Blitz-64

Instruction Set Architecture
Reference Manual

ISA Version: 2.0

Harry H. Porter 111
Portland State University

HHPorter3@gmail.com

23 April 2023

This document describes the Instruction Set Architecture (ISA) for the Blitz-64
processor core. It documents all the machine instructions as well as the assembly
code notation for these instructions.

Available Online: Blitz64.org/Documentation/Blitz64-ISA.pdf

http://Blitz64.org/Documentation/Blitz64-ISA.pdf

Table of Contents

List of Instructions 6
Chapter 1: Introduction 11
Quick Summary 11
Instruction Set Architectures 11
Goals and Principles: Personal Statements 12
Document Revision History / Permission to Copy 17
Relevant Software Tools 17
Chapter 2: Terminology and Notation 19
Quick Summary 19
Kilo and Mega Prefixes 19
Bits and Bytes 20
Main Memory 23
Big Endian 23
Alignment 26
Signed Numbers 27
Sign-Extension 30
Size Reduction 31
Chapter 3: Architectural Summary 32
Quick Summary 32
Memory, Addresses, and Memory-Mapped [/0 33
The Processor State 34
The Registers 34
Control and Status Registers (CSRs) 38
Virtual Memory 39
Chapter 4: Instruction Formats 41
Quick Summary 41
Compressed and Full-Sized Instructions 41
Opcode Encoding 42
Instruction Fields 43
Instruction Formats 44
Operand Syntax 46

Blitz-64 Instruction Set Architecture / Porter Page 2 of 344

Table of Contents

Chapter 5: Instructions 48
Machine Instructions versus Synthetic Instructions 48
All Instructions - Summary Listing 49
Machine Instructions, Grouped By Format 55
The Instruction Set 60
Instruction Opcodes 138
Miscellaneous Remarks 144

Chapter 6: Privileged Instructions and Kernel Mode 146
Quick Summary 146
Privileged Instructions 146
Control and Status Registers 147

Chapter 7: Exceptions, Interrupts, and Trap Handling 159

Quick Summary 159
Traps, Exceptions, and Interrupts 159
Interrupt Processing 164
Description of Exceptions 166
The Singlestep Exception 182
Value of Saved PC 185
Traps Related to Instruction Fetching 186
Trap Priority and Simultaneous Exceptions 188
Pending Interrupts 194
Delegation to User Mode Error Handlers 196
Trap Processing and Handler Startup 197
Saving State During Thread Switching 199
Global Trap Handler — Dispatching and Return 201
Chapter 8: Memory, Address Spaces, and Page Tables 208
Quick Summary 208
Memory Organization 209
Tasks, Address Spaces, and the User Mode Viewpoint 211
Page Tables 214
Virtual Addresses 224
Page Table Entries 225
MMU: Basic Operation 227

Blitz-64 Instruction Set Architecture / Porter Page 3 of 344

Table of Contents

TLB: Translation Lookaside Buffer 233
Comments 237
Shared Core Functions 241
Private and Shared Memory 244
LOAD / STORE Atomicity 245
A Relaxed Memory-Model 246
FENCE and Memory Synchronization 248
Invalidating Data in the Pipeline 259
Out-of-Date TLB Registers 262
Chapter 9: Power-On-Reset and the Boot Sequence 264
Quick Summary 264
Power-On-Reset 264
The BootLoader Program 265
Security Issues Around Booting 270
Simple Systems 273
Multi-Stage Boot Processes 275
The Secure Storage Area 277
Chapter 10: Memory-Mapped 1/0 287
Quick Summary 287
Overview 287
Boot ROM Area 288
Secure Storage Area 289
Simple Serial Communication 291
DMA Controller 294
UART Serial Comm 305
Simple Disk 306
Lock Controller 307
Digital /0 Pins and LEDs 311
HDMI, USB, WiFij, etc. 312
MicroSD Card Slot 312
Adjacent Core Links 313
Appendix 1: Assembly Language 316
Assembling and Linking 316
Assembler Syntax 317

Blitz-64 Instruction Set Architecture / Porter Page 4 of 344

Table of Contents

Pseudo-Ops 319
Symbols 322
Segments and Linking 324
The Global Pointer Register, gp 328
Appendix 2: Implementation Details 331
Example: The Emulator 332
Appendix 3: Recent Changes 336
Acronym List 343
About the Author 344

Blitz-64 Instruction Set Architecture / Porter Page 5 of 344

List of Instructions

ADD RegD,Reg1,Reg?2 60
ADDI RegD,Regl,immed-16 60
SUB RegD,Reg1,Reg2 60
*MUL RegD,Reg1,Reg2 60
DIV RegD,Regl,Reg?2 60
REM RegD,Reg1,Reg2 60
AND RegD,Reg1,Reg2 60
ANDI RegD,Regl,immed-16 60
OR RegD,Reg1,Reg?2 60
ORI RegD,Regl,immed-16 60
XOR RegD,Reg1,Reg?2 60
XORI RegD,Regl,immed-16 60
MULADD RegD,Reg1,Reg2,Reg3 RegD < (Regl x Reg2) + Reg3 61
MULADDU RegD,Reg1,Reg2,Reg3 RegD < (Regl x Reg2) + Reg3 (unsigned) 61
*NEG RegD,Regl 65
*BITNOT RegD,Regl 65
*NOP <no operands> 66
*ABS RegD,Regl 66
*MOV RegD,Regl 66
*MOVI RegD,immediate 67
SLL RegD,Reg1,Reg2 Shift left logical 68
SLLI RegD,Regl,immed-6 68
SLA RegD,Reg1,Reg2 Shift left arithmetic 68
SLAI RegD,Regl,immed-6 68
SRL RegD,Reg1,Reg2 Shift right logical 68
SRLI RegD,Regl,immed-6 68
SRA RegD,Reg1,Reg?2 Shift right arithmetic 68
SRAI RegD,Regl,immed-6 68
ROTR RegD,Reg1,Reg2 Rotate right (circular) 68
ROTRI RegD,Regl,immed-6 68
SEXTB RegD,Reg1 Sign extend byte to 64 bits 69
SEXTH RegD,Regl Sign extend 16 bits to 64 bits 69
SEXTW RegD,Regl Sign extend 32 bits to 64 bits 69
NULLTEST Reg1 Trap if reg contains NULL 70
CHECKB Regl Trap if reg not within -128 ... +127 70
CHECKH Reg1 Trap if reg not within -32768 ... +32767 70
CHECKW Reg1 Trap if reg not within 32 bit range 70
ENDIANH RegD,Regl Reorder bytes in all 4 halfwords 70
ENDIANW RegD,Regl Reorder bytes in both words 70
ENDIAND RegD,Regl Reorder bytes in a doubleword 71
TESTEQ RegD,Regl,Reg2 RegD < (Regl =Reg2)?1:0 71
TESTNE RegD,Reg1,Reg2 RegD <— (Regl # Reg2)?1:0 71

Blitz-64 Instruction Set Architecture / Porter Page 6 of 344

List of Instructions

TESTLT RegD,Reg1,Reg2 RegD < (Regl <Reg2)?1:0

TESTLE RegD,Regl,Reg2 RegD <— (Regl <Reg2)?1:0

TESTEQI RegD,Regl,immed-16 RegD <— (Regl =immed)?1:0
TESTNEI RegD,Regl,immed-16 RegD <— (Regl # immed) ?1:0
TESTLTI RegD,Regl,immed-16 RegD <— (Regl <immed)?1:0
TESTLEI RegD,Regl,immed-16 RegD <— (Regl <immed)?1:0
TESTGTI RegD,Regl,immed-16 RegD < (Regl >immed)?1:0
TESTGEI RegD,Regl,immed-16 RegD < (Regl 2immed)?1:0
*TESTGT RegD,Reg1,Reg2 RegD <— (Regl >Reg2)?1:0

*TESTGE RegD,Reg1,Reg2 RegD <— (Regl =Reg2)?1:0

*TESTEQZ RegD,Regl RegD <— (Reg1=0)?1:0,i.e, if zero
*TESTNEZ RegD,Regl RegD <— (Regl #0)?1:0,1i.e, if non-zero
*TESTLTZ RegD,Regl RegD <— (Regl <0)?1:0,i.e, if negative
*TESTLEZ RegD,Regl RegD <— (Regl1 <0)?1:0,i.e, if non-positive
*TESTGTZ RegD,Regl RegD <— (Regl >0)?1:0,i.e, if positive
*TESTGEZ RegD,Regl RegD <— (Regl1 20)?1:0,i.e, if non-negative
*LOGNOT RegD,Regl RegD <— (Regl =0)71:0

ADDOK RegD,Reg1,Reg2 RegD <— (Regl+Reg2 overflows)?0:1
ADD3 RegD,Reg1,Reg2,Reg3 RegD <— Regl+Reg2+Reg3 (unsigned)
INDEXO RegD,Reg1,Reg2,Reg3

INDEX1 RegD,Reg1,Reg2,Reg3

INDEX2 RegD,Reg1,Reg2,Reg3

INDEX4 RegD,Reg1,Reg2,Reg3

INDEX8 RegD,Reg1,Reg2,Reg3

INDEX16 RegD,Regl1,Reg2,Reg3

INDEX24 RegD,Reg1,Reg2,Reg3

INDEX32 RegD,Reg1,Reg2,Reg3

B.EQ Regl,Reg2,immed-16 Branch if Regl = Reg2; Offset is PC-relative
B.NE Regl,Reg2,immed-16 Branch if Regl # Reg2; Offset is PC-relative
B.LT Regl,Reg2,immed-16 Branch if Regl < Reg2; Offset is PC-relative
B.LE Regl,Reg2,immed-16 Branch if Regl < Reg2; Offset is PC-relative
*BEQ Regl,Reg2,address Branch if Regl = Reg2

*BNE Regl,Reg2,address Branch if Regl # Reg?2

*BLT Regl,Reg2,address Branch if Regl < Reg2

*BLE Regl,Reg2,address Branch if Regl < Reg2

*BGT Regl,Reg2,address Branch if Regl > Reg?2

*BGE Regl,Reg2,address Branch if Regl = Reg2

*BEQI Reg,value,address Branch if Reg = immediate value

*BNEI Reg,value,address Branch if Reg # immediate value

*BLTI Reg,value,address Branch if Reg < immediate value

*BLEI Reg,value,address Branch if Reg < immediate value

*BGTI Reg,value,address Branch if Reg > immediate value

*BGEI Reg,value,address Branch if Reg = immediate value

*BEQZ Reg,address Branch if Reg = 0

*BNEZ Reg,address Branch if Reg # 0

71
71
71
71
71
71
72
72
72
72
72
72
72
72
72
72
73
73
74
74
74
74
74
75
75
75
75
77
77
78
78
79
79
79
79
79
79
84
84
84
84
84
84
85
85

Blitz-64 Instruction Set Architecture / Porter

Page 7 of 344

List of Instructions

*BLTZ Reg,address Branch if Reg < 0, i.e., if negative
*BLEZ Reg,address Branch if Reg < 0, i.e,, if not positive
*BGTZ Reg,address Branch if Reg > 0, i.e., if positive
*BGEZ Reg,address Branch if Reg = 0, i.e., if not negative
*BFALSE Reg,address Branch if Reg = 0, i.e., if “false”
*BTRUE Reg,address Branch if Reg # 0, i.e., if “true”
UPPER20 RegD,immed-20 RegD < (immed<<16)
UPPER16 RegD,Regl,immed-16 RegD < (immed<<16) + Regl
SHIFT16 RegD,Regl,immed-16 RegD <— (Regl + immed-16) << 16
ADDPC RegD,immed-20 RegD < PC+immed

AUIPC RegD,immed-20 RegD < (immed<<16) + PC

JAL RegD,immed-20 RegD < return addr; Target <— PC+offset
JALR RegD,immed-16(Regl) RegD < return addr; Target < offset+Reg1
*CALL address Jump to address; save return addr in “Ir”
*CALLR Regl Jump to address; save return addr in “Ir”
*JUMP address Jump to address

*JR Regl Indirect jump, via register

*RET <no operands> Return value is in link reg “Ir”
ENTER immed-16

EXIT immed-16

LOAD.B RegD,immed-16(Reg1)

LOAD.H RegD,immed-16(Regl)

LOAD.W RegD,immed-16(Reg1l)

LOAD.D RegD,immed-16(Regl)

STORE.B immed-16(Reg1),Reg2

STORE.H immed-16(Reg1),Reg2

STORE.W immed-16(Reg1),Reg2

STORE.D immed-16(Reg1),Reg?2

*LOADB RegD,address Where address is any value
*LOADH RegD,address

*LOADW RegD,address

*LOADD RegD,address

*LOADB RegD,offset(Regl) Where offset is any value
*LOADH RegD,offset(Reg1)

*LOADW RegD,offset(Reg1)

*LOADD RegD,offset(Reg1)

*STOREB address,Reg2 Where address is any value
*STOREH address,Reg2

*STOREW address,Reg?2

*STORED address,Reg2

*STOREB offset(Regl),Reg2 Where offset is any value
*STOREH offset(Regl),Reg2

*STOREW offset(Regl),Reg2

*STORED offset(Regl),Reg?2

CAS RegD,Regl,Reg2,Reg3 Compare and Set

FENCE <no operands>

85
85
85
85
85
85
86
86
87
87
88
38
89
90
90
91
92
92
93
93
96
96
96
96
96
96
96
96
99
99
99
99
99
99
99
99
101
101
101
101
101
101
101
101
102
104

Blitz-64 Instruction Set Architecture / Porter

Page 8 of 344

List of Instructions

ALIGNH RegD,Reg1,Reg2,Reg3 Reg3 (unaligned addr) gives shift amount
ALIGNW RegD,Reg1,Reg2,Reg3 Reg3 (unaligned addr) gives shift amount
ALIGND RegD,Reg1,Reg2,Reg3 Reg3 (unaligned addr) gives shift amount
INJECT1H RegD,Regl,Reg2,Reg3 RegD <— Regl; inject Reg2 per addr in Reg3
INJECT2H RegD,Regl,Reg2,Reg3 RegD <— Regl; inject Reg2 per addr in Reg3
INJECT1IW RegD,Reg1,Reg2,Reg3 RegD < Regl; inject Reg2 per addr in Reg3
INJECT2W RegD,Reg1,Reg2,Reg3 RegD < Regl; inject Reg2 per addr in Reg3
INJECT1D RegD,Regl,Reg2,Reg3 RegD <— Regl; inject Reg2 per addr in Reg3
INJECT2D RegD,Regl,Reg2,Reg3 RegD <— Regl; inject Reg2 per addr in Reg3
ILLEGAL <no operands>

SYSRET <no operands>

SLEEP1 <no operands> Enable interrupts; enter light sleep state

SLEEP2 <no operands> Enable interrupts; enter deep sleep state

RESTART <no operands> Same as Power-On-Reset

DEBUG <no operands>

BREAKPOINT <no operands>

SYSCALL immed-10

CONTROL RegD,Regl,immed-16

CONTROLU RegD,Reg1l,immed-16

TLBCLEAR <no operands> Invalidate all TLBs for current ASID

TLBFLUSH Reg1 Invalidate TLB for virtual address in Regl

CHECKADDR RegD,Reg1,immed-3 Reg1 = virt addr; RegD < except. code or 0
CSRSWAP RegD,CSRReg1,Reg2 RegD <— CSR; CSR <— Reg2

CSRREAD RegD,CSRReg1 Regl encodes CSR; RegD < CSR

CSRSET CSRRegl,immed-16 Set selected bits in CSR

CSRCLR CSRRegl,immed-16 Clear selected bits in CSR

*CSRWRITE CSRRegl,Reg2 Regl encodes CSR; CSR <— Reg2

GETSTAT RegD RegD <= CSR_STATUS & 0x00000000000003f8

PUTSTAT Regl CSR_STATUS [9:3] <= Reg1 [9:3]

FADD RegD,Regl,Reg2 RegD <— Regl + Reg2

FSUB RegD,Regl,Reg2 RegD <— Regl - Reg2

FMUL RegD,Reg1,Reg2 RegD <— Regl x Reg2

FDIV RegD,Regl,Reg2 RegD <— Regl / Reg2

FMIN RegD,Reg1,Reg2 RegD <— MIN (Regl, Reg2)

FMAX RegD,Reg1,Reg2 RegD <— MAX (Regl, Reg2)

FNEG RegD,Regl RegD < -Regl

FABS RegD,Regl RegD <~ ABSOLUTE_VALUE (Regl)

FSQRT RegD,Regl RegD <~ SQUARE_ROOT (Reg1)

FEQ RegD,Regl,Reg2 RegD < (Regl =Reg2)? 1: 0 (float compare)

FLT RegD,Regl,Reg2 RegD <— (Regl < Reg2) ? 1: 0 (float compare)

FLE RegD,Regl,Reg2 RegD <— (Regl <Reg2)?1:0 (float compare)

FCVTFI RegD,Regl Convert: floating-point <— int

FCVTIF RegD,Regl Convert: int <— floating-point

FMADD RegD,Reg1,Reg2,Reg3 RegD <— (Regl x Reg2) + Reg3

107
107
107
112
112
112
112
112
112
119
119
120
120
121
122
122
123
124
124
129
129
130
132
132
132
132
133
133
133
134
134
134
134
134
134
134
134
134
134
134
134
134
134
134

Blitz-64 Instruction Set Architecture / Porter

Page 9 of 344

List of Instructions

FNMADD RegD,Reg1,Reg2,Reg3 RegD < (-(Regl x Reg2)) + Reg3
FMSUB RegD,Reg1,Reg2,Reg3 RegD <— (Regl x Reg2) - Reg3
FNMSUB RegD,Reg1,Reg2,Reg3 RegD < (-(Regl x Reg2)) - Reg3
*FGT RegD,Reg1,Reg2 RegD < (Regl > Reg2) ? 1: 0 (float compare)
*FGE RegD,Regl,Reg2 RegD < (Regl = Reg2) ? 1: 0 (float compare)

134
134
134
136
137

Blitz-64 Instruction Set Architecture / Porter

Page 10 of 344

Chapter 1: Introduction

What is originality? Undetected plagiarism.
— Dean William R. Inge

Quick Summary

* Blitz-64 introduces a novel 64-bit “Instruction Set Architecture” (ISA).
» The goals of the Blitz-64 project are:
— Create a complete hardware / software system
— Simple, small, easy to understand
— Fully functional and fully modern
— Reliability, security, and error handling are emphasized
« This project is open, not proprietary
« Software and documents use dates instead of version numbers

Instruction Set Architectures

An Instruction Set Architecture (ISA) defines, describes, and specifies how a
particular computer processor core works. The ISA describes the registers and all
the machine instructions. The ISA specifies exactly what each instruction does and
how it is encoded into bits.

The ISA forms the interface between hardware and software. Hardware
engineers design digital circuits to implement a given ISA and software engineers
write code (operating systems, compilers, etc.) based on a given ISA specification.

Blitz-64 Instruction Set Architecture / Porter Page 11 of 344

Chapter 1: Introduction

There are a number of Instruction Set Architectures in widespread use, for example:

x86-64 (AMD, Intel)

ARM (ARM Holdings)

SPARC (Sun/Oracle)

RISC-V (Berkeley/open source)

Most of these ISAs are proprietary and very complex. The details are obscured in
lengthy manuals and some details of the ISA are not made public at all. Furthermore,
the widely used ISAs have been around for years and their designs carry baggage as
aresult, e.g., for backward compatibility. Since these legacy designs were first
created, we’ve learned more about how to design computers. Changes in silicon
hardware technology have also had an impact on which design choices are now
optimal. The RISC-V project attempts to address the issues of open source and
interoperability, and heavily influences Blitz-64.

In this document we define and describe a new ISA called Blitz-64.

Goals and Principles: Personal Statements

The following are the guiding goals of the Blitz-64 architecture.

e Simple, small, modest

e Understandable

e Reliable

e Good error reporting/recovery

e Secure against malware

* No desire to support virtualization / hypervisors (due to security concerns)

e Programmable, pleasing design

e Encourage assembly language and kernel programming and experimentation

All modern processor cores have become far too complex for any single individual to
understand. My primary goal is to create a computer that is simple enough for one
person to understand, yet fully modern and practical.

The way I hope to achieve simplicity is to design the entire system (the ISA, all the
system software, and good documentation) alone, myself. The resulting system
must, by necessity, be radically simpler than existing computers. A key aspect to

Blitz-64 Instruction Set Architecture / Porter Page 12 of 344

Chapter 1: Introduction

making any design simpler is to make it smaller. Size and complexity are strongly
correlated. A system designed by one person must be fairly small and modest and,
as a result, it will necessarily be simpler and easier to understand.

On the hardware side, modern computer cores (ARM, x86-64, etc.) are just too
complicated to be understood by any single human being. They are designed by vast
teams of specialists; they incorporate legacy designs; their documentation
comprises thousand of pages, and they are proprietary and at least partially
shrouded in corporate secrecy.

On the software side, modern operating systems contain millions of lines of code
written over the course of many decades, by vast numbers of programmers. Much of
the code is written in “C”, which is notoriously difficult to read, modify, and validate.
This is unquestionably true of Apple, Windows, and Linux software. Nobody can
fully comprehend a million lines of code; these large chunks of software must
remain mysterious black boxes. So instead, programmers today blindly trust and
build on top of a gigantic accumulation incompletely understood software. It’s
remarkable that today’s software works as well as it does.

[t is easier to use, trust, and rely on systems that we understand. A primary goal of
Blitz-64 is to create a complete, modern, and functional computer ISA and collection
of system software that is understandable by a single person.

Elegance of design is always a laudable goal. Elegance and beauty are correlated
with simplicity and size. By keeping the design simple and small, I believe that
elegance of design will follow.

As computers are growing more complex and integrated into society, reliability is
becoming ever more critical. The more complex a system is, the more difficult it is to
verify correctness and repair bugs. Making systems simpler contributes to greater
reliability. But beyond simplicity, many small design decisions along the way
determine whether_ performance execution speed or reliability is preferred and
optimized.

To increase reliability, more error checking must be done at runtime. Furthermore,
when errors occur, they must be handled with more care, better reporting, and
reasonable recovery. Error checking incurs a performance penalty. Modern systems
evolved from ancient, slow computers where performance was the critical
bottleneck. The legacy systems, upon which the foundation of all modern software is
built, often ignored the possibility of program bugs and focused all effort on

Blitz-64 Instruction Set Architecture / Porter Page 13 of 344

Chapter 1: Introduction

execution speed. Back in the day, when program size was measured in tens or
hundreds of lines of code, this was a reasonable choice.

The dynamic has obviously shifted, changing the tradeoff analysis. Today’s
computers are really fast. [t may now be the case that performance is being hurt by
complexity itself. As the size and complexity of software grows, the reliability of
individual parts and components becomes ever more critical. (For example, a failure
rate of 0.1% for each part might be acceptable for a system with 100 parts, but is
totally unacceptable with a million parts.)

[recognize that performance is very, very important, but I reject the “performance at
all costs” mentality. One of my goals is to perform greater runtime error checking
and improved error recovery, even at the cost of performance. The radical choice I
make is to sacrifice performance for increased reliability, whenever there is a choice.

As an example, the Blitz-64 architecture specifies overflow detection and exception
processing on standard arithmetic computations, like the ADD instruction. In the “C”
language, an overflow results in no error processing and the program proceeds
using incorrect values. In other words, the program fails silently. For any program
that has not undergone a thorough numerical analysis (in other words, almost every
program), this approach is abominable.

Simplicity also impacts physical reliability. In order to increase the reliability of
computer circuits in the face of physical insults (e.g., radiation, temperature
extremes, and other environmental problems) simplicity of the ISA has several
benefits. First, simpler designs can be implemented with fewer transistors. Given a
fixed die size, this allows the individual transistors and wires to be made physically
larger. Bigger transistors are more fault tolerant, which increases the circuit’s
reliability. Second, the small size of an implementation allows more space for
redundancy, and duplication is another important approach to fault tolerance. A
simple computer with a small footprint can be replicated several times to increase
reliability.

Modern computer systems are increasingly susceptible to malware, intrusion, and
hacking. In addition to guarding against physical insults, the threats of intentional
attack require careful attention in ISA designs.

The approach with current systems seems to be the “whack-a-mole” strategy: when
a security hole is uncovered, the hole is patched. Then, wait and repeat. With a

Blitz-64 Instruction Set Architecture / Porter Page 14 of 344

Chapter 1: Introduction

gigantic body of legacy software — millions of lines of code, which nobody really
understands — the “whack-a-mole” approach seems to be the only viable strategy.

My approach to increased security includes creating a smaller, simpler design,
improving error detection, and assuming the presence of “black hat” players (bad
guys) in all domains, at all times.

The goal of creating software that is secure, reliable, and bug-free is obviously both
worthy and elusive. A key approach to making a system secure is to make it reliable
and bug-free. So my focus on simplicity and reliability is, implicitly, a focus on
security.

In order to verify a computer system, to find and patch security holes, it is necessary
to thoroughly review and analyze the system design. With complex ISAs and millions
of lines of code, the task of verification is problematic. Simplicity and smallness help
alot.

Another security threat involves embedding spyware or malware within system
software. Such software remains present during normal operation and can act as a
backdoor for black hat access to private data at any time. Embedded backdoor
software can also perform secret surveillance of behavior and activity on the
computer, compromising the trust and security of the system.

Spyware can be injected into the system software at many levels. My approach to
shutting out spyware and embedded malware involves:

 Designing and implementing all the software from scratch

e Completely reimplementing the boot process

e Banning dynamically alterable firmware

e Securely controlling kernel updates

» Keeping the software small enough that it can be entirely reviewed

e Performing system design and implementation in a sort of clean-room isolation

In particular, hypervisors and emulated systems are considered to be a threat to
security. It is difficult for kernel software to be certain that it is running on a bare
machine, but it is critical to security. For example, a kernel is intended to prevent
security leaks, but if that kernel is being emulated or run in a hypervisor context, all
the actions of the kernel are subject to surveillance and manipulation.

Blitz-64 Instruction Set Architecture / Porter Page 15 of 344

Chapter 1: Introduction

There is currently a trend toward increased use of hypervisors. Typically, a user
wants to own a single computer, but be able to run software developed for the Mac,
Windows, Linux, etc. operating systems. The clever approach is to run multiple
operating systems on top of hypervisor software. As a result, modern ISAs are
designed with an eye to supporting hypervisor-like software, to make the hosted
OSes run faster.

The Blitz-64 system takes the opposite approach. While there seems to be little we
can do to prevent software from being executed in an emulated environment, the
emulation of kernels should be discouraged due to security issues. The Blitz-64
architecture makes no concessions and no special instructions are added to support
the emulation of “kernel mode” software. This is an intentional design decision, not
an oversight.

A final goal of the Blitz-64 project is to support programming for fun and, in
particular, to support assembly language and kernel programming.

Programming on “bare metal” is an acquired taste and certainly does not appeal to
the mass of average programmers because of the high level of skill and attention to
detail it requires. But there may be a small group of highly proficient hobbyists who
want this experience.

[feel that modern computers are simply too complex for programming to be fun.
Kernel programming is pretty much impossible. I want to create a computer system
that is more than a one-off, home-brew computer. My goal is to design a computer
that is small and simple, yet roughly as functional as an ARM or x86-64 machine.
Basically, | want to create a computer that programmers will enjoy — that I will
enjoy programming.

Blitz-64 Instruction Set Architecture / Porter Page 16 of 344

Chapter 1: Introduction

Document Revision Histor Permission to Co

Version numbers are not used to identify revisions to this document. Instead the
date and the author’s name are used. The document history is:

Date Author
23 May 2018 Harry H. Porter Ill <initial version>
28 May 2019 Harry H. Porter Il <document mostly completed>

24 May 2021 Harry H. Porter IIl <new instructions added>
18 October 2022 Harry H. Porter Il <version 2.0 of ISA>
23 April 2023 Harry H. Porter Il <changes to csr_pgtable>

For details, consult the appendix titled “Recent Changes”.

In the spirit of the open-source and free software movements, the author grants
permission to freely copy and/or modify this document, with the following
requirement:

You must not alter this section, except to add to the revision history. You
must append your date/name to the revision history.

Any material lifted should be referenced.

Relevant Software Tools

The primary software tools relevant to this document are:
e The Blitz-64 virtual machine — a “C” program called “blitz"
e The Blitz-64 assembler — a “C” program called “asm”

e The Blitz-64 linker — a “C” program called “1ink”

For our purposes, the terms “emulator” and “virtual machine” are synonymous.

Tool Version Described Here Coding Status
blitz < same date as this document > Completed
asm < same date as this document > Completed

Blitz-64 Instruction Set Architecture / Porter Page 17 of 344

Chapter 1: Introduction

link < same date as this document > Completed

Instead of version numbers, the Blitz-64 project uses dates to identify versions of
both programs and documents. By comparing dates, you can determine whether this
document matches the version of the tools you are using or, if not, which is more
recent.

Blitz-64 Instruction Set Architecture / Porter Page 18 of 344

Chapter 2: Terminology and Notation

If you can’t convince them, confuse them.
— Harry S Truman

Quick Summary

“Halfword” = 16 bits = 2 bytes.

“Word” = 32 bits = 4 bytes.

“Doubleword" = 64 bits = 8 bytes.

Main memory is byte addressable.

Main memory is Big Endian.

The notation [n:m] is used to identify bits.

For example, [63:60] means the most significant (MSB) 4 bits in a doubleword.
We use KiByte, MiByte, GiByte... instead of KByte, MByte, GByte...

Alignment (e.g., halfword, word, doubleword) is defined.

Proper alignment for sizes 8, 16, 32, and 64 bits is defined.

Properly aligned doublewords are at addresses divisible by 8 (ending in bits 000).
Integers are represented with signed, two’s complement values.

All arithmetic is done using 64 bits.

Sign-extension enlarges an integer represented in signed two’s complement
binary.

Size reduction (e.g., from 64 to 32 bits) may result in an “overflow” error.

Kilo and Mega Prefixes

There has been some confusion in computer science documentation regarding
abbreviations for large numbers. For example:

4K =7
4,000
4,096

Blitz-64 Instruction Set Architecture / Porter Page 19 of 344

Chapter 2: Terminology and Notation

We use the following prefix notation for large numbers, which is becoming common
in the context of computer architecture:

Prefix Example Value
Ki kibi KiByte 210 1,024 ~103
Mi mebi MiByte 220 1,048,576 ~106
Gi gibi GiByte 230 1,073,741,824 ~10°
Ti tebi TiByte 240 1,099,511,627,776 ~1012
Pi pebi PiByte 250 1,125,899,906,842,624 ~1015
Ei exbi EiByte 260 1,152,921,504,606,846,976 ~1018

Contrast this to the standard metric prefixes, which we avoid:

Prefix Example Value
K kilo KByte 103 1,000
M mega MByte 106 1,000,000
G giga GByte 10° 1,000,000,000
T tera TByte 1012 1,000,000,000,000
P peta PByte 1015 1,000,000,000,000,000
E exa EByte 101 1,000,000,000,000,000,000

Bits and Bytes

We use the terms “byte”, “halfword”, “word”, and “doubleword”, to refer to various
sizes of binary data.

number number
of bytes of bits example value (in hex)

byte 1 8 A4
halfword 2 16 C4F9
word 4 32 AB12CD34
doubleword 8 64 0123456789ABCDEF

Blitz-64 Instruction Set Architecture / Porter Page 20 of 344

Chapter 2: Terminology and Notation

A single hex digit can be used to represent 4 bits:

Binary Hex
0000

0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

H EH O QD OO Ul WNEFE O

The 8 bits within a byte are conveniently expressed with two hex digits.

example:
8 bit byte In Hex
1010 0100 A4

The 32 bits in a word are given with 8 hex digits. For example:

32 bit word In Hex
1010 1011 0001 0010 1100 1101 0011 0100 AB12CD34

Sometimes we insert spaces or commas to make long hex values more readable.

For

Blitz-64 Instruction Set Architecture / Porter Page 21 of 344

Chapter 2: Terminology and Notation

These examples show different ways of representing the same doubleword:

0123456789ABCDEF
0123 4567 89AB_CDEF
0123,4567,89AB, CDEF
0123 4567 89AB CDEF
01234567 89ABCDEF

Often we prefix hex values with “0x” to make it clear they are hex values and not
decimal:

0x1234

The bits within an 8-bit byte are numbered from 0 (lower, least significant) to 7
(upper, most significant).

The bits within a 16 bit halfword are numbered from 0 to 15.
The bits within a 32 bit word are numbered from 0 to 31.
The bits within a 64 bit doubleword are numbered from 0 to 63.

63 56 48 40 32 24 16 8 0
IOOOOOOOO 00000000 00000000 00000000 00000000 00000000 00000000 OOOOOOOOI

We use the following notation to represent a range of bits:

Example Meaning

[7:0] All bits in a byte

[63:0] All bits in a doubleword
[31:28] The upper 4 bits in a word

[5] The 6th bit from the right end

Blitz-64 Instruction Set Architecture / Porter Page 22 of 344

Chapter 2: Terminology and Notation

Main Memory

Main memory is byte addressable.

Main addresses are 36 bits. We generally express addresses in hex. Here are two
equivalent notations we use:

8 ABCD 1234
0x8ABCD1234

address

(in hex)
0_0000_0000
0_0000 0001
0_0000 0002
0_0000 0003
0_0000 0004
0_0000 0005
0_0000 0006
0_0000 0007

F_FFFF_FFFC
F_FFFF_FFFD
F_FFFF_FFFE
F_FFFF_FFFF

Memory can be viewed as a sequence of bytes:

data
(in hex)

89

AB

CD

EF

01

23

45

67

EO
El
E2
E3

“Low” memory refers to smaller addresses, closer to 0_0000_0000. “High” addresses

are numerically greater.

Big Endian

Blitz-64 is a big endian architecture.

Blitz-64 Instruction Set Architecture / Porter

Page 23 of 344

Chapter 2: Terminology and Notation

As an example, assume that main memory holds the following bytes:

address data

(in hex) (in hex)
E 5000 0004 1A
E 5000 0005 2B
E 5000 0006 3C
E 5000 0007 4D
E 5000 0008 5E
E 5000 0009 6F
E 5000 000A 70
E 5000 000B 81
E 5000 000C 92
E 5000 000D A3
E 5000 000E B4
E 5000 000F c5

In Blitz-64, the registers are 64 bits (8 bytes) wide. There are several LOAD and
STORE instructions, which can move either a byte, halfword, word or doubleword
between memory and a register.

Consider a LOADB instruction that loads a byte from address OxE_5000_0004. After
execution, the register will contain:

0x0000_0000_00O0O0_0O1A

Consider a LOADW instruction which loads a word from address 0xE_5000_0004.
After execution, the register will contain:

0x0000_0000 1A2B 3C4D

Commentary In a little endian architecture, the order of the bytes is changed
whenever data is copied from memory to a register or stored from a register into
memory. This can be a source of confusion, particularly when humans look at a
printout of memory contents.

Blitz-64 Instruction Set Architecture / Porter Page 24 of 344

Chapter 2: Terminology and Notation

As an example, consider this memory:

address data

(in hex) (in hex)
E 5000 0004 1A
E 5000 0005 2B
E 5000 0006 3C
E 5000 0007 4D
E 5000 0008 5E
E 5000 0009 6F
E 5000 000A 70
E 5000 000B 81
E 5000 _000C 92
E 5000 000D A3
E 5000 000E B4
E 5000 000F c5

Memory can be viewed either as a series of bytes, or as a series of larger units, such
as words or doublewords.

With a “big endian” computer, this memory is interpreted as:

address data
(in hex) (in hex)
E 5000 0004 1A2B3C4D

E 5000 0008 5E6F7081
E 5000 _000C 92A3B4C5

Blitz-64 Instruction Set Architecture / Porter Page 25 of 344

Chapter 2: Terminology and Notation

With a “little endian” computer, this memory is interpreted as:

address data
(in hex) (in hex)
E 5000 0004 4D3C2B1A

E 5000 0008 81706F5E
E 5000 000C C5B4A392

Big endian architectures are simpler to understand since the bytes are not reordered
during loads and stores.

The primary argument for choosing little endian is legacy compatibility. The two
approaches are similar in terms of circuit complexity.

Alignment

A “halfword aligned” address is an address that is a multiple of 2. The last bit of a
halfword-aligned address will always be 0. Likewise, a “word aligned” address is a
multiple of 4, and ends with the bits 00. And finally, a “doubleword aligned”
address will be evenly divisible by 8 and will end with bits 000.

A halfword-sized value is said to be “properly aligned” if it is stored at a halfword
aligned address. Likewise, a word-sized value is properly aligned if it is stored at a
word aligned address. And similarly, a doubleword-sized value is properly aligned if
it is stored at a doubleword aligned address.

Blitz-64 requires data to be properly aligned for the LOAD and STORE instructions.

Full-sized instructions are 32 bits in length. Compressed instructions are 16 bits in
length. All instructions are required to be halfword aligned. The LSBit of the PC is
hardwired to 0, so there can be never be an exception when an instruction is fetched.
When the PC is loaded — for example during a BRANCH or CALL instruction — the
LSBit is simply ignored; no exception will be generated.

Blitz-64 Instruction Set Architecture / Porter Page 26 of 344

Chapter 2: Terminology and Notation

Commentary BRANCH and CALL instructions are normally generated by a
compiler or assembler, which will always place the target instruction on a properly
aligned address. Therefore, there is little possibility that an error will be made.

However, with LOADs and STORESs, the address may come from a programmer
computed pointer, which may easily be in error. Rather than silently ignoring the

last 1, 2, or 3 bits and loading/storing from an incorrect location, an “Unaligned
LOAD/STORE Exception” will be signaled.

Signed Numbers

Integers are represented in binary.

With unsigned number representation, only zero and positive integers can be
represented. The maximum possible value is determined by the number of bits
available and is always 2N-1, where N is the number of bits.

Size
in bits Range of values
byte 8 0...255
halfword 16 0...65,535
word 32 0..4,294,967,295
doubleword 64 0..18,446,744,073,709,551,615 (= 2 x 1019)

Signed numbers are represented using “two’s complement” representation. The
most significant bit gives the sign (1=negative; 0=zero or positive).

Size
in bits Range of values
byte 8 -128 ...127
halfword 16 -32,768 ... 32,767
word 32 -2,147,483,648 ... 2,147,483,647
doubleword 64 -9,223,372,036,854,775,808 ...9,223,372,036,854,775,807

Blitz-64 Instruction Set Architecture / Porter Page 27 of 344

Chapter 2: Terminology and Notation

To make things simpler, we define the following constants:

Name Decimal Hex (64 bits)

MIN_8 -128 FFFF_FFFF_FFFF_FF80
MAX_8 127 0000 0000 0000 007F
MAX_UNSIGNED_8 255 0000 0000 0000 OOFF
MIN_16 -32,768 FFFF_FFFF_FFFF_8000
MAX_16 32,767 0000 0000 0000 7FFF
MAX_UNSIGNED_16 65,535 0000_0000_0000_ FFFF
MIN_32 -2,147,483,648 FFFF_FFFF 8000 0000
MAX_32 2,147,483,647 0000 _0000_ 7FFF_FFFF
MAX_UNSIGNED_32 4,294,967,295 0000 _0000 FFFF_FFFF
MIN_64 -9,223,372,036,854,775,808 8000 _0000_0000_0000
MAX_64 9,223,372,036,854,775,807 7FFF_FFFF_FFFF FFFF

The Blitz-64 architecture relies entirely on 64 bit signed integers. There is only one
type for integers.

Arithmetic on 32 bit quantities is not supported, although there are instructions to
enlarge and shrink values between 8, 16, 32, and 64 bits.

Note that the range of signed doublewords is sufficient to represent every byte,
halfword, and word value regardless of whether it is signed or unsigned.

Commentary Signed 64 bit integers seem both necessary and sufficient for
computer arithmetic. There seems to be no good reason to include support for
“unsigned 64 bit integer” operations.

The range of signed doublewords is adequate for expressing quantities such as an
“astronomical unit” in microns, the number of seconds since the big bang, or the
world GDP in hundredths of a cent. Unfortunately, the range of 32 bit words is
inadequate for many things, such as counting humans, the US federal debt in dollars,
the number milliseconds since January 1, 1970 (widely used by computers), or the
number of bytes of main memory in typical smartphones. Any programmer who
uses 32 bit integers needs to think very, very carefully about overflow conditions.

The use of unsigned data types made sense in the past, when the word sizes were
smaller. In some applications, the difference between a maximum value of 127 and
255 (for byte-sized data), or between 32,767 and 65,535 (for 16 bit data) was
important and critical, and worth sacrificing the ability to represent negative values.

Blitz-64 Instruction Set Architecture / Porter Page 28 of 344

Chapter 2: Terminology and Notation

It is even conceivable that some applications needed numbers between
2,147,483,647 and 4,294,967 295 (for 32-bit data), while at the same time, never
needing negative values.

However, it’s virtually impossible to imagine an application for which unsigned 64
bit numbers are appropriate. For such an application, the expected values would be
expected to exceed 9,223,372,036,854,775,807, and yet be guaranteed to never
exceed 18,446,744,073,709,551,615, and also be guaranteed to never be negative!

Commentary The cost of using “unsigned” binary numbers is that negative values
must be thrown out. Negative numbers are obviously useful and shouldn’t be
ignored or excluded. Throwing out the negative numbers is a bad, anti-mathematical
idea. It's dangerous because we know it causes all sorts of program bugs; it makes
the discrepancy between “computer integers” and “mathematical integers” vastly
greater; and a proliferation of different datatypes complicates programming.

In Blitz-64, if the programmer wishes to force some number into one of the limited,
legacy ranges, he/she can easily write tests such as:

if (x<0 || x>MAX UNSIGNED 32) ..

Commentary In any core processor, the speed of addition is critical since addition is
involved in:

e Incrementing the PC.
e Performing address calculations in LOAD, STORE, BRANCH, ... instructions.
e Implementing the ADD and SUB instructions, for loop control, arrays, etc.

The Blitz-64 architecture does not support arithmetic on integer data of size byte,
halfword, or word. How much of a performance penalty does this radical decision
incur?

In modern cores, we can assume that addition is implemented with carry lookahead
units (CLA), each with 4 inputs. Thus, the carry lookahead tree has a branching
factor of 4 and the depth of the tree determines the gate delay for the adder unit. A
16 bit adder will require 2 CLA levels (4 x 4) to add 16 bits. A 32 bit adder will
require 3 levels, since 4 x 4 is not enough. However, a 3 level tree will also be
sufficient for a 64 bit adder, since 4 x 4 x 4 = 64.

Blitz-64 Instruction Set Architecture / Porter Page 29 of 344

Chapter 2: Terminology and Notation

Therefore, 64-bit addition incurs no performance penalty over 32 bit addition.
This holds for subtraction, as well.

Concerning multiplication, the execution time is constrained by the time to add a
column of numbers. The setup and sign-adjustment logic incurs a constant delay
which does not depend on word size.

For 32 bit multiplication, a set of 32 numbers must be added. For a 64 bit
multiplication, a set of 64 numbers must be added. Many of the additions can be
done in parallel, and the final result sum can be determined in log time. A set of 32
numbers can be added using a tree of adders of depth 5. A set of 64 numbers can be
added using a tree of adders of depth 6. Therefore, the time required to multiply 64
bit values will be no more than 20% greater than the time required to multiply 32
bit values.

Thus, our (perhaps counterintuitive) conclusions are:

e There is no significant performance penalty to pay for performing all arithmetic
using 64 bits.

e The simplicity to be gained by eliminating legacy data types (i.e., “unsigned”,
“byte”, “halfword”, and “word”) is well worth any small performance cost.

Sign-Extension

A value of one size can be “sign-extended” to a larger size. For example, a 32 bit
word can be sign-extended to 64 bits.

The sign-extension operation does not change the integer value of the number.

The sign-extension operation looks at the sign bit (i.e., the most significant bit) of the
smaller number. Then, that bit value is replicated as necessary to fill additional bits
on the left, most significant end of the smaller value, until it is the required larger
size.

Blitz-64 Instruction Set Architecture / Porter Page 30 of 344

Chapter 2: Terminology and Notation

For example, sign-extending a 16 bit value to 64 bits will look at bit [15] of the input
value. If it is “1”, the number is negative. To sign-extend it to 64 bits, the uppermost
48 bits, i.e., bits [63:16], will be filled with “1”. Otherwise, the uppermost bits will be
filled with “0”".

Many Blitz-64 instructions include a 16 bit “immediate” value, which is encoded
directly within the instruction. This immediate value is sign-extended to 64 bits
before being used.

Size Reduction

Often it is necessary to take a larger value and reduce its size. For example, a register
may contain a doubleword value (i.e., 64 bits) and we may want to reduce it to a
halfword (i.e., 16 bits).

A size reduction can be performed by simply cutting off (i.e., ignoring, eliminating)
the uppermost bits.

If the original value happens to lie within the range representable by the smaller
size, then there is no problem. The value remains unchanged by the operation.

If the original value does not lie within the range representable by the smaller size,
then the new value will be numerically different. This is considered a form of
“overflow”, in the sense that the operation has resulted in a mathematically incorrect
result.

Looking at a value, we can easily determine whether a size reduction will result in
overflow or not. For example, if we are reducing a 64 bit value to 16 bits, we ask
whether the upper 48 bits (i.e., bits [63:16]), which will be discarded, are all equal to
the sign bit (i.e., bit [15]) of the new, smaller result. If so, there is no problem. In
other words, we ask whether bits [63:15] are either all Os or all 1s. If the uppermost
49 bits are all equal, there is no problem, but if both Os and 1as are present, the size
reduction operations will cause an overflow error.

Blitz-64 Instruction Set Architecture / Porter Page 31 of 344

Chapter 3: Architectural Summary

A doctor can bury his mistakes but an architect can
only advise his clients to plant trees.
— Frank Lloyd Wright

Quick Summary

 Register size: 64 bits.

e Number of general purpose registers: 16.

e Zero register: r0 always reads as zero and acts as a destination for unneeded
results.

e All remaining registers (r1, r2, ... r15) are general purpose and equally functional.

e Natural data size: 64 bits (i.e., doubleword)
— Integer overflow is never ignored; an exception is always generated.
— All arithmetic is done using 64 bit signed integers.

e Floating Point:
— No separate floating-point regs. General purpose regs are used.
— Floating point precision: Double only; there is no single precision.

e Main memory is Big Endian.

e Instructions are 32 bits in size.

e Compressed instructions are multiples of 8 bits in size.

e Number of privilege modes: 2 (Kernel and User).

e Number of Control and Status Registers (CSRs): 16.

» Size of Control and Status Registers (CSRs): 64 bits.

e Program-generated addresses: 36 bits.

e Maximum Physical Memory: 16 GiBytes.

e Memory-Mapped Address Range: 16 GiBytes.

e Maximum Virtual Address Space: 32 GiBytes.

e Page size: 16 KiBytes.

e Virtual Memory System: Page tables are supported.

Blitz-64 Instruction Set Architecture / Porter Page 32 of 344

Chapter 3: Architectural Summary

Memoryv, Addresses, and Memorv-Mapped 1/0
The maximum physical memory is 16 GiBytes.

There is an additional 16 GiBytes of physical address space allocated for memory-
mapped /0.

Physical addresses (for physical memory and memory-mapped 1/0) are 35 bit
addresses. Note that 235 = 32 Gi.

All program-generated addresses are 36 bits.

The maximum address space size is 64 Gi. Note that 236 = 64 Gi.

Supporting Larger Main Memory

Using virtual memory and page tables, up to 16 TiBytes of physical memory is
supported.

In the basic configuration, up to 16 GiBytes of physical memory is supported in a
simple, uniform, linear address space. This should suffice for many applications.
Larger memory sizes can be supported, but these can only be accessed via virtual
addresses and the page table mapping.

Virtual memory and the memory mapping scheme are discussed in a later chapter.

The limitation on addresses to 36 bits might seem naive and overly restrictive, but
this is an important design choice and was not made lightly. ISA design involves a
trade-off between (1) a large number of registers, (2) a small instruction size, (3)
long addresses, and (4) the number of instructions required to load arbitrary
addresses. Since you can’t have it all, our design decisions involve a compromise on
these issues.

Remember that main memory is only one tier in a memory hierarchy ranging from
terabytes of solid state stable memory to megabytes of fast cache. Main memory is
properly viewed as a staging ground in which programs and data are held, in order
to supply the core with grist for computation. It is nothing more than a form of per-
core cache between a processing unit and shared data sources. We predict that the
bandwidth between main memory and the core/ fast-cache circuitry will remain a

Blitz-64 Instruction Set Architecture / Porter Page 33 of 344

Chapter 3: Architectural Summary

performance bottleneck; 16 GiBytes seems more than adequate to keep a single core
busy. Since Blitz-64 cores may be deployed in multicore systems with 100s or 1000s
of cores, the per-core limit of 16 GiBytes is properly understood as imposing a
limitation on the entire core array measured in terabytes or exabytes.

The Processor State
The entire state of a running Blitz-64 core consists of:
e The general purpose registers (r0, ... r15)
e The Program Counter (PC)
e A set of 16 “Control and Status Registers” (CSRs)
(Here we mean the directly visible state of the core, observable by software;

additional state, such as related to pipeline stages, cache contents, etc. should not
affect software functionality or correctness.)

The Registers

The general purpose registers are 64 bits (a doubleword, 8 bytes) in width.
There are 16 registers.

The registers are named r0, r1, r2, ... r15.

Register r0 is a special “zero register”. When read, its value is always
0x0000_0000_0000_0000. Whenever there is an attempt to write to r0, the data is

simply discarded.

All other registers are treated identically by the ISA; there is nothing special about
any register.

By convention, several registers have special functions and these registers are given
alternate names. The assembler will accept either name.

Blitz-64 Instruction Set Architecture / Porter Page 34 of 344

Chapter 3: Architectural Summary

Alternate
Name Function

r0 Zero
rl Argument 1 / Return Value
r2 Argument 2
r3 Argument 3
r4 Argument 4
r5 Argument 5
ré Argument 6
r7/ Argument 7
r8 t Temp register, used by assembler/linker
9 s0 Work reg (caller-saved)
r10 sl Work reg (caller-saved)
rii s2 Work reg (caller-saved)
r12 tp Thread data pointer
ri3 gp Global data pointer
ri4 Ir Link register
r15 Sp Stack pointer

All registers are treated equally by the ISA, with the exception of r0. Their special
functions arise solely in how the programmer uses them in instructions.

Register Usage Conventions

The registers rl ... r7 are used to pass arguments to functions and methods and r1
is used to return results. Registers rl ... r7 are also used as general working registers
to hold local variables and intermediate results within a function or method. The
compiler or assembly language programmer is free to use them as desired within
functions or methods. If fewer than 7 arguments are passed, then the remaining
registers can be used as general work registers in the function/method. If more than
7 arguments are passed, or if any argument is larger than a doubleword, then those
arguments will be passed on the stack. If most of the registers are taken up with
argument passing and the function/method has immediate need for some
temporary work registers, then the function/method may, at its discretion,
immediately upon entry, store the less urgently needed arguments in the stack
frame, thereby freeing up registers for other uses.

The Blitz-64 calling convention sets aside a fairly large number of registers for
argument passing. Each argument must be collected by the calling code and moved
into a known, agreed-upon location by the caller’s code. Even if the argument were

Blitz-64 Instruction Set Architecture / Porter Page 35 of 344

Chapter 3: Architectural Summary

to be placed on the stack, the caller would at least need to move the argument into a
register temporarily to do this.

When the compiler is compiling a function, it cannot know whether it is best for the
value to be placed in a register or written to the stack. Only the called function can
make an informed decision about this. Therefore, the Blitz convention is to place a
large number of arguments (up to 7) in registers and let the called function store
some of all of them to memory, at its discretion. Ideally, the called function can avoid
moving any arguments to memory.

We considered allocating all available registers to carry arguments, but there are
rarely functions with more than 7 arguments and it may be convenient for a function
to have some registers free upon entry. We can assume a function with more than 7
arguments is big and complex; having three work registers available may allow the
function to achieve much of its task without having to spill registers to the stack
frame just to have some work registers to work with. Placing all arguments in
registers and therefore leaving no work registers available means that some spills
must occur immediately upon entry into the function.

Therefore, we allocate three additional registers called s0, s1, and s2 (i.e., r9, r10,
and r11) as work registers.

The “temporary register” (register t, i.e., r8) is used by the assembler for some
synthetic instructions. When describing the synthetic instructions, this document
indicates whether and how register t will be used. The use of register t is
“clandestine”, in the sense that t is not explicitly named in the synthetic instructions.
The programmer and compiler are free to use register t in a function/method, as
long as they realize that some synthetic instructions may alter t.

The “caller” of a function/method should assume that registers rl...r7, t, and s0...s2
will trashed (i.e., altered or arbitrarily modified) by the “called” function/method. If
the contents are important, the caller should save their contents before calling the
function/method. In that sense, r1...r7, t, and s0...s2 are said to be “caller-saved”.

A “callee-saved” register is one in which the caller can assume that the called
function will not modify the value. Or more accurately, if the called function needs to
use a callee-saved register, it will save it first and then restore it before returning.

In some sense, the registers tp, gp, and sp are callee-saved, since the convention
states that they are to have the same value upon return that they had before the call.

Blitz-64 Instruction Set Architecture / Porter Page 36 of 344

Chapter 3: Architectural Summary

We considered setting aside some registers as “callee-saved”.

In a program with multiple threads, each thread may have a block of data specific to
that thread. The “thread pointer register” (register tp, i.e., r12) points to this block
of data, making it easy for the thread to access its private data. Typically, this register
does not change and stays constant during the entire life of the thread.?

The “global pointer register” (register gp, i.e., r13) points to a block of memory
containing static global variables shared by all functions/methods in all threads,
making it easy for the code to access these variables with a single LOAD/STORE
instruction using a small offset. The 16 bit immediate offset in LOAD/STORE
instructions makes it easy to access data within a 4 page (i.e., 64 KiByte) range by
using offsets up to +32 KiBytes.

Typically, the global data will be placed at the beginning of the virtual address space,
i.e.,, at address 0x8_0000_0000. Therefore, register gp will contain 0x8_0000_8000
which is the start of virtual memory, plus 2 pages (i.e., plus 32 KiBytes), allowing
access to the first 4 pages of virtual memory. Register gp will remain constant during
the execution of the program.

The “link register” (register Ir, i.e., r14) is used in function/method invocation. The
CALL instruction will store the return address in register “Ir” and the RET
instruction will jump back to that address. If the function/method is a leaf routine
(i.e., if it doesn’t invoke other functions/methods) then the return address can
remain in Ir until the RET instruction causes the return. Otherwise, the value of Ir
must be saved somewhere, typically on the stack, and retrieved before the return.

The “stack pointer register” or “stack top” (register sp, i.e., r15) points to the
runtime stack. By convention, the stack grows downward from high memory (larger
addresses) toward low memory (smaller addresses). By convention, sp will point to
the first byte of the stack, i.e., the most significant byte of the doubleword sitting at
the top of the stack. By convention, the stack will always grow in multiples of 8. In
other words, sp will always contain a doubleword aligned address.

1 In fact, s0...s2 were originally callee-saved with the “s” standing for “saved”.

2 In programs which have only a single thread and no need for a thread pointer, this register might
instead be used as a callee-saved register. But beware that called functions will likely use this
register to locate various parameters; using register tp as a callee-saved register is not practical.

Blitz-64 Instruction Set Architecture / Porter Page 37 of 344

Chapter 3: Architectural Summary

Although floating point instructions are defined, there are no separate floating
point registers. Instead, floating point data is kept and manipulated in the general
purpose registers.

There is a program counter (PC) whose size is 36 bits.
Thus, the PC can contain any number within 0x0_0000_0000 ... OxF_FFFF_FFFF. Any

attempt to load the PC with a number outside this range is legal: bits [63:36] will be
ignored with no overflow exception signaled.

Commentary Many processor ISAs include a “condition code register.” Such a
register usually contains bits such as:

e Sign / Negative Value
e Zero / Equal

e Carry Bit

e Overflow

In such ISAs, there is usually a COMPARE instruction (which will set bits in the
status register) and several BRANCH instructions (which will test the status register
bits and conditionally jump).

The normal pattern of most code is to execute a COMPARE instruction and,
immediately afterward, execute a BRANCH instruction. They go together and
effectively perform a single “test-and-jump” operation.

Blitz-64 does not include a “condition code register.” Instead, the BRANCH
instructions will perform both the test and the conditional jump. By combining them
into a single instruction, greater performance efficiency can be achieved whenever
this “test-and-jump” operation must be performed.

Control and Status Registers (CSRs)

The “Control and Status Registers” (CSRs) are used by the protection and privilege
system. The privilege system is used by the OS kernel to protect itself and manage

Blitz-64 Instruction Set Architecture / Porter Page 38 of 344

Chapter 3: Architectural Summary

user-level processes. The CSRs are also used for interrupt processing, thread
switching, and virtual memory manipulation.

At any moment, the processor will be executing either in “user mode” or in “kernel
mode”. OS kernel code is executed in kernel mode and application programs are
executed in user mode.

Each instruction is either “privileged” or “non-privileged”. When the core is
running in user mode, only non-privileged instructions may be executed. When
running in kernel mode, all instructions are usable.

Changing the privilege mode is accomplished by writing to a CSR. A single bit in the
status register (csr_status) determines the current privilege mode.

CSRs can only be read /written when running in kernel mode.

There are 16 CSRs.

Each CSR has a special name and each has a unique function. Reading and/or writing
a CSR will have an effect on the processor operation. The CSRs are read and written
with just a couple of general-purpose instructions. The instructions to read/write
the CSRs are privileged and can only be executed in kernel mode.

In order to understand the user-mode instruction set and to create user-level code,
the CSRs can and should be ignored, especially on your first introduction to Blitz-64.

Virtual Memory

Blitz-64 supports virtual memory. For each virtual address space, there will be a
page table stored in memory. The page table is organized as a tree of nodes and, at
any time, the root of the current page table is pointed to by a control and status
register (CSR) named csr_pgtable.

Blitz-64 Instruction Set Architecture / Porter Page 39 of 344

Chapter 3: Architectural Summary

Pages in the virtual address space can be marked as

e valid / invalid
e writable

e executable

* cOpy-on-write
e dirty

Any attempt by user code to access a page in violation of the permissions for that
page will cause an exception.

The virtual memory architecture and page tables are described in the chapter titled
“Memory, Address Spaces, and the Page Table”.

Blitz-64 Instruction Set Architecture / Porter Page 40 of 344

Chapter 4: Instruction Formats

Quick Summary

e Machine instructions are 32 bits long.
The 16 registers are encoded in fields of 4 bits.
Immediate values occupy fields of either 16 or 20 bits.
e There are 4 formats of instructions, called A, B, C, and D.
e Assembly syntax is summarized.
The destination register is schematically called “RegD".
The operand registers are schematically called “Reg1”, “Reg3”, and “Reg3".
e Compressed instructions will be defined and specified in the future.
Compressed instructions are variable in length.
Compressed and full-sized instructions can be distinguished by their opcodes.

Compressed and Full-Sized Instructions

There are two types of instructions:

e Full-sized instructions (32 bits)
e Compressed instructions (variable length)

Each compressed instruction is exactly equivalent in function to a 32 bit full-sized
instruction. However, there may be many 32 bit instructions for which there is no
equivalent compressed version.

A major performance bottleneck is the time required to fetch instructions from main
memory. The entire purpose of compressed instructions is to reduce the size of code.

The full-sized and compressed instructions may be intermixed. There is no “mode”
bit to put the processor into “compressed instruction mode”, as there is in some
processors.

Blitz-64 Instruction Set Architecture / Porter Page 41 of 344

Chapter 4: Instruction Formats

Commentary Reducing the size of code results in increased processor
performance since it allows more instructions to be cached, reducing the time to
fetch instructions from main memory, which is often a performance bottleneck.

In a typical hardware implementation, when a compressed instruction is fetched
and loaded into the Instruction Register (IR) prior to being executed, the hardware
will notice that it is a compressed instruction. At that time, the compressed
instruction will immediately be expanded into the equivalent 32 bit instruction.
Thereafter, there is no need for any additional hardware logic to support the
compressed instruction set.

A sophisticated assembler will automatically generate compressed instructions
whenever it can. The idea is that the programmer (or compiler) will create only 32
bit instructions. Upon encountering a 32 bit instruction that can also be coded as a
compressed instruction, the assembler will choose the smaller instruction. Such an
assembler will relieve programmers (and compilers) from the burden of selecting
compressed instructions, although a sophisticated compiler may be able to
generate shorter code sequences if it is aware of which instructions can be
compressed.

At this time, only the full-sized instructions are defined. The compressed
instructions will be defined in the future, based on which full-sized instructions are
most widely used.

Opcode Encoding

The first 2 bits in every instruction determine whether or not it is a compressed
instruction. All full-sized instructions begin with bits 00.

00 - Full-sized instruction

01 - Compressed instruction
10 - Compressed instruction
11 - Compressed instruction

From here on, we only discuss full-sized instructions.

The instruction opcode is either 1 or 2 bytes. The opcode is in either the first byte or
the first two bytes of the instruction, i.e., the most significant byte or bytes.

Blitz-64 Instruction Set Architecture / Porter Page 42 of 344

Chapter 4: Instruction Formats

The first byte of every instruction is called “OP1” and the second byte of the opcode,
if present, is called “OP2".

If the first byte (OP1) is 0x00, then a second opcode byte (OP2) will be used. If the
first byte (OP1) is non-zero, then there will be no second byte.

Instruction Fields

We use the following notations to describe the various bit fields in an instruction.

Regl 4 bits, indicating a source register
Reg?2 4 bits, indicating a source register
Reg3 4 bits, indicating a source register
RegD 4 bits, indicating the destination register

immed-3 3 bits containing an immediate value
immed-6 6 bits containing an immediate value
immed-10 10 bits containing an immediate value
immed-16 16 bits containing an immediate value
immed-20 20 bits containing an immediate value

The registers are encoded in the obvious way:

r0 =0000
r1=0001
r15=1111

The immed-3 field is used in the CHECKADDR instruction and is interpreted as a
code indicating which sort of check to perform.

The immed-6 field is used in the shifting instructions and is interpreted as a
positive number, i.e., the number of bits to shift by.

The immed-10 field is only used in the SYSCALL instruction and is interpreted as a
positive number.

The immed-16 and immed-20 fields are signed-extended to 64 bits, unless
explicitly noted otherwise.

Blitz-64 Instruction Set Architecture / Porter Page 43 of 344

Chapter 4: Instruction Formats

Smallest Largest Number
Value Value of Values
reg r0 r15 16 =24
immed-3 0 7 8 =23
immed-6 0 63 64 =26
immed-10 0 1,023 1,024 =210
immed-16 -32,768 +32,767 65,536 =216 =64 Ki

immed-20 -524,288 +524,287 1,048,576 =220=1 Mi

Instruction Formats

FIGURE: Instruction Formats

Instruction Formats

24 16 8
0 |0 0 Reg3 | Reg2

Format-A

A

256 possible

Format-B

N
OP1

Format-C
o] [[[[]

63 possible

o‘{=1 imm¥i-16

Format-p

Imm\e,d-zo

N

Compressed Instructions
Variable Byte Length

(Encoding to be selected later)

)

Blitz-64 Instruction Set Architecture / Porter Page 44 of 344

Chapter 4: Instruction Formats

When giving the binary patterns for the various instruction formats below, we use
the following notation to represent bit fields.

DDDD = RegD
1111 =Regl
2222 =Reg?2
3333 =Reg3

VVVVVVVV = Immediate value
XXXXXXXX = Op-code
00000000 = Zero bits

For some instructions, one or more of the fields may be unused.

Unused fields are ignored. The assembler should fill them with zeros, but the do not
affect the core’s execution.

For example, the ADD instruction is a Format-A instruction, which has room for 4
register operands. However the ADD instruction only uses 3 registers. The
remaining field is unused for ADD.

The shorter immediate values (i.e., immed-3, immed-6, and immed-10) are
encoded as 16 bit values with the upper bits being unused and ignored.

Format-A instructions:
Operands:
RegD,Reg1,Reg2,Reg3
Binary Encoding:
0000 0000 XXXX XXXX 3333 2222 1111 DDDD

Examples:
SYSRET # Return from trap handler
CHECKH r4 # Ensure r4 is within 16 bits
SEXTW rd,ré6 # r4 « SignExtend(r6)
ADD rd,r6,r7 # rd < ré6+r7

Format-B instructions:
Operands:
RegD,Regl,immed-16
Binary Encoding:
00XX XXXX VVVV VVVV VVVV VVVV 1111 DDDD

Examples:
ADDI r4,r6,1234 # rd « r6+1234
LOAD.B 1r6,1234(r4) # r6 « Mem[1l234+r4d]

Blitz-64 Instruction Set Architecture / Porter Page 45 of 344

Chapter 4: Instruction Formats

Format-C instructions:
Operands:
Regl,Reg2,immed-16
Binary Encoding:
00XX XXXX VVVV VVVV VVVV 2222 1111 VVVV
Examples:
B.LT r4,r6,loop # if rd4<r6, goto offset(pc)
STORE.B 1234 (r4),r6 # Mem[1234+r4d] « r6

Format-D instructions:

Operands:
RegD,immed-20

Binary Encoding:
00XX XXXX VVVV VVVV VVVV VVVV VVVV DDDD

Examples:
JAL 1lr,MyFunc # call: pc<offset+pc; lreret addr
UPPER20 r4,0x3A4B5 # r4 « (0x3A4B5 << 16)

Operand Syntax

In assembly language, the instruction operands are specified in several different
ways.

General Form Example
Format-A
A-0 OP <no operands> sysret
A-1 OP Regl checkb rl
A-2 OP RegD,Regl sextb r7,rl
A-3 OP RegD,Reg1,Reg?2 add r7,rl,r2
A-4 OP RegD,Reg1,Reg2,Reg3 muladd r7,rl,r2,r3
A-5 < No longer used >
A-6 < No longer used >
A-7 OP RegD,CSRReg1,Reg2 csrswap r7,csrl,r2
A-8 OP RegD,CSRRegl csread r7,csrl
A-9 OP RegD getstat r7

Blitz-64 Instruction Set Architecture / Porter Page 46 of 344

Chapter 4: Instruction Formats

Format-B

B-1 OP RegD,Regl,immed-16 addi r7,rl,0x1234

B-2 OP RegD,immed-16(Reg1) load.b r7,o0ffset(rl)

B-3 OP RegD,Reg1,immed-3 checkaddr r7,r1,5

B-4 OP immed-10 syscall 123

B-5 OP RegD,Regl,immed-6 slli r7,rl,5

B-6 OP CSRRegl,immed-16 csrset csr_ status,0x1234
Format-C

C-1 OP immed-16(Reg1),Reg2 store.b offset(rl),r2

C-2 OP Reg1,Reg2,immed-16 b.le rl,r2,MyLabel
Format-D

D-1 OP RegD,immed-20 jal lr,MyLabel

Notice that the destination is almost always the first (leftmost) operand. This is easy
to remember since this order mimics the order of an assignment statement in a
high-level programming language.

Typical assignment statement:
destination = ...expr... ;
Blitz assembler:
RegD, ...other operands...

For the branching instructions, the operand order mimics an “if” statement.

Typical “if” statement:

if (x <=y) then go to MyLabel
Blitz assembler:

B.LE rl,r2,MyLabel

Blitz-64 Instruction Set Architecture / Porter Page 47 of 344

Chapter 5: Instructions

Don’t leave the classroom of pain without
gathering wisdom from its instruction.
— Tim Hiller

Machine Instructions versus Synthetic Instructions

A machine instruction is implemented in hardware. Each machine instruction has
a single numeric opcode and, in assembly code, the opcode is indicated with a
symbolic name, such as “ADD” or “SLL".

Synthetic instructions are not implemented in hardware. Instead, each synthetic
instruction is processed by the assembler and/or linker and translated into machine
instructions.

Each synthetic instruction has a symbolic opcode, such as “LOADD” or “CALL’, so the
synthetic instructions may be difficult to distinguish when looking at an assembly
code program.

Typically, each synthetic instruction is translated into a single machine instruction,
but in some cases the translation will be 2, 3, or 4 machine instructions. The
processor core does not see or execute synthetic instructions.

An Instruction Set Architecture (ISA) normally defines only machine instructions,
because that is all that hardware designers need in a specification of what to
implement. However, this document also includes descriptions of synthetic
instructions, alongside the machine instructions, making an easy reference for
programmers.

In the instruction listings, synthetic instructions are identified by marking them
with an asterisk (*) prefixing the symbolic opcode, as in *LOADD or *CALL. This
asterisk is only used in this documentation to make it easy to identify the synthetic
instructions. The asterisk is not part of the assembly language.

Blitz-64 Instruction Set Architecture / Porter Page 48 of 344

Chapter 5: Instructions

All Instructions - Summary Listing

Arithmetic

ADD
ADDI
ADDOK
ADD3
SUB
*MUL
MULADD
MULADDU
DIV
REM
*NEG
* ABS

Logical

AND

ANDI

OR

ORI

XOR

XORI
*BITNOT
*LOGNOT

Move

* MOV
*MOVI

RegD,Reg1,Reg2
RegD,Regl,immed-16
RegD,Reg1,Reg?2
RegD,Reg1,Reg2,Reg3
RegD,Reg1,Reg2
RegD,Reg1,Reg2
RegD,Reg1,Reg2,Reg3
RegD,Reg1,Reg2,Reg3
RegD,Reg1,Reg2
RegD,Reg1,Reg2
RegD,Reg1l

RegD,Regl

RegD,Reg1,Reg2
RegD,Regl,immed-16
RegD,Reg1,Reg2
RegD,Regl,immed-16
RegD,Reg1,Reg?2
RegD,Regl,immed-16
RegD,Regl

RegD,Regl

RegD,Regl
RegD,immediate-64

RegD <— (Regl+Reg2 overflows)?0:1
RegD <— Reg1+Reg2+Reg3 (unsigned)

RegD <— (Regl x Reg2) + Reg3
RegD < (Regl x Reg2) + Reg3 (unsigned)

RedD < Bitwise NOT (Reg1)
RegD <~ (Reg1=0)71:0

Blitz-64 Instruction Set Architecture / Porter

Page 49 of 344

Chapter 5: Instructions

Shift

SLL
SLLI
SLA
SLAI

SRL
SRLI
SRA
SRAI

ROTR
ROTRI

Sign Extension

SEXTB
SEXTH
SEXTW

RegD,Reg1,Reg?2
RegD,Regl,immed-6
RegD,Reg1,Reg2
RegD,Regl,immed-6

RegD,Reg1,Reg2
RegD,Regl,immed-6
RegD,Reg1,Reg?2
RegD,Regl,immed-6

RegD,Reg1,Reg?2
RegD,Regl,immed-6

RegD,Reg1l
RegD,Reg1l
RegD,Regl

Range Checking

NULLTEST
CHECKB
CHECKH
CHECKW
INDEXO0
INDEX1
INDEX2
INDEX4
INDEXS8
INDEX16
INDEX24
INDEX32

Regl
Regl
Regl
Regl
RegD,Reg1,Reg2,Reg3

RegD,Reg1,Reg2,Reg3 .
RegD,Reg1,Reg2,Reg3 .
RegD,Reg1,Reg2,Reg3 .
RegD,Reg1,Reg2,Reg3 .

Shift left logical

Shift left arithmetic

Shift right logical

Shift right arithmetic

Rotate right (circular)

Sign extend byte to 64 bits
Sign extend 16 bits to 64 bits
Sign extend 32 bits to 64 bits

Trap if Regl is contains NULL

Trap if Regl not within -128 ... +127

Trap if Reg1 not within -32768 ... +32767

Trap if Reg1 not within 32 bit range

Regl=arrayPtr, Reg2=header, Reg3=index

RegD < Regl + 8 + (Reg3 * scale)

Reg2 = header = [ArrayMAX || ArrayCURR]

Trap if (Reg3 < 0) or (Reg3 = ArrayCURR)
or (ArrayMAX = 0)

RegD,Reg1,Reg2,Reg3 .
RegD,Reg1,Reg2,Reg3 .
RegD,Reg1,Reg2,Reg3 .

Byte Reordering

ENDIANH
ENDIANW
ENDIAND

RegD,Regl
RegD,Regl
RegD,Regl

Reorder bytes in all 4 halfwords
Reorder bytes in both words
Reorder bytes in a doubleword

Blitz-64 Instruction Set Architecture / Porter Page 50 of 344

Chapter 5: Instructions

Test and Set a Boolean

TESTEQ
TESTNE
TESTLT
TESTLE
* TESTGT
* TESTGE

TESTEQI
TESTNEI
TESTLTI
TESTLEI
TESTGTI
TESTGEI

* TESTEQZ
* TESTNEZ
* TESTLTZ
* TESTLEZ
* TESTGTZ
* TESTGEZ

RegD,Reg1,Reg?2
RegD,Reg1,Reg2
RegD,Reg1,Reg?2
RegD,Reg1,Reg2
RegD,Reg1,Reg2
RegD,Reg1,Reg2

RegD,Regl,immed-16
RegD,Regl,immed-16
RegD,Regl,immed-16
RegD,Regl,immed-16
RegD,Regl,immed-16
RegD,Regl,immed-16

RegD,Reg1l
RegD,Regl
RegD,Regl
RegD,Regl
RegD,Regl
RegD,Regl

Branch - Limited Range

B.EQ
B.NE
B.LT
B.LE

Regl1,Reg2,immed-16
Regl,Reg2,immed-16
Regl,Reg2,immed-16
Regl,Reg2,immed-16

Branch - General

* BEQ
* BNE
* BLT
* BLE
* BGT
* BGE

Reg1,Reg2,address
Reg1,Reg2,address
Regl,Reg2,address
Reg1,Reg2,address
Regl,Reg2,address
Regl,Reg2,address

RegD < (Regl =Reg2) ? 1:
RegD <— (Regl # Reg2) ?1:
RegD <— (Regl <Reg2)?1:
RegD <— (Regl <Reg2)?1:
RegD < (Regl > Reg2) ? 1 :
RegD <— (Regl = Reg2) ? 1:

RegD <— (Regl =immed) 7 1:
RegD <— (Regl # immed) 7 1:
RegD <— (Regl <immed) ? 1:
RegD <— (Regl <immed) 7 1:
RegD < (Regl > immed) 7 1:
RegD <— (Regl 2 immed) 7 1:

RegD <~ (Reg1=0)7?1:
RegD <— (Regl #0)?1:
RegD <— (Reg1 <0)?1:
RegD <— (Reg1<0)71:
RegD <~ (Reg1>0)71:
RegD <~ (Reg120)71:

S O O O OO

S O O O OO

0, i.e., if zero

0, i.e., if non-zero

0, i.e., if negative

0, i.e., if non-positive
0, i.e., if positive

0, i.e., if non-negative

Branch if Regl = Reg?2; Offset is PC-relative
Branch if Regl # Reg2; Offset is PC-relative
Branch if Regl < Reg?2; Offset is PC-relative
Branch if Regl < Reg?2; Offset is PC-relative

Branch if Regl = Reg?2
Branch if Regl # Reg2
Branch if Regl < Reg2
Branch if Regl < Reg?2
Branch if Regl > Reg?2
Branch if Regl > Reg2

Blitz-64 Instruction Set Architecture / Porter

Page 51 of 344

Chapter 5: Instructions

*BEQI Reg,value,address Branch if Reg = immediate value

* BNEI Reg,value,address Branch if Reg # immediate value

* BLTI Reg,value,address Branch if Reg < immediate value

* BLEI Reg,value,address Branch if Reg < immediate value

* BGTI Reg,value,address Branch if Reg > immediate value

* BGEI Reg,value,address Branch if Reg = immediate value
*BEQZ Reg,address Branch if Reg =0

* BNEZ Reg,address Branch if Reg # 0

*BLTZ Reg,address Branch if Reg < 0, i.e., if negative

* BLEZ Reg,address Branch if Reg < 0, i.e,, if not positive
*BGTZ Reg,address Branch if Reg > 0, i.e,, if positive

* BGEZ Reg,address Branch if Reg 2 0, i.e., if not negative
* BFALSE Reg,address Branch if Reg = 0, i.e,, if “false”

* BTRUE Reg,address Branch if Reg # 0, i.e,, if “true”

Larger Addresses

UPPER20 RegD,immed-20 RegD < (immed<<16)

UPPER16 RegD,Regl,immed-16 RegD <— (immed<<16) + Regl
SHIFT16 RegD,Regl,immed-16 RegD < (Regl + immed-16) << 16
ADDPC RegD,immed-20 RegD <— immed + PC

AUIPC RegD,immed-20 RegD < (immed<<16) + PC

Jumping - Limited Range

JAL RegD,immed-20 RegD < return addr; Target <— PC+offset
JALR RegD,immed-16(Regl) RegD < return addr; Target <— offset+Reg1l

Call / Jump / Return - General

* CALL address Jump to any address; save return addr in “Ir”
*CALLR Regl Jump to address; save return addr in “Ir”
*RET <no operands> Return value is in link register “Ir”

*JUMP address Jump to any address

*JR Regl Indirect jump, via register

Blitz-64 Instruction Set Architecture / Porter Page 52 of 344

Chapter 5: Instructions

Load - Limited Range

LOAD.B RegD,immed-16(Regl) Sign extend 8 bits to 64 bits
LOAD.H RegD,immed-16(Regl) Sign extend 16 bits to 64 bits
LOAD.W RegD,immed-16(Regl) Sign extend 32 bits to 64 bits
LOAD.D RegD,immed-16(Reg1)

Load - General

* LOADB RegD,address
* LOADH RegD,address
* LOADW RegD,address
* LOADD RegD,address
*LOADB RegD,offset(Reg1)
* LOADH RegD,offset(Reg1)
* LOADW RegD,offset(Reg1)
*LOADD RegD,offset(Reg1)

Store - Limited Range

STORE.B immed-16(Reg1),Reg2 Ignore upper 56 bits
STORE.H immed-16(Regl1),Reg2 Ignore upper 48 bits
STORE.W immed-16(Reg1),Reg2 Ignore upper 32 bits
STORE.D immed-16(Reg1),Reg2

Store - General

* STOREB address,Reg2
* STOREH address,Reg2
* STOREW address,Reg2
* STORED address,Reg2
*STOREB offset(Reg1),Reg?2
* STOREH offset(Reg1),Reg2
*STOREW offset(Reg1),Reg2
*STORED offset(Reg1),Reg?2

Blitz-64 Instruction Set Architecture / Porter Page 53 of 344

Chapter 5: Instructions

Support for Unaligned Loads and Stores

ALIGNH RegD,Reg1,Reg2,Reg3
ALIGNW RegD,Reg1,Reg2,Reg3
ALIGND RegD,Reg1,Reg2,Reg3

INJECT1H RegD,Reg1,Reg2,Reg3
INJECT2H RegD,Reg1,Reg2,Reg3
INJECT1IW RegD,Reg1,Reg2,Reg3
INJECT2W RegD,Reg1,Reg2,Reg3
INJECT1D RegD,Reg1,Reg2,Reg3
INJECT2D RegD,Reg1,Reg2,Reg3

Miscellaneous
SYSCALL immed-10 immed-10 selects one of 1,024 syscalls
SYSRET <no operands>
*NOP <no operands>
ILLEGAL <no operands>
SLEEP1 <no operands> Enter light sleep state
SLEEP2 <no operands> Enter deep sleep state
RESTART <no operands> Same as Power-On-Reset
DEBUG <no operands>

BREAKPOINT <no operands>

CONTROL RegD,Regl,immed-16

CONTROLU RegD,Regl,immed-16

CAS RegD,Reg1,Reg2,Reg3 Compare and Set: If *r1=r2 then *r1<-r3
FENCE <no operands>

CSR Manipulation

CSRSWAP RegD,CSRRegl1,Reg2 RegD <— CSR; CSR <— Reg?2

CSRREAD RegD,CSRRegl Regl encodes CSR; RegD <— CSR

* CSRWRITE CSRReg1,Reg?2 Reg1l encodes CSR; CSR <— Reg?2
CSRSET CSRRegl,immed-16 Set selected bits in CSR
CSRCLR CSRRegl,immed-16 Clear selected bits in CSR
GETSTAT RegD RegD <— CSR_STATUS & 0x0000...03f8
PUTSTAT Regl CSR_STATUS [9:3] < Regl [9:3]

Blitz-64 Instruction Set Architecture / Porter Page 54 of 344

Chapter 5: Instructions

Memory Management Unit

TLBCLEAR
TLBFLUSH
CHECKADDR

Floating Point

FADD
FSUB
FMUL
FDIV
FMIN
FMAX
FNEG
FABS
FSQRT
FEQ
FLT
FLE

* FGT

* FGE
FCVTFI
FCVTIF
FMADD
FNMADD
FMSUB
FNMSUB

<no operands>
Regl

RegD,Regl,immed-3

RegD,Reg1,Reg2
RegD,Reg1,Reg?2
RegD,Reg1,Reg?2
RegD,Reg1,Reg2
RegD,Reg1,Reg?2
RegD,Reg1,Reg2
RegD,Regl
RegD,Regl
RegD,Reg1l
RegD,Reg1,Reg?2
RegD,Reg1,Reg2
RegD,Reg1,Reg?2
RegD,Reg1,Reg2
RegD,Reg1,Reg2
RegD,Regl
RegD,Reg1l

Invalidate all TLBs for current ASID
Invalidate TLB for virtual address in Regl
Regl = virt addr; RegD < except. code or 0

RegD <— Regl + Reg?2

RegD <— Regl - Reg?2

RegD <— Regl x Reg2

RegD <— Regl / Reg2

RegD <— MIN (Regl, Reg2)

RegD <— MAX (Reg1, Reg2)

RegD <— -Regl

RegD < ABSOLUTE_VALUE (Reg1)

RegD <— SQUARE_ROOT (Reg1)

RegD <— (Regl = Reg2) ? 1: 0 (float compare)
RegD <— (Regl < Reg2) ? 1: 0 (float compare)
RegD < (Regl < Reg2) ? 1 : 0 (float compare)
RegD <— (Regl > Reg2) ? 1: 0 (float compare)
RegD <— (Regl = Reg2) ? 1 : 0 (float compare)
Convert: floating-point <— int

Convert: int <— floating-point

RegD,Reg1,Reg2,Reg3 RegD < (Regl x Reg2) + Reg3
RegD,Reg1,Reg2,Reg3 RegD < (-(Regl x Reg2)) + Reg3
RegD,Reg1,Reg2,Reg3 RegD < (Regl x Reg2) - Reg3
RegD,Reg1,Reg2,Reg3 RegD <— (-(Regl x Reg2)) - Reg3

Machine Instructions, Grouped By Format

Here is a complete list of the Blitz-64 machine instruction set.

The headers give the format that assembly language programmers will use. These
are followed by all the instructions that fit the pattern, with example operands and
comments, to give a hint at what each instruction does.

Blitz-64 Instruction Set Architecture / Porter

Page 55 of 344

Chapter 5: Instructions

Format A-0 <no operands>
ILLEGAL Canonical form of illegal instruction
SYSRET PC < csr_prev; csr_status <— csr_stat2
SLEEP1 Enter light sleep state
SLEEP2 Enter deep sleep state
RESTART Same as Power-On-Reset
DEBUG
BREAKPOINT
FENCE
TLBCLEAR Invalidate all TLBs for current ASID

Format A-1 Reg1

NULLTEST rl Trap if reg contains NULL

CHECKB rl Trap if reg not within -128 ... +127
CHECKH rl Trap if reg not within -32768 ... +32767
CHECKW rl Trap if reg not within 32 bit range
PUTSTAT rl CSR_STATUS [9:3] <= Reg1 [9:3]
TLBFLUSH rl Invalidate TLB for virtual address in Regl

Format A-2 RegD,Reg1

ENDIANH «r7,rl Reorder bytes: 76543210 — 67452301
ENDIANW r7,rl Reorder bytes: 76543210 — 45670123
ENDIAND r7,rl Reorder bytes: 76543210 — 01234567
SEXTB r7,rl Sign extend byte to 64 bits

SEXTH r7,rl Sign extend 16 bits to 64 bits

SEXTW r7,rl Sign extend 32 bits to 64 bits

FNEG r7,rl

FABS r7,rl

FSORT r7,rl

FCVTFI r7,rl Convert: floating-point < int

FCVTIF r7,rl Convert: int < floating-point

Format A-3 RegD,Reql,Req2

ADD r7,rl,r2
ADDOK r7,rl,r2
SUB r7,rl,r2
DIV r7,rl,r2
REM r7,rl,r2
AND r7,rl,r2

Blitz-64 Instruction Set Architecture / Porter Page 56 of 344

Chapter 5: Instructions

OR r7,rl,r2

XOR r7,rl,r2

SLL r7,rl,r2

SLA r7,rl,r2 Shift-left-arithmetic; checks for overflow

SRL r7,rl,r2

SRA r7,rl,r2

ROTR r7,rl,r2 Rotate right (circular)

TESTEQ r7,rl,r2 RegD <— (Regl =Reg2)?1:0

TESTNE r7,rl,r2 RegD <— (Regl # Reg2)?1:0

TESTLT r7,rl,r2 RegD <— (Regl <Reg2)?71:0

TESTLE r7,rl,r2 RegD <— (Regl <Reg2)?1:0

FADD r7,rl,r2

FSUB r7,rl,r2

FMUL r7,rl,r2

FDIV r7,rl,r2

FMIN r7,rl,r2

FMAX r7,rl,r2

FEQ r7,rl,r2 RegD < (Regl = Reg2) ? 1: 0 (float compare)

FLT r7,rl,r2 RegD < (Regl < Reg2) ? 1: 0 (float compare)

FLE r7,rl,r2 RegD <— (Regl < Reg2) ?1: 0 (float compare)
Format A-4 RegD,Reg1,Reg2,Reg3

ADD3 r7,rl,r2,r3 Reg3 <— Regl+Reg2+Reg3 (unsigned)

MULADD r7,rl,r2,r3 RegD <— (Regl x Reg2) + Reg3

MULADDU r7,rl,r2,r3 RegD <— (Regl x Reg2) + Reg3 (unsigned)

INDEXO r7,rl,r2,<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>