symbols	are	user-deUined	identiUiers	and	may	not	have	the	same	spelling	as	
instructions,	register	names,	or	pseudo-ops.	Symbols	may	contain	the	underscore	
character,	e.g.,	“MyLab_43”	and	“_entry”.	A	leading	underscore	is	only	meaningful	by	
convention;	the	assembler	doesn’t	care	whether	identiUiers	begin	with	underscore.	
IdentiUiers	may	not	begin	with	a	digit,	but	they	may	contain	digits.	

The	register	names,	the	CSR	names,	and	the	opcodes	are	all	in	lowercase.	For	
registers	with	two	names	(e.g.,	“sp”	=	“r15”),	either	name	may	be	used.	

Values	speciUied	in	decimal	are	written	as	a	sequence	of	digits,	e.g.,	“1234”.	Values	
coded	in	hex	are	written	with	a	preUix	of	“0x”,	e.g.,	“0x1234”.	Floating	point	constants	
(e.g.,	“0.5”,	“123e-9”)	can	be	used,	but	only	in	the	“.Uloat”	pseudo-op.	

Comments	begin	with	the	“#”	character	and	run	through	the	end	of	the	line.	

Tabs	are	typically	used	between	labels,	opcodes,	operands,	and	comments,	but	
spaces	may	also	be	used.	

	 t	 t	 t	 t	 t	 t	 t	 t	 t	 t	 	
Here is an example:

addi r2,r4,0x3B7F # Add decimal 15,231
csrread r3,csr_status

MyLab_43:
load.b r5,123(sp)
ble r5,r2,Exit_Label

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	318 344

Appendix	1:	Assembly	Language	

The	names	of	the	machine	instructions	have	been	given	earlier	in	this	document	and	
the	order	and	meaning	of	the	operands	have	been	speciUied,	so	they	will	not	be	
repeated	here.	

Assembly	code	is	case	sensitive.	

Whenever	the	operand	is	an	immediate	value	(e.g.,	“immed-16”	or	“address”	in	the	
earlier	chapters),	the	programmer	may	specify	a	value	in	hex	or	decimal,	a	symbol,	
or	(more	generally)	an	expression	using	constants,	symbols,	and	the	usual	
operators,	such	as	+,	-,	<<,	&,	…	For	example	the	following	instruction:	

ADDI RegD,Reg1,immed-16

might	be	used	like	this:	

addi r7,sp,MyLabel+(3*len)

Pseudo-Ops	

In	addition	to	lines	containing	machine	instructions,	the	assembly	code	Uile	will	
contain	lines	containing	pseudo-ops.	A	“pseudo-op”	is	an	assembler	directive	
which	gives	guidance	to	the	assembler/linker	about	how	to	assemble	instructions.	

While	a	line	containing	a	pseudo-op	looks	like	a	machine	instruction,	it	is	not.	To	
emphasize	the	distinction,	all	pseudo-ops	begin	with	a	period.	

Here	are	the	pseudo-ops:	

	 .byte <integer	expr>	 Place	a	byte	in	memory	
	 .halfword <integer	expr>	 Place	a	halfword	in	memory	
	 .word <integer	expr>	 Place	a	word	in	memory	
	 .doubleword <integer	expr>	 Place	a	doubleword	in	memory	
	 .float <Zloating	value>	 Place	a	64	bit	Uloating	point	in	memory	
	 .string <string>	 Place	a	sequence	of	bytes	in	memory	
	 .skip <integer	expr>	 Skip	N	bytes,	Uilling	with	zeros	
	 .align 2/4/8/16/32/page	 Insert	0x00	bytes	to	achieve	alignment	
	 .equ <integer	expr>	 Equate	symbol	to	an	integer	value	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	319 344

Appendix	1:	Assembly	Language	

	 .export <symbol>	 Make	this	symbol	available	to	other	Uiles	
	 .import <symbol>	 Expect	symbol	to	be	deUined	in	other	Uile	
	 .begin <parameters>	 Start	Uilling	a	new	chunk	of	memory	

Each	pseudo-op	is	written	on	a	line	by	itself,	in	the	same	format	as	a	machine	
instruction.	Here	are	some	examples:	

x: .byte 123 # Byte containing value
c: .halfword 0x04d2 # Decimal: 1234
d: .word 0x000BC614E # Decimal: 12345678
e: .doubleword 0x12-100 # 0xffff_ffff_ffff_ffae
f: .float -123.456e-10 # Double precision
str: .string “Hello\n” # No terminating \0
arr: .skip 400 # Array of 400 bytes

.align 8 # Insert padding bytes

The	.byte,	.halfword,	.word,	and	.doubleword	pseudo-ops	are	used	to	allocate	1,	2,	
4,	and	8	bytes	(respectively).	The	initial	value	to	be	placed	in	the	memory	(before	
execution	begins)	is	given	by	an	expression,	which	may	include	values	given	in	
decimal	or	hex.	The	expression	appearing	in	the	operand	Uield	may	also	employ	the	
usual	operators.	The	expression	will	be	evaluated	and	the	value	will	be	computed	at	
“assembly	time”	(i.e.,	by	the	assembler	and	linker)	and	not	at	“run-time”.	

If	a	label	precedes	a	pseudo-op	or	instruction,	that	symbol	will	be	associated	with	
the	address	of	the	thing	that	follows.	(More	precisely,	the	symbol	will	be	associated	
with	the	address	of	the	Uirst	byte	of	the	thing	that	follows.)	The	label	may	appear	on	
the	same	line	or	on	the	preceding	line.	For	example,	this	

myVar: .doubleword 0x0123456789abcdef

is	equivalent	to	this:	

myVar:
.doubleword 0x0123456789abcdef

The	.]loat	pseudo-op	is	used	to	allocate	8	bytes	and	Uill	it	with	the	IEEE	
representation	of	a	double-precision	Uloating	point	number.	The	operand	should	be	a	
Uloating	point	constant.	Expressions	are	not	supported.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	320 344

Appendix	1:	Assembly	Language	

The	.string	pseudo-op	is	used	to	place	ASCII	data	in	memory.	The	usual	escapes	(\n,	
\0,	\t,	etc.)	can	be	used,	as	well	as	speciUic	hex	codes.	For	example,	the	byte	0x3f	is	
written	as	\h3f,	where	“h”	means	“hex”.	The	string	is	not	null-terminated,	but	the	
null	character	can	be	included	in	two	ways,	e.g.,	

str: .string “Bye\0”

and:	

str: .string “Bye”
.byte 0

The	.skip	pseudo-op	causes	the	assembler	to	skip	over	a	number	of	bytes,	without	
Uilling	these	bytes	in	with	initial	values.	The	bytes	are	guaranteed	to	be	Uilled	with	
zeros	before	execution	begins.	If	a	label	precedes	the	.skip	pseudo-op,	then	that	
symbol	is	associated	with	the	address	of	the	Uirst	byte	in	the	block	of	bytes	allocated	
by	the	.skip	pseudo-op.	

The	.align	pseudo-op	is	used	to	insert	padding	bytes	to	force	the	next	following	
thing	to	be	aligned.	In	the	following	example,	the	string	may	end	on	an	improperly	
aligned	address;	the	.align	pseudo-op	will	insert	as	many	bytes	as	necessary	to	
guarantee	that	the	variable	“x”	is	properly	aligned.	

str: .string “hello”
.align 8

x: .doubleword 0x0123456789abcdef

The	padding	bytes	inserted	by	.align	are	guaranteed	to	be	zero-Uilled.	The	operand	
for	.align	may	be	2,	4,	8,	16,	or	32.	In	addition,	the	keyword	“page”	may	be	used	as	
the	operand.	Including	“.align	page"	will	add	padding	bytes	as	necessary	to	round	up	
to	the	next	page	aligned	address,	i.e.,	to	an	address	that	is	a	multiple	of	16,384	(i.e.,	a	
multiple	of	16	KiBytes	and	in	which	the	least	signiUicant	14	bits	are	zeros).	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	321 344

Appendix	1:	Assembly	Language	

Symbols	

The	.equ	pseudo-op	should	always	be	preceded	by	a	label.	The	purpose	of	.equ	is	to	
deUine	a	symbol	and	give	it	a	speciUic	value.	The	value	is	given	by	an	expression,	
which	is	evaluated	at	the	time	of	assembly	and	linking,	not	at	runtime.	For	example:	

start: .string “hello”
end:
len: .equ end-start

A	symbol	is	deUined	by	its	appearance	as	a	label	on	some	line	in	an	assembly	source	
Uile.	Symbols	may	be	used	before	they	are	deUined.	In	other	words,	the	line	deUining	a	
symbol	may	appear	later	in	the	assembly	source	Uile	than	a	line	in	which	the	symbol	
is	used	as	an	operand.	

A	symbol	may	also	be	deUined	in	one	Uile	and	used	in	another	Uile,	although	
the	.export	and	.import	pseudo-ops	must	be	used.	As	a	result,	the	actual	value	of	a	
symbol	may	not	be	known	by	the	assembler.	Therefore,	some	expressions	cannot	be	
evaluated	until	the	linker	tool	is	executed.	

The	.export	pseudo-op	is	used	to	make	a	symbol	deUined	in	this	Uile	available	for	use	
in	other	assembly	source	Uiles.	Symbols	are,	by	default,	local	to	the	current	assembly	
source	Uile	and	must	be	exported	if	they	are	to	be	used	in	other	Uiles.	The	operand	
should	be	a	single	symbol.	For	example:	

myVar: .doubleword 1234
.export myVar

myConst: .equ 100
.export myConst

The	.import	pseudo-op	is	used	to	make	a	symbol	that	is	deUined	in	another	Uile	
available	for	use	in	this	Uile.	For	example:	

.import myVar
loadd r3,myVar
.import myConst
addi r3,r3,myConst

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	322 344

Appendix	1:	Assembly	Language	

A	symbol	must	either	be	deUined	or	imported	(but	not	both).	If	a	symbol	is	neither	
deUined	nor	imported,	the	assembler	will	Ulag	it	as	an	error.	Every	symbol	that	is	
imported	in	one	Uile	must	be	exported	in	exactly	one	other	Uile;	if	not,	the	linker	will	
issue	an	error	message.	

Every	symbol	either	has	an	“absolute	value”	or	a	“relative	value”.	For	example,	
“myConst”	in	the	above	example	has	the	absolute	value	of	100.	An	absolute	value	is	
not	dependent	on	where	in	memory	the	linker	places	things.	

A	relative	symbol	is	a	memory	address	and	is	dependent	on	where	the	linker	places	
code	and	data.	In	the	example	above,	“myVar”	is	a	relative	symbol.	The	values	of	
relative	symbols	are	not	computed	until	the	linker	assigns	memory	locations	to	code	
and	data.	

For	some	instructions,	the	actual	binary	machine	code	cannot	be	determined	by	the	
assembler.	This	will	happen	whenever	the	instruction	contains	an	immediate	value	
for	which	the	programmer	has	provided	an	expression	containing	a	relative	symbol.	
Since	the	value	of	the	symbol	cannot	be	known	until	link-time,	only	the	linker	has	
enough	information	to	complete	the	assembly	of	the	instruction.	

For	instructions	using	absolute	symbols,	the	assembler	will	be	able	to	complete	the	
assembly	of	instructions	whenever	the	symbol	is	used	in	the	same	Uile	in	which	it	
was	deUined.	However,	when	the	symbol	is	deUined	in	one	Uile	and	used	in	another	
Uile,	the	linker	will	be	required	to	Uill	in	the	values	and	complete	the	instructions.	

In	the	case	of	synthetic	instructions,	the	assembler	will	sometimes	be	able	to	choose	
the	Uinal	machine	code	and	complete	the	assembly.	But	in	other	cases,	the	synthetic	
instruction	may	translate	into	one,	two,	three,	or	even	four	machine	instructions,	
depending	on	the	actual	value	of	the	operand.	Since	the	value	of	the	operand	may	
not	be	known	until	link	time,	it	will	be	up	to	the	linker	to	determine	which	sequence	
of	machine	instructions	will	be	used	to	implement	a	given	synthetic	instruction.	

[The	assembler	and	linker	work	together	to	produce	the	Uinal	code.	In	cases	where	a	
synthetic	instruction	may	be	turned	into	several	instructions	and	the	assembler	
must	pass	the	problem	to	the	linker,	the	assembler	will	make	the	initial	assumption	
that	a	single	machine	instruction	will	sufUice	and	will	allocate	a	slot	of	size	4	bytes.	
Once	the	Uinal	value	of	all	symbols	is	known,	the	linker	will	determine	whether	one	
instruction	(i.e.,	4	bytes)	turns	out	to	be	adequate.	If	4	bytes	as	inadequate,	the	
linker	will	expand	the	slot	(and	the	segment	containing	the	slot)	by	another	4	bytes	
to	accommodate	a	second	machine	instruction.	Once	again,	the	linker	will	determine	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	323 344

Appendix	1:	Assembly	Language	

whether	there	is	enough	room.	This	process	will	be	repeated,	enlarging	all	synthetic	
instruction	slots	until	each	is	large	enough	to	contain	the	machine	instructions	
needed	to	handle	the	value.	This	is	an	example	of	a	“relaxation”	algorithm.	Since	
slots	are	only	enlarged	and	never	reduced	in	size,	this	process	will	eventually	
terminate.	In	the	worst	case	—	highly	improbable	—	each	slot	will	be	enlarged	to	its	
maximum	size,	which	is	enough	to	accommodate	any	possible	value.	In	the	vast	
majority	of	cases,	the	slot	size	will	be	just	large	enough	to	accommodate	the	smallest	
synthetic	instruction	sequence,	and	no	larger.]	

Segments	and	Linking	

The	linker	will	place	code	and	data	into	pages	of	memory.	Each	page	of	virtual	
address	space	will	be	marked	either	executable	or	not,	and	each	page	will	be	marked	
either	writable	or	not.	All	pages	are	readable,	so	this	is	not	an	issue.	This	was	
described	in	an	earlier	section	when	virtual	memory	and	page	tables	were	
discussed.	

Each	assembly	code	source	Uile	consists	of	a	sequence	of	“segments”.	Each	segment	
consists	of	a	sequence	of	instructions.	The	segments	are	listed	one-after-the-other	in	
the	source	code	Uile.	Thus,	every	line	in	the	source	Uile	will	belong	to	exactly	one	
segment. 	123

An	assembly	source	Uile	will	typically	contain	only	one	segment,	or	just	a	couple	of	
segments.	For	example	a	given	assembly	source	Uile	may	contain	one	segment	of	
instructions	(which	will	go	into	pages	marked	“executable”	but	not	“writable”)	and	
one	segment	of	data	(which	will	go	into	pages	marked	“writable”	but	not	
“executable”).	

The	term	“segment”,	as	used	here,	is	a	purely	software	concept	used	only	by	the	
assembler	and	linker;	at	runtime	there	is	no	such	thing	as	a	segment.	(Other	
computer	systems	have	used	the	term	“segment”	differently,	e.g.,	for	regions	of	
memory	supported	by	various	hardware	features.)	

The	purpose	of	the	“.begin”	pseudo-op	is	delineate	segments.	

	The	term	“section”	is	sometimes	used	instead	of	“segment”.123

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	324 344

Appendix	1:	Assembly	Language	

Below	is	a	small,	artiUicial	example,	representing	a	single	assembly	source	code	Uile	
containing	three	segments:	

.begin executable
entry: loadd r1,myVar

addi r1,r1,300
stored myVar,r1
ret

.begin writable
myVar: .doubleword 12345
other: .doubleword 200

.begin
str: .string “Hello”

.byte 0
xor r1,r2,r3

Each	segment	must	start	with	a	.begin	pseudo-op.	A	segment	runs	from	a	.begin	
pseudo-op	until	just	before	the	next	.begin	pseudo-op,	or	until	the	end-of-Uile.	Every	
instruction	and	every	other	pseudo-op	will	be	located	in	exactly	one	segment,	based	
on	where	it	is	placed.	

There	is	no	requirement	that	an	“executable”	segment	contains	only	machine	
instructions;	it	may	contain	data	as	well.	There	is	no	requirement	that	a	“writable”	
segment	contains	only	data;	it	may	contain	machine	instructions	as	well.	

In	this	example,	the	third	segment	is	marked	with	neither	executable	nor	writable.	It	
contains	a	string	and	an	XOR	instruction.	This	segment	is	read-only	(i.e.,	not	writable	
and	not	executable)	so	the	XOR	instruction	cannot	be	executed.	

Segments	are	not	given	names	and	the	line	containing	.begin	must	not	contain	a	
label.	Any	label	directly	preceding	a	.begin	pseudo-op	will	be	associated	with	an	
address	in	the	previous	segment.	

The	.begin	pseudo-op	has	an	operand	Uield	that	can	contain	a	number	of	comma-
separated	parameters.	

.begin parameter , parameter , parameter , parameter

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	325 344

Appendix	1:	Assembly	Language	

For	example:	

.begin startaddr=0x8000a0000,executable,writable

The	following	parameters	are	indicated	by	a	keyword,	which	is	either	present	or	
absent.	

kernel
executable
writable
zerofilled

The	programmer	may	also	include	a	“startaddr=”	parameter:	

startaddr=integer	

The	programmer	may	also	include	a	“gp=”	parameter:	

gp=integer	

The	job	of	the	linker	is	to	determine	where	in	memory	to	place	the	segments.	More	
speciUically,	the	input	to	the	linker	will	be	a	number	of	object	Uiles,	each	containing	a	
number	of	segments.	

For	programs	that	will	go	into	a	virtual	address	space,	these	segments	will	
ultimately	be	placed	into	memory	pages.	One	constraint	is	that	two	segments	with	
different	executable/writable	attributes	may	not	be	placed	in	the	same	page.	
Another	constraint	is	that	segments	may	not	overlap.	The	linker	will	attempt	to	
group	similar	segments	together	and	pack	them	as	close	as	possible	in	order	to	
reduce	the	number	of	pages	in	the	Uinal	memory	image.	

Normally,	the	linker	will	be	free	to	choose	the	location	of	a	segment.	However,	the	
programmer	may	demand	that	the	linker	place	a	segment	at	a	given	memory	
address.	This	is	the	purpose	of	the	“startaddr=”	parameter,	which	gives	the	starting	
address	of	the	segment	as	an	absolute	value.	This	parameter	forces	the	linker	to	
place	a	segment	at	a	particular	location	in	memory.	

If	there	is	no	starting	address	given	for	a	segment,	the	linker	is	free	to	place	the	
segment	where	it	best	Uits.	By	default,	the	linker	will	place	segments	in	the	virtual	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	326 344

Appendix	1:	Assembly	Language	

address	region,	which	starts	at	0x8_0000_0000.	The	linker	will	more-or-less	place	
segments	one	after	another,	Uilling	up	the	virtual	address	space	from	0x8_0000_0000	
on	up,	within	the	previously	mentioned	constraints.	

However,	the	presence	of	the	“kernel”	keyword	will	force	the	linker	to	place	the	
segment	in	the	lower,	physical	region	of	address	space.	Segments	with	this	keyword	
will	be	placed	in	low	memory,	starting	with	0x0_0000_0000	and	going	up.	

The	“zeroUilled”	keyword	is	used	to	indicate	that	a	segment	will	contain	only	zeros.	
Thus,	only	the	following	are	allowable	in	a	“zeroUilled”	segment:	

.byte 0

.halfword 0

.word 0

.doubleword 0

.float 0.0

.skip <any>

.align <any>

.equ <any>

.import <any>

.export <any>

The	data	in	zeroUilled	segments	is	not	present	in	the	object	and	executable	Uiles,	
since	the	pages	can	be	created	and	initialized	at	the	time	the	executable	Uile	is	loaded	
into	memory.	ZeroUilled	segments	are	useful	for	large	data	structures	(such	as	
gigantic	arrays,	spaces	for	heaps,	and	so	on),	since	these	data	structures	would	
waste	a	large	amount	of	space	in	the	object	and	executable	Uiles	if	all	bytes	were	
actually	present.		For	example:	

.begin startaddr=0x9_0000_0000,writable,zerofilled
MyHeap: .skip 0x1_0000_0000 # 4 GiBytes

The	assembler	will	round	each	segment	up	in	size	to	a	multiple	of	8	bytes,	by	adding	
0	to	7	bytes	of	0x00,	as	necessary.	The	linker	will	place	each	segment	on	an	aligned	8	
byte	address.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	327 344

Appendix	1:	Assembly	Language	

The	Global	Pointer	Register,	gp	

Several	of	the	synthetic	instructions	specify	that	an	operand	can	be	an	“address”.	
Examples	include:	

	 BEQ	 Reg1,Reg2,address	
	 LOADB	 Reg1,address	
	 CALL	 address	

In	the	course	of	generating	code,	the	assembler	and	linker	must	be	able	to	translate	
memory	addresses	into	the	forms	required	by	the	machine	instructions.	For	
example,	consider	this	line	from	an	assembly	source	Uile:	

loadb r1,MyVar

Assuming	the	address	of	MyVar	is	within	0	…	0x0_0000_7fff,	the	above	instruction	
can	be	assembled	like	this:	

load.b r1,0x7fff(r0)

For	user	programs	running	in	a	virtual	address	space,	the	assumption	is	that	the	
global	pointer	register	(gp)	will	contain	the	value	0x8_0000_8000	at	runtime,	and	
this	register	can	make	addressing	certain	locations	in	memory	particularly	easy.	

(The	gp	register	will	be	initialized	either	by	the	kernel	during	thread-creation	or	
within	the	Uirst	couple	of	instructions	at	thread-startup,	as	part	of	the	thread	
initialization	prologue.	If	initialized	within	the	thread	prologue,	the	MOVI	
instruction	is	safe	to	use	for	this	purpose	although	it	is	synthetic.	The	assembler	may	
use	gp	whenever	it	synthesizes	a	MOVI	instruction	and	the	value	in	question	is	
within	range,	allowing	the	MOVI	to	be	translated	into	a	single	ADDI	instruction.	
However,	the	assembler	will	speciUically	avoid	using	gp	whenever	the	destination	
register	is	gp	itself.)	

When	generating	code,	the	assembler/linker	will	make	use	of	the	assumed	value	of	
gp.	For	example,	if	MyVar	is	located	within	the	Uirst	4	pages	of	the	virtual	address	
space	(i.e.,	the	Uirst	64	KiBytes	of	the	virtual	address	space,	0x8_0000_0000	…	
0x8_000_FFFF),	then	the	assembler/linker	can	generate	an	instruction	which	uses	
an	offset	from	register	gp.	For	example,	if	MyVar	is	located	at	0x8_0000_8056,	it	can	
be	assembled	like:	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	328 344

Appendix	1:	Assembly	Language	

load.b r1,0x0056(gp)

Positive	offsets	will	be	used	for	addresses	above	0x8_0000_8000	and	negative	
offsets	will	be	used	for	addresses	below	that:	

	 8_0000_0000 … 8_0000_7fff	 negative	offset	8000	…	ffff	from	gp	
	 8_0000_8000 … 8_0000_ffff	 positive	offset	0	…	7fff	from	gp 	124

The	assembler/linker	can	deal	with	arbitrary	addresses	but	addresses	outside	this	
range	might	require	additional	instructions	or	the	use	of	the	temp	register	“t”.	
Therefore,	the	programmer	is	encouraged	to	place	commonly	used	variables	at	the	
bottom	of	the	virtual	address	space,	in	the	Uirst	64	KiBytes.	The	typical	practice	
would	be	to	place	all	static,	non-stack	data	at	the	bottom	of	the	virtual	address	
space,	with	the	code	segments	in	pages	following	the	data	pages.	

The	above	comments	about	register	gp	primarily	concern	LOAD	and	STORE	
instructions	which	are	used	to	access	data	in	static,	Uixed	memory	locations.	Other	
instructions	(e.g.,	JUMP,	BRANCH,	CALL)	are	using	addresses	as	jump	targets.	For	
them,	PC-relative	addressing	is	more	common	and	useful.	However,	the	gp-relative	
addressing	mechanism	is	still	present	and	gp-relative	jumps	can	be	generated	
whenever	the	target	address	is	in	low	memory.	For	example,	it	might	make	sense	to	
place	jump	tables	in	low-memory,	so	the	code	can	easily	branch	to	various	entries.	

Kernel	code	will	not	be	running	in	a	virtual	address	space,	so	things	are	different.	All	
addresses	will	be	located	in	the	physical	memory	region.	

For	kernel	code,	the	“gp”	register	is	assumed	to	be	initialized	to	0x0_0001_0000	(i.e.,	
64	KiByte).	

This	means	that	any	address	in	the	Uirst	6	pages	(i.e.,	the	Uirst	96	KiBytes	of	memory,	
0	…	0x0_0001_7fff)	can	be	accessed	with	a	single	instruction.	

Addresses	within	the	Uirst	32	KiBytes	(0x0	...	0x7FFF)	are	easily	accessible	using	
offsets	from	“r0”.	The	next	64	KiBytes	(0x8000	...	0x1_7FFF)	can	easily	be	accessed	
from	register	“gp”.	

	 0_0000_0000 … 0_0000_7fff	 offset	0…7fff	from	“r0”	
	 0_0000_8000 … 0_0000_ffff	 negative	offset	8000…ffff	from	“gp”	

	More	precisely,	non-negative	offsets.	For	address	0x8_0000_8000	an	offset	of	0	is	used.124

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	329 344

Appendix	1:	Assembly	Language	

	 0_0001_0000 … 0_0001_7fff	 positive	offset	0…7fff	from	“gp”	

Commentary	It	is	recommended	that	the	kernel	place	all	frequently	accessed,	
global,	static	data	in	low	memory.	

If	“gp”	has	been	properly	initialized,	bytes	within	the	Uirst	6	pages	(96	KiBytes)	are	
addressable	with	a	single	LOAD	or	STORE	instruction,	since	they	can	be	addressed	
with	a	16	bit	immediate	offset	from	register	r0	or	gp.	The	need	to	use	two	
instructions	is	avoided	for	the	most	frequently	accessed	kernel	variables.	

Thus,	the	most	critical	data	should	be	placed	within	the	Uirst	6	pages	(96	KiBytes).	
The	data	region	can	then	be	followed	by	the	code	at	successively	larger	memory	
addresses.	Placing	the	code	after	the	data	(rather	than	before	the	data)	means	that	
accesses	to	the	most	frequently	accessed	data	can	be	done	with	a	single	instruction.	

If	the	“kernel”	keyword	is	present	in	the	.begin	pseudo-op,	the	default	assumption	
made	by	the	assembler	and	linker	is	that	register	gp	will	contain	the	value	
0x0_0001_0000.	If	the	“kernel”	keyword	is	not	present,	the	assumption	is	that	gp	
contains	0x8_0000_8000.	

The	programmer	can	override	the	default	assumption	with	the	“gp=”	parameter.	

The	“value”	associated	with	a	“startaddr=”	or	“gp=”	parameter	must	be	an	absolute	
value	that	can	be	calculated	immediately	by	the	assembler.	Normally,	every	
“startaddr=”	or	“gp=”	value	will	be	a	simple	hex	constant.	

User	mode	code	should	never	be	accessing	any	address	below	0x8_0000_0000	and	
the	assembler/linker	may	issue	warnings	for	any	LOAD,	STORE,	BRANCH,	JUMP,	or	
CALL	instruction	that	uses	such	an	address	in	a	code	segment	that	is	not	marked	
“kernel”.	

The	programmer	can	also	specify	“gp=undeUined”	in	the	.begin	pseudo-op,	which	
will	entirely	prevent	the	assembler/linker	from	using	register	“gp”	in	any	
synthesized	instructions.	This	would	be	useful	for	code	in	which	the	gp	register	(i.e.,	
r13)	is	used	for	an	entirely	different	purpose.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	330 344

Appendix	2:	Implementation	Details	

Every	implementation	of	the	Blitz-64	architecture	must	provide	documentation	to	
elaborate	on	ISA	details	that	are	“implementation	dependent”	or	“undeUined”	in	this	
document.	

Such	an	implementation	document	must	answer	the	following	questions.	

•	 What	values	are	used	for	csr_version	and	csr_prod?	What	values	are	obtained	
when	these	registers	are	read?	

•	 How	many	cores	are	implemented	and	what	is	their	arrangement?	Is	the	
organization	1-D,	2-D,	or	3-D?	What	are	the	dimensions 	of	the	array	of	cores?	125

•	 Which	machine	instructions	are	unimplemented	and	require	emulation?	
	 	 DIV,	REM	
	 	 Floating	point	instructions	

•	 If	the	DIV	and	REM	instructions	are	implemented,	do	they	perform	“truncated”,	
“Uloored”,	or	“Euclidean”	division	when	the	operands	are	negative?	

•	 Will	LOADs	and	STOREs	that	are	not	properly	aligned	work,	or	will	an	Unaligned	
LOAD/STORE	Execution	occur,	which	will	then	require	emulation?	

•	 How	are	the	CONTROL	and	CONTROLU	instructions	deUined?	(Perhaps	they	are	
unused	and	always	causes	an	Illegal	Instruction	Exception.)	

•	 Are	there	any	additional	instructions	or	changes	to	the	Blitz-64	ISA?	

•	 Does	the	core	contain	TLB	registers?	How	many?	

	That	is,	what	are	M,	N,	and	P	in	the	array	addresses	[0,0,0]	…	[M-1,N-1,P-1]?125

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	331 344

Appendix	2:	Implementation	Details	

•	 Concerning	memory…	
	 	 How	much	private	memory	is	available	to	each	core?	
	 	 Is	shared	memory	is	present?	How	much?	Starting	address?	

•	 What	memory	caching	is	implemented?	
	 	 What	are	the	details?	
	 	 Is	the	cache	write-through	or	not?	

•	 	Which	memory-mapped	I/O	devices	are	implemented?	

•	 Concerning	each	memory-mapped	I/O	device…	
	 	 What	is	its	starting	address?	
	 	 How	many	pages	does	it	occupy?	
	 	 Exactly	how	does	it	function?	

•	 Concerning	asynchronous	interrupts…	
	 	 What	are	the	possible	interrupt	types?	
	 	 What	causes	each	interrupt	to	occur?	
	 	 What	value	is	stored	in	csr_cause	for	each	type?	

•	 Concerning	the	Boot	ROM	area,	what	does	it	contain?	In	particular,	what	is	the	
assembly	source	Uile	that	produced	it,	showing	all	the	bytes?	

•	 Are	there	any	other	changes	to	the	Blitz-64	speciUication?	

Example:	The	Emulator	

What	values	are	used	for	csr_version	and	csr_prod?	What	values	are	obtained	
when	these	registers	are	read?	

The	emulator	is	conUigurable;	the	values	can	be	set	as	part	of	the	“emulation	
parameters”.	The	default	for	csr_version	is	0x0002_49F0_8002_0001,	i.e.,	conforms	
to	spec	=	1;		version	number	=	0x0002;	implementor	=	0x0001	(“Harry	Porter”);	and	
a	value	of	0x0002_49F0	(decimal	150,000)	for	clock	cycles	per	millisecond,	
indicating	150MHz	operation.	The	default	for	csr_prod	is	0x0000_0000_0000_0000.	

How	many	cores	are	implemented	and	what	is	their	arrangement?	Is	the	
organization	1-D,	2-D,	or	3-D?	What	are	the	dimensions	of	the	array	of	cores?	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	332 344

Appendix	2:	Implementation	Details	

The	emulator	is	conUigurable;	the	number	of	cores	and	their	arrangement	are	
included	in	the	“emulation	parameters”.	The	default	is	1	core.	

Which	machine	instructions	are	unimplemented	and	require	emulation?	
	 DIV,	REM	
	 Floating	point	instructions	

The	DIV,	and	REM	instructions	are	implemented.	The	Uloating	point	instructions	can	
either	cause	an	Emulated	Instruction	Exception,	or	will	be	executed	directly.	This	is	
conUigurable	with	the	“-fp”	command	line	option.	

If	the	DIV	and	REM	instructions	are	implemented,	do	they	perform	“truncated”,	
“Uloored”,	or	“Euclidean”	division	when	the	operands	are	negative?	

The	operations	of	“truncated”	and	“Euclidean”	division	only	differ	when	the	top	
value	(the	dividend)	is	negative	and	the	remainder	is	non-zero.	Whenever	an	
operation	is	attempted	where	this	condition	holds,	the	emulator	will	signal	a	user	
error.	Thus,	the	results	of	the	emulator	are	consistent	with	both	“truncated”	and	
“Euclidean”	division,	and	signals	an	error	if	ever	the	user	attempts	an	operation	
where	the	results	would	differ.	

Will	LOADs	and	STOREs	that	are	not	properly	aligned	work,	or	will	an	Unaligned	
LOAD/STORE	Execution	occur,	which	will	then	require	emulation?	

Unaligned	accesses	will	cause	the	Unaligned	LOAD/STORE	Exception,	which	is	
intended	to	trigger	emulation.	

How	are	the	CONTROL	and	CONTROLU	instructions	deUined?	(Perhaps	they	are	
unused	and	always	causes	an	Illegal	Instruction	Exception.)	

The	behavior	of	CONTROL	and	CONTROLU	is	left	to	the	user.	When	encountered,	the	
emulator	will	halt	and	display	the	immed-16	value	and	the	contents	of	register	Reg1.	
Then,	the	emulator	will	ask	the	user	whether	or	not	the	instruction	should	cause	an	
Illegal	Instruction	Exception.	If	“no”,	then	the	emulator	will	prompt	for	a	value	to	be	
entered,	which	is	placed	in	register	RegD.	Then,	execution	is	resumed.	

Are	there	any	additional	instructions	or	changes	to	the	Blitz-64	ISA?	

No.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	333 344

Appendix	2:	Implementation	Details	

Does	the	core	contain	TLB	registers?	How	many?	

The	emulator	is	conUigurable;	this	is	one	of	the	“emulation	parameters”.	The	default	
number	is	16.	If	desired,	the	value	0	can	be	used	to	run	with	no	TLB	registers.	

Concerning	memory…	
	 How	much	private	memory	is	available	to	each	core?	
	 1	GiByte.	
	 Is	shared	memory	is	present?	How	much?	Starting	address?	
	 Shared	memory	is	1	GiByte,	starting	at	address	0x0000_0000_4000_0000.	
	 These	values	are	the	defaults;	the	emulator	is	conUigurable.	

What	memory	caching	is	implemented?	
	 What	are	the	details?	
	 Is	the	cache	write-through	or	not?	

The	emulator	does	not	implement	memory	caching.	

Which	memory-mapped	I/O	devices	are	implemented?	

Boot	ROM	
Secure	Storage	
DMA	Controller	
Host	Device	
Simple	Serial	
Simple	Disk	 —	coming	soon	
Lock	Controller	 —	coming	soon	
UART	Serial	Comm	 —	coming	soon	
Digital	I/O	Pins	 —	not	implemented	

There	is	only	one	“Secure	Storage”	device,	which	is	shared	between	all	cores.	Ideally,	
each	core	would	have	its	own	Secure	Storage	device.	At	this	time,	the	Secure	Storage	
Limit	Register	is	not	yet	implemented.	

The	AES	computation	within	the	DMA	Controller	device	is	not	yet	implemented.	

Concerning	each	memory-mapped	I/O	device…	
	 What	is	its	starting	address?	
	 How	many	pages	does	it	occupy?	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	334 344

Appendix	2:	Implementation	Details	

	 Exactly	how	does	it	function?	

Details	are	given	elsewhere	in	this	document.	

Concerning	asynchronous	interrupts…	
	 What	are	the	possible	interrupt	types?	
	 What	causes	each	interrupt	to	occur?	
	 What	value	is	stored	in	csr_cause	for	each	type?	

Device	 Interrupts	
Timer	Interrupt	 See	below	
Boot	ROM	 none	
Secure	Storage		 none	
DMA	Controller	 See	below	
Host	Device	
Simple	Serial	
Simple	Disk	 <to	be	determined>	
Lock	Controller	 <to	be	determined>	
UART	Serial	Comm	 <to	be	determined>	

	 Code	 Code	
	 (decimal)	 (hex)	 Trap	Type	
	 8336	 2090	 Timer	Interrupt	
	 8344	 2098	 DMA	Complete	

Concerning	the	Boot	ROM	area,	what	does	it	contain?	In	particular,	what	is	the	
assembly	source	Uile	that	produced	it,	showing	all	the	bytes?	

The	value	stored	in	the	Boot	ROM	is	conUigurable.	It	is	read	in	by	the	emulator	from	a	
secondary	Uile	named	“emulationROM”.	A	simple	version	of	the	BootLoader	comes	
from	boot0.s;	it	assumes	the	emulator	has	already	ready	an	executable	Uile	into	
memory	and	simply	jumps	to	it.	

Are	there	any	other	changes	to	the	Blitz-64	speciUication?	

No.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	335 344

Appendix	3:	Recent	Changes	

This	appendix	documents	recent	changes	to	the	Blitz-64	architecture.	

28	May	2019	

A	new	exception	called	“Null	Address	Exception”	is	added.	

The	exceptions	numbers	are	changed	and	shifted	to	make	room	for	the	new	Null	
Address	Exception.	

The	relevant	instructions	were	altered.	They	will	now	signal	this	exception	when	
appropriate.	

15	June	2019	

ModiUication	to	instructions	SLL,	SLA,	SRL,	SRA.	These	instructions	will	now	cause	
an	Arithmetic	Exception	if	the	value	in	the	register	(i.e.,	the	shift	amount)	is	not	
within	0	…	63.		

15	June	2019	

The	CHECKA	instruction	is	added.	

A	new	exception	called	“Bad	Array	Index	Exception”	is	added.	

The	exceptions	numbers	are	changed	and	shifted	to	make	room	for	the	new	Bad	
Array	Index	Exception.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	336 344

Appendix	3:	Recent	Changes	

23	July	2019	

In	the	section	describing	the	Arithmetic	Exception,	there	was	an	error	in	the	list	of	
which	instructions	can	cause	the	exception.	It	is	changed	as	follows:		

Arithmetic	Exception	

This	exception	can	be	caused	by	the	following	operations:	
	 Integer	arithmetic	:	 ADD,	ADDI,	SUB,	MUL,	DIV,	REM	
	 Shift	operations:	 SLA,	SLAI,	SRA,	SRAI,	SRL,	SLL	
	 Size	checking:	 CHECKB,	CHECKH,	CHECKW	

3	August	2019	

In	the	discussion	of	priorities	in	the	case	of	multiple,	simultaneous	exceptions,	a	
mention	of	the	“Bad	Array	Index”	exception	was	added.	This	exception	cannot	co-
occur	with	any	Page-related	exceptions,	since	it	can	only	be	caused	by	the	INDEX__	
instructions,	which	don’t	access	memory.	

Additional	discussion	of	the	FCVTFI	and	FCVTIF	instructions	was	added.	A	
commentary	section	titled	“OverUlow	for	FCVTFI”	was	added.	

Minor	changes	and	rewordings	were	added	and	some	typos	were	corrected.	

16	August	2019	

Added	a	commentary	about	Uloating	comparisons	with	NaN.	Explained	why	FNE	is	
not	included	in	the	instruction	set.	

18	August	2019	

Added	clariUication	about	“unused/zero”	bits	in	the	csr_status	register.	They	cannot	
be	modiUied.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	337 344

Appendix	3:	Recent	Changes	

Added	clariUication	about	csr_prevpc,	which	is	a	64	bit	register.	When	the	PC	is	
copied	to	this	register,	the	upper	28	bits	will	be	set	to	zero.	When	this	register	is	
copied	to	the	PC,	the	upper	28	bits	will	be	ignored.	

Added:	Cause	codes	are	zero-extended	to	64	bits	whenever	the	hardware	writes	
them	into	a	CSR	register.	

21	August	2019	

The	version	number	in	the	csr_version	register	is	speciUied	to	be	0x0001.	

22	August	2019	

Concerning	the	TLB	registers,	this	sentence	was	added:	“All	bits	of	each	register,	
including	bit	[5]	which	marked	as	“unused,”	can	be	read	and	written	by	the	
TLBREAD	and	TLBWRITE	instructions.”	

6	September	2019	

Updates	were	made	to	the	Simple	Serial	device	concerning	how	UTF-8	is	handled.	

The	ADD3,	CONTROL,	and	CONTROLU	instructions	were	added.	

8	November	2019	

The	DZ	“Divide-by-zero”	bit	was	added	to	CSR_STATUS	and	the	CSR_STATUS	was	
altered	to	squeeze	it	in.	In	CSR_STATUS	register,	the	DZ	bit	was	inserted	as	bit	4	and	
bits	4-8	were	shifted	to	5-9.	(The	FCLASS	instruction	was	changed,	but	a	subsequent	
change	eliminated	the	FCLASS	instruction.)	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	338 344

Appendix	3:	Recent	Changes	

11	November	2019	

Added	a	commentary	describing	a	hypothetical	csr_limit	register	(which	would	be	
to	watch	for	stack	overUlow)	and	why	it	was	not	included.	

7	October	2020	

Footnotes	were	added	discussing	error	conditions	for	FCVTIF	and	FCVTFI.	This	
behavior	needs	to	be	reviewed	and	is	subject	to	change	/	correction	/	improvement.	

18	April	2021	

Previously,	the	Null	Address	Exception	was	deUined	to	occur	if	the	address	of	0	was	
used.	It	has	been	redeUined	to	include	any	address	within	0…7,	i.e.,	the	last	3	bits	are	
now	to	be	ignored	in	the	check.	The	reason	for	this	change	is	that	some	array	
operations	(e.g.,	arraySize)	look	at	the	current	size	at	offset	4	without	ever	reading	
offset	0.	Without	this	change,	use	of	a	null	pointer	fails	to	cause	an	exception.	

10	May	2021	

The	csr_core	register	was	created	to	replace	csr_extra2.	The	csr_extra1	register	
was	renamed	csr_extra.	

24	May	2021	

The	GETSTAT,	PUTSTAT	instructions	were	added.	The	FCLASS	instruction	was	
eliminated.	

2	June	2021	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	339 344

Appendix	3:	Recent	Changes	

The	following	instructions	were	added:	
	 INDEX0,	…,	INDEX32,	MULADD,	MULADDU	
MUL	was	changed	to	synthetic.	Previously,	MUL	was	optional;	MULADD	and	
MULADDU	are	now	mandatory,	never	emulated.	The	CHECKA	instruction	was	
eliminated,	since	the	INDEX__	instructions	are	superior.	

The	format	of	register	csr_version	was	changed.	

Register	csr_temp1	was	renamed	csr_temp.	Registers	csr_temp2	and	csr_temp3	
were	renamed	csr_resv1	and	csr_resv2.	Register	csr_extra	was	renamed	csr_prod	
which	was	also	deUined	and	described.	

The	DMA	Controller	memory-mapped	I/O	device	and	corresponding	interrupt	was	
added.	

The	Secure	Storage	memory-mapped	I/O	device	was	changed.	The	allocated	space	
was	enlarged	and	the	semantics	of	locking	was	changed.	Discussion	of	the	boot	
process	was	improved.	

10	July	2021	

Discussion	of	interrupt	priority	was	improved.	

The	RESTART	instruction	was	added.	

22	October	2021	

The	CAS	and	FENCE	instructions	were	added.	

LOADs	and	STOREs	are	deUined	to	be	atomic	if	they	are	aligned.	(Previously,	
atomicity	was	guaranteed	only	for	byte	and	halfword	sizes.)	

15	November	2021	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	340 344

Appendix	3:	Recent	Changes	

The	NULLTEST	instruction	was	added.	

18	October	2022	

There	are	a	number	of	changes	to	the	ISA.	The	ISA	documented	here	is	now	called	
version	2.0.	

The	version	number	in	csr_version	is	incremented	to	2.	

Registers	csr_trapvec	and	csr_pgtable	replace	csr_resv1	and	csr_resv2.	The	trap	
processing	will	now	load	PC	from	csr_trapvec.	(Previously	the	trap	handler	was	at	
Uixed	address	0x0_0001_8000.)	

Page	tables	are	introduced	and	the	TLB	organization	is	completely	changed.	TLB	
registers	are	now	an	optional	cache	of	page	table	entries.	

The	following	instructions	and	exceptions	have	been	eliminated:	

TLBREAD	
TLBWRITE	
TLBPUSH	
TLBSET	
TLBCLR	
TLBDELETE	
TLBCHECK	

TLB	Miss	Exception	
TLB	Write	Exception	
TLB	Copy-on-write	Exception	
TLB	Execute	Exception	
TLB	Privilege	Exception	

The	following	instructions	and	exceptions	have	been	added:	

TLBCLEAR	
TLBFLUSH	
CHECKADDR	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	341 344

Appendix	3:	Recent	Changes	

Page	Illegal	Address	Exception	
Page	Table	Exception	
Page	Invalid	Exception	
Page	Write	Exception	
Page	Fetch	Exception	
Page	Copy-On-Write	Exception	
Page	First	Dirty	Exception	

The	Control	and	Status	Registers	(CSRs)	were	reordered	and	renumbered.	

In	opcodes	for	the	machine	instructions	have	been	renumbered.	

The	chapter	“Power-On-Reset	and	the	Boot	Sequence”	was	created	and	added.		

The	chapter	“Memory-Mapped	I/O”	was	rewritten.		

9	February	2023	

The	ASID	was	moved	from	csr_status	to	the	upper	bits	of	csr_pgtable.	The	Physical	
Page	Number	(PPN)	Uield	of	csr_pgtable	was	extended	from	20	to	30	bits,	allowing	
the	root	node	of	the	page	table	to	be	located	anywhere	in	the	16	TiByte	physical	
memory	space.	The	diagram	of	the	virtual-to-physical	mapping	was	corrected	to	
show	30	bit	PPNs,	instead	of	20	bit	PPNs.	

17	February	2023	

The	CHECKADDR	instruction	is	modiUied	to	return	a	code	number,	instead	of	a	trap	
cause	code.	Trap	cause	codes	might	be	renumbered	in	the	future	and	this	reduces	
dependencies.	Formerly,	the	CAS	instruction	was	named	“compare-and-swap”;	it	has	
been	renamed	to	“compare-and-set”.	

23	April	2023	

The	ENTER	and	EXIT	instructions	have	been	added.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	342 344

Acronym	List	
ASID	 Address	Space	ID	
CLA	 Carry	Lookahead	Adder	
CSR	 Control	and	Status	Register	
DMA	 Direct	Memory	Access	
DZ	 Divide	by	zero	(within	FLOAT_STATUS	within	csr_status)	
EDC	 Error	Detection	and	Correction	
EOF	 End	of	File	
ISA	 Instruction	Set	Architecture	
KPL	 Kernel	Program	Language	
LLBL	 Low	Level	BootLoader	program	
LSB	 Least	SigniUicant	(rightmost)	Bit	or	Byte	
MBR	 Master	Boot	Record	
MMU	 Memory	Management	Unit	
MSB	 Most	SigniUicant	(leftmost)	Bit	or	Byte	
MTE	 Matching	TLB	Entry	
NV	 Invalid	operation	(within	FLOAT_STATUS	within	csr_status)	
NX	 Inexact	(within	FLOAT_STATUS	within	csr_status)	
OF	 OverUlow	(within	FLOAT_STATUS	within	csr_status)	
OS	 Operating	System	
PC	 Program	Counter	
PPN	 Physical	Page	Number	
PTE	 Page	Table	Entry	
PWM	 Pulse	Width	Modulation	
RAM	 Random	Access	Memory	(i.e.,	“main	memory”)	
RD	 Round	Down	(within	FLOAT_ROUND	within	csr_status)	
RN	 Round	Up	(within	FLOAT_ROUND	within	csr_status)	
ROM	 Read-Only	Memory	
RU	 Round	Up	(within	FLOAT_ROUND	within	csr_status)	
RZ	 Round	toward	Zero	(within	FLOAT_ROUND	within	csr_status)	
SBC	 Single	Board	Computer	
SSBL	 Second	Stage	BootLoader	program	
SMP	 Shared	Memory	Multiprocessor	
TCB	 Thread	Control	Block	
TLB	 Translation	Lookaside	Buffer	(i.e.,	the	page	table	cache)	
UART	 Universal	Asynchronous		Receive	Transmit	
UF	 UnderUlow	(within	FLOAT_STATUS	within	csr_status)	
VPN	 Virtual	Page	Number	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	343 344

About	the	Author		
Professor	Harry	H.	Porter	III	teaches	in	the	Department	of	Computer	Science	at	
Portland	State	University.	He	has	produced	several	video	courses,	notably	on	the	
Theory	of	Computation.	Recently	he	built	a	complete	computer	using	the	relay	
technology	of	the	1940s,	which	has	eight	general	purpose	8	bit	registers,	a	16	bit	
program	counter,	and	a	complete	instruction	set,	all	housed	in	mahogany	cabinets	as	
shown.	His	technical	focus	and	research	interests	have	included	AI	and	neural	
networks;	parsing	and	natural	language	processing;	logic,	object-oriented,	and	
functional	programming;	compilers,	operating	systems,	interpreters,	and	system	
software;	and	discrete	math	and	computational	theory.	He	has	programmed	in	many	
high-level	languages	and	written	assembly	code	for	a	variety	of	machines,	dating	
back	to	the	IBM	360/67	and	Intel	8080.	

Porter	lives	in	Portland,	Oregon.	When	not	trying	to	Uigure	out	how	his	computer	
actually	works,	he	skis,	hikes,	travels,	and	spends	time	with	his	children	building	
things.	

Porter	holds	an	Sc.B.	from	Brown	University	and	a	Ph.D.	from	the	Oregon	Graduate	
Center.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	344 344

