
Blitz-64:


Software	
Reference	
Manual


 


Harry	H.	Porter	III


HHPorter3@gmail.com


10	November	2022	


This	document	describes	the	existing	Blitz-64	software.	It	describes	the	packages	
System,	PrintPackage,	MiscLib,	HostInterface,	Number.	It	documents	the	printf	
and	sprintf	statements,	widely	used	functions	that	appear	in	many	KPL	programs,	
and	the	functions	built-in	to	the	KPL	language.	It	describes	the	implementation	of	
the	stack	and	the	heap.	It	describes	the	use	of	floating	point	numbers. 

	 Available	Online: Blitz64.org/Documentation/B64-Software.pdf

mailto:HHPorter3@gmail.com?subject=FloatingPointNumbers%20Paper
http://Blitz64.org/Documentation/B64-Software.pdf


Table	of	Contents

Chapter	1:	System	Package	 
9
Introduction	 
9
Useful	Constants	 
10
String-Related	Functions	 
11

String 11
newString 11
maximizeString 11
strCopy 12
strEqual 12
append 13
append3 13
overwriteString 13
appendStrings 14
addStringToBuffer 15
digitValue 15
hexCharToInt 15
intToString 16
intToHexString 16
parseWhitespace 17
stringToInt 17
stringToIntWithOptions 18
dump 19
memoryZero 19
memoryZero8 20
memoryCopy 20
memoryCopy8 21

Misc.	Functions	 
21
RuntimeExit 21
EmulatorDebuggingRequested 22
EmulatorShutdown 23
FatalError 24
addOk 24
subOk 25
unsignedAdd, unsignedSub 25
min 26
max 26
RandomNumber 26
RandomNumberBetween 27
endianSwapH 27
endianSwapW 27
endianSwapD 27

Basic	Serial	Printing	and	Reading	 
28
print 29
printNL 29

Software	Reference	Manual	/	Porter	 Page	 	of	2 217



Table	of	Contents


printInt 29
printDecimal 30
printHex 30
printPtr 30
printBool 31
printChar 31
printIntVar 31
printHexVar 32
printBoolVar 32
printPtrVar 32
printStrVar 32
printBinaryVar 33
readString 33

Heap-Related	Functions	 
34
heapInitialize 34
getHeapCurrentInUse 35
getHeapTotalAllocation 35
getHeapTotalFreed 35
getHeapRemaining 35
getHeapRegionSize 36
checkHeapConsistency 36
runThruHeap 36
MemoryAlloc 37
MemoryFree 37
remainingStackSpace 38

Floating-Point	Functions	 
39
isNegZero 39
isnan 40
isinf 41
floatingClass 41
resetFloatingStatus 42
floatingInexact 43
floatingUnderflow 43
floatingOverflow 43
floatingDivideByZero 43
floatingInvalid 43
setFloatingInexact 44
setFloatingUnderflow 44
setFloatingOverflow 44
setFloatingDivideByZero 44
setFloatingInvalid 44
floatingSqrt 45
floatingAbs 45
floatingMin 45
floatingMax 45
setFloatingRound - ELIMINATED 45

Error	Handling	in	KPL	 
46
Errors	from	the	Heap	Management	System:	 
49

Software	Reference	Manual	/	Porter	 	 Page	 	of	3 217



Table	of	Contents


Error: HeapFull 49
Error: HeapViolation 50

Errors	from	Runtime	Exceptions:	 
50
Error: ArithmeticException 51
Error: UnalignedLoadStore 51
Error: NullAddress 52
Error: BadArrayIndex 52

Error	Functions	Inserted	by	the	Compiler	 
53
Error: WrongObject1 53
Error: WrongObject2 54
Error: WrongObject3 54
Error: BadClassDescriptor 55
Error: UninitializedObject 55
Error: UninitializedArray 56
Error: InitializingArray 56
Error: SetArraySize 57
Error: CurrentArraySizeIsWrong 57
Error: ArrayTooLarge 58
Error: ArrayCountNotPositive 58

Objects,	Classes	and	Dispatch	Tables	 
59
Dispatch Tables 60
Class Descriptors 62
Interface Descriptors 64

The	Try-Throw-Catch	Mechanics	 
66
Catch Records 66

Thread-Specific	Functionality	 
69
ThreadData 69
threadPtr 71
initializeThreadPtr 71
FatalError 72

Chapter	2:	Built-in	KPL	Functions	 
74
Introduction	 
74
Type	Casting	and	Conversions	 
74

asByte 74
asHalfword 74
asWord 74
forceToByte 75
forceToHalfword 75
forceToWord 75
forceToDouble 75
forceToInt 75
copyBitsToDouble 75
copyBitsToInt 75
asInteger 76
asPtrTo 76

Software	Reference	Manual	/	Porter	 	 Page	 	of	4 217



Table	of	Contents


isKindOf 76
isInstanceOf 77
sizeOf 77
initializeArray 78
setArraySize 79
arraySize 79
arrayMaxSize 80
initializeObject 80
CPUControl 81
CPUControlUserMode 81

Implicitly	Inserted	Functions	 
81
ptrToBool 82
upcastToHalfword 82
upcastToWord 82
upcastToInt 82
upcastToDouble 84

Chapter	3:	MiscLib	Package	 
85
Introduction	 
85

InputBuffer 85
GetInputLine 85
GetYesNo 86
GetInt 86
GetOneChar 87
AppendIntToString 87
Indent 88
PadTo 88

Chapter	4:	Print	Package	 
89
Introduction	 
89
The	Format	String	 
90

%d   Decimal 93
%s   String 93
%c   Character 94
%x   Hex 95
%f   Floating Point 97
%e   Floating Point - Exponential Form 101
%g   Floating Point - General Form 101
%b   Boolean 104
%h   Halfword 105
%w   Word 105
%i   Integer 105
%o   Object 106
%%   Percent 107
%(   Parenthesis 107

Implementation	 
108

Software	Reference	Manual	/	Porter	 	 Page	 	of	5 217



Table	of	Contents


Unicode	and	UTF-8	 
110
MAX_ALLOWABLE_CODEPOINT 110
ToUTF8 110
FromUTF8 111

Chapter	5:	HostInterface	Package	 
113
Introduction	 
113
Basic	Environments	 
114
The	Environment	for	HostInterface	 
116

initializeHostInterface 116

The	SimpleSerial	Functions	 
118
SimpleSerial_PrintChar 118
SimpleSerial_PrintString 119
SimpleSerial_ReadString 119

Misc	Functions	 
120
hostArgs 120
hostDate 120

Accessing	the	Host	File	System	 
120
errno 121
FILE 122
stdin, stdout, stderr 122
useful constants 123
fopen 123
fclose 124
remove 125
feof 125
fgetc 125
fputc 126
ungetc 126
perror 127
fread1 128
fwrite1 128
fseek 129
ftell 130
fputs 130
fread 131
fwrite 131
fgets 131

Implementation	 
132

Chapter	6:	Number	Package	 
135
Introduction	 
135

doubleToString 136
doubleToStringWithOptions 136
printDoubleLikeC 138

Software	Reference	Manual	/	Porter	 	 Page	 	of	6 217



Table	of	Contents


doubleToAllDigits 139
stringToDouble 139
stringToDoubleWithOptions 140
parseFloat 142
parseInteger 144
fpclassify 145
isfinite 145
isnormal 145
isdenormal 146

Chapter	7:	Floating	Point	 
147
Introduction	 
147
Single	and	Double	Precision	 
147
IEEE	754	 
148
Floating	Point	Instructions	 
148
Double	Precision	Numbers	 
152
Decimal	Representation	 
155
Rounding	 
157
Things	To	Remember	About	Floating	Point	 
158
Compile-Time	v.	Runtime	Computation	 
163
Exceptions	and	Error	Terminology	 
163
Invalid	Operation	 
166
When	the	Result	is	Undefined	 
166
When	the	Result	is	a	Complex	Number	 
167
Conversion	Between	Integers	and	Floating	Point	 
167
Relational	Operations	with	NaN	 
171
Interesting	Behaviors	with	Zero	and	Infinity	 
172
Not-a-Number	(NaN)	 
173
Signaling	and	Quiet	NaNs	 
174
Normalized	and	Denormalized	Numbers	 
176
Named	Values	 
178
Conversion	to	Decimal	 
179
Printing	-	%e,	%f,	%g	 
180

Chapter	8:	Stack	Management	 
185
Stack	Usage	 
185
Stack	Protocol	#1	 
187
Stack	Protocol	#1a	 
188

Software	Reference	Manual	/	Porter	 	 Page	 	of	7 217



Table	of	Contents


Stack	Protocol	#2	 
188
Multiple	Threads	 
189
Stack	Protocol	#3	 
190
Stack	Protocol	#4	 
191
Stack	Protocol	#5	 
192
Using	the	Max_Stack_Usage	Clause	 
193

Chapter	9:	Heap	Management	 
197
Using	the	Heap	System	 
197
Allocating	and	Freeing	 
200
Selecting	a	Heap	Management	Algorithm	 
201
Heap	Algorithm	#0	 
202
Heap	Algorithm	#1	 
205
Types	of	Heap	Errors	 
207
Heap	Algorithm	#2	 
209
Heap	Consistency	Checking	 
213

About	This	Document	 
216
Document	Revision	History	/	Permission	to	Copy	 
216
Corrections	and	Errors	 
216

About	the	Author	 217

Software	Reference	Manual	/	Porter	 	 Page	 	of	8 217



Chapter	1:	System	Package


Introduction


Code	in	the	KPL	programming	language	is	broken	into	packages.	This	document	
describes	the	most	important	packages.


Every	KPL	program	must	include	at	least	the	package	named	“System”,	since	that	
package	contains	several	functions	the	KPL	compiler	assumes	will	be	present.


If	a	program	does	not	print—which	means	the	program	contains	no	use	of	printf—
then	the	programmer	can	avoid	using	PrintPackage	and	perhaps	any	other	
package.	But	every	program	requires	System. 
1

For	example:


header MyExampleProgram
  uses System, PrintPackage
  functions
    main ()
endHeader

code MyExampleProgram
  function main ()
    printf ("Hello, world\n")
  endFunction
endCode

The	basic	package	hierarchy	is:


	Technically,	HostInterface	uses	no	packages,	but	it	is	not	feasible	to	write	programs	using	only	1

HostInterface.

Software	Reference	Manual	/	Porter	 Page	 	of	9 217



Chapter	1:	System	Package


HostInterface
  System
    PrintPackage
      MiscLib, Number, etc…

Roughly	speaking,	System	contains:


	 Useful	constants

	 Useful	type	definitions

	 Functions	required	by	the	compiler

	 Common,	generally	useful	functions

	 Error	declarations

	 Error	handling	code

	 Declarations	for	assembly-coded	functions	from	runtime.s


Useful	Constants


These	constant	values	are	defined:


	 Name	 Value	in	hex	 Value	in	decimal


MIN_8 0xFFFF_FFFF_FFFF_FF80 -128
MAX_8 0x0000_0000_0000_007F  127
MAX_UNSIGNED_8 0x0000_0000_0000_00FF  255

MIN_16 0xFFFF_FFFF_FFFF_8000 -32,768
MAX_16 0x0000_0000_0000_7FFF  32,767
MAX_UNSIGNED_16 0x0000_0000_0000_FFFF  65,535

MIN_24 0xFFFF_FFFF_FFF8_0000  -8,388,608
MAX_24 0x0000_0000_0007_FFFF   8,388,607
MAX_UNSIGNED_24 0x0000_0000_000F_FFFF  16,777,216

MIN_32 0xFFFF_FFFF_8000_0000 -2,147,483,648
MAX_32 0x0000_0000_7FFF_FFFF  2,147,483,647
MAX_UNSIGNED_32 0x0000_0000_FFFF_FFFF  4,294,967,295

MIN_36 0xFFFF_FFF8_0000_0000 -34,359,738,368
MAX_36 0x0000_0007_FFFF_FFFF  34,359,738,367
MAX_UNSIGNED_36 0x0000_000F_FFFF_FFFF  68,719,476,736

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
10 217



Chapter	1:	System	Package


MIN_64 0x8000_0000_0000_0000  -9,223,372,036,854,775,808
MAX_64 0x7FFF_FFFF_FFFF_FFFF   9,223,372,036,854,775,807
MAX_UNSIGNED_64 0xFFFF_FFFF_FFFF_FFFF  18,446,744,073,709,551,616

String-Related	Functions


String

type String = ptr to array of byte

newString

function newString (size: int) returns String

This	function	allocates	a	new	String	on	the	heap,	with	room	for	up	to	size	bytes.	It	
sets	currentSize	=	maxSize,	effectively	filling	the	array.


NOTE:	The	bytes	are	uninitialized.	While	initial	allocations	in	the	heap	pick	up	zeros,	
this	may	not	always	be	the	case.


maximizeString

external function maximizeString  (p: ptr to array of byte)

This	function	is	passed	a	String,	i.e.,	a	pointer	to	an	array	of	bytes.	It	alters	the	
current	size	of	the	array	to	its	maximum	size.	It	does	not	alter	any	elements	so	the	
values	will	be	determined	by	whatever	happened	to	be	in	memory.


Here	is	an	example:


    var s: String = "AAAxxxxx"    -- MAX size = 8

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
11 217



Chapter	1:	System	Package


    ...
    setArraySize (s, 3)    -- Now s = "AAA"
    maximizeString (s)     -- Now s = "AAAxxxxx"

If	the	array	is	uninitialized,	this	function	throws	ERROR_UninitializedArray.


This	function	is	very	similar	to	initializeArray,	and	this	function	can	often	be	used	
instead.


    maximizeString (s)
    initializeArray (s)   — Almost equivalent

If	the	array	has	already	been	initialized,	then	both	functions	will	have	the	same	
effect.	If	the	array	has	not	been	initialized,	maximizeString	will	throw	an	error,	
while	initializeArray	will	not.


The	maximizeString	function	is	implemented	as	an	external	assembly	routine,	and	
is	not	known	to	the	KPL	compiler.


strCopy

function strCopy (str: String) returns String

This	function	allocates	and	returns	a	new	String	with	the	same	bytes	as	the	
argument	str.


If	there	is	extra	space	beyond	the	CURRENT_SIZE	size	of	str,	this	will	not	be	
allocated	in	the	new	string;	the	returned	string	will	have	CURRENT_SIZE	equal	to	
MAX_SIZE.


strEqual

function strEqual (s1, s2: String) returns bool

This	function	returns	true	if	and	only	if	the	two	strings	have	the	same	size	and	
contain	the	same	bytes.	Only	bytes	up	to	the	current	size	are	checked.


Software	Reference	Manual	/	Porter	 	 Page	 	of	 
12 217



Chapter	1:	System	Package


append

function append (str1, str2: String) returns String

This	functions	allocates	a	new	string	and	copies	str1	appended	with	str2	into	the	
new	string.		It	returns	the	new	string.


append3

function append3 (str1, str2, str3: String) returns String

This	functions	allocates	a	new	string	and	copies	str1	||	str2	||	str3	into	the	new	
string.		It	returns	the	new	string.


overwriteString

function overwriteString (s1, s2: String)

The	characters	of	s2	are	copied	into	s1.


More	precisely,	this	function	copies	the	bytes	from	s2	to	s1.


If	the	two	strings	have	different	sizes,	this	function	will	copy	however	many	
characters	it	can,	i.e.,	it	will	copy	“min	(s1.size,	s2.size)”	characters.		The	sizes	of	s1	
and	s2	are	not	changed.


Note	that	if	s1	is	longer	than	s2,	you	may	not	get	exactly	what	you	expect,	since	
some	of	the	characters	originally	in	s1	will	remain	visible.


Only	the	CURRENT	sizes	are	used;	bytes	beyond	the	current	size	are	neither	read	
nor	written.


Software	Reference	Manual	/	Porter	 	 Page	 	of	 
13 217



Chapter	1:	System	Package


appendStrings

function appendStrings (target, source: String)

Modifies	target,	setting	target	:=	target	||	source.


This	function	appends	the	source	string	to	the	end	of	the	target	string.	This	
function	modifies	target	in	place.	If	target	is	not	large	enough,	or	if	either	array	is	
uninitialized,	it	throws


ERROR_AppendStringProblem (target, source: String)

and	makes	no	changes	to	target. 
2

Here	is	an	example:


    var
      dest: String = "ABC            "   -- Extra room in the array
      src: String = "xxxxx"
    ...
    setArraySize (dest, 3)
    appendStrings (dest, src)    -- Sets dest to "ABCxxxxx"

	Perhaps	we	should	implement	this	function	in	assembly	code	for	performance	reasons.	If	we	find	2

that	both	pointers	are	are	properly	aligned,	we	can	copy	8	bytes	at	a	time,	in	a	tight	loop,	leading	to	
5/8	instructions	per	byte	copied.	The	source	pointer	will	always	be	properly	aligned.	But	if	the	
target	pointer	is	not	properly	aligned,	we	can	use	code	like	this,	for	11/16	instructions	per	byte	
copied.


        load.d    r1,...
     loop:
        load.d    r4,...
        inject1d  r1,r1,r4,...
        inject2d  r2,r2,r4,...
        store.d   ...,r1
        load.d    r4,...
        inject1d  r2,r2,r4,...
        inject2d  r1,r1,r4,...
        store.d   ...,r2
        addi      ...
        addi      ...
        bxxx      loop
        store.x   ...,r1

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
14 217



Chapter	1:	System	Package


If	the	targetString	is	not	large	enough,	or	if	either	array	is	uninitialized,	this	
function	will	throw	AppendStringError.


Currently,	this	function	is	implemented	in	KPL,	but	it	will	likely	be	changed	in	the	
future	to	assembly	code	for	efficiency	reasons.


addStringToBuffer

function addStringToBuffer (targetBuffer: String,
                            p: int,
                            str: String)
                                returns int

 
This	function	copies	the	characters	of	str	into	targetBuffer	at	position	p.	Whatever	
bytes	were	previously	there	are	overwritten.


It	returns	nextPos,	the	index	in	targetBuffer	immediately	following	the	last	
character	copied.	(This	number	can	be	used	for	the	next	call	to	add	more	
characters.)


The	CURRENT	size	of	targetBuffer	is	assumed	to	be	large	enough.	If	not,	an	array	
indexing	error	will	be	thrown.


The	pointer	str	may	be	null;	if	so,	then	no	bytes	are	copied.


digitValue

function digitValue (ch: int)   returns int

If	the	argument	is	an	ASCII	digit—i.e.,	within	‘0’…’9’—return	the	corresponding	
integer	between	0	and	9.	Otherwise	it	returns	-1.


hexCharToInt

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
15 217



Chapter	1:	System	Package


function hexCharToInt (ch: int) returns int

This	function	is	passed	a	character.	If	it	is	a	hex	digit,	i.e.,

0, 1, 2, … 9, a, b, … f, A, B, … F

then	it	returns	its	value	(0..15).		Otherwise,	it	returns	-1.


For	example,	the	ASCII	code	for	‘F’	is	70.	So	when	applied	to	70,	this	function	returns	
15.


intToString

function intToString (i: int) returns String

This	function	is	passed	an	integer.	It	allocates	a	String	on	the	heap	with	the	
characters	giving	the	decimal	representation	for	this	value,	and	returns	a	pointer	to	
it.


The	format	of	the	result	is	shown	by	these	examples:


	 “123”

	 “-7”


This	function	handles	MIN_64	correctly,	by	returning	“-9223372036854775808”.


This	function	ignores	printPreferences;	commas	will	never	be	inserted.


This	function	always	allocates	a	new	String	on	the	heap.	It	is	the	responsibility	of	
the	caller	to	free	this	memory.

	


intToHexString

function intToHexString (i: int) returns String

This	function	is	passed	an	integer.	It	allocates	a	String	on	the	heap	with	the	
characters	giving	the	hex	representation	for	this	value,	and	returns	a	pointer	to	it.


Software	Reference	Manual	/	Porter	 	 Page	 	of	 
16 217



Chapter	1:	System	Package


The	format	of	the	result	is	shown	by	this	example:


	 “0x000000001234abcd”


This	function	always	allocates	a	new	String	on	the	heap.	It	is	the	responsibility	of	
the	caller	to	free	this	memory.


parseWhitespace

function parseWhitespace (str: String, startIndex: int) returns int

This	function	scans	past	any	'	'	and	'\t'	characters.	It	starts	scanning	at	startIndex	
and	returns	the	position	of	the	first	non-white	character.	If	nothing	is	found	(i.e.,	
there	is	only	whitespace	from	startIndex	on),	it	returns	the	size	of	str.


stringToInt

function stringToInt (str: String,
                      resultAddr: ptr to int)
                          returns bool

This	function	scans	str	and	parses	an	integer.	It	stores	the	value	at	the	address	given	
by	resultAddr.


These	strings	show	examples	of	what	is	acceptable:


	 “12345”

	 “			+12_345			”

	 “-9_223_372_036_854_775_808”	 This	is	MIN_64	=	0x8000_0000_0000_0000

	 “-0x12_34_5_abc”		 Hex	is	allowed


This	function	returns	true	if	everything	was	okay	and	false	if	there	was	any	parsing	
problem	with	the	input	string.


Software	Reference	Manual	/	Porter	 	 Page	 	of	 
17 217



Chapter	1:	System	Package


Leading/trailing	white	space	is	allowed.	A	leading	‘+’	or	‘-’	sign	is	allowed.		The	value	
may	be	given	in	decimal	or	hex.	Underscores	may	be	used	as	separators,	according	
the	KPL	conventions.


This	function	calls	stringToIntWithOptions	to	do	the	work.


stringToIntWithOptions

function stringToIntWithOptions (str: String,
                                 startingPos: int,
                                 allowHex: bool,
                                 scanTrailingWhitespace: bool,
                                 nextPosAddr: ptr to int,
                                 resultAddr: ptr to int
                                     ) returns bool

This	function	parses	a	string	which	is	assumed	to	begin	with	an	integer.	It	attempts	
returns	the	corresponding	integer.	It	returns	true	if	and	only	if	the	parse	was	
successful	and	the	string	contained	no	errors.


If	the	parse	is	successful,	it	stores	the	result	at	resultAddr.


Acceptable	syntax	is	the	same	as	KPL	integer	token,	except	a	leading	‘+’	or	‘-’	sign	is	
acceptable	and	leading/trailing	white	space	is	allowed.


These	strings	show	examples	of	what	is	acceptable:


	 “12345”

	 “			+12_345			”

	 “-9_223_372_036_854_775_808”	 This	is	MIN_64	=	0x8000_0000_0000_0000

	 “-0x12_34_5_abc”		 Assuming	allowHex	is	true

	 “123hello”		 Assuming	scanTrailingWhitespace	is	false


If	scanTrailingWhitespace	is	true,	then	this	function	will	ensure	that	nothing	but	
whitespace	follows	the	number.	If	false,	it	will	stop	on	the	first	character	beyond	the	
number.


If	there	are	any	problems,	this	function	returns	false	and	does	not	modify	result.


Software	Reference	Manual	/	Porter	 	 Page	 	of	 
18 217



Chapter	1:	System	Package


This	function	allows	“+0”,	but	“-0”	is	considered	to	be	an	error.


On	success,	this	function	sets	nextPos	to	just	beyond	the	end	of	the	number	(and	
whitespace	if	that	was	also	scanned).	If	there	was	a	problem,	it	sets	nextPos	to	
approximately	where	the	problem	was	detected.


If	allowHex	is	true,	then	the	value	can	be	specified	in	either	decimal	or	hex,	with	a	
leading	“0x”	to	differentiate.	Hex	values	may	also	begin	with	“0X”.	If	allowHex	is	
false,	the	value	must	be	specified	in	decimal. 
3

dump

dump (p: ptr to void, numberOfInts: int)
-- Dump memory

This	function	prints	the	contents	of	memory.	It	is	passed	a	pointer	p,	which	is	
assumed	to	be	doubleword	aligned,	and	numberOfInts,	which	is	the	number	of	8	
byte	doublewords	that	are	to	be	printed.


It	prints	the	address	and	the	value,	both	in	hex	and	decimal.	For	example:


ADDRESS             VALUE
0x000000000fffffc8  0xffffffffffffffff      dec: -1
0x000000000fffffd0  0x0000000000000000      dec: 0
0x000000000fffffd8  0x0000000000000000      dec: 0
0x000000000fffffe0  0x7ff8000000000000      dec: 9221120237041090560
0x000000000fffffe8  0x0000000005fc9e10      dec: 100441616

The	output	is	sent	to	the	basic	serial	output.


memoryZero

function memoryZero (destPtr: ptr to void,
                     byteCount: int)

	If	allowHex	is	false	but	the	value	begins	with	“0x”,	then	zero	will	be	returned	and	scanning	will	stop	at	3

the	‘x’	in	“0x”.	If	scanTrailingWhitespace	is	also	true,	there	will	be	an	error	at	the	‘x’	in	“0x”.

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
19 217



Chapter	1:	System	Package


This	function	sets	a	block	of	memory	to	zeros.	The	starting	address	is	p	and	the	
number	of	bytes	is	byteCount.


The	byteCount	may	be	zero	or	negative,	in	which	case	this	function	does	nothing.	
This	function	performs	no	other	error	checking.	Neither	destPtr	nor	byteCount	
need	be	aligned.


NOTE:	Whenever	possible,	use	MemoryZero8	instead.	MemoryZero8	is	
implemented	in	assembly	code	and	optimized	for	an	aligned	address.


memoryZero8

external function memoryZero8 (destPtr: ptr to void,
                               byteCount: int)

This	function	sets	a	block	of	memory	to	zeros.	The	starting	address	is	p	and	the	
number	of	bytes	is	byteCount.


The	pointer	p	must	be	evenly	divisible	by	8.	If	byteCount	is	not	a	multiple	of	8,	it	
will	be	rounded	up	to	the	next	multiple	of	8.


The	byteCount	may	be	zero	or	negative,	in	which	case	this	function	does	nothing.	
This	function	performs	no	other	error	checking.


This	function	is	implemented	in	assembly	code	for	efficiency. 
4

memoryCopy

function memoryCopy (destPtr: ptr to void,
                     srcPtr: ptr to void,
                     byteCount: int)

This	function	copies	byteCount	bytes	from	one	address	to	another.


	Besides	efficiency,	there	is	no	reason	to	implement	this	is	assembly.	At	some	future	time,	it	is	hoped	that	4

the	KPL	compiler	optimizations	will	be	good	enough	to	move	this	function	back	into	KPL.

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
20 217



Chapter	1:	System	Package


If	byteCount	<=	0,	then	this	is	a	nop.	Neither	the	pointers	nor	the	byteCount	need	be	
aligned.


This	function	is	implemented	in	assembly	code	for	efficiency. 
5

NOTE:		MemoryCopy8	is	similar	in	functionality.	However,	it	is	only	usable	for	
aligned	addresses.	Since	using	MemoryCopy8	instead	of	MemoryCopy	will	only	
save	a	few	instructions	per	call,	the	gain	becomes	negligible	with	larger	byteCounts.


memoryCopy8

external function memoryCopy8 (destPtr: ptr to void,
                               srcPtr: ptr to void,
                               byteCount: int)

This	function	copies	byteCount	bytes	from	one	address	to	another.


Both	pointers	must	be	evenly	divisible	by	8.	If	byteCount	<=	0,	then	this	is	a	nop.	If	
byteCount	is	not	a	multiple	of	8,	it	will	be	rounded	up	to	the	next	multiple	of	8.


This	function	is	implemented	in	assembly	code	for	efficiency. 
6

Misc.	Functions


RuntimeExit

external function RuntimeExit ()

	Besides	efficiency,	there	is	no	reason	to	implement	this	is	assembly.	At	some	future	time,	it	is	hoped	that	5

the	KPL	compiler	optimizations	will	be	good	enough	to	move	this	function	back	into	KPL.

	Besides	efficiency,	there	is	no	reason	to	implement	this	is	assembly.	At	some	future	time,	it	is	hoped	that	6

the	KPL	compiler	optimizations	will	be	good	enough	to	move	this	function	back	into	KPL.

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
21 217



Chapter	1:	System	Package


This	function	is	used	to	terminate	a	KPL	program	after	a	serious,	fatal	error.


By	“fatal	error”,	we	mean	there	can	be	no	return	to	the	running	program.	There	will	
be	no	return	from	this	function.


This	function	prints	the	message


====================  KPL PROGRAM TERMINATION  ====================

and	executes	a	BREAKPOINT	machine	instruction.


The	emulator	will	execute	the	BREAKPOINT	instruction	by	halting	instruction	
execution	and	going	into	command-line	mode	in	which	commands	are	accepted.	At	
this	point,	the	emulator’s	debugging	capabilities	can	be	used.


Any	attempt	to	resume	execution	(using	the	“go”	command	in	the	emulator),	will	
cause	this	function	to	print


===== The KPL program has terminated; you may not continue. ======

and	once	again	execute	a	BREAKPOINT	instruction.


NOTE:	It	is	possible	that	timer	interrupts	are	enabled	and	thread	switching	is	
occurring.	This	function	will	first	disable	interrupts,	to	suspend	thread	switching.	
CSR_STATUS	is	modified	to	disable	interrupts	in	order	to	prevent	an	interrupt	from	
hijacking	this	function	during	the	printing	of	the	termination	message.


EmulatorDebuggingRequested

external function EmulatorDebuggingRequested (codeAddress: int)

This	function	is	called	by	KPL	code	whenever	we	want	to	temporarily	suspend	
execution	and	throw	the	user	into	the	emulator’s	debugger.	There	may	be	a	return	
from	this	function.


This	function	executes	a	BREAKPOINT	instruction,	which	will	suspend	emulation.


The	codeAddress	will	be	passed	to	the	emulator	which	will	display	the	message:


Software	Reference	Manual	/	Porter	 	 Page	 	of	 
22 217



Chapter	1:	System	Package


**********  EMULATOR DEBUGGING: Type 'stack' for more info. **********

After	using	the	emulator’s	debugging	capabilities,	the	programmer	can	resume	
program	execution	with	the	“go”	command,	and	a	return	from	this	function	will	
occur.


NOTE:	It	is	possible	that	timer	interrupts	are	enabled	and	thread	switching	is	
occurring.	This	function	will	not	disable	interrupts.


It	is	likely	the	programmer	will	look	at	the	state	of	the	registers	and	then	resume	full	
program	execution.	So	modifying	the	CSR_STATUS	to	disable	interrupts	would	likely	
mess	up	execution	and	be	wrong	to	do.


EmulatorShutdown

external function EmulatorShutdown (exitCode: int)

This	function	is	the	normal	way	to	terminate	the	execution	of	a	KPL	program	which	
is	expected	to	be	run	under	the	emulator.	There	will	be	no	return	from	this	function.


This	function	is	called	by	KPL	code	whenever	we	want	to	permanently	terminate	
program	execution.	If	the	“auto-go	option”	(“-g”)	was	specified,	the	emulator	will	
immediately	terminate	without	any	message	and	exit,	returning	the	value	of	
exitStatus	as	the	Unix/Linux/POSIX	exit	code. 
7

If	auto-go	was	not	specified,	the	emulator	will	enter	command	mode.


This	function	works	by	executing	the	SLEEP2	machine	instruction,	which	the	
emulator	will	interpret	as	above.	Any	attempt	to	resume	execution	will	cause	this	
function	to	print


===== The KPL program has terminated; you may not continue. ======

and	once	again	terminate	execution.


	This	function	places	the	exitCode	in	register	r1.	The	emulator	will	retrieve	this	code	from	r1	7

before	itself	terminating.

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
23 217



Chapter	1:	System	Package


FatalError

external function FatalError (errorMessage: String)

This	function	should	be	invoked	by	any	code	that	encounters	an	error	and	simply	
cannot	proceed.


The	behavior	of	this	function	is	“thread-dependent”:	it	may	do	different	things	in	
different	threads	within	the	same	process.


A	program	can	change	the	behavior	of	this	function	by	modifying	the	thread	
preferences.	FatalError	is	actually	a	function	pointer,	which	is	normally	initialized	
to	KPLDefaultFatalErrorFunction.


The	default	behavior	is	to	print


*********  FATAL KPL SYSTEM ERROR: “errorMessage”  **********

and	invoke	RuntimeExit.


This	function	is	invoked	by	code	in	packages	such	as	System.	By	refining	FatalError,	
an	application	program	can	catch	and	perhaps	handle	an	error	that	might	occur	
during	execution.


addOk

function addOk (x, y: int) returns bool

In	KPL	all	arithmetic	is	performed	with	signed	values	and	any	overflow	will	cause	an	
“Arithmetic	Exception”,	which	will	result	in	ERROR_ArithmeticException	being	
thrown.


Sometimes	it	is	useful	to	know	whether	a	particular	addition	will	cause	an	overflow	
without	actually	performing	the	addition.	The	addOk	function	can	do	this.


Software	Reference	Manual	/	Porter	 	 Page	 	of	 
24 217



Chapter	1:	System	Package


The	two	arguments	are	integer	expressions	and	the	result	is	a	bool	value.	This	
function	returns	true	iff	the	two	values	may	be	added	without	causing	an	exception.


    if (addOk (x, y))
      sum = x + y
    else
      print ("Problems")
    endIf

This	function	will	never	cause	an	exception	or	throw	an	error.


This	function	is	implemented	by	the	compiler	which	uses	the	ADDOK	Blitz-64	
machine	instruction	ADDOK.


subOk

function subOk (x, y: int) returns bool

This	function	tests	whether	the	subtraction	“x	-	y”	would	overflow	and	returns	true	
if	and	only	if	the	subtraction	is	safe.


unsignedAdd, unsignedSub

function unsignedAdd (x, y: int) returns int
function unsignedSub (x, y: int) returns int

In	KPL	all	arithmetic	is	performed	with	signed	values	and	any	overflow	will	cause	an	
“Arithmetic	Exception”,	which	will	result	in	ERROR_ArithmeticException	being	
thrown.


However,	it	is	occasionally	necessary	to	perform	arithmetic	without	signaling	an	
exception.	These	functions	can	be	used	for	that.


These	functions	perform	an	addition	/	subtraction	and	return	the	result.	Overflow	is	
ignored.	The	arguments	and	result	are	all	64	bit	int	values.


    var i, x, y: int

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
25 217



Chapter	1:	System	Package


    ...
    i = unsignedAdd (x, y)   -- computes i = x + y
    ...
    i = unsignedSub (x, y)   -- computes i = x - y

Note	that	an	integer	argument	that	is	smaller	(e.g.,	a	byte,	halfword,	or	word	value)	
will	be	sign-extended	to	a	64	bit	value	first.


The	result	will	be	identical,	regardless	of	whether	the	arguments	are	interpreted	as	
signed	or	unsigned.


There	are	no	error	conditions	and	no	errors	will	be	thrown.


To	implement	this,	the	compiler	makes	use	of	the	Blitz-64	machine	instruction	
ADD3.	These	functions	could	have	been	implemented	in	KPL,	but	at	a	significant	cost	
of	efficiency.


min

function min (i, j: int) returns int

This	function	returns	the	smaller	of	the	two	arguments.


max

function max (i, j: int) returns int

This	function	returns	the	larger	of	the	two	arguments.


RandomNumber

function RandomNumber () returns int

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
26 217



Chapter	1:	System	Package


This	function	returns	a	pseudo-random	integer	in	the	range	0	…	0x7FFF_FFFE,	that	
is	within	0	…	2,147,483,646.


RandomNumberBetween

function RandomNumberBetween (lo, hi: int) returns int

This	function	returns	a	random	number	between	lo	and	hi,	inclusive.	The	range	is	
limited.	We	must	have	hi-lo	<=	0x7FFF_FFFE	in	order	to	get	numbers	throughout	the	
range.


endianSwapH
endianSwapW
endianSwapD

external function endianSwapH (arg: int) returns halfword
external function endianSwapW (arg: int) returns word
external function endianSwapD (arg: int) returns int

These	functions	can	be	used	to	transform	data	between	“big	endian”	and	“little	
endian”	byte	ordering. 
8

The	endianSwapD	function	takes	any	64	bit	(int)	value	and	swaps	all	bytes	from	
one	order	to	the	other.


    0x1122_3344_5566_7788  →  0x8877_6655_4433_2211
    0x8877_6655_4433_2211  →  0x1122_3344_5566_7788

The	endianSwapW	function	can	be	used	to	swap	bytes	in	a	32	bit	word.


    0x........2244_6688  →  0x8866_4422
    0x........8866_4422  →  0x2244_6688

	The	same	function	can	be	used	to	go	in	either	direction,	either	big→little	or		little→big.8

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
27 217



Chapter	1:	System	Package


The	argument	can	be	any	64	bit	(int)	value.	The	upper	32	sign	bits	are	ignored	and	
the	result	is	a	word	value.	Essentially,	this	function	executes	the	ENDIANW	machine	
instruction.


The	endianSwapH	function	can	be	used	to	swap	bytes	in	a	16	bit	word.


    0x............1289  →  0x8912
    0x............8912  →  0x1289

The	argument	can	be	any	64	bit	(int)	value.	The	upper	48	sign	bits	are	ignored	and	
the	result	is	a	halfword	value.	Essentially,	this	function	executes	the	ENDIANH	
machine	instruction.


Basic	Serial	Printing	and	Reading


The	functions	described	here	provide	basic	printing	and	a	way	to	read	a	line	of	input	
from	the	user.


Since	these	functions	are	implemented	in	package	System,	they	will	be	available	to	
any	KPL	program.	The	code	in	System	deals	with	error	handling	and	these	basic	
print	functions	are	used	throughout	System.


Blitz	has	two	systems	for	printing,	which	we	can	call	“basic	serial	I/O”	and	“printf	
functionality”.	In	this	section	we	describe	the	“basic	serial”	system.


The	functionality	of	printf	and	sprintf	is	more	complex	than	basic	serial	I/O.	Printf	
functionality	is	not	available	within	System	and	may	not	be	needed	by	or	available	
in	simple	programs.	See	PrintPackage	for	more	information	about	printf	
functionality.


Typically,	the	basic	printing	described	here	goes	go	directly	through	the	serial	I/O	
communication	port.	However,	in	some	user-level	programs,	the	basic	serial	I/O	may	
be	redirected	to	print	on	stdin	and	read	from	stdin.


Kernel	code	will	not	have	access	to	stdin,	stdout,	printf	functionality.	Kernel	code	
will	use	only	the	basic	serial	I/O	functions	described	here.	Instead,	basic	serial	I/O	
may	be	directed	to	a	file,	or	“console”	process,	or	some	other	mechanism,	which	can	
be	used	during	kernel	debugging.


Software	Reference	Manual	/	Porter	 	 Page	 	of	 
28 217



Chapter	1:	System	Package


The	basic	I/O	functions	described	in	this	section	are	all	implemented	in	terms	of	
these	3	functions.


	 SimpleSerial_PrintString

	 SimpleSerial_PrintChar

	 SimpleSerial_ReadString


Exactly	what	these	do	is	discussed	elsewhere,	but	their	interface	and	functionality	is	
identical	to	the	print,	printChar,	and	readString	functions	described	below.


print

function print (msg: String)

This	function	sends	the	bytes	in	msg	to	the	basic	serial	I/O.	As	is	the	Blitz	
convention,	only	the	characters	up	to	the	CURRENT	length	are	output.	This	allows	all	
bytes,	including	\0	to	be	output. 
9

printNL

function printNL ()

This	function	sends	the	newline	character,	that	is	‘\n’	which	is	ASCII	0x0a,	to	the	
output.


printInt

function printInt (i: int)

This	function	prints	the	argument	in	decimal.	There	will	be	no	trailing	\n	character.


	The	string	will	often	contain	multi-byte	Unicode	characters;	these	are	sent	without	any	checking,	9

under	the	assumption	that	the	output	device	will	interpret	them	appropriately.

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
29 217



Chapter	1:	System	Package


If	negative,	the	output	will	begin	with	‘-‘,	but	otherwise,	no	‘+’	will	be	printed.	No	
separating	commas	are	printed.


printDecimal

function printDecimal (i: int)

This	function	is	identical	to	printInt.


printHex

function printHex (i: int)

This	function	prints	the	argument	in	hex.	There	will	be	no	trailing	\n	character.


It	will	print	“0x”	followed	by	16	hex	characters,	with	‘a’…’f’	in	lowercase.	For	
example:


"0x0000007890ABCDEF"

printPtr

function printPtr (p: ptr to void)

This	function	is	identical	to	printHex,	except	the	argument	has	a	pointer	type	rather	
than	int. 	For	example:
10

"0x00000000800001208"

	Recall	that	type	ptr	to	void	will	match	type	ptr	to	T,	where	T	is	any	type.10

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
30 217



Chapter	1:	System	Package


printBool

function printBool (b: bool)

This	function	will	print	either	“TRUE”	of	“FALSE”.


printChar

function printChar (ch: int)

This	function	will	send	a	single	byte	to	the	serial	output.	For	example:


printChar (‘w’)

This	function	ignores	all	but	the	lower	order	8	bits	of	ch. 
11

For	multi-byte	Unicode	characters,	this	function	should	be	called	once	for	each	byte.	
So	calling	printString	once	for	an	entire	string	of	bytes	is	functionally	equivalent	to	
calling	printChar	once	for	each	byte	in	the	array.


printIntVar

function printIntVar (msg: String, i: int)

This	function	prints	the	message	msg,	followed	by	the	integer	value	i	in	decimal,	
followed	by	newline	(‘\n’).	Here	is	a	typical	usage:


printIntVar ("MyVariable = ", myVar)

	Normally,	the	argument	is	an	int	in	the	range	of	either	-128…+127	or	0…255;	these	are	11

equivalent	ways	of	saying	the	upper	7	bytes	of	the	doubleword	argument	are	simply	ignored.

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
31 217



Chapter	1:	System	Package


printHexVar

function printHexVar (msg: String, i: int)

This	function	prints	the	message	msg,	followed	by	the	integer	value	i	in	hex,	
followed	by	newline	(‘\n’).


printBoolVar

function printBoolVar (msg: String, b: bool)

This	function	prints	the	message	msg,	followed	by	“TRUE”	or	“FALSE”	as	
determined	by	b,	followed	by	newline	(‘\n’).


printPtrVar

function printPtrVar (msg: String, p: ptr to void)

This	function	prints	the	message	msg,	followed	by	the	pointer	p	in	hex,	followed	by	
newline	(‘\n’).


printStrVar

function printStrVar (msg: String, str: String)

This	function	prints	the	message	msg,	followed	by	the	string	str,	followed	by	
newline	(‘\n’).


For	example


printStrVar ("Filename: ", fname)

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
32 217



Chapter	1:	System	Package


might	print:


Filename: hello.txt

printBinaryVar

function printBinaryVar (msg: String, n: int)

This	function	prints	the	message	msg,	followed	by	n	in	binary,	followed	by	n	in	hex,	
followed	by	newline	(‘\n’).	Spaces	are	inserted	to	aid	readability.


For	example


printBinaryVar ("x = ", -1234)

will	print: 
12

x = 1111 1111 1111 1111   1111 1111 1111 1111   1111 1111 1111 1111
         1111 1011 0010 1110      0xffff_ffff_ffff_fb2e

readString

function readString (buffer: ptr to array of byte)

This	function	is	used	for	input	from	the	basic	serial	I/O	device.	Presumably,	the	input	
is	a	stream	of	UTF-8	encoded	Unicode	characters	typed	by	the	human	user.


For	example,	this	function	may	invoke	SimpleSerial_ReadString	from	the	
HostInterface	package.


All	input	is	in	the	form	of	complete	lines,	not	individual	characters.	Echoing,	
backspacing,	etc.	happen	outside	of	this	function	and	(presumably)	is	done	before	
the	characters	reach	this	function.


	In	this	document,	this	single	long	line	of	output	wraps	into	two	lines.12

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
33 217



Chapter	1:	System	Package


The	buffer	argument	is	a	pointer	to	an	array	of	bytes.	This	function	will	fill	up	the	
buffer,	ignoring	CURRENT	size.	The	last	character	added	will	be	the	newline	
character	‘\n’	and	the	array	size	will	be	adjusted.


If	the	buffer	array	is	not	large	enough,	the	newline	\n	character	will	be	dropped.	
Also,	some	of	the	final	characters	will	be	dropped	if	there	is	insufficient	space	in	
buffer. 
13

Heap-Related	Functions


Heap	management	is	discussed	more	fully	in	another	chapter	in	this	document.


heapInitialize

heapInitialize (version: int)

This	function	is	passed	a	number	and	it	initializes	the	heap	management	algorithm	
to:

	 version

	 #0	 The	default	heap	management	algorithm

	 #1	 Same	as	#0,	adding	hidden	byteCounts	and	error	checking

	 …

 
Anything	previously	allocated	on	the	heap	must	never	be	accessed	again.


This	function	is	not	thread-safe.	It	assumes	we	are	running	with	only	a	single	thread.


	The	emulator	implementation	of	the	SimpleSerial_ReadString	operation	will	always	add	a	null	13

\0	byte	at	the	end,	but	it	will	be	added	just	beyond	the	CURRENT	array	size	so	it	will	be	
inaccessible.	So	at	most,	the	CURRENT	array	size	will	be	set	to	MAXSIZE-1.	You	can	probably	
ignore	this	information.

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
34 217



Chapter	1:	System	Package


getHeapCurrentInUse

getHeapCurrentInUse () returns int

This	function	returns	the	amount	of	memory	that	has	been	requested	but	not	yet	
freed.	It	is	the	total	size	of	the	non-free	chunks	in	the	heap.


getHeapTotalAllocation

getHeapTotalAllocation () returns int

This	function	returns	the	total	amount	of	memory	ever	requested	in	calls	to	
MemoryAlloc.	This	includes	includes	memory	that	was	subsequently	freed.


getHeapTotalFreed

getHeapTotalFreed () returns int

This	function	returns	the	sum	of	all	calls	to	MemoryFree.


NOTE:	With	Heap	Management	Algorithms	#0	and	#1,	free	space	is	not	reused,	so	
this	number	has	no	relation	to	how	much	usable	space	remains.


getHeapRemaining

getHeapRemaining () returns int
-- Largest chunk that can be safely allocated

This	function	tries	to	returns	the	greatest	amount	of	memory	that	may	be	requested	
without	causing	a	heap-full	error	(i.e.,	an	insufficient	heap	space	error).


Software	Reference	Manual	/	Porter	 	 Page	 	of	 
35 217



Chapter	1:	System	Package


With	Heap	Algorithms	#0	and	#1	which	don’t	re-use	memory,	this	is	simply	the	
number	of	bytes	remaining	in	the	Heap	Region.	For	other	algorithms,	it	may	mean	
something	else,	such	as	the	amount	remaining	until	a	call	to	the	OS	for	more	pages	
will	occur,	or	it	may	be	a	meaningless	number.


One	use	of	this	function	is	in	debugging.	The	programmer	will	need	to	verify	that	the	
program	works	correctly,	even	in	the	presence	of	a	heap-full	condition.	The	idea	is	to	
invoke	this	function	and	use	the	returned	value	in	a	call	to	artificially	eat	up	all	
remaining	heap	space,	as	in:


junk = MemoryAlloc (getHeapRemaining ())  -- fill the heap

getHeapRegionSize

getHeapRegionSize () returns int

This	function	returns	the	amount	of	memory	currently	in	use	for	the	heap	in	bytes.	
This	includes	currently	allocated	chunks	of	memory,	previously	freed	chunks,	and	
additional	space	that	is	available	for	future	calls	to	MemoryAlloc.


checkHeapConsistency

checkHeapConsistency ()

This	function	runs	through	the	heap	and	performs	any	consistency	checks	it	can.	If	
errors	are	found,	it	will	print	details	and	invoke	Error:	HeapViolation.


NOTE:	This	function	is	not	thread-safe.	Any	simultaneous	use	of	the	heap	by	another	
thread	can	result	in	failure.


runThruHeap

runThruHeap ()

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
36 217



Chapter	1:	System	Package


This	function	will	run	through	the	heap	and	print	the	address	of	each	non-free	
object.	It	is	designed	for	use	in	chasing	down	memory	leak	bugs.


If	the	object	looks	like	a	string,	it	will	print	the	string	out.	A	typical	memory	leak	bug	
is	failure	to	free	strings;	seeing	the	string	contents	helps	in	fixing	this.


MemoryAlloc

external function MemoryAlloc (byteCount: int) returns ptr to byte    

This	function	is	called	to	allocate	memory	on	the	heap	and	it	returns	a	pointer	to	the	
newly	allocated	chunk	of	memory.


This	function	never	returns	null.


This	function	is	invoked	as	a	result	of	using	the	alloc	construct	in	KPL	or	by	calling	
MemoryAlloc	explicitly.


If	the	allocation	cannot	be	done,	this	function	throws:


	 ERROR_HeapFull


NOTE:	The	memory	is	not	zeroed.	However,	with	any	use	of	the	alloc	construct	the	
KPL	compiler	will	implicitly	insert	initialization,	so	the	concern	is	only	with	explicit	
calls	to	this	function. 
14

Consult	the	section	on	heap	management	algorithms	for	additional	details.


MemoryFree

external function MemoryFree (p: ptr to byte)

	The	kernel	will	always	zero	address	spaces	upon	creation	to	prevent	security	compromises	and	14

data	leakage	from	other	processes.	Therefore,	newly	allocated	heap	memory	will	almost	always	
contain	zeros,	so	the	bug	of	“failure	to	initialize	memory”	may	go	unnoticed.

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
37 217



Chapter	1:	System	Package


This	function	is	called	to	return	unused	memory	to	the	heap	management	system.	


Of	course,	the	pointer	must	always	have	been	returned	from	a	previous	allocation,	
memory	must	be	freed	no	more	than	once,	and	memory	must	never	be	used	
accessed	after	being	freed.


Memory	management	is	discussed	more	fully	elsewhere,	but	we	emphasize	that	the	
recommended	strategy	is	to	completely	avoid	using	this	function.	This	is	the	safest	
and	most	efficient	approach	for	almost	every	application	program.


remainingStackSpace

external function remainingStackSpace () returns int

-- The number of bytes left (see STACK_SIZE .equ)

This	function	looks	at	the	current	value	of	register	r15	(sp,	the	“stack	pointer”).	It	
returns	the	number	of	free	bytes	remaining	in	the	stack.


    var i: int
    if (remainingStackSpace () < 100)  -- if bytes left < 100
      printf (“Warning!”)
      ...

The	runtime	stack	is	used	to	implement	function	and	method	invocation.	Whenever	
a	function	or	method	is	invoked,	a	stack	frame	may	be	pushed	onto	the	stack	and,	
when	they	return,	that	stack	frame	is	popped.	(Some	small	functions	are	able	to	get	
by	without	needing	a	stack	frame.)


The	stack	space	is	a	predefined	region	of	memory	allocated	and	set	up	whenever	a	
new	thread	is	created. 
15

At	this	time,	KPL	does	not	perform	any	runtime	checking	for	stack	overflow.	The	
general	approach	of	allocating	a	large	stack	region	and	using	the	virtual	memory	
system	to	watch	for	overflow	into	“sentinel	pages”	is	reasonable	for	most	non-

	The	variables	STACK_START	and	STACK_SIZE	describe	the	stack	region.	These	variables	are	in	15

the	assembly	runtime.s	support	code	and	are	not	directly	accessible	to	KPL	code.

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
38 217



Chapter	1:	System	Package


critical	applications.	For	applications	that	require	high	reliability,	programmers	are	
encouraged	use	KPL’s	maxStackUsage	facility	and	determine	statically	whether	any	
overflow	is	possible.	With	this	approach,	the	programmer	can	specify	limits	at	
compile	time	and	the	compiler	can	verify	the	program	respects	those	limits.


The	remainingStackSpace	function	is	implemented	as	an	external	assembly	
routine,	and	is	not	known	to	the	KPL	compiler.


Floating-Point	Functions


isNegZero

function isNegZero (d: double) returns bool

This	function	returns	true	if	and	only	if	the	argument	is	-0.0.


Recall	that	with	floating	point	numbers,	there	are	two	representations	of	zero,	+0.0	
and	-0.0.	Normally,	they	are	treated	as	equal:


    var d: double = ...
    if d == 0.0...	 True	if	d	is	+0.0	or	-0.0
    if d >= +0.0...	 True	even	if	d	is	-0.0!!!

The	isNegZero	function	is	provided	in	case	it	is	necessary	to	distinguish	the	two	
zero	values.	This	function	takes	a	double	value	and	returns	true	if	and	only	if	it	is	
-0.0.


Negative	zero	is	represented	as	0x8000_0000_0000_0000	so


if isNegZero (d) ...

is	not	equivalent	to	either	of	the	following,	because	they	use	“floating	point	
equality”:


if d == copyBitsToDouble (0x8000_0000_0000_0000) ...
if d == -0.0 ...

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
39 217



Chapter	1:	System	Package


However,	isNegZero	is	equivalent	to	the	following,	since	it	uses	comparison	of	bits:


if copyBitsToInt (d) == 0x8000_0000_0000_0000 ...

isnan

function isnan (d: double) returns bool

This	function	takes	a	double	value	and	determines	if	it	is	“not-a-number”	and	
returns	true	if	so,	and	false	if	the	value	is	a	valid	number,	including	infinities.


    var d: double = ...
    if isnan (d) ...

Several	values	can	be	interpreted	as	“non-a-number”	values.	This	function	ignores	
the	mantissa	bits;	in	other	words,	it	ignores	whether	the	NaN	is	quiet	or	signaling	
and	ignores	any	payload.


There	are	no	error	conditions.


Note	that	the	builtin	keyword	nan	returns	the	canonical	“not-a-number”	value.


    d = nan
    d = copyBitsToDouble (0x7FF8_0000_0000_0000) -- Equivalent

Note	that	comparing	against	NaN	is	problematic;	you	should	alway	use	isnan	
instead.	For	one	thing,	there	are	multiple	values	that	can	be	interpreted	as	NaN.	But	
even	assuming	that	“d”	has	the	canonical	value	of	NaN,	the	following	un-intuitive	
results	are	mandated	by	IEEE	754:


    if d == nan ... This	is	false!
    if d != nan ... This	is	true!

Note	that	the	capitalization	follows	POSIX	standards;	“isNaN”	is	not	used.


This	function	is	implemented	by	the	compiler	but	they	could	also	have	been	
implemented	as	a	normal	function	in	KPL.


Software	Reference	Manual	/	Porter	 	 Page	 	of	 
40 217



Chapter	1:	System	Package


isinf

function isinf (d: double) returns bool

This	function	returns	true	if	and	only	if	the	argument	is	+inf	or	-inf.


We	chose	the	lowercase	“isinf”	and	not	“isInf”	to	follow	the	POSIX	spelling.


Positive	infinity	is	represented	as	0x7FF0_0000_0000_0000	and	negative	infinity	is	
represented	as	0xFFF0_0000_0000_0000,	so


if isinf (d)
...

is	equivalent	to


if (d == copyBitsToDouble (0x7FF0_0000_0000_0000)) ||
   (d == copyBitsToDouble (0xFFF0_0000_0000_0000))
...

which	is	equivalent	to


if (d == inf) || (d == -inf)
...

floatingClass

external function floatingClass (arg: double) returns int

This	function	is	passed	a	double	value.	It	returns	an	int	value	in	which	individual	
bits	indicate	the	type	of	value	it	is.	The	bits	of	the	result	are	defined	as:


bit	 Set	to	1	if	“arg"	is…

0	 +0

1	 -0

2	 Subnormal	(including	+0	and	-0)

3	 Normal


Software	Reference	Manual	/	Porter	 	 Page	 	of	 
41 217



Chapter	1:	System	Package


4	 +inf

5	 -inf

6	 NaN


All	other	bits	are	zero.


In	either	words,	this	function	returns	a	value	0x0000...0x007f,	where	least	
significant	bits	having	these	meanings:


	 	 nan	 -inf	 +inf	 normal	 denormal	 -0	 +0

	 …	 x	 x	 x	 x	 x	 x	 x


This	function	executes	the	FCLASS	machine	instruction,	and	masks	out	all	bits	except	
those	shown	here.


resetFloatingStatus

external function resetFloatingStatus ()

IEEE	754	specifies	five	arithmetic	exceptions	that	are	to	be	recorded	in	the	status	
flags :
16

NX	 Inexact	 Set	if	the	rounded	(and	returned)	value	is	different	from	
the	mathematically	exact	result	of	the	operation.


UF	 Underflow	 Set	if	the	rounded	value	is	“tiny”	and	inexact,	returning	a	
subnormal	value	including	the	zeros.


OF	 Overflow	 Set	if	the	absolute	value	of	the	rounded	value	is	too	large	
to	be	represented.	An	infinity	or	maximal	finite	value	is	
returned,	depending	on	which	rounding	is	used.


DZ	 Divide-by-zero	 Set	if	the	result	is	infinite	given	finite	operands,	returning	
an	infinity,	either	+∞	or	−∞.


NV	 Invalid	 Set	if	a	real-valued	result	cannot	be	returned	e.g.	sqrt(−1)	
or	0/0,	returning	a	quiet	NaN.


The	Blitz-64	machine	has	the	following	bits	in	the	status	word:


	Source:	Wikipedia16

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
42 217



Chapter	1:	System	Package


NX	 Inexact

UF	 Underflow

OF	 Overflow

DZ	 Divide-by-zero 
17

NV	 Invalid


These	bits	are	“sticky”,	which	means	that	once	set	to	1,	they	remain	unchanged	until	
explicitly	cleared	to	0.


The	purpose	of	the	resetFloatingStatus	function	is	to	reset	all	the	floating	point	
status	bits	to	0.


NOTE:	The	FLOAT_STATUS	bits	are	in	the	CSR_STATUS	register,	which	is	protected.	
Therefore	this	function	will	execute	differently	depending	on	whether	this	is	kernel	
code	or	user	code.	In	Kernel	Mode,	this	function	will	clear	the	bits	directly;	in	User	
Mode,	this	function	must	invoke	a	system	call	to	do	the	work.


floatingInexact
floatingUnderflow
floatingOverflow
floatingDivideByZero
floatingInvalid

external function floatingInexact      () returns bool
external function floatingUnderflow    () returns bool
external function floatingOverflow     () returns bool
external function floatingDivideByZero () returns bool
external function floatingInvalid      () returns bool

Each	of	these	functions	returns	the	status	of	the	corresponding	bit	in	the	machine	
status	word.


true	 1	 This	condition	has	occurred

false	 0	 This	condition	has	not	occurred


	The	DZ:	divide-by-zero	status	bit	is	newly	added.17

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
43 217



Chapter	1:	System	Package


This	function	executes	the	FCLASS	machine	instruction,	and	returns	the	appropriate	
bit.


setFloatingInexact
setFloatingUnderflow
setFloatingOverflow
setFloatingDivideByZero
setFloatingInvalid

external function setFloatingInexact      ()
external function setFloatingUnderflow    ()
external function setFloatingOverflow     ()
external function setFloatingDivideByZero ()
external function setFloatingInvalid      ()

Each	of	these	functions	sets	the	status	of	the	corresponding	bit	in	the	machine	status	
word	to	1,	to	indicate	the	condition	has	occurred.


true	 1	 This	condition	has	occurred

false	 0	 This	condition	has	not	occurred


These	functions	are	provided	for	use	in	the	functions	which	implement	the	basic	
floating	point	operations.	For	example,	the	floating	multiply	operation	may	be	
implemented	in	hardware	by	the	FMUL	machine	instruction.	On	the	other	hand,	this	
operation	may	be	emulated	in	software	instead.	Either	way,	the	IEEE	spec	defines	
which	status	bits	are	to	be	set	under	which	conditions.	(For	example,	OF-OVERFLOW	
or	NV-INVALID	may	need	to	be	set.)	These	functions	are	provided	for	code	such	as	
the	code	emulating	FMUL.	


NOTE:	The	FLOAT_STATUS	bits	are	in	the	CSR_STATUS	register,	which	is	protected.	
Therefore	these	functions	will	execute	differently	depending	on	whether	this	is	
kernel	code	or	user	code.	In	Kernel	Mode,	this	function	will	set	the	bits	directly;	in	
User	Mode,	this	function	must	invoke	a	system	call	to	do	the	work.


Software	Reference	Manual	/	Porter	 	 Page	 	of	 
44 217



Chapter	1:	System	Package


floatingSqrt
floatingAbs
floatingMin
floatingMax

external function floatingSqrt (d: double)      returns double
external function floatingAbs  (d: double)      returns double
external function floatingMin  (d1, d2: double) returns double
external function floatingMax  (d1, d2: double) returns double

These	functions	are	used	to	access	the	corresponding	machine	instructions :
18

	 FSQRT	 return	the	square	root	of	the	argument

	 FABS	 return	the	absolute	value	of	the	argument	 

	 FMIN	 return	the	minimum	(most	negative)	of	the	arguments

	 FMAX		 return	the	maximum	(most	positive)	of	the	arguments


When	applied	to	not-a-number	(NaN)	or	when	the	square	root	function	is	applied	to	
a	negative	number,	it	is	an	invalid	operation.	The	result	will	be	not-a-number	(NaN)	
an	the	NV-Invalid	floating	point	status	flag	will	be	set.


setFloatingRound - ELIMINATED

function setFloatingRound () returns int

This	function	has	been	removed.	At	this	time,	Blitz-64	always	uses	“round	to	
nearest,	with	ties	to	even”.


This	function	will	set	the	FLOAT_ROUND	bits	in	the	CSR_STATUS	register,	which	will	
determine	how	floating	point	computations	are	to	be	rounded,	if	an	exact	value	
cannot	be	represented.	This	function	is	passed	an	integer	with	these	meanings:


    0   Nearest

	Instructions	such	as	FSQRT	will	almost	certainly	be	emulated,	but	this	doesn’t	affect	the	18

operation	of	these	functions,	beyond	their	execution	speed.

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
45 217



Chapter	1:	System	Package


    1   Toward zero
    2   Down
    3   Up

The	argument	is	taken	“mod	4”,	so	only	the	lower	2	bits	are	used.


NOTE:	The	FLOAT_ROUND	bits	are	in	the	CSR_STATUS	register,	which	is	protected.	
Therefore	this	function	will	execute	differently	depending	on	whether	this	is	kernel	
code	or	user	code.	In	Kernel	Mode,	this	function	will	modify	the	bits	directly;	in	User	
Mode,	this	function	must	invoke	a	system	call	to	do	the	work.


Error	Handling	in	KPL


Errors	can	be	expected	and	good	code	should	check	for	and	handle	any	and	all	error	
conditions.


There	are	a	number	of	strategies	for	error	handling	which	are	discussed	next.	
Different	approaches	make	sense	for	different	programs.	In	one	place	or	another,	
Blitz	uses	all	these	approaches.


Set	a	flag	or	error	variable	In	this	approach,	code	encountering	an	error	will	set	
some	global	variable.	Later,	some	code	will	check	this	variable	and	take	appropriate	
action.


This	approach	is	mandated	for	floating	point	by	IEEE	754,	which	names	flags	such	as	
OF-Overflow,	NV-Invalid,	and	NX-Inexact.	In	Blitz,	these	flags	are	kept	in	dedicated	
register	storage—in	CSR_STATUS—so	the	flags	are	naturally	thread-specific	and	
thread-safe.


The	Unix/Linux/POSIX	file	functions	(e.g.,	“fopen”,	“fread”,	…)	use	this	approach	to	
set	the	global	variable	errno.


Return	a	special	error	value	The	idea	is	that	under	normal	circumstances,	a	
function	will	return	a	result,	but	with	an	error,	the	function	will	return	a	value	that	is	
distinct	from	all	normal	results.


For	example,	the	function	digitValue	is	passed	a	character	code	and	returns	0…9	if	
the	character	is	‘0’…’9’.	It	returns	-1,	if	the	character	is	not	a	decimal	digit.


Software	Reference	Manual	/	Porter	 	 Page	 	of	 
46 217



Chapter	1:	System	Package


This	approach	is	clean	and	simple.	It	is	recommended	especially	when	errors	are	
expected	from	time-to-time	and	the	caller	is	expected	to	check	for	errors	
immediately.


Call	an	error	function	that	does	not	return	This	approach	is	useful	when	errors	
are	not	expected	to	occur	or	at	least	expected	to	occur	rarely.	When	the	error	is	
discovered,	the	code	will	call	some	error	function,	perhaps	passing	additional	
information	about	the	error	to	the	function.


The	function	will	take	action,	but	the	code	sequence—and	most	likely	the	entire	
thread	with	the	error—will	be	abandoned	forever.	There	will	be	no	return	from	the	
error	function.


The	approach	is	common	in	Blitz,	and	is	used	when	the	most	likely	action	is	to	begin	
debugging.	The	action	taken	by	the	error	function	is	to	suspend	the	thread	and	
invoke	a	debugger	to	examine	the	state	of	the	thread	at	the	moment	of	the	error.


Call	an	error	function	that	cleans	up	and	returns	In	some	cases,	the	error	can	be	
repaired	immediately	and	the	code	detecting	the	problem	needs	to	continue.	
Obviously,	if	the	error	can	be	handled	directly,	without	calling	any	function,	this	
could	be	cleaner.	But	if	the	error	could	arise	in	several	places,	it	may	make	sense	to	
encapsulate	the	error	handling	in	a	single	function.


In	this	case,	the	error	handling	function	could	be	viewed	as	a	helper	function.


Throw	an	error	KPL	contains	a	try-throw-catch	mechanism	that	makes	it	possible	
to	for	functions	with	problems	to	throw	a	specific	error.	This	allows	code	within	the	
program	itself	to	catch	the	error	and	respond	appropriately.


This	is	the	approach	recommended	for	fault-tolerant	programs.	When	errors	arise,	
the	program	will	not	lose	complete	control	of	the	situation.	Although	there	can	never	
be	a	return	to	the	code	throwing	the	error,	the	application	itself	remains	in	control.


There	are	two	important	differences	between	the	approach	of	calling	an	error	
function	and	the	approach	of	throwing	errors.


Benefits	of	throw	Many	error	conditions	can	arise	outside	of	the	application.	For	
example,	the	“heap-full”	condition	will	occur	within	the	heap	management	
algorithm.	In	addition	conditions	related	to	arithmetic	exceptions,	null	pointers,	

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
47 217



Chapter	1:	System	Package


array	violations,	and	so	on,	are	not	specific	to	a	particular	application,	and	must	be	
handled	properly,	regardless	of	where	they	occur	and	whether	some	application	
chooses	to	include	code	to	handle	these	errors.


For	such	errors,	the	throw	mechanism	must	be	used.	The	application	can	choose	to	
handle	(i.e.,	to	catch)	the	error	or	ignore	it.	But	either	way,	the	error	will	be	dealt	
with.


With	the	approach	of	creating	a	function	to	handle	the	error,	recall	that	there	can	
only	be	one	definition	of	a	function.	So	system	code	that	may	generate	the	error	
must	define	some	function	to	handle	it,	which	precludes	the	possibility	of	
application	code	handling	it.	But	the	throw-catch	mechanism	nicely	overcomes	this	
issue.


Benefits	of	error	functions	Unfortunately,	with	a	throw,	the	calling	stack	is	popped	
and	all	information	about	local	variables	and	which	function	called	which	function	is	
lost.	This	makes	debugging	almost	impossible.


The	Blitz	Approach	The	primary	approach	to	error	handling	in	the	Blitz	system	is	
this:


•	 The	code	detecting	the	error	calls	an	error	function.

•	 The	error	function	throws	the	corresponding	error.

•	 The	throw	occurs	inside	a	try	statement,	so	if	it	is	not	caught	the	function	
maintains	control.


•	 If	the	error	is	caught,	the	code	catching	it	is	responsible.

•	 If	the	error	is	not	caught,	the	error	function	invokes	the	debugger.


Typically,	the	error	function	has	a	name	beginning	“RuntimeError…”	and	the	error	
to	be	thrown	begins	“ERROR_…”


Example:	Heap	Full	Within	the	MemoryAlloc	function	in	the	Heap	Management	
System,	it	may	be	that	the	heap	is	exhausted	and	the	request	cannot	be	satisfied.	The	
code	will	invoke	function


	 RuntimeErrorHeapFull


Error	functions	such	as	this	are	defined	in	the	package	in	which	they	are	called.	Both	
MemoryAlloc	and	RuntimeErrorHeapFull	are	defined	in	the	System	package.


Software	Reference	Manual	/	Porter	 	 Page	 	of	 
48 217



Chapter	1:	System	Package


The	error	function	does	this:


    try
      throw ERROR_HeapFull (…)
    catch UncaughtThrowError (…):
      KPLPrintCatchStack (…)
      print "Out of memory" message
      invokeDebugger (…)
    endTry
    RuntimeExit ()

In	the	event	that	the	application	program	catches	ERROR_HeapFull,	then	this	
function	ends	with	the	throw	statement.	But	if	the	error	is	not	caught,	this	function	
will	print	some	information	that	may	be	useful	for	debugging	and	it	will	then	invoke	
the	debugger.	The	debugger	should	never	return,	but	if	is	does,	the	emulator	is	
terminated.


At	the	time	of	writing,	the	invokeDebugger	function	will	suspend	execution	and	
invoke	the	emulator’s	debugger	by	calling	EmulatorDebuggingRequested.	In	the	
future,	this	function	may	invoke	a	debugging	thread	running	on	the	Blitz	processor	
itself.


Errors	from	the	Heap	Management	System:


During	memory	allocation—i.e.,	within	MemoryAlloc—it	is	possible	the	heap	has	
become	exhausted,	in	which	case	a	“heap	full”	condition	exists.


During	memory	allocation,	memory	freeing,	and	other	heap	functions,	it	is	possible	
the	data	structures	used	by	the	heap	system	have	become	corrupted.	The	common	
cause	of	this	is	when	an	application	program	calls	MemoryFree	incorrectly.


These	errors	are	handled	by	the	two	functions	described	next.


Error: HeapFull

function RuntimeErrorHeapFull (byteCount: int)

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
49 217



Chapter	1:	System	Package


This	function	throws


error ERROR_HeapFull (byteCount: int)

If	this	error	is	not	caught,	this	function	prints	the	following	message	before	invoking	
the	debugger:


Within MemoryAlloc, out of memory!

Error: HeapViolation

function RuntimeErrorHeapViolation (message: String)

This	function	throws


error ERROR_HeapViolation (message: String)

If	this	error	is	not	caught,	this	function	prints	the	following	message	before	invoking	
the	debugger:


The heap management functions have detected an error!

The	message	is	also	printed,	to	give	additional	information.


Errors	from	Runtime	Exceptions:


The	Blitz	processor	checks	for	several	type	of	error	during	the	execution	of	machine	
instructions.	If	an	error	condition	arises,	exception	handling	will	occur.	This	is	
described	fully	in	the	Instruction	Set	Architecture	(ISA).


Ultimately,	one	of	the	following	RuntimeError…	functions	will	be	invoked.	The	
benefit	of	the	Blitz	approach	is	that	the	errors	described	here	are	always	checked	
but	the	checking	involves	zero	additional	instructions.	Therefore,	there	is	no	
additional	execution	overhead.


Software	Reference	Manual	/	Porter	 	 Page	 	of	 
50 217



Chapter	1:	System	Package


These	execution-related	errors	are	expected	to	be	rare	and	indicative	of	program	
bugs.	But	as	bugs	go,	these	are	common	errors.	They	must	never	be	ignored.


Error: ArithmeticException

function RuntimeErrorArithmeticException (codeAddress: int,
                                          offendingInstr: int)

This	function	throws


error ERROR_ArithmeticException (codeAddress: int,
                                 offendingInstr: int)

If	this	error	is	not	caught,	this	function	prints	the	following	message	before	invoking	
the	debugger:


An "ARITHMETIC EXCEPTION" has occurred!

Error: UnalignedLoadStore

function RuntimeErrorUnalignedLoadStore (codeAddress: int,
                                         offendingInstr: int,
                                         unalignedAddr: int)

This	function	throws


error ERROR_UnalignedLoadStore (codeAddress: int,
                                offendingInstr: int,
                                unalignedAddr: int)

If	this	error	is	not	caught,	this	function	prints	the	following	message	before	invoking	
the	debugger:


An "UNALIGNED LOAD/STORE" exception has occurred!

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
51 217



Chapter	1:	System	Package


Error: NullAddress

function RuntimeErrorNullAddress (codeAddress: int)

This	function	throws


error ERROR_NullAddress (codeAddress: int)

If	this	error	is	not	caught,	this	function	prints	the	following	message	before	invoking	
the	debugger:


A "NULL ADDRESS" exception has occurred!

Error: BadArrayIndex

function RuntimeErrorBadArrayIndex (index: int,
                                    ptrToArray: ptr to word,
                                    codeAddress: int)

This	function	throws


error ERROR_BadArrayIndex (codeAddress: int,
                           index: int,
                           ptrToArray: ptr to word)

If	this	error	is	not	caught,	this	function	prints	the	following	message	before	invoking	
the	debugger:


During an array index calculation, the index is either less than 0 
or greater than or equal to the current array size!

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
52 217



Chapter	1:	System	Package


Commentary		The	errors	of	“Null	Pointer”	and	“Bad	Array	Index”	are	common	and	I	
have	seen	them	too	many	times.	However,	the	error	reporting	of	Blitz—which	gives	
the	exact	line	number	in	the	source	code	file	as	well	as	the	calling	stack	and	local	
variables—	is	a	godsend.	It	makes	locating	these	bugs	trivial	in	most	cases.	I	cannot	
stress	how	useful	the	Blitz	exception	mechanism	has	turned	out	to	be,	especially	for	
the	Null	Address	Exception	and	the	Bad	Array	Index	Exception.


The	“Unaligned	Load	/	Store”	error	is	quite	uncommon	and	I	have	to	work	to	cause	
it.	The	compiler	places	variables	on	properly	aligned	addresses,	so	LOADs	and	
STOREs	never	cause	this	error.


The	“Arithmetic	Exception”	error	is	also	quite	uncommon.	Blitz	and	KPL	use	64	bit	
signed	numbers	almost	exclusively,	and	these	are	large	enough	to	accommodate	just	
about	everything.


Error	Functions	Inserted	by	the	Compiler


The	following	functions	are	not	called	directly	by	KPL	code.	Instead,	the	compiler	
will	insert	calls	to	these	functions	when	needed.


Each	function	will	try	to	throw	the	corresponding	error.	If	the	error	is	not	caught,	
the	function	will	print	a	message	and	invoke	the	debugger.


The	arguments	to	the	RuntimeError…	functions	give	additional	information	
pertinent	to	the	specific	error	type.	In	several	cases,	the	additional	information	will	
be	printed	after	the	leading	error	message.


Error: WrongObject1

function RuntimeErrorWrongObject1 (actualDPT: ptr to void,
                                   expectedDPT: ptr to void,
                                   codeAddress: int)

This	function	throws


Software	Reference	Manual	/	Porter	 	 Page	 	of	 
53 217



Chapter	1:	System	Package


error ERROR_WrongObject1 (codeAddress: int,
                          actualDPT: ptr to void,
                          expectedDPT: ptr to void)

If	this	error	is	not	caught,	this	function	prints	the	following	message	before	invoking	
the	debugger:


During an assignment of the form '*ptr = x', the ptr does not 
already point to an instance of the same class as x!

Error: WrongObject2

function RuntimeErrorWrongObject2 (actualDPT: ptr to void,
                                   expectedDPT: ptr to void,
                                   codeAddress: int)

This	function	throws


error ERROR_WrongObject2 (codeAddress: int,
                          actualDPT: ptr to void,
                          expectedDPT: ptr to void)

If	this	error	is	not	caught,	this	function	prints	the	following	message	before	invoking	
the	debugger:


During an assignment of the form 'x = *ptr', the ptr does not 
already point to an instance of the same class as x!

Error: WrongObject3

function RuntimeErrorWrongObject3 (targetPtr: ptr to void,
                                   sourcePtr: ptr to void,
                                   codeAddress: int)

This	function	throws


error ERROR_WrongObject3 (codeAddress: int,

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
54 217



Chapter	1:	System	Package


                          targetPtr: ptr to void,
                          sourcePtr: ptr to void)

If	this	error	is	not	caught,	this	function	prints	the	following	message	before	invoking	
the	debugger:


During an object assignment of the form '*ptr1 = *ptr2', the two 
objects are not instances of the same class!

Error: BadClassDescriptor

function RuntimeErrorBadClassDescriptor (targetPtr: ptr to void,
                                         sourcePtr: ptr to void,
                                         size: int,
                                         codeAddress: int)

This	function	throws


error ERROR_BadClassDescriptor (codeAddress: int,
                                targetPtr: ptr to void,
                                sourcePtr: ptr to void,
                                size: int)

If	this	error	is	not	caught,	this	function	prints	the	following	message	before	invoking	
the	debugger:


During an object assignment or object equality test, something is 
wrong with the dispatch table pointer, the dispatch table, or the 
class descriptor!

Error: UninitializedObject

function RuntimeErrorUninitializedObject (p: ptr to void,
                                          codeAddress: int)

This	function	throws


error ERROR_UninitializedObject (codeAddress: int,

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
55 217



Chapter	1:	System	Package


                                 p: ptr to void)

If	this	error	is	not	caught,	this	function	prints	the	following	message	before	invoking	
the	debugger:


Attempt to use an uninitialized object!

or


Something is wrong with the dispatch table pointer, the dispatch 
table, or the class descriptor!

Error: UninitializedArray

function RuntimeErrorUninitializedArray (p: ptr to void,
                                         codeAddress: int)

This	function	throws


error ERROR_UninitializedArray (codeAddress: int,
                                p: ptr to void)

If	this	error	is	not	caught,	this	function	prints	the	following	message	before	invoking	
the	debugger:


Attempt to use an uninitialized array!

Error: InitializingArray

function RuntimeErrorInitializingArray (arrPtr: ptr to word,
                                        newSize: int,
                                        codeAddress: int)

This	function	throws


error ERROR_InitializingArray (codeAddress: int,
                               arrPtr: ptr to word,
                               newSize: int)

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
56 217



Chapter	1:	System	Package


If	this	error	is	not	caught,	this	function	prints	the	following	message	before	invoking	
the	debugger:


During initializeArray(), the previous array contained an 
unexpected max size!

or


During initializeArray(), the previous array contained an 
unexpected current size!

Error: SetArraySize

function RuntimeErrorSetArraySize (arrPtr: ptr to word,
                                   newSize: int,
                                   codeAddress: int)

This	function	throws


error ERROR_SetArraySize (codeAddress: int,
                          arrPtr: ptr to word,
                          newSize: int)

If	this	error	is	not	caught,	this	function	prints	the	following	message	before	invoking	
the	debugger:


During setArraySize(), the new size is either negative or greater 
than max size!

Error: CurrentArraySizeIsWrong

function RuntimeErrorCurrentArraySizeIsWrong (
                                     targetPtr: ptr to void,
                                     sourcePtr: ptr to void,
                                     srcCurrent: int,
                                     targetMax: int,
                                     codeAddress: int)

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
57 217



Chapter	1:	System	Package


This	function	throws


error ERROR_CurrentArraySizeIsWrong (codeAddress: int,
                                     targetPtr: ptr to void,
                                     sourcePtr: ptr to void,
                                     srcCurrent: int,
                                     targetMax: int)

If	this	error	is	not	caught,	this	function	prints	the	following	message	before	invoking	
the	debugger:


During an array copy, the CURRENT size of the source array is not 
within 0...TargetMaxSize!

Error: ArrayTooLarge

function RuntimeErrorArrayTooLarge (size: int, codeAddress: int)

This	function	throws


error ERROR_ArrayTooLarge (codeAddress: int, size: int)

If	this	error	is	not	caught,	this	function	prints	the	following	message	before	invoking	
the	debugger:


During an array ALLOC, the initial size is not within 1 ... 
2147483647!

Error: ArrayCountNotPositive

function RuntimeErrorArrayCountNotPositive (count: int,
                                            codeAddress: int)

This	function	throws


error ERROR_ArrayCountNotPositive (codeAddress: int,

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
58 217



Chapter	1:	System	Package


                                   count: int)

If	this	error	is	not	caught,	this	function	prints	the	following	message	before	invoking	
the	debugger:


During the initialization of an array, a 'count' expression was 
zero or less!

Objects,	Classes	and	Dispatch	Tables


Each	object	in	KPL	is	represented	in	memory	with	one	or	more	doublewords	of	
memory.	The	first	word	of	any	object	is	an	8-byte	header	word	containing	the	
Dispatch	Table	Pointer	(DPT).	All	objects	are	positioned	on	doubleword	aligned	
addresses	and	the	size	of	every	object	is	a	multiple	of	8	bytes.	An	object	with	no	
fields	will	have	size	8,	since	it	will	have	a	dispatch	table	pointer.


Every	object	of	a	given	class	will	have	the	same	size.	There	are	no	variable-sized	
classes	as	you	find	in	higher	level	OO	languages,	such	as	Smalltalk.


A	pointer	to	an	object	will	point	to	the	dispatch	table	pointer.	In	other	words,	the	
dispatch	table	pointer	is	at	offset	0.	The	first	field	will	be	at	offset	8.


The	fields	of	an	object	will	appear	in	the	order	specified	in	the	class	definition.	All	
fields	from	a	superclass	will	precede	the	fields	added	by	a	subclass.	The	compiler	
will	insert	additional	padding	bytes	in	order	to	achieve	the	proper	alignment	for	
every	field. 
19

The	root	superclass	of	all	classes	is	named	Object	and	this	class	is	defined	in	the	
System	package.	Class	Object	has	no	fields.	The	dispatch	table	pointer	is	of	course	a	
sort	of	hidden	field,	but	there	are	no	directly	named	and	accessible	fields.


Each	class	will	have	a	single	dispatch	table	and	a	single	class	descriptor.	The	
dispatch	table	and	the	class	descriptor	are	placed	in	a	read-only	memory	segment	

	If	the	programmer	is	concerned	about	the	padding	bytes,	they	can	reorder	the	fields	in	the	class	19

definition.	To	eliminate	padding	bytes,	the	programmer	should	place	the	all	doubleword-aligned	
fields	first;	then	all	word-aligned	fields;	then	all	halfword-aligned	fields;	and	finally	all	remaining,	
byte-aligned	fields.

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
59 217



Chapter	1:	System	Package


along	with	the	executable	code	(the	machine	instructions).	Thus,	they	can	be	
accessed	and	read,	but	cannot	be	modified	at	runtime.


Dispatch Tables

For	each	class	there	is	a	“dispatch	table”	and	a	“class	descriptor”.	Each	dispatch	
table	(DPT)	is	a	block	of	memory	with	this	format:	


Offset

0	 ptr	to	class	descriptor

8	 ptr	to	method	#1

16	 ptr	to	method	#1

24	 ptr	to	method	#1

…	 …

…	 null


The	first	field	is	a	pointer	to	the	class’s	class	descriptor.	This	is	followed	by	zero	or	
more	pointers	to	the	code	for	the	class’s	methods.	The	last	entry	is	a	null	pointer.


The	System	package	includes	this	definition:


type KPL_DISPATCH_TABLE =
  struct
    classDescriptor: ptr to KPL_CLASS_DESCRIPTOR
    firstMethodPtr: ptr to …
 endStruct

Sending	a	Message	(Invoking	a	Method)


As	is	the	case	with	other	object-oriented	programming	languages,	messages	are	sent	
to	objects.	By	“send	a	message”,	we	mean	that	a	method	is	invoked	using	dynamic	
dispatching.


The	compiler	will	know	the	name	of	the	method,	but	determining	which	method	
code	is	to	be	executed	cannot	be	determined	until	runtime,	because	the	compiler	
cannot	always	know	the	class	of	the	receiver	object.	Only	at	runtime	can	the	class	of	
the	object	be	determined,	and	even	then,	objects	of	different	classes	can	be	used	in	a	
single	given	message-send	statement.


Software	Reference	Manual	/	Porter	 	 Page	 	of	 
60 217



Chapter	1:	System	Package


During	runtime,	the	program	will	access	the	dispatch	table	whenever	a	message	is	
sent	to	an	object.	It	will	use	the	dispatch	table	of	the	object	to	select	the	correct	
method.


Each	method	is	assigned	an	offset	in	the	dispatch	table	by	the	compiler.	Due	to	the	
possibility	of	overriding	in	subclasses,	there	may	be	several	methods	with	the	same	
name.	However,	methods	with	the	same	name	will	always	be	assigned	to	the	same	
offset	and	that	is	the	key	to	efficient	implementation	of	dynamic	dispatching.


The	dispatch	table	contains	an	array	of	addresses,	where	each	address	points	to	a	
method.	More	precisely,	each	entry	in	the	dispatch	table	is	the	address	of	the	first	
instruction	of	a	method.


Invoking	a	method	is	almost	identical	to	calling	a	function.	When	calling	a	function,	
the	first	argument	is	placed	in	register	r1	and	the	remaining	registers	contain	the	
other	arguments.	When	invoking	a	method,	a	pointer	to	the	receiving	object	is	
placed	in	register	r1	and	the	remaining	registers	contain	the	arguments.	In	either	
case,	a	CALL	instruction	is	executed	and,	upon	return,	a	RET	instruction	is	used.


Given	a	pointer	to	an	object	at	runtime,	the	compiler	will	generate	code	to	follow	the	
object’s	DPT	to	the	dispatch	table	and	then	to	call	indirectly	through	the	pointer	
corresponding	to	the	method.


Consider	invoking	a	function	with	a	single	argument,	such	as:


foo (p)

Here	is	the	code	to	invoke	a	function:


  loadd r1,…
  call foo

Now	consider	sending	a	message,	such	as:


p.foo ()

Here	is	the	code :
20

	Recall	that	CALL	is	a	synthetic	instruction	that	is	replaced	by	a	JALR	machine	instruction,	so	the	20

last	instruction	is	effectively	a	CALL.

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
61 217



Chapter	1:	System	Package


loadd r1,…
loadd s0,0(r1)
bne s0,r0,Label_continue
call _runtimeErrorUninitializedObject

Label_continue:
jalr lr,…offset	of	foo	within	Dispatch	Table…(s0)

Sending	a	message	adds	two	additional	instructions	over	calling	a	function.	One	
instruction	is	required	to	fetch	the	dispatch	table	pointer	and	one	is	required	to	
make	sure	the	object	is	initialized .	There	is	also	a	CALL	to	21

RuntimeErrorUninitializedObject,	but	that	is	not	normally	executed.


Commentary		The	JALR	can	be	used	as	long	as	the	offset	is	less	than	32,768,	which	
it	almost	always	will	be.	In	the	extremely	unusual	case	it	is	not,	the	compiler	
generates	an	additional	instruction.


On	the	other	hand,	the	CALL	instruction	will	often	be	to	a	function	that	is	further	
away	than	32,768	bytes.	CALL	is	a	synthetic	instruction	and	will	expand	to	two	
instructions	in	such	cases.


Since	CALL	is	either	1	or	2	instructions,	we	can	approximate	its	size	as	1.5	
instructions.	Comparing	this	to	the	3	instructions	required	for	invoking	a	method	
(i.e.,	LOADD,	BNE,	JALR),	we	can	estimate	the	overhead	for	invoking	a	method	versus	
calling	a	function	to	be	about	1.5	instructions.


I	consider	this	overhead	for	dynamic	dispatch	to	be	near	optimal.


Class Descriptors

For	each	class	there	is	also	a	“class	descriptor”,	in	addition	to	the	dispatch	table.	A	
class	descriptor	is	represented	with	a	block	of	memory	with	this	format:	


Offset

0	 magic	number

8	 ptr	to	class	name

16	 ptr	to	filename


	An	uninitialized	object	will	have	a	dispatch	table	pointer	still	set	to	zero.21

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
62 217



Chapter	1:	System	Package


24	 line	number

28	 object	size

32	 hash	value

40	 ptr	to	my	DPT

48	 ptr	to	DPT	of	superclass	#1

…	 ptr	to	DPT	of	superclass	#2

…	 ptr	to	DPT	of	superclass	#3

…	 …

…	 ptr	to	Interface	Descriptor	#1

…	 ptr	to	Interface	Descriptor	#2

…	 ptr	to	Interface	Descriptor	#3

…	 …

…	 null


The	first	field	(at	offset	0)	is	a	“magic	number”,	which	will	always	contain	the	value	
0x434c415353646573,	which	happens	to	be	the	ASCII	codes	for	“CLASSdes”.	This	
field	exists	solely	to	try	to	catch	bugs.


The	second	field	(offset	8)	points	to	a	String	giving	the	name	of	the	class.


The	third	field	(offset	16)	contains	a	pointer	to	a	sequence	of	bytes	giving	the	source	
file	name.	This	sequence	is	terminated	with	the	null	byte,	\0. 
22

The	fourth	field	(offset	24)	is	a	word	sized	unsigned	integer	giving	the	line	number	
within	the	above	named	file	at	which	the	definition	of	this	class	occurred.


The	fifth	field	(offset	28)	is	a	word	sized	unsigned	integer	giving	the	size	of	instances	
of	this	class,	in	bytes.	Objects	are	limited	in	size	to	4	GiBytes.


The	sixth	field	(offset	32)	is	a	pseudo-random	number	for	this	class,	generated	by	
the	compiler. 	This	hash	value	is	used	for	an	efficient	implementation	of	the	23

switchOnClass	statement.


The	seventh	field	(offset	40)	is	a	pointer	back	to	the	Dispatch	Table.


After	this,	there	will	be	a	sequence	of	pointers,	with	one	for	each	superclass	of	this	
class.	Each	of	these	pointers	will	point	to	the	dispatch	table	for	the	superclass.


	This	needs	to	be	changed.22

	This	hash	value	is	a	function	solely	of	the	class	name.23

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
63 217



Chapter	1:	System	Package


After	this,	there	will	be	a	sequence	of	pointers,	with	one	for	each	interface	that	this	
class	implements.	Each	of	these	pointers	will	point	to	an	Interface	Descriptor.


Finally,	the	last	pointer	is	followed	by	null,	i.e.,	a	doubleword	of	zero.


The	System	package	includes	this	definition:


type KPL_CLASS_DESCRIPTOR =
  struct
    magic:         int
    myName:        String
    fileName:      ptr to byte
    lineNumber:    word
    sizeInBytes:   word
    clHashValue:   int
    myDPT:         ptr to KPL_DISPATCH_TABLE
    firstSuperPtr: ptr to KPL_DISPATCH_TABLE
 endStruct

Interface Descriptors

For	each	interface	there	is	an	“interface	descriptor”.	An	interface	descriptor	is	
represented	with	a	block	of	memory	with	this	format:


Offset

0	 magic	number

8	 ptr	to	interface	name

16	 ptr	to	filename

24	 line	number

28	 zero	filler

32	 zero	filler

40	 ptr	to	this	interface	descriptor

…	 ptr	to	Interface	Descriptor	#1

…	 ptr	to	Interface	Descriptor	#2

…	 ptr	to	Interface	Descriptor	#3

…	 …

…	 null


Software	Reference	Manual	/	Porter	 	 Page	 	of	 
64 217



Chapter	1:	System	Package


This	definition	matches	and	overlays	the	class	descriptors	exactly.	This	is	important	
for	software	that	must	handle	both.


The	System	package	includes	this	definition:


type KPL_INTERFACE_DESCRIPTOR =
  struct
    magic:         int
    myName:        String
    fileName:      ptr to byte
    lineNumber:    word
    filler1:       word
    filler2:       int
    firstSuperPtr: ptr to KPL_INTERFACE_DESCRIPTOR
 endStruct

The	first	field	(at	offset	0),	the	magic	number,	will	always	contain	the	value	
0x494e545246646573,	which	happens	to	be	the	ASCII	codes	for	“INTRFdes”.


The	second	field	(offset	8)	points	to	a	String	giving	the	name	of	the	interface.


The	third	field	(offset	16)	contains	a	pointer	to	a	sequence	of	bytes	giving	the	source	
file	name.


The	fourth	field	(offset	24)	is	a	word	sized	unsigned	integer	giving	the	line	number	
within	the	above	named	file	at	which	the	definition	of	this	interface	occurred.


The	fifth	field	(offset	28)	and	the	sixth	field	(offset	32)	are	unused	and	will	contain	
zeros.	one	overlays	the	objects	size	and	the	other	overlays	the	hash	value.


After	this	(beginning	at	offset	40),	there	will	be	a	sequence	of	pointers,	with	one	for	
each	interface	that	this	interface	extends.	Each	of	these	will	point	to	an	interface	
descriptor.	The	first	entry	will	point	to	this	interface	descriptor	itself.	The	last	
pointer	is	followed	by	a	null	pointer	to	terminate	the	list.


Uses	of	Dispatch	Tables,	Class	Descriptors,	and	Interface	Descriptors


The	primary	need	for	the	class	hierarchy	information	is	in	the	implementation	of	
isKindOf	operation.


Software	Reference	Manual	/	Porter	 	 Page	 	of	 
65 217



Chapter	1:	System	Package


The	isKindOf	operation	is	implemented	by	a	function 	which	takes	as	arguments	24

two	pointers.	One	argument	points	to	an	object	and	the	other	points	to	a	dispatch	
table	or	an	interface	descriptor.	The	second	pointer	identifies	the	class	or	interface	
we	are	asking	about.	The	isKindOf	function	will	search	the	object’s	dispatch	table	
for	a	pointer	to	the	given	dispatch	table	or	interface	descriptor.


During	this	search,	the	class	and	interface	descriptors	are	never	actually	accessed;	
all	that	is	important	is	their	identity,	which	is	given	by	the	pointers.	However,	we	
choose	to	generate	the	fields	of	the	class	and	interface	descriptors	as	described	here.	
The	descriptors	are	included	along	with	the	code	in	a	read-only	section,	for	future	
use	by	the	debugger.


The	error	reporting	functions	and	the	debugger	also	access	the	dispatch	tables	and	
the	class	descriptors	to	obtain	the	class	name.


At	this	time,	there	is	no	information	kept	in	memory	at	runtime	regarding	the	fields	
of	a	class.	In	order	for	a	debugger	to	display	the	fields	of	an	object	in	any	meaningful	
form	in	the	future,	a	debugger	will	have	to	access	the	executable	or	source	files	or	
use	some	other	approach.


The	Try-Throw-Catch	Mechanics


Each	time	a	try	statement	is	entered,	a	“catch	record”	created	for	each	catch	clause	
in	the	statement.


Catch Records

The	System	package	includes	this	definition:


type CatchRecord =
  struct
    next:          ptr to CatchRecord
    errorID:       String
    catchCodeAddr: int

	This	is	a	hand-coded	assembly	function	in	runtime.s.24

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
66 217



Chapter	1:	System	Package


    prevSP:        int
    sourcefile:    String
    sourceLine:    int
  endStruct

Catch	records	are	kept	in	a	singly	linked	list.	At	any	moment	in	time,	this	linked	list	
will	tell	which	errors	are	being	caught.	In	other	words,	if	an	error	is	thrown,	the	
catch	list	will	tell	whether	it	should	be	caught	and,	if	so,	all	the	information	that	is	
needed	to	perform	the	“catching”.


The	first	field	of	a	catch	record	(next)	is	a	pointer	to	the	next	record	in	the	linked	
list.


The	second	field	(errorID)	points	to	a	String	giving	the	name	of	the	error.	For	
example,	one	error	which	is	discussed	elsewhere	is	ERROR_HeapFull.	The	compiler	
will	add	a	prefix	giving	the	package	name,	and	will	represent	this	error	with	this	
string:


“System: ERROR_HeapFull”

The	catch	record	will	contain	a	pointer	to	a	string	such	as	this.


This	field	is	called	“errorID”	because	the	strings	are	used	to	identify	the	error	in	the	
Blitz	system.	Errors	are	not	given	ID	numbers	because	generating	unique	numbers	
across	multiple	compilations	and	assemblies	is	impossible.	But	the	string	will	be	
placed	in	memory	exactly	once	(by	the	package	in	which	it	was	declared)	and	the	
linker	will	communicate	this	address	to	all	separately	compiled	packages	during	the	
link	phase.


If	this	error	is	being	caught,	then	there	is	a	block	of	code	(the	catch	clause	in	a	try	
statement	somewhere)	that	must	be	executed	when	the	error	is	thrown.	The	third	
field	(catchCodeAddr)	contains	the	address	of	the	first	instruction	in	this	code	
block.


At	the	time	the	try	statement	is	entered,	there	will	be	some	stack	frames	on	the	
activation	stack.	Later,	other	functions	and	methods	may	be	called	and,	at	the	time	of	
the	throw,	there	will	be	additional	frames	on	the	stack.	All	these	additional	frames	
must	be	popped	when	the	error	is	caught.


The	fourth	field	(prevSP)	contains	the	value	of	the	stack	top	pointer,	i.e.,	the	sp	
register,	at	the	time	the	try	statement	was	entered.


Software	Reference	Manual	/	Porter	 	 Page	 	of	 
67 217



Chapter	1:	System	Package


The	fourth	and	fifth	fields	(sourcefile	and	lineNumber)	are	used	by	the	debugger	to	
indicate	where	the	corresponding	catch	clause	is	located.	When	an	error	is	
uncaught,	the	debugger	will	print	out	the	existing	catch	stack	and	the	sourcefile	and	
lineNumber	fields	will	be	used	in	the	printing.


Catch	records	are	not	allocated	on	the	heap.	Instead,	each	catch	record	is	a	local	
variable	and	stored	in	the	stack	frame	for	the	function	or	method	containing	the	try	
statement.	When	the	function	is	entered,	the	catch	record	is	created	along	with	the	
other	local	variables	of	the	function.	When	the	function	returns,	the	catch	record	
along	with	the	other	local	variables	are	popped	off	the	activation	stack.	There	is	one	
catch	record	in	the	stack	frame	for	every	catch	clause	appearing	in	the	function.


The	“catch	stack”	is	a	linked	list	of	catch	records,	linked	on	the	next	field	in	the	
catch	records.	Upon	entering	a	try	statement,	the	compiler	will	produce	code	that	
will	add	one	catch	record	to	the	catch	stack	for	each	catch	clause	in	the	statement.	
Upon	exiting	the	try	statement	(at	the	endTry),	the	code	will	pop	the	catch	stack	
back	to	what	it	was	upon	entry	to	the	try	statement.


If	a	function	contains	any	try	statements,	instructions	at	the	very	beginning	of	the	
function	will	save	the	value	of	the	catch	stack	upon	entry.	It	is	possible	to	return	
from	within	a	try	statement,	so	whenever	a	return	statement	is	executed,	the	
compiler	will	generate	code	to	restore	the	catch	stack	to	this	saved	value.


When	a	throw	statement	is	executed,	the	catch	stack	is	searched	for	the	first	
matching	catch	record.	If	one	is	found,	execution	will	transfer	to	the	statements	in	
the	catch	clause.	The	catch	record	is	used	to	pop	the	activation	stack	back	to	what	it	
was	at	the	time	the	try	statement	was	entered.	Also,	the	catch	stack	is	restored	to	
what	it	was	before	entering	the	try	statement.	These	actions	have	the	effect	of	
exiting	the	body	of	the	try	statement. 
25

Because	of	all	this,	the	entering	and	exiting	a	try	statement	and	the	execution	of	a	
throw	statement	is	fairly	expensive. 
26

	Of	course,	any	objects	allocated	on	the	stack	are	not	freed.	The	use	of	throw	for	normal	25

processing	is	discouraged	since	it	may	introduce	subtle	memory	leaks.

	Just	as	a	very	rough	guide,	the	cost	of	entering	and	leaving	a	try	statement	is	approximately	(13	26

×	n)	+	5	instructions,	where	n	is	the	number	of	catch	clauses	in	the	try	statement.	The	cost	of	
performing	a	throw	is	roughly	(5	×	k)	+	11	instructions,	where	k	is	the	number	of	catch	records	
that	must	be	searched,	plus	whatever	is	required	for	passing	and	retrieving	arguments.

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
68 217



Chapter	1:	System	Package


The	catch	stack	is	local	to	a	thread.	In	other	words,	each	thread	will	have	its	own	
catch	stack.	The	pointer	to	the	head	of	the	current	catch	stack,	i.e.,	to	the	first	catch	
record	in	the	linked	list	of	catch	records,	is	kept	in	the	ThreadData	object.


Thread-Specific	Functionality


For	each	thread	there	will	be	an	object	of	type	ThreadData,	which	will	contain	the	
information	pertinent	to	the	thread.	For	application	programs	running	in	user-
space,	this	object	will	be	in	the	virtual	address	space	and	so	it	will	be	accessible	by	
thread’s	code.


ThreadData

Here	is	the	layout	of	the	ThreadData	objects:


class ThreadData
  superclass Object
  fields
    catchStack:    ptr to CatchRecord
    memAllocFun:   ptr to ALLOC_FUNCTION_TYPE
    memFreeFun:    ptr to FREE_FUNCTION_TYPE
    fatalErrorFun: ptr to FATAL_ERROR_FUNCTION_TYPE
    threadName:    String
    threadNumber:  int
    threadPrefs:   ptr to ThreadPreferences
endClass

The	fields	of	ThreadData	objects	are	“fixed”	in	the	sense	that	the	KPL	compiler	and	
language	system	rely	on	them.	While	fields	might	be	added,	any	changes	to	existing	
fields	risk	introducing	subtle	bugs.


This	is	a	class	so	the	first	field	(catchStack)	will	be	at	offset	8.	Each	object	has	a	
dispatch	table	pointer	at	offset	0.


The	catchStack	field	will	point	to	the	first	catch	record—the	top—of	the	catch	stack.


Software	Reference	Manual	/	Porter	 	 Page	 	of	 
69 217



Chapter	1:	System	Package


Each	thread	can	potentially	use	a	different	heap	and	a	different	heap	allocation	
algorithm.	While	this	would	be	unusual,	it	is	supported	with	the	second	and	third	
fields	(memAllocFun	and	memFreeFun).	These	fields	point	to	the	functions	that	
are	to	be	executed	whenever	MemoryAlloc	or	MemoryFree	is	called.


MemoryAlloc	is	an	assembly	function	defined	in	runtime.s	as:


MemoryAlloc:   load.d    t,OFFSET_OF_memAllocFun(tp)
               jr        t

Recall	that	register	tp	points	to	the	ThreadData	object.	Whenever	MemoryAlloc	is	
called,	the	first	instruction	will	get	the	address	of	the	function	to	invoke	from	the	
known	offset	(i.e.,	16)	of	the	memAllocFun	field	within	ThreadData.	The	second	
instruction	is	an	indirect	jump	to	that	address.


The	same	scheme	is	used	for	functions	MemoryAlloc,	MemoryFree,	and	
FatalError.	This	flexibility	imposes	a	two	instruction	overhead	whenever	one	of	
these	functions	is	invoked.


Every	thread	also	has	a	function	called	FatalError	which	is	configurable	in	the	same	
way	as	MemoryAlloc	and	MemoryFree.	The	fatalErrorFun	field	points	to	the	
address	of	the	function	to	be	invoked	whenever	FatalError	is	called.


The	threadName	field	is	used	in	debugging.	The	threadID	is	a	small	integer,	used	to	
distinguish	threads	with	the	same	name.	The	initial	thread	in	an	application	is	
named	“Main	Thread”	and	given	a	number	of	0.	This	can	be	changed,	if	desired.


The	threadPrefs	field	points	to	an	object	of	type	PrintPreferences.	This	object	
contains	information	used	in	printing.	In	particular,	these	preferences	are	used	in	
the	PrintPackage	and	the	Number	package.


The	PrintPreference	object	contains,	for	example,	information	about	whether	to	
use	‘.’	or	‘,’	for	the	decimal	point	in	floating	point	numbers,	whether	or	not	to	include	
‘+’	for	positive	numbers,	etc.


In	a	multi-threaded	application,	all	threads	may	share	a	single	PrintPreference	
objects.	Alternatively,	each	might	have	a	unique	object,	with	different	settings.


Although	not	implemented	at	this	time,	other	localization	/	preference	data	may	be	
handled	similarly.


Software	Reference	Manual	/	Porter	 	 Page	 	of	 
70 217



Chapter	1:	System	Package


threadPtr

function threadPtr () returns int

At	all	times,	register	tp	(“thread	pointer	register”)	is	dedicated	to	point	to	the	
current	thread’s	ThreadData	object.


A	pointer	to	the	ThreadData	object	is	occasionally	needed	and	the	function	
threadPtr	is	used	to	retrieve	the	value	of	register	tp.


This	function	returns	the	value	of	the	register	as	an	int,	so	it	would	normally	be	cast	
to	type	“ptr	to	ThreadData”,	as	shown	next.


Here	is	an	example	of	the	use	of	this	function.


Each	thread	has	a	number	of	“preference”	values,	which	might	be	changed	with	code	
like	this.	See	the	system	types	ThreadData	and	PrintPreferences	for	more	detail.


    var
      threadDataPtr: ptr to ThreadData
      prefs: ptr to PrintPreferences

    threadDataPtr = asPtrTo (threadPtr (), ThreadData)
    prefs = threadDataPtr.threadPrefs.printPrefs

    prefs.integerSeparator    = ','
    prefs.floatPosInf         = "+∞"
    prefs.floatNegInf         = "-∞"
    prefs.floatNaN            = "NaN"

While	the	threadPtr	function	could	easily	be	implemented	as	an	external	assembly	
routine,	it	is	implemented	directly	by	the	KPL	compiler	for	efficiency	reasons.


initializeThreadPtr

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
71 217



Chapter	1:	System	Package


external function initializeThreadPtr (p: ptr to ThreadData)

This	function	initializes	register	tp.	(The	“thread	pointer	register”	is	r12).


Register	tp	normally	points	to	an	object	of	class	ThreadData.	Register	tp	is	
initialized	whenever	a	thread	is	created	and	does	not	change.


The	ThreadData	object	is	where	information	particular	to	a	thread	is	kept.	An	
important	field	is	catchStack	which	is	used	in	the	processing	of	the	try-throw-catch	
mechanism.


Programmers	should	not	modify	the	catchStack	field	or	the	tp	register,	except	
during	thread	initialization.


    var
      mainThreadData: ThreadData
    ...
    mainThreadData = new ThreadData {
               catchStack = null,
               threadName = "Main Thread",
               threadNumber = 0,
               threadPrefs = & threadPrefs_0 }
    initializeThreadPtr (& mainThreadData)

The	argument	to	initializeThreadPtr	should	have	type	“ptr	to	ThreadData”.


This	function	is	implemented	as	an	external	assembly	routine,	and	is	not	known	to	
the	KPL	compiler.


FatalError

function FatalError (errorMessage: String)

This	function	is	configurable.	The	default	implementation	is	to	throw


ERROR_FatalError


and,	if	that	is	not	caught	by	the	application,	it	will	print


Software	Reference	Manual	/	Porter	 	 Page	 	of	 
72 217



Chapter	1:	System	Package


**********  FATAL ERROR: "errorMessage"  **********

to	invoke	RuntimeExit,	which	will	terminate	execution	of	all	threads	and	enter	the	
emulator	so	debugging	can	commence.


The	default	implementation	can	be	overridden	with	code	like	this:


var threadDataPtr: ptr to ThreadData

threadDataPtr = asPtrTo (threadPtr (), ThreadData)
threadDataPtr.fatalErrorFun = MyFatalFunct

The	reason	that	FatalError	exists	and	is	configurable	in	this	way	is	that	errors	can	
arise	within	code	in	packages	like	System	and	Number. 	This	code	must	do	27

something,	but	the	appropriate	error	handling	really	depends	on	the	application.	
While	the	default	behavior	will	be	adequate	for	most	programs,	some	programs	may	
wish	to	deal	with	the	error	in	application-specific	ways. 

	For	example,	the	appendStrings	function	checks	for	insufficient	space	and	calls	FatalError	if	27

there	is	a	problem.

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
73 217



Chapter	2:	Built-in	KPL	Functions


Introduction


The	KPL	compiler	recognizes	a	number	of	predefined	functions,	which	are	
sometimes	called	“built-in	functions”.	These	are	discussed	more	fully	in


	 An	Introduction	to	KPL:	A	Kernel	Programming	Language


but	they	are	mentioned	here.	Consult	that	document	for	more	information.


Some	of	these	functions	are	built-in	to	the	compiler	because	they	somehow	require	
extra-legal	handling.


Some	built-in	functions	can	handle	many	different	types.	For	example,	arraySize	can	
take	an	argument	of	any	array	type.	Other	built-in	functions	take	a	Type	—	not	a	
Value	—	as	an	argument.	For	example,	isInstanceOf	takes	a	Type	as	its	second	
argument.


Type	Casting	and	Conversions


asByte
asHalfword
asWord

function asByte     (i: int) returns byte
function asHalfword (i: int) returns halfword
function asWord     (i: int) returns word

Software	Reference	Manual	/	Porter	 Page	 	of	74 217



Chapter	2:	Built-in	KPL	Functions


These	functions	check	that	the	argument	is	within	range	and	return	the	same	value.	
An	Arithmetic	Exception	will	occur	is	the	argument	is	output	range.


forceToByte
forceToHalfword
forceToWord

function forceToByte     (i: int) returns byte
function forceToHalfword (i: int) returns halfword
function forceToWord     (i: int) returns word

These	functions	will	sign-extend	the	lower	bits	to	create	a	value	within	the	given	
type.	If	the	argument	is	already	within	range,	it	will	be	unchanged.	If	not,	the	value	
will	be	altered.	There	are	no	possibilities	for	failure.


forceToDouble
forceToInt

function forceToDouble (i: int)    returns double
function forceToInt    (d: double) returns word

These	functions	attempt	to	represent	the	same	value	in	a	different	form.	For	
example,	forceToInt	(123.1)	will	yield	123.	Likewise,	forceToDouble	(123)	will	
yield	123.0.


copyBitsToDouble
copyBitsToInt

function copyBitsToDouble (i: int)    returns double
function copyBitsToInt    (d: double) returns word

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
75 217



Chapter	2:	Built-in	KPL	Functions


These	functions	change	the	type	of	a	value	without	altering	the	bits.	For	example,	
copyBitToInt	(1.75)	will	yield	4610560118520545280	(i.e.,	
0x3ffc_0000_0000_0000),


asInteger
asPtrTo

function asInteger (p: ptr to AnyType) returns int
function asPtrTo   (x:…; Type) returns ptr to Type

The	asInteger	function	allows	the	programmer	to	convert	a	pointer	into	a	64	bit	
integer.	The	bits	are	not	altered.


With	asPtrTo,	the	second	argument	is	a	Type,	not	a	Value.	The	asPtrTo	function	
allows	the	programmer	to	convert	an	integer	or	a	pointer	of	any	type	into	a	pointer	
to	the	specified	Type.


isKindOf

function isKindOf (p: …, Type) returns bool

The	first	argument	p	must	be	either	an	object	or	a	pointer	to	an	object.	The	second	
argument	Type	must	name	a	class	or	an	interface.


At	runtime,	this	function	looks	at	the	class	of	p	and	returns	true	if	it	is	a	subclass	of	
the	given	Type.	If	the	given	Type	is	an	interface,	it	checks	to	see	if	the	class	of	p	
implements	that	interface.


In	this	example,	assume	that	Student	is	a	subclass	of	Person:


var p: ptr to Object
…
p = alloc Student { … }
…
if isKindOf (p, Person)
  printf ("This is a Person or Student")

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
76 217



Chapter	2:	Built-in	KPL	Functions


endIf

Implementation:	For	each	occurrence	of	isKindOf,	the	compiler	will	insert	a	call	to	
the	assembly	function	_isKindOf. 	This	function	will	look	at	the	object	and	follow	28

its	DPT	to	its	dispatch	table.	From	there,	it	will	locate	the	object’s	class	descriptor.	It	
will	then	run	through	the	table	to	see	if	the	given	class	or	interface	is	present,	in	a	
fairly	tight	loop.	Thus,	there	is	not	much	overhead 	for	a	use	of	isKindOf.		
29

isInstanceOf

function isInstanceOf (p: …, ClassName) returns bool

The	first	argument	p	must	be	either	an	object	or	a	pointer	to	an	object.	The	second	
argument	must	name	a	class.


At	runtime,	this	function	looks	at	the	class	of	p	and	returns	true	if	it	is	the	same	as	
the	class	named	by	the	second	argument	ClassName.


Implementation:	The	compiler	inserts	code	directly	inline	to	obtain	the	DPT	of	p.	
The	code	then	compares	this	to	a	constant,	which	is	the	address	of	the	dispatch	table	
for	the	named	class.	So	this	operation	is	very	fast.


sizeOf

function sizeOf (Type) returns int

This	function	returns	the	number	of	bytes	required	for	a	value	of	the	given	type.


This	value	is	mandated	by	the	KPL	specification	and	is	not	implementation-
dependent.	The	sizes	of	the	various	types	in	KPL	are:


	The	package	System	contains	a	second	implementation	of	isKindOf,	written	in	KPL,	which	may	28

be	of	interest.	This	function	is	named	KPLIsKindOf,	and	is	now	commented	out.

	The	_isKindOf	function	requires	about	5×n+11	machine	instructions,	where	n	is	the	number	of	29

superclasses	and	interfaces	implemented	by	the	class.

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
77 217



Chapter	2:	Built-in	KPL	Functions


Type	 sizeOf	(in	bytes)

byte	 1

halfword	 2

word	 4

int	 8

double	 8

bool	 1

pointer	 8

array	 8	+	n	*	sizeof	(element),	rounded	up	to	a	multiple	of	8

object	 8	+	…fields…,	rounded	up	to	a	multiple	of	8

struct,	union	 …fields…


Each	array	has	an	8	byte	header	field	containing	the	maximum	size	and	the	current	
size	of	the	array.	The	size	of	the	array	is	always	a	multiple	of	8,	so	for	arrays	with	
small	elements	(such	as	Strings),	there	will	often	be	padding	bytes	inserted	after	the	
last	element.


Each	object	has	an	8	byte	header,	which	is	a	pointer	to	the	dispatch	table	for	the	
object’s	class.	For	each	class,	there	is	only	one	dispatch	table	so	all	objects	of	a	given	
given	point	to	the	same	dispatch	table.	The	fields	are	always	laid	out	in	memory	in	
the	same	order	they	appear	in	the	class	definition.	Padding	bytes	are	inserted	to	
make	sure	that	every	field	is	properly	aligned,	and	padding	bytes	are	added	to	make	
sure	the	object’s	size	is	a	multiple	of	8.


With	a	struct,	the	fields	are	always	laid	out	in	memory	in	the	same	order	they	
appear	in	the	struct	definition.	With	a	union,	the	fields	are	overlaid.	Padding	bytes	
are	inserted	to	make	sure	that	every	field	is	properly	aligned.	The	size	of	a	struct	or	
union	will	be	either	1	byte,	2	bytes,	4	bytes,	or	a	multiple	of	8	bytes,	and	padding	
bytes	will	be	added	as	necessary	to	achieve	this.


initializeArray

function initializeArray (arr: ArrayType)

This	function	is	used	to	initialize	an	array,	and	every	array	must	be	initialized	before	
use.	More	precisely,	this	function	will	initialize	the	header	word	that	every	array	has.		
The	maximum	size	will	be	initialized	according	to	the	type	definition,	and	the	

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
78 217



Chapter	2:	Built-in	KPL	Functions


current	size	will	be	set	to	the	maximum	size.	The	elements	of	the	array	will	not	be	
modified.


The	argument	may	be	either	an	array	or	a	ptr	to	an	array,	as	in:


var
  a: array [100] pf int
  p: ptr to array [100] of int
initializeArray (a)
initializeArray (p)

In	KPL	variables	are	initially	set	to	zeros.	An	array	which	has	not	been	properly	
initialized	with	initializeArray	will	have	zeros	in	this	header.	This	uninitialized	
header	will	cause	an	error	if	the	array	is	accessed.


The	KPL	compiler	implements	all	multi-dimensional	arrays	as	arrays	of	arrays.	In	
other	words,	only	singly-dimensioned	arrays	exist.	In	the	example	below,	the	two	
arrays	have	the	same	type	and	the	following	is	all	legal	KPL.


var
  a: array [10, 20] of int
  b: array [10] of array [20] of int  
…
a = b
a [i,j] = b [i,j]
a [i] [j] = b [i] [j]
a [i] = b [i]

setArraySize

function setArraySize (arr: ArrayType, newSize: int)

This	function	sets	the	current	size	of	the	array	arr	to	newSize.	The	array	arr	must	
already	be	initialized	and	the	newSize	must	be	within	0	…	maxSize.


arraySize

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
79 217



Chapter	2:	Built-in	KPL	Functions


function arraySize (arr: ArrayType) returns int

This	function	returns	the	current	size	of	the	array.	If	the	array	is	uninitialized,	this	
function	will	return	0.


arrayMaxSize

function arrayMaxSize (arr: ArrayType) returns int

This	function	returns	the	maximum	size	of	the	array.	If	the	array	is	uninitialized,	this	
function	will	return	0.


initializeObject

function initializeObject (p: ptr to ClassName)

This	function	will	initialize	an	object.	This	consists	of	setting	the	header	field	of	the	
object	to	the	address	of	the	class’s	dispatch	table.	This	function	merely	stores	a	
pointer	to	the	dispatch	table	at	the	address	given;	it	does	not	affect	the	other	fields	
of	the	object	in	any	way.


It	is	often	the	case	that	objects	are	initialized	with	the	alloc	or	new	constructs	and	
the	initializeObject	function	will	not	be	needed.	But	there	are	other	situations	in	
which	this	function	is	useful.


Normally,	objects	are	allocated	on	the	heap	by	using	the	alloc	construct,	which	will	
not	only	initialize	the	object’s	header,	but	will	also	initialized	the	object’s	fields.


If	the	heap	and	pointers	are	not	involved,	the	programmer	will	typically	use	the	new	
construct	to	create	objects.	The	new	construct	will	also	initialize	both	the	object’s	
header	and	the	fields.


Software	Reference	Manual	/	Porter	 	 Page	 	of	 
80 217



Chapter	2:	Built-in	KPL	Functions


CPUControl
CPUControlUserMode

function CPUControl         (expr: int, Integer) returns int
function CPUControlUserMode (expr: int, Integer) returns int

The	Blitz-64	hardware	contains	two	machine	instructions	which	are	intentionally	
left	“undefined”.	Individual	implementations	of	the	Blitz-64	core	will	elect	to	use	
these	instructions	differently.	In	some	implementations,	these	instructions	may	not	
be	used	at	all.


Here	is	the	form	of	these	machine	instructions:


    CPUControl            RegDest,RegSource,Value16
    CPUControlUserMode    RegDest,RegSource,Value16

Each	instruction	takes	two	register	operands	and	a	16	bit	immediate	value.	The	
Value16	field	acts	as	a	16	bit	“operation	code”	that	indicates	which	operation	is	to	
be	performed.	Its	precise	meaning	is	left	as	“implementation	dependent”	and	up	to	
individual	core	designers.	Consult


	 Blitz-64	Instruction	Set	Architecture	Reference	Manual


for	details	and	examples	of	how	these	instructions	might	be	used.


These	CPUControl	and	CPUControlUserMode	functions	are	provided	in	order	to	
allow	programmers	to	use	these	instructions.


The	first	argument	may	be	any	integer-valued	expression	and	will	be	used	for	the	
RegSource	operand.	The	second	argument	must	be	a	value	within	-32,768	…	
+32,767.	This	integer	will	be	used	as	the	Value16	operation	code	in	the	instruction.	
The	result	placed	in	RegDest	will	be	returned	by	the	function.


Implicitly	Inserted	Functions


Software	Reference	Manual	/	Porter	 	 Page	 	of	 
81 217



Chapter	2:	Built-in	KPL	Functions


The	functions	in	this	section	are	inserted	automatically	by	the	compiler.	Normally,	
they	would	not	be	coded	by	the	programmer,	but	they	could	be.


ptrToBool

function ptrToBool (p: ptr to AnyType) returns bool

The	ptrToBool	function	returns	true	if	the	pointer	is	not	null	and	false	if	it	is	null.	It	
is	inserted	automatically.


This	function	allows	the	following	code—which	follows	a	common	C/C++	pattern—
to	work	as	expected:


if p
  printf ("not null")
else
  printf ("null")
endIf

upcastToHalfword
upcastToWord
upcastToInt

function upcastToByte     (i: byte)               returns halfword
function upcastToHalfword (i: byte/halfword)      returns word
function upcastToWord     (i: byte/halfword/word) returns int

These	functions	are	inserted	automatically	when	needed	by	the	compiler	and	would	
not	normally	be	used	explicitly	by	the	programmer.


They	allow	an	integer	value	of	8,	16,	or	32	bits	(i.e.,	a	byte,	halfword,	or	word)	to	be	
used	in	a	context	requiring	a	64	bit	integer	(i.e.,	an	int).


For	example,	in	the	following	code	the	value	-123	has	a	type	of	byte:


var i: int
i = -123

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
82 217



Chapter	2:	Built-in	KPL	Functions


The	compiler	implicitly	inserts	an	upcast	function,	as	in:


i = upcastToInt (-123)

These	functions	will	sign-extend	the	value.	Thus,	the	value—when	viewed	as	a	
signed	number—will	never	be	altered.


These	functions	do	not	require	additional	machine	instructions.	For	example,	
consider:


i = x

If	x	has	type	int,	the	compiler	might	generate:


loadd    r1,x
stored   i,r1

Whereas,	if	x	has	type	byte,	the	compiler	might	generate:


loadb    r1,x     # loadB used, not loadD
stored   i,r1

This	efficiency	is	achieved	because	LOADB	will	sign-extend.	All	byte,	halfword,	and	
word	values	are	kept	in	sign-extended	form	when	in	registers.


In	KPL,	integer	values	are	normally	signed,	but	occasionally	the	programmer	must	
work	with	unsigned	numbers	of	various	sizes.	In	such	cases,	the	upper	bits	must	be	
explicitly	cleared,	as	in:


var
  i: int
  b: byte
…
i = b & 0x00000000000000ff

This	might	be	compiled	into	these	instructions:


loadb    r1,b
andi     r1,r1,0xff
stored   i,r1

	


Software	Reference	Manual	/	Porter	 	 Page	 	of	 
83 217



Chapter	2:	Built-in	KPL	Functions


upcastToDouble

function upcastToDouble (p: word) returns double

This	function	is	inserted	automatically	when	needed	by	the	compiler	and	would	not	
normally	be	used	explicitly	by	the	programmer.


This	function	is	used	in	code	such	as:


var d: double
…
d = d * 7

The	value	“7”	is	an	integer.	It	must	be	converted	to	a	floating	point	number	before	
the	multiplication	can	occur.	The	compiler	automatically	inserts	upcastToDouble	in	
the	above	code.


Any	32	signed	integer	value	(i.e.,	any	byte,	halfword,	or	word	value)	can	be	
represented	exactly	as	a	double	precision	floating	point	number.	So	there	is	never	
any	loss	of	accuracy	or	possibility	for	error.


However,	the	same	is	not	true	of	64	integer	values.	For	an	arbitrary	int	value,	there	
is	a	possibility	that	accuracy	will	be	lost	if	the	value	is	either	too	large	or	too	
negative .	For	this	reason,	the	programmer	must	explicitly	invoke	the	30

forceToDouble	function	in	code	like	the	following:


var
  d: double
  i: int
…
d = d * forceToDouble (i)

	More	precisely,	loss	of	accuracy	will	not	occur	if	the	int	value	is	within	-9,007,199,254,740,992	...	30

+9,007,199,254,740,992.	Outside	this	range,	loss	of	accuracy	usually	happens.

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
84 217



Chapter	3:	MiscLib	Package


Introduction


The	functions	in	this	package	are	for	programs	that	must	read	input	from	the	user.


These	functions	rely	on	a	global	variable	called	InputBuffer,	which	makes	them	not	
reentrant.	Thus,	these	functions	are	not	thread	safe!


All	output	is	direct	to	stdout	and	all	input	is	obtained	by	calls	to	
SimpleSerial_ReadString.


At	some	point	in	the	future,	this	code	needs	to	be	rewritten	to


•	 Read	the	input	using	calls	to	the	file	system.

•	 Be	made	reentrant.

•	 Allow	arbitrary	UTF-8	input.


InputBuffer

const MAX_INPUT_BUFFER_SIZE = 1000
var InputBuffer: array [MAX_INPUT_BUFFER_SIZE] of byte

The	InputBuffer	is	a	shared	variable,	which	is	used	for	reading	in	the	user’s	input.


GetInputLine

function GetInputLine (prompt: String) returns bool   

Software	Reference	Manual	/	Porter	 Page	 	of	85 217



Chapter	3:	MiscLib	Package


This	function	prints	the	prompt	and	reads	a	line	of	input.	It	removes	the	trailing	
newline	character	(‘\n’).


The	result	will	be	in	the	global	variable	InputBuffer.	This	function	will	initialize	this	
array	before	use.


It	prints	to	stdout	and	reads	by	calling	SimpleSerial_ReadString.


This	function	returns	“all	okay”,	i.e.,	true	if	there	were	no	errors	and	false	otherwise.	
The	following	are	considered	errors:


•	 Too	many	characters	are	typed,	overflowing	the	input	buffer.

•	 The	input	contains	something	besides	ASCII	characters.


NOTE:	This	function	is	not	reenterant.


GetYesNo

function GetYesNo (prompt: String) returns bool

This	function	prints	the	prompt	and	reads	either	“yes”	or	“no”.	It	returns	true	for	
“yes”	and	false	for	“no”.	


This	function	will	accept


	 “y”	 “yes”	 “Y”	 “YES"

	 “n”	 “no”	 “N”	 “NO”


This	function	retries	until	it	gets	something	correct.


This	function	calls	GetOneLine,	so	it	indirectly	calls	SimpleSerial_ReadString.


NOTE:	This	function	is	not	reenterant.


GetInt

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
86 217



Chapter	3:	MiscLib	Package


function GetInt (prompt: String) returns int

The	function	prints	the	prompt,	reads	in	an	integer,	and	returns	it.


The	input	can	be	in	decimal	or	hex	and	whitespace	is	ignored.	If	the	input	is	invalid,	
it	will	repeat	the	prompt	and	keep	trying	until	it	gets	a	valid	integer.


Hex	numbers	are	indicated	with	a	leading	“0x”	or	“0X”	and	capitalization	of	the	hex	
digits	is	ignored.


This	function	calls	GetOneLine,	so	it	indirectly	calls	SimpleSerial_ReadString.


NOTE:	This	function	is	not	reenterant.


GetOneChar

function GetOneChar (prompt: String) returns int

This	function	prints	the	prompt	and	then	reads	in	a	single	character,	followed	by	
newline	and	returns	the	character.	It	retries	until	it	gets	something	correct.


This	function	calls	GetOneLine,	so	it	indirectly	calls	SimpleSerial_ReadString.


Since	it	calls	GetOneLine,	the	only	valid	input	is	an	ASCII	printable	characters	(i.e.,	“	”	
…	“~”)	followed	by	a	newline	“\n”.


NOTE:	This	function	is	not	reenterant.


AppendIntToString

function AppendIntToString (prefx: String, i: int) returns String

This	function	is	passed	a	prefix	and	an	int.		It	converts	the	int	to	a	decimal	string,	
appends	it	to	the	prefix,	and	returns	the	result	as	a	new	String.	For	example:


Call	 Result


Software	Reference	Manual	/	Porter	 	 Page	 	of	 
87 217



Chapter	3:	MiscLib	Package


AppendIntToString ("Label_", 123) "Label_123"
AppendIntToString ("abc",   -123) "abc-123"

NOTE:		This	function	always	allocates	a	new	string	on	the	heap.	It	frees	any	other	
memory	it	allocates.


Indent

function Indent (i: int)

This	function	prints	i	blanks	on	stdout.


PadTo

function PadTo (str: String, fieldWidth: int)

This	functions	is	passed	a	string	and	an	integer.		It	assumes	the	string	has	just	been	
printed;	it	prints	as	many	padding	blanks	as	necessary	to	ensure	that	fieldWidth	
characters	have	been	printed.


The	blanks	are	printed	on	stdout. 

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
88 217



Chapter	4:	Print	Package


Introduction


KPL	provides	an	output	system	similar	to	C	/	C++.	The	following	two	functions	are	
built	in	to	the	language:


    printf
    sprintf

In	order	to	use	these	functions	in	a	package,	the	package	must	use	“PrintPackage”: 
31

    header MyPack
      uses System, PrintPackage
      ...
    endHeader

The	printf	and	sprintf	functions	are	unusual	in	that	they	can	take	a	variable	number	
of	arguments.	All	other	KPL	functions	have	a	fixed	number	of	arguments.


The	general	form	of	printf	is


    printf (FileID, FormatString, arg1, arg2, arg3, ...)

The	FileID	argument	must	be	an	identifier.	It	is	optional	and	defaults	to	“stdout”	if	
missing.	These	are	equivalent:


    printf (FormatString, arg1, arg2, arg3, ...)
    printf (stdout, FormatString, arg1, arg2, arg3, ...)

The	output	can	be	directed	elsewhere,	as	in:


    printf (stderr, FormatString, arg1, arg2, arg3, ...)
    printf (myFile, FormatString, arg1, arg2, arg3, ...)

	If	a	package	doesn’t	invoke	printf	or	sprintf,	then	there	is	no	need	to	use	PrintPackage.31

Software	Reference	Manual	/	Porter	 Page	 	of	89 217



Chapter	4:	PrintPackage


KPL	does	not	have	the	“fprintf”	function	from	C	/	C++;	instead	the	printf	function	is	
used.


The	general	form	of	sprintf	is


    sprintf (ID, FormatString, arg1, arg2, arg3, ...)
	

For	sprintf,	the	first	argument	is	required	and	must	be	an	identifier.	Furthermore,	
this	ID	must	have	type	String,	i.e.,	ptr	to	array	of	byte.	This	is	where	the	“output”	
will	be	directed	to.


   var
     stringBuffer: ptr to array [1000] of byte = ...
   sprintf (stringBuffer, FormatString, arg1, arg2, arg3, ...)

For	both	printf	and	sprintf,	the	FormatString	argument	must	be	a	string	constant.	It		
may	not	be	any	other	expression.


    printf ("Hello", ...)        -- OK

    myString = "Hello"
    printf (myString, ...)       -- Compile-time error

The	printf	function	will	send	output	to	the	given	output	channel,	with	stdout	being	
the	default	output	channel.


The	sprintf	function	will	add	bytes	to	the	end	of	a	byte	array.	The	output	target	(a	
“string	buffer”)	should	be	a	previously	initialized	array.	It	may	contain	some	
elements,	but	should	have	additional	space.	In	other	words,	its	CURRENT	size	should	
be	less	than	its	MAXIMUM	size.	The	sprintf	function	will	add	bytes	to	the	end	of	the	
string	buffer,	increasing	its	CURRENT	size.	If	the	end	of	the	string	buffer	is	reached	
and	an	attempt	is	made	to	write	beyond	it,	then	an	error	will	be	thrown.


The	output	system	writes	all	Unicode	characters	using	the	UTF-8	encoding.


The	Format	String


Software	Reference	Manual	/	Porter	 	 Page	 	of	 
90 217



Chapter	4:	PrintPackage


The	FormatString	is	similar	to	C	/	C++.	It	may	contain	character	data	(which	is	
written	out)	and	format	codes	(which	are	used	to	control	the	writing	of	data	values).


    printf ("val1 = %d  val2 = %d\n", i+4, foo(j))

The	format	code	begins	with	%	and	continues	through	the	code	letter.


Just	as	in	C	/	C++,	for	each	format	code	(such	as	“%d”)	there	must	be	exactly	one	
argument.	The	arguments	following	the	FormatString	are	matched	up,	in	order,	with	
the	format	code.


KPL	also	allows	a	second	form,	which	may	be	unfamiliar	to	C	/	C++	programmers.	If	
the	argument	is	a	simple	identifier,	then	the	argument	may	be	embedded	directly	in	
the	string.	Parentheses	are	used	for	this.


The	following	two	are	equivalent:


    printf ("val1 = %d  val2 = %d  val3 = %d\n", i, foo(j), k)
    printf ("val1 = %d(i)  val2 = %d  val3 = %d(k)\n", foo(j))

Here	are	the	rules	for	this	second	form:	The	embedded	ID	form	can	be	be	mixed	with	
the	traditional	form,	as	shown	in	the	example	above.	To	use	the	embedded	form,	the	
argument	being	printed	must	be	an	ID,	not	a	complex	expression,	so	it	can	only	be	
used	to	print	constants,	parameters,	local	variables,	and	global	variables.	The	
opening	parenthesis	must	immediately	follow	the	format	code	character;	no	
intervening	spaces	are	allowed.	The	ID	may	be	preceded	by	or	followed	by	any	
number	of	blanks.	Tabs	and	newlines	are	not	allowed.	The	ID	and	any	trailing	blanks	
should	be	followed	by	the	closing	parenthesis.	The	(	and	)	parentheses	are	not	sent	
to	the	output.


The	following	format	codes	are	recognized:


    %d     print an int in decimal
    %s     print a String
    %c     print a single character
    %x     print an int in hex
    %e     print a double number
    %f     print a double number
    %g     print a double number
    %b     print a bool value
    %h     print a halfword value in binary
    %w     print a word value in binary

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
91 217



Chapter	4:	PrintPackage


    %i     print a int value in binary
    %o     print an object’s class name 
    %%     print % 
    %(     print ( 

The	compiler	will	check	the	FormatString	and	each	of	the	format	codes.	For	each,	it	
will	verify	that	the	format	code	is	specified	correctly.	The	compiler	will	also	verify	
that	for	each	format	code,	there	is	a	corresponding	argument	of	the	correct	type.


The	general	form	of	a	format	code	is:


    %  [ Flags ]  [ Width  ]  [ . Precision ]  FormatCharacter

For	example


    printf ("  %d   %-#20.8x   ", ...)

The	following	Flag	characters	are	recognized:


    -   0   #

The	Flag	characters	are	optional.	They	may	be	specified	in	any	order,	but	there	must	
be	at	most	one	occurrence	of	each.	The	meaning	of	“-”	is	“left-justify	within	the	field”.	
The	meaning	of	the	other	characters	depends	on	the	FormatCharacter.


The	Width	is	an	integer.	More	precisely,	the	Width	is	a	sequence	of	decimal	digits	and	
it	may	not	begin	with	a	0.	This	integer	specifies	the	field	width	in	which	the	data	
will	be	printed.	Generally	speaking,	padding	bytes	are	added	as	necessary	to	fill	out	
to	the	full	field	width.


The	Precision	is	an	integer,	i.e.,	a	sequence	of	decimal	digits.	The	meaning	of	
Precision	is	dependent	on	the	FormatCharacter.

	

The	FormatCharacter	must	be	one	of	the	following.	We	discuss	each	of	these	format	
codes	in	turn	in	the	following	sections.


    d  s  c  x  X  e  f  g  b  B  h  w  i  o  %  (
	

	


Software	Reference	Manual	/	Porter	 	 Page	 	of	 
92 217



Chapter	4:	PrintPackage


%d   Decimal

Flags:

0	 Not	allowed

#	 Insert	comma	separators

-	 Left-justify	the	digits	within	the	field


Field	Width:

Print	the	value	within	a	field,	adding	padding	bytes	if	necessary.	If	the	field	is	
insufficiently	large	enough,	then	ignore	the	width	and	print	the	full	value.


Precision:

Not	allowed


Print	the	integer	value	in	decimal.	If	the	field	width	is	specified,	then	the	number	of	
characters	will	be	at	least	that,	but	may	be	more.


If	the	#	flag	is	present,	then	commas	will	be	added	to	numbers	larger	than	999.	The	
actual	character	to	be	used	is	determined	by


PrintPreferences.integerSeparator


The	default	is	comma	(,)	but	this	may	be	changed	to,	for	example,	a	period	(.)	for	
European	style	numbering.	The	preferences	may	also	indicate	no	character,	in	which	
case	the	#	flag	is	ignored.


          Example         Example          Example       
          ==============  ===============  =============================
  %d      "0"             "123"            "-9223372036854775808"
  %#d     "0"             "123"            "-9,223,372,036,854,775,808"
  %12d    "           0"  "     1234567"   "-9223372036854775808"
  %#12d   "           0"  "   1,234,567"   "-9,223,372,036,854,775,808"
  %-12d   "0           "  "1234567     "   "-9223372036854775808"

%s   String

This	format	code	is	used	to	print	a	String.	The	argument	must	be	a	pointer	to	an	
array	of	bytes	which	contains	a	sequence	of	UTF-8	encoded	characters.


Flags:


Software	Reference	Manual	/	Porter	 	 Page	 	of	 
93 217



Chapter	4:	PrintPackage


0	 Not	allowed

#	 Not	allowed

-	 Left-justify	the	characters	within	the	field


Field	Width:

Print	the	string	of	characters	within	a	field,	adding	padding	bytes	if	necessary.	If	
the	field	is	insufficiently	large	enough,	then	ignore	the	width	and	print	the	full	
string.


Precision:

The	“precision”	number	indicates	that	the	string	should	be	truncated.	Only	print	
this	many	of	the	leading	characters	in	the	string.


            Example              Example       
            ===================  =============================
  %s        "hello"              "Now is the time for all good"
  %10s      "     hello"         "Now is the time for all good"
  %-10s     "hello     "         "Now is the time for all good"
  %10.3s    "       hel"         "       Now"
  %-10.18s  "hello     "         "Now is the time fo"

%c   Character

This	format	code	is	used	to	print	a	single	character.	The	argument	must	be	an	
integer	and	this	integer	is	interpreted	as	a	Unicode	codepoint.	(Note	that	this	is	not	a	
UTF-8	encoding	of	a	character.)


    var i: int = '€'
    printf ("char = %c", i)        -- Ok, will print "char = €"

    var str: String = "€"
    printf ("char = %c", str[0])   -- Wrong; str is UTF-8 encoded

Flags:

0	 Not	allowed

#	 Not	allowed

-	 Left-justify	the	digits	within	the	field


Field	Width:

Print	the	character	within	a	field,	adding	padding	bytes	as	necessary.	Since	the	
field	width	must	be	at	least	1,	there	will	never	be	any	truncation	needed.


Precision:

Not	allowed


Software	Reference	Manual	/	Porter	 	 Page	 	of	 
94 217



Chapter	4:	PrintPackage


            Example       
            ============
  %c        "a"
  %5c       "    a"
  %-5c      "a    "

If	the	integer	value	is	not	a	Unicode	codepoint,	then	this	error		will	be	thrown:


Not_A_Unicode_Codepoint


If	the	integer	is	any	value	representable	as	a	byte,	i.e.,	within	the	range	-128	…	+127,	
then	it	will	be	sent	“as	is”	to	the	output.	Therefore,	any	ASCII	control	character	(such	
as	\t,	\n,	etc.)	can	be	sent	to	the	output.


%x   Hex

This	format	code	is	used	to	print	an	integer	value	in	hexadecimal.


Flags:

0	 Print	leading	0	digits	(and	F’s	for	negative	values).

#	 Add	a	“0x”	or	“0X”	prefix,	depending	on	the	format	character.

-	 Left-justify	the	digits	within	the	field


Field	Width:

Print	the	value	within	a	field,	adding	padding	bytes	as	necessary.


Precision:

Truncate	the	value	to	this	number	of	characters.


Format	Character:

x	 Print	in	lowercase,	i.e.,	0x0123abcd

X	 Print	in	uppercase,	i.e.,	0X0123ABCD


Here	are	examples	of	the	most	useful	cases:


              Decimal 4,779              Decimal -4,779
              ========================   ========================
  %#x         "0x12ab"                   "-0x12ab"
  %016x       "00000000000012ab"         "ffffffffffffed55"
  %04.4x      "12ab"                     "ed55"

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
95 217



Chapter	4:	PrintPackage


The	#	flag	adds	“0x”	in	front	of	the	number:


              Example                    Example
              ========================   ========================
  %x          "123abc"                   "-123abc"
  %#x         "0x123abc"                 "-0x123abc"

If	the	format	code	is	“X”	instead	of	“x”,	then	the	number	will	be	in	uppercase:


              Example                    Example
              ========================   ========================
  %X          "123ABC"                   "-123ABC"
  %#X         "0X123ABC"                 "-0X123ABC"

If	a	field	width	is	present,	the	number	will	be	padded	as	necessary:


              Example                    Example
              ========================   ========================
  %16x        "          123abc"         "         -123abc"
  %#16x       "        0x123abc"         "       -0x123abc"
  %-16x       "123abc          "         "-123abc         "
  %#-16x      "0x123abc        "         "-0x123abc       "

If	the	field	width	is	inadequate	for	the	value,	then	the	width	will	be	ignored	and	the	
full	value	will	be	output:

	

              Example                    Example
              ========================   ========================
  %3x         "123abc"                   "-123abc"

If	the	0	“zero	fill”	flag	is	present,	then	the	number	will	be	sign-extended	by	adding	
leading	0’s	to	non-negative	numbers	and	F’s	to	negative	numbers.	If	the	flag	is	not	
present,	negative	values	will	be	printed	with	a	“-”	sign,	followed	by	the	absolute	
magnitude.


              Example                    Example
              ========================   ========================
  %16x        "        1234abcd"         "       -1234abcd"
  %016x       "000000001234abcd"         "ffffffffedcb5433"

If	the	0	“zero	fill”	flag	is	present,	then	the	number	will	be	sign-extended	to	16	digits.	
Thereafter,	padding	blanks	will	be	added	as	needed	to	reach	the	field	width.	If	the	
field	width	is	too	small,	the	width	will	be	ignored	and	the	full	value	will	be	printed:


              Example                    Example

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
96 217



Chapter	4:	PrintPackage


              ========================   ========================
  %020x       "    000000001234abcd"     "    ffffffffedcb5433"
  %-020x      "000000001234abcd    "     "ffffffffedcb5433    "
  %#020x      "  0x000000001234abcd"     "  0xffffffffedcb5433"
  %#-020x     "0x000000001234abcd  "     "0xffffffffedcb5433  "
  %04x        "000000001234abcd"         "ffffffffedcb5433"

If	a	Precision	value	is	given,	the	number	will	be	truncated	to	that	number	of	digits.	
The	0	“zero	fill”	flag	must	be	present.


              Example                    Example
              ========================   ========================
  %0.11x      "0001234abcd"              "fffedcb5433"
  %016.11x    "     0001234abcd"         "     fffedcb5433"
  %-016.11x   "0001234abcd     "         "fffedcb5433     "
  %04.4x      "0123"                     "ff80"

When	truncation	occurs,	only	sign-extension	digits	may	be	removed.	In	other	words,	
the	value	as	printed	must	be	unchanged.


    printf ("%0.4x", 0xffffffffffff8003)  — Ok, prints "8003"
    printf ("%0.4x", 0x0000000000007fff)  — Ok, prints "7fff"
    printf ("%0.4x", 0x0000000000008003)  — Error
    printf ("%0.4x", 0x0012340000007fff)  — Error

The	reason	the	third	line	throws	an	error	is	that	the	argument	is	a	positive	number,	
but	“8003”	is	a	negative	number,	when	the	16	bits	are	interpreted	as	a	two’s	
complement,	signed	value.


8003 = 0x0000000000008003 =  32,771
       0xFFFFFFFFFFFF8003 = -32,765

If	problems	arise,	the	error	TruncationProblemsWithHex	will	be	thrown.


%f   Floating Point

This	format	code	is	used	to	print	a	double	value.


Flags:

0	 Not	allowed.

#	 Add	the	prefix	and	postfix	to	the	output	string.


Software	Reference	Manual	/	Porter	 	 Page	 	of	 
97 217



Chapter	4:	PrintPackage


-	 Left-justify	the	output	string	within	the	field

Field	Width:

Print	the	output	string	within	a	field,	adding	padding	bytes	as	necessary.	If	the	
width	is	too	small,	then	it	is	ignored	and	the	entire	output	string	is	printed.


Precision:

Print	exactly	this	number	of	digits.


The	formatting	algorithm	is	complex,	but	if	the	simplest	formatting	is	specified:


    %f

the	following	outputs	are	possible:


    "12.35"
    "123.0"
    "1.234000000000000000e+20"
    "1.234e-10 (inexact)"

A	Field	Width	may	be	specified	and	the	“-”	Left-Justification	Flag	may	be	used.	If	the	
Field	Width	is	inadequate,	it	will	be	ignored	and	the	print	string	will	be	as	long	as	
necessary.


                Example
                =====================
    %10f        "     12.35"
    %-10f       "12.35     "
    %10f        "1.2345678901234e+10"

The	formatting	is	guided	by	the	following	preferences	in	threadPrefs.printPrefs:


    PrintPreference       Default value       Reasonable options
    ==================    =================   ==================
    numberPrefix          null                "$ "
    numberPostfix         null                " USD"
    floatDecimalPoint     '.'                 ','
    floatSeparator        ','                 '.', '_', 0 
    floatSeparator2       '_'                 ',', ' ', 0
    floatPosInf           "<pos infinity>"    "+∞"
    floatNegInf           "<neg infinity>"    "-∞"
    floatNaN              "<not-a-number>"    "NaN"
    floatExp              "e"                 " × 10 ^"
    floatInexactPostfix   " (inexact)"        null
    floatPositiveSign     0                   '+'

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
98 217



Chapter	4:	PrintPackage


    floatExpPlusSign      '+'                 0

The	programmer	can	change	these	values	with	code	such	as	this:


    var prefs: ptr to PrintPreferences
    prefs = asPtrTo (threadPtr (), ThreadData).threadPrefs.printPrefs
    prefs.numberPrefix  = "$ "

If	the	#	flag	is	present,	then	the	numberPrefix	string	will	be	prepended	to	the	front	
of	the	output	string	and	the	numberPostfix	string	will	be	appended	to	the	end	of	
the	output	string.	These	strings	default	to	nothing,	but,	if	the	preference	
numberPrefix	value	is	changed	to	“$	”	for	example,	the	following	output	could	be	
produced:


    "$ 12.35"

If	the	preference	numberPostfix	value	is	changed	to	“	€	”,	the	following	output	could	
be	produced:


    "12.35 €"

Given	the	default	values	for	floatDecimalPoint	and	floatSeparator,	the	following	
output	could	be	produced:


    "12,345,678.0"

These	could	be	changed	to	produce	European-style	output:


    "12.345.678,0"

Or	the	separator	could	be	eliminated:


    “12345678.0"

The	floatSeparator2	character	is	used	to	the	right	of	the	decimal	point.	If	changed	
to	a	blank,	numbers	would	be	formatted	like	this:


    "1,234.567 890 12"
    "3.000 000 001 58e-34"

The	floatExp	string	could	be	changed	to	“	×	10	^	”,	giving	output	like	this:


    "6.022 × 10 ^ -23"

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
99 217



Chapter	4:	PrintPackage


The	printf	functions	will	append	the	floatInexactPostfix	to	a	number	whenever	the	
output	produced	by	the	algorithm	is	not	the	exact	same	value	as	the	double	value.	
This	preference	value	can	be	changed	to	null	to	avoid	this.


    "6.022e-23 (inexact)"   -- The default style
    "6.022e-23"             -- After changing floatInexactPostfix

By	default,	the	leading	plus	sign	is	not	printed,	but	this	can	be	changed	by	modifying	
the	floatPositiveSign	preference.


    "123.45"         -- The default style
    "+123.45"        -- After changing the pref

The	printing	of	not-a-number	(NaN)	values,	positive	infinity	and	negative	infinity	
can	be	changed.	The	default	output	strings	are:


    "<not-a-number>"
    "<pos infinity>"
    "<neg infinity>"

The	zero	values	will	printed	as:


   "-0.0"
    "0.0"       -- Default
    "+0.0"      -- After changing floatPositiveSign to "+"

Otherwise,	the	output	string	will	be	produced	in	one	of	these	two	forms: 
32

    "123.456"        -- Will use this form if reasonable
    "1.23456e+23"    -- Will use this otherwise
	

If	Precision	is	present,	then	exactly	that	many	digits	will	be	given	in	the	print	string.	
Otherwise,	the	printf	algorithm	will	choose	the	number	of	digits	based	on	the	value	
to	be	printed.


	The	printing	algorithm	will	make	the	determination	of	which	form	to	print	the	number	in,	based	32

on	how	many	zeros	would	be	printed.

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
100 217



Chapter	4:	PrintPackage


%e   Floating Point - Exponential Form
%g   Floating Point - General Form

This	format	code	is	used	to	print	a	double	value.


Flags:

0	 Not	allowed.

#	 Add	separators.

-	 Left-justify	the	output	string	within	the	field


Field	Width:

Print	the	output	string	within	a	field,	adding	padding	bytes	as	necessary.	If	the	
width	is	too	small,	then	it	is	ignored	and	the	entire	output	string	is	printed.


Precision:

If	present,	round	to	this	number	of	digits.	If	absent,	default	to	16	for	%g	and	17	
for	%e.


If	%e	is	used,	the	output	will	always	be	in	exponential	form,	such	as:


    1.234e5
    6.25e-2
    1.23e-100

If	%g	is	used,	the	output	of	many	values	will	be	rendered	in	a	more	human-friendly	
form,	while	others	will	still	be	in	exponential	form.	For	example:


    123400.0
    0.0625
    1.23e-100

If	Precision	is	specified,	then	the	number	will	be	rounded	to	a	value	with	exactly	that	
many	digits.	Trailing	zeros	to	the	right	of	the	decimal	point	will	be	removed	and	not	
printed.


The	default	Precision	with	%e	is	to	round	to	17	digits,	which	will	cause	each	floating	
point	value	to	be	printed	differently.


With	floating	point,	a	difficulty	is	often	caused	by	the	fact	that	some	numbers	cannot	
be	represented	exactly	with	double	values	and	when	rounded,	all	17	digits	are	
needed.	For	example:	


Software	Reference	Manual	/	Porter	 	 Page	 	of	 
101 217



Chapter	4:	PrintPackage


    printf ("%e", 0.3)

will	print:


    2.9999999999999999e-1

The	default	Precision	with	%g	is	to	run	to	16	digits,	which	gives	more	readable	
output,	and	eliminates	this	problem.	For	example:	


    printf ("%g", 0.3)

will	print:


    0.3

There	are	a	number	of	options	that	are	controlled	by	the	current	values	in	“print	
preferences”.	Here	are	the	things	that	can	be	changed:


	 •	Is	a	leading	“+”	printed	for	positive	numbers?

	 •	Is	a	leading	“+”	printed	after	the	“e”	for	positive	exponents?

	 •	What	character	is	used	for	the	decimal	point?

	 •	What	character	or	string	is	used	to	indicate	“times	10	to	the	power”?

	 •	Are	separators	included	in	the	output	and	what	characters	are	used?

	 •	How	are	these	values	rendered?

	 	 +inf

	 	 -inf

	 	 nan

	 •	Will	inexact	values	be	flagged	with	a	postfix,	such	as	“	(inexact)”?


The	formatting	is	guided	by	the	following	preferences	in	threadPrefs.printPrefs:


    PrintPreference       Default value       Reasonable options
    ==================    =================   ==================
    numberPrefix               <ignored>
    numberPostfix              <ignored>
    floatDecimalPoint     '.'                 ','
    floatSeparator        ','                 '.', '_', 0 
    floatSeparator2       '_'                 ',', ' ', 0
    floatPosInf           "<pos infinity>"    "+∞", "inf"
    floatNegInf           "<neg infinity>"    "-∞", "-inf"
    floatNaN              "<not-a-number>"    "NaN"

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
102 217



Chapter	4:	PrintPackage


    floatExp              "e"                 "E" or "×10^"
    floatInexactPostfix   " (inexact)"        null
    floatPositiveSign     false               true
    floatExpPlusSign      true                false

The	programmer	can	change	these	values	with	code	such	as	this:


    var prefs: ptr to PrintPreferences
    prefs = asPtrTo (threadPtr (), ThreadData).threadPrefs.printPrefs
    prefs.floatPosInf  = "+∞"

If	%e	is	used,	then	the	floatInexactPostfix	will	be	appended	to	the	number	
whenever	the	output	produced	by	the	algorithm	is	not	the	exactly	the	same	value	as	
the	double	value.	This	preference	value	can	be	changed	to	null	to	avoid	this.


    "6.022e-23 (inexact)"   -- The default style
    "6.022e-23"             -- After changing floatInexactPostfix

If	%g	is	used,	then	the	floatInexactPostfix	will	be	ignored	and	will	never	be	
appended.


By	default,	the	leading	plus	sign	is	not	printed,	but	this	can	be	changed	by	modifying	
the	floatPositiveSign	preference.


    "1.23e+2"         -- The default style
    "+1.23e+2"        -- After changing the pref

The	printing	of	not-a-number	(NaN)	values,	positive	infinity	and	negative	infinity	
can	be	changed.	The	default	output	strings	are:


    "<not-a-number>"
    "<pos infinity>"
    "<neg infinity>"

The	zero	values	will	printed	as:


    "-0.0"
    "0.0"       -- Default
    "+0.0"      -- After changing floatPositiveSign to "+"

A	Field	Width	may	be	specified	and	the	“-”	Left-Justification	Flag	may	be	used.	If	the	
Field	Width	is	inadequate,	it	will	be	ignored	and	the	print	string	will	be	as	long	as	
necessary.


Software	Reference	Manual	/	Porter	 	 Page	 	of	 
103 217



Chapter	4:	PrintPackage


                Example
                ========================
    %10e        "   1.23e+2"
    %-10e       "1.23e+2   "
    %10e        "1.2345678901234567e+10"

%b   Boolean

This	format	code	is	used	to	print	a	bool	value.	Basically,	the	value	is	printed	as	either	
“true”	or	“false”.


Flags:

0	 Not	allowed.

#	 Suppresses	the	printing	of	false.

-	 Left-justify	the	output	within	the	field


Field	Width:

Print	the	value	within	a	field,	adding	padding	bytes	as	necessary.	If	the	width	is	
too	small,	then	it	is	ignored	and	the	entire	value	is	printed.


Precision:

Truncate	the	value	to	this	number	of	characters.


Format	Character:

b	 Print	in	lowercase,	e.g.,	“true”

B	 Print	in	uppercase,	e.g.,	“TRUE”


Here	are	some	examples:


                    Example         Example
                    =============   =============
    %b            "true"         "false"
    %#b           "true"         ""
    %8b           "    true"     "   false"
    %-8b          "true    "     "false   "
    %2b           "true"         "false"
    %8.1B         "       T"     "       F"
    %-8.1B        "T       "     "F       "
    %#8.1B        "       T"     "        "
    %#8b          "    true"     "        "
    %#-8b         "true    "     "        "
    %#2b          "true"         "  "

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
104 217



Chapter	4:	PrintPackage


%h   Halfword
%w   Word
%i   Integer

These	format	codes	are	used	to	send	bytes	directly	to	the	output.	The	bytes	are	
uninterpreted.	That	is,	the	binary	value	is	sent	directly.


These	codes	can	be	useful	in	writing	output	to	a	non-text	file.	In	many	cases,	it	is	
easier	to	read	and	write	arbitrary	integer	values	as	8	byte	binary	values	rather	than	
as	decimal	values	of	uncertain	length	and	format.	However,	such	files	are	not	
human-readable.


The	%h	(halfword)	format	code	will	send	2	bytes	(16	bits)	to	the	output.	The	
corresponding	argument	should	be	an	integer	within	the	following	range,	i.e.,	any	16	
bit	value.


    0x8000 ... 0x7fff
    -32,768 ... +32,767

The	%w	(word)	format	code	will	send	4	bytes	(32	bits)	to	the	output.	The	
corresponding	argument	should	be	an	integer	within	the	following	range,	i.e.,	any	32	
bit	value.


    0x80000000 ... 0x7fffffff
    -2,147,483,648 ... +2,147,483,647

The	%i	(integer),	format	code	will	send	8	bytes	(64	bits)	to	the	output.	The	
corresponding	argument	should	be	an	integer.	Any	int	value	is	acceptable.


Flags:

0	 Not	allowed.

#	 Not	allowed.

-	 Not	allowed.


Field	Width:

Not	allowed.


Precision:


Software	Reference	Manual	/	Porter	 	 Page	 	of	 
105 217



Chapter	4:	PrintPackage


Not	allowed.


For	example:


    printf (myFile, "%h", 0x6162)
    printf (myFile, "%h", 24930)   -- Equivalent

will	send	16	bits	to	the	output.	If	interpreted	as	a	text	file,	this	output	will	print	as:


    "ab"

There	is	no	corresponding	format	code	for	1	byte	(8	bits),	because	the	%c	
(character)	format	code	will	work	fine.	To	send	any	8	bit	value,	i.e.,	any	value	within	
the	following	range


    0x80 ... 0x7f
    -128 ... +127

use	something	like:


    printf (myFile, "%c", 0x0f)

%o   Object

This	format	code	is	used	to	print	an	object’s	class.	The	corresponding	argument	
must	be	a	pointer	to	an	object.


Flags:

0	 Not	allowed.

#	 Prefix	the	class	name	with	“a”	or	“an”.

-	 Left-justify	the	output	within	the	field


Field	Width:

Print	the	class	name	within	a	field,	adding	padding	bytes	as	necessary.	If	the	
width	is	too	small,	then	the	width	is	ignored	and	the	entire	class	name	is	printed.


Precision:

Not	allowed.


Here	are	examples:


Software	Reference	Manual	/	Porter	 	 Page	 	of	 
106 217



Chapter	4:	PrintPackage


                    Example                     
                    ==========================
    %o            "Person"
    %15o          "         Person"
    %-15o         "Person         "
    %3o           "Person"

The	#	prefix	flag	will	cause	“a”	to	be	added	to	the	class	name.	If	the	class	name	starts	
with	a	vowel	then	“an”	is	used	instead. 	No	space	is	added.
33

    Person → aPerson
    Employee → anEmployee
 
                    Example                     Example
                    =======================     ==========================
    %#o           "aPerson"                 "anEmployee"
    %#15o         "        aPerson"         "     anEmployee"
    %#-15o        "aPerson        "         "anEmployee     "

If	the	pointer	is	null,	then	“<	null	>”	is	printed.


This	format	code	might	be	adequate	for	some	tasks	like	debugging,	but	often	the	
programmer	will	want	to	know	more	than	just	the	object’s	class.	If	the	class	
implements	a	“printString”	message,	something	like	this	might	be	more	useful:


     printf ("obj = %s", p.printString ())

%%   Percent
%(   Parenthesis

Sometimes	it	is	desirable	to	output	the	“%”	character.	Since	%	is	used	to	signal	a	
format	code,	it	must	be	doubled	to	avoid	this	interpretation.	We	can	view	%%	as	a	
special	format	code	which	just	prints	“%”.


For	example:


		Vowels	are	defined	here	as	a,	e,	i,	o,	u,	A,	E,	I,	O,	U.	This	works	reasonably	well.	However	some	33

people	prefer	to	say	things	like	“an	heir”	or	“a	Opossum”,	since	they	do	not	pronounce	the	first	
letter.

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
107 217



Chapter	4:	PrintPackage


    printf ("Percent = \"%%\"\n")

Sometimes	it	is	desirable	to	print	a	value	and	immediately	follow	it	with	a	“(”	
parenthesis.	In	order	to	prevent	the	compiler	from	interpreting	the	“(”	as	indicating	
an	embedded	identifier,	the	“(”	must	be	escaped:


     printf ("value = %d(i)")            -- OK; embedded ID is used.
     printf ("value = %d(decimal)", i)   -- Error
     printf ("value = %d%(decimal)", i)  -- Must escape the "("

The	%(	is	not	widely	used,	since	inserting	an	extra	space	will	usually	be	acceptable	if	
not	preferable.


     printf ("value = %d (decimal)", i)  -- Probably preferable

Flags:

0	 Not	allowed.

#	 Not	allowed.

-	 Not	allowed.


Field	Width:

Not	allowed.


Precision:

Not	allowed.	


Implementation


The	compiler	will	parse	printf	and	sprintf	statements	and	transform	them	into	calls	
to	simpler	functions.	These	simpler	functions	are	implemented	in	PrintPackage	and	
you	can	have	a	look	at	the	code	of	that	package	for	more	detailed	documentation.


For	example,	consider	this	KPL	code:


printf ("example  %s  %d  \n", str, i)

The	KPL	compiler	will	transform	this,	as	if	the	programmer	had	written	this	instead:


f_print_begin (stdout)
f_print_s (stdout, false, -1, -1, "example  ")

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
108 217



Chapter	4:	PrintPackage


f_print_s (stdout, false, 10, -1, str)
f_print_s (stdout, false, false, -1, "  ")
f_print_d (stdout, true, false, -1, i)
f_print_s (stdout, false, -1, -1, "  \n")
f_print_end (stdout)

The	purpose	of	the	functions		f_print_begin	and	f_print_end	is	to	perform	low-level	
locking	and	unlocking	in	order	to	make	the	entire	sequence	atomic.


The	f_print_s	function	is	defined	as


function f_print_s (fileID: ptr to FILE,
                    leftJustify: bool,
                    fieldWidth: int,
                    truncateTo: int,
                    str: String)

The	f_print_d	function	is	defined	as


function f_print_d (fileID: ptr to FILE,
                    addCommas: bool,
                    leftJustify: bool,
                    fieldWidth: int,
                    value: int)

There	are	other	similar	functions	for	the	other	format	codes.


In	the	course	of	parsing	the	FormatString,	the	compiler	will	perform	error	checking	
to	make	sure	things	like	the	Flags	and	Precision	are	appropriate	for	the	given	
FormatCode	and	that,	for	each	FormatCode,	there	is	a	corresponding	argument	of	the	
correct	type.


For	the	FormatCodes	%e,	%f,	and	%g	—	which	handle	floating	point	values	of	type	
double	—	the	corresponding	functions	(such	as	f_print_f,	…)	are	not	located	in	
PrintPackage.	Instead,	they	are	found	in	the	package	named	“Number”.


If	FormatCodes	%e,	%f,	or	%g	are	used,	the	programmer	must	include	Number	in	
the	“uses”	clause.	If	these	FormatCodes	are	not	needed,	then	the	Number	package	
need	not	be	used.


Software	Reference	Manual	/	Porter	 	 Page	 	of	 
109 217



Chapter	4:	PrintPackage


Unicode	and	UTF-8


Recall	that	with	Unicode,	each	character	has	a	numerical	codepoint.	The	codepoint	
is	an	integer	greater	than	or	equal	to	0.	For	example,	‘a’	is	97	and	‘😀 ’	is	128512.


In	KPL,	individual	characters	are	represented	with	int	values,	so	the	following	are	
both	legal	KPL	statements	and	set	the	variable	to	the	exact	same	value:


i = '😀 '
i = 128512

Using	a	64	bit	integer	for	each	character	is	inefficient	for	long	strings,	so	UTF-8	is	
widely	used.	With	UTF-8	each	character	is	represented	with	1	to	4	bytes.


PrintPackage	provides	two	useful	functions	for	converting	a	codepoint	to/from	its	
UTF-8	encoding.


MAX_ALLOWABLE_CODEPOINT

const MAX_ALLOWABLE_CODEPOINT = 0x10FFFF

This	number	comes	from	Unicode	and	is	1,114,111	in	decimal.


Note	that:


	 221			=			2,097,152			=			0x200000


Although	the	UTF-8	scheme	can	naturally	encode	any	21-bit	binary	number,	Unicode	
codepoints	are	limited	to	the	above	range.


ToUTF8

function ToUTF8 (p: ptr to byte, codepoint: int) returns int

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
110 217



Chapter	4:	PrintPackage


This	function	translates	a	single	Unicode	character	into	its	UTF-8	encoding.	It	is	
passed	the	codepoint	to	be	translated	and	a	pointer	to	memory	where	the	encoded	
bytes	will	be	placed.	This	function	will	store	0-4	bytes	at	this	memory	address	and	
return	the	number	of	bytes	stored.


The	codepoint	must	be	a	legal	Unicode	codepoint.	In	other	words,	it	must	be	in	the	
range


hex	 decimal

0x0 … 0x0010_FFFF          0 … 1,114,111 

The	translation	will	be	1	to	4	bytes	in	length.	This	function	will	return	the	number	of	
bytes	in	the	UTF-8	encoding.	If	the	codepoint	is	not	valid,	this	function	returns	0.


FromUTF8

function FromUTF8 (ch: byte, soFar: int) returns int

This	function	can	be	used	to	decode	a	UTF-8	string	and	extract	codepoints.	It	is	
passed:


	 ch	 the	next	byte	of	input

	 soFar	 information	accumulated	from	previous	bytes


Initially,	it	should	be	called	with	soFar	=	0	and	is	called	successively	on	the	bytes	in	
the	UTF-8	string.


This	function	returns:


	 ≥	0	 The	Unicode	codepoint,	if	this	byte	completes	a	valid	encoding.

	 -1	 A	UTF-8	encoding	error	has	occurred

	 <	-1	 The	value	of	soFar	to	be	used	for	the	next	call


Here	is	how	to	use	this	function:


soFar = 0
while
  ch = …Get	the	next	byte…
  soFar = FromUTF8 (ch, soFar)

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
111 217



Chapter	4:	PrintPackage


  if soFar >= 0
    …Got	a	codepoint	in	soFar;	do	something	with	it…
  elseIf soFar == -1
    …Got	an	error;	print	a	message…
    soFar = 0
  else
    -- In the middle of encoding; keep going.
  endIf
endWhile

NOTE:		This	function	is	reentrant.	(The	entire	state	is	contained	in	soFar.)


NOTE:		Codepoints	can	be	encoded	with	more	bytes	than	necessary.	For	example,	
codepoint=0	is	normally	encoded	in	1	byte,	but	it	can	also	be	encoded	with	4	bytes.	
(It	would	be	\xf0\x80\x80\x80.)	This	function	will	not	flag	this	as	an	error,	
although	it	might	be	considered	an	error	by	some	people/programs.


NOTE:		The	encoded	bit	pattern	must	be	within	0	...	MAX_ALLOWABLE_CODEPOINT,	
or	else	this	function	will	consider	it	an	error.


Software	Reference	Manual	/	Porter	 	 Page	 	of	 
112 217



Chapter	5:	HostInterface	Package


Introduction	


The	System	package	contains	many	core	functions	needed	by	any	KPL	program	and	
it	must	be	included	in	every	KPL	program.	Among	other	useful	helper	functions,	
System	contains	functions	related	to	error	handling	and	the	printing	of	messages.


However,	the	handling	of	input/output	and	communication	with	the	outside	world	
will	be	different	on	different	computers.	For	example,	a	laptop	might	display	
messages	on	a	screen,	a	computer	in	a	robot	might	use	a	small	led	display	for	
messages,	and	an	embedded	computer	might	send	output	over	a	debugging	cable	to	
a	diagnostic	support	machine.


Each	Blitz	program	is	running	on	a	different	machine	in	a	different	environment	
with	different	ways	of	interacting	with	the	outside	world.	The	purpose	of	the	
HostInterface	package	encapsulate	the	details	of	communication	with	the	
particular	environment	and	the	ways	in	which	the	I/O	is	processed	for	that	
environment.


For	the	Blitz	system	running	on	laptop,	one	version	of	HostInterface	is	used.	For	the	
Blitz	system	running	within	a	robot,	a	different	version	of	HostInterface	would	be	
used.	And	for	the	system	running	in	an	embedded	device,	yet	a	third	version	of	the	
HostInterface	package	would	be	needed.	The	benefit	of	isolating	host/envornment	
dependencies	in	the	HostInterface	package	is	that	all	these	systems	can	use	the	
same	version	of	the	System	package.


Software	Reference	Manual	/	Porter	 Page	 	of	113 217



Chapter	5:	HostInterface	Package


The	idea	is	that	if	a	function	is	unchanged,	regardless	of	the	environment,	it	should	
be	included	in	System.	But	if	the	function’s	implementation	depends	on	
environment-specific	details,	it	should	be	placed	in	HostInterface.


For	example,	the	function	to	append	two	Strings	is	identical,	regardless	of	the	
environment,	so	it	is	placed	in	System.	On	the	other	hand,	the	function	to	print	or	
display	a	String	will	be	implemented	differently	for	different	environments,	so	it	will	
be	placed	in	HostInterface.


Another	benefit	of	this	division	of	labor	between	System	and	HostInterface	is	that	
porting	the	Blitz	system	from	one	environment	to	another—that	is,	implementing	
Blitz	on	new	hardware—reduces	to	the	task	of	modifying	or	rewriting	
HostInterface.	We	strive	to	remove	all	hardware	dependencies	from	System,	so	that	
all	Blitz	programs	can	share	an	identical	copy	of	System.


Basic	Environments	


Initially,	we	envision	these	environments:


	 •	Emulated,	running	under	Mac	OS	X

	 •	Standalone,	running	on	a	single	board	computer


The	initial	software	development	was	done	within	the	traditional,	Unix-based	
environment. 	All	Blitz	code	was	executed	by	the	Blitz	emulator,	which	is	a	program	34

named	“blitz”.	The	emulator	runs	as	a	normal	Unix	program	and,	as	such,	makes	
Unix	system	calls. 
35

Before	developing	the	Blitz	kernel,	it	was	important	to	make	sure	the	Blitz	
programming	system	(the	compiler,	assembler,	linker,	and	emulator)	were	up	to	the	
task	of	serious	software	development.	The	biggest	Blitz	program	in	existence	is	the	
KPL	compiler,	a	Unix	program	written	in	C++.	If	this	program	could	be	ported	to	Blitz

	This	would	be	my	Mac	laptop.34

	Perhaps	I	should	use	the	term	“POSIX-complaint	OS”	rather	than	“Unix”.	Mac	OS	X	is	POSIX-35

compliant,	while	Android	and	Linux	are	mostly	POSIX-compliant.	Within	Windows	there	are	
several	options	for	POSIX	compatibility.	The	subject	of	POSIX-compliance	is	complicated	and	filled	
with	technicalities.	Simply	put,	the	Blitz	software	has	not	been	run	on	any	other	POSIX-compliant	
OS.	I	prefer	the	term	“Unix	system”	so	that	I	don't	suggest	a	greater	degree	of	precision	than	exists.

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
114 217



Chapter	5:	HostInterface	Package


—that	is,	if	the	KPL	compiler	can	be	re-written	in	KPL,	compiled,	and	executed	on	
the	emulator—then	we	can	conclude	that	the	Blitz	program	development	approach	
works.	At	this	date,	the	KPL	compiler	exists	in	two	versions.	One	version	is	written	
in	KPL	and	this	compiler	is	called	kpl.	The	other	version	is	written	in	KPL	and,	for	
the	time	being	to	avoid	confusion,	is	called	kpl2.	The	version	written	in	KPL	runs	
under	the	emulator	and	functions	identically	to	the	version	written	in	C++.	The	
assembler	has	also	been	ported	to	KPL	and	can	be	run	with	the	emulator.


The	compiler	and	other	tools	interface	with	the	OS	in	the	following	ways:


•	 The	source	files	are	opened	and	read.

•	 The	output	files	are	opened	(and	created	and	destroyed),	and	written	to.

•	 File	error	information	from	the	host	OS	is	retrieved.

•	 The	date	and	time	are	retrieved.

•	 Output	to	stdout	is	used	for	listings,	etc.

•	 Output	to	stderr	is	used	for	error	messages.

•	 Command	line	arguments	are	retrieved.


By	encapsulating	this	functionality	in	HostInterface,	programs	like	the	compiler	and	
other	tools	need	not	know	what	OS	they	are	running	under.


Ultimately,	the	compiler	and	other	development	tools	will	run	under	a	Blitz-based	
OS,	which	will	provide	these	capabilities.	But	until	then,	HostInterface	will	simply	
pass	these	requests	through	to	the	Unix	host	OS,	which	will	provide	this	
functionality.


Although	POSIX-compliance	provides	a	myriad	of	ways	for	a	program	to	
communicate	with	the	OS,	the	above	list	pretty	much	covers	what	is	required	in	
order	to	support	Blitz	code	development.	These	are	the	sorts	of	things	that,	at	a	
minimum,	must	be	handled	in	HostInterface.


By	the	way,	the	emulator	has	these	additional	interactions	with	the	OS:


•	 Control-C	interrupts	need	to	be	accommodated.

•	 Raw	serial	I/O	needs	to	be	accommodated.

•	 Access	to	floating	point	exception	flags	(overflow,	invalid,	…)	is	required.


The	emulator	runs	on	the	host	Unix	system	and	provides	the	illusion	of	real	Blitz	
hardware.	But	since	the	emulator	does	not	run	under	or	within	the	Blitz	system,	
there	is	no	need	to	accommodate	those	functions	within	HostInterface.


Software	Reference	Manual	/	Porter	 	 Page	 	of	 
115 217



Chapter	5:	HostInterface	Package


So	we	envision	two	versions	of	the	HostInterface	package:


•	 Version	1	passes	the	requests	through	to	the	Unix-based	host	OS

•	 Version	2	passes	the	requests	though	to	the	Blitz	OS.


In	this	chapter,	we	are	discussing	only	the	version	of	HostInterface	that	runs	under	
a	Unix	host	OS.	


At	this	writing,	the	Blitz	OS	does	not	exist.	Only	version	1	of	HostInterface	exists.	
Only	the	bare	minimum	of	functionality	needed	to	support	the	programming	tools	
(such	as	the	kpl2	compiler,	the	assembler,	and	the	linker)	are	implemented.


Below,	we	first	document	the	functionality	provided	by	HostInterface.	Then	we	
discuss	the	mechanism	by	which	these	requests	are	passed	through	to	the	host	OS.


The	Environment	for	HostInterface	


The	HostInterface	package	does	not	use	any	other	packages.	As	such,	the	code	
within	it	cannot	call	any	of	the	functions	provided	by	System	or	PrintPackage.	This	
includes	many	of	the	familiar	functions	that	are	used	in	KPL	code	almost	without	
thinking.


initializeHostInterface  

function initializeHostInterface ()

The	application’s	main	function	should	call	this	function	before	using	any	other	
functions.	Currently,	this	function	does	nothing,	since	there	is	nothing	to	do.


Upon	program	startup,	the	function	KPLSystemInitialize	within	System	will	be	
invoked	before	the	main	function	is	called.	This	will	initialize	the	heap	mechanism,	
although	nothing	will	be	allocated	on	the	heap.	Then,	KPLSystemInitialize	will	
invoke	initializeHostInterface,	which	is	a	function	within	HostInterface.	Finally,	

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
116 217



Chapter	5:	HostInterface	Package


when	this	returns,	KPLSystemInitialize	will	terminate	and	the	main	function	will	
begin	executing.	


The	application	program	may	subsequently	decide	to	change	the	heap	management	
algorithm.	Therefore,	initializeHostInterface	must	not	allocate	anything	on	the	
heap.	If	the	application	programs	changes	the	heap	management	algorithm,	any	
chunk	of	memory	allocated	within	initializeHostInterface	will	be	lost.


If	the	main	function	is	going	to	change	the	heap	management	algorithm,	it	must	do	
it	before	any	files	are	opened	or	the	command	line	arguments	are	examined.	The	
following	functions	from	HostInterface	allocate	memory,	so	the	application	must	
not	call	these	before	changing	the	heap	management	algorithm: 
36

	 fopen

	 hostArgs

	 hostDate


Since	these	functions	must	allocate	space	on	the	heap,	the	function	MemoryAlloc	
must	be	accessible	in	HostInterface.	MemoryAlloc	is	implemented	in	assembly	
code	in	runtime.s	and	performs	an	up-call	to	a	heap	function	from	the	System	
package.	None	of	the	functions	in	HostInterface	free	any	memory,	so	there	are	no	
calls	to	MemoryFree.	It	is	the	responsibility	of	the	application	code	to	free	objects,	if	
that	is	required.


Normally,	HostInterface	does	not	do	any	printing	or	user	interaction,	so	there	is	no	
need	for	access	to	functions	like	the	following	and	they	are	not	available	within	
HostInterface:


	 print

	 printString

	 printIntVar

	 printDecimal

	 readString


HostInterface	provides	two	pathways	for	its	users	to	communicate	with	the	outside	
world:


	In	the	future,	other	functions	that	allocate	memory	may	be	added	to	HostInterface.	Any	36

application	program	that	changes	heap	management	any	place	other	than	at	the	beginning	of	
main	better	be	careful	to	check	about	this.

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
117 217



Chapter	5:	HostInterface	Package


	 SimpleSerial	I/O

	 Host	OS	file	system	(stdin,	stdout,	stderr)


The	SimpleSerial	device	is	documented	as	part	of	the	Instruction	Set	Architecture,	
and	specifies	a	minimal	connection	to	a	serial	device.	Even	the	most	minimal	Blitz	
system	can	use	this	pathway	to	communicate	with	the	outside.	Typically	the	
SimpleSerial	device	correspond	to	“Tx"	and	“Rx"	digital	I/O	pins,	similar	to	what	
exists	on	many	single	board	computers	like	the	Arduino.	No	file	system	or	advanced	
OS	kernel	is	required	for	use	of	the	SimpleSerial	pathway.


The	second	pathway	will	be	familiar	to	anyone	who	already	uses	the	Unix	file	
system.


The	SimpleSerial	Functions	


The	HostInterface	packages	provides	these	functions:


	 SimpleSerial_PrintChar

	 SimpleSerial_PrintString

	 SimpleSerial_ReadString


These	functions	are	implemented	in	assembly	code	and	are	found	in	runtime.s.


There	is	no	additional	code	in	the	version	of	HostInterface	discussed	here.	In	a	
future	version	intended	to	run	under	the	Blitz	OS,	the	situation	may	be	different.	
Calls	to	these	functions	may	be	re-routed	to	the	file	system	in	such	a	future	version	
of	HostInterface.


SimpleSerial_PrintChar  

external SimpleSerial_PrintChar (ch: int)

This	function	is	passed	a	character	and	it	sends	it	to	the	output.	Only	the	low-order	8	
bits	are	used;	the	upper	bits	are	ignored.	For	UTF-8	encoded	Unicode	text,	this	
function	should	be	called	once	for	each	byte,	i.e.,	1	to	4	times	for	each	“character”.


Software	Reference	Manual	/	Porter	 	 Page	 	of	 
118 217



Chapter	5:	HostInterface	Package


SimpleSerial_PrintString  

external SimpleSerial_PrintString (msg: String)

Recall	that	a	variable	of	type	String	contains	a	pointer	to	an	array	of	bytes. 	This	37

function	sends	these	bytes	to	the	output.	It	is	functionally	equivalent	to	calling	
SimpleSerial_PrintChar	repeatedly,	but	presumably	faster.


Recall	that	arrays	in	Blitz	have	both	a	current	size	and	a	maximum	size.	This	prints	
characters	up	to	the	current	size.	Often,	the	string	will	end	with	the	newline	
character,	which	is	\n.


SimpleSerial_ReadString  

external SimpleSerial_ReadString (buffer: String)

This	function	is	passed	a	pointer	to	an	array	of	bytes.	The	current	size	of	the	array	is	
ignored	and	the	maximum	size	limits	how	how	many	bytes	can	be	read	in.


Presumably,	the	user	will	type	a	line	of	characters	and	hit	ENTER/RETURN.	
Regardless	of	where	the	characters	come	from,	the	buffer	will	be	filled	with	UTF-8	
encoded	characters,	with	the	newline	\n	as	the	last	byte	added.


The	bytes	beyond	the	newline,	up	to	the	maximum	size	of	the	array,	are	undefined	
and	may	be	modified	by	this	function. 
38

If	the	buffer	is	not	large	enough	to	accommodate	the	input,	the	final	\n	and	as	many	
characters	as	necessary	will	be	dropped.


	Presumably,	this	is	a	UTF-8	encoded	strings	of	characters,	but	not	necessarily.37

	Actually,	the	emulator	will	always	add	\0	after	the	last	character,	but	it	will	be	added	just	beyond	38

the	CURRENT	array	size.	So	at	most,	the	CURRENT	array	size	will	be	set	to	MAXSIZE-1,	rather	than	
MAXSIZE	as	you	might	expect.	Normally,	Blitz	code	respects	the	CURRENT	size,	so	this	\0	will	be	
ignored	by	application	code.

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
119 217



Chapter	5:	HostInterface	Package


Misc	Functions	


hostArgs  

function hostArgs () returns String

This	function	returns	a	String	containing	the	command	line	arguments.	For	example:


	 “-p -o filename”


When	run	under	the	emulator,	a	Blitz	program	will	get	these	arguments	from	the	
command	line	that	was	used	to	start	the	emulator.	For	example:


% blitz -g MyProgram.exe -args "-p -o filename"

hostDate  

function hostDate () returns String

This	function	returns	the	current	date	and	time	in	the	form	used	in	this	example:


	 “Thu Apr 30 17:10:25 2020”


Accessing	the	Host	File	System	


Software	Reference	Manual	/	Porter	 	 Page	 	of	 
120 217



Chapter	5:	HostInterface	Package


The	general	goal	is	that	the	Unix/Linux/POSIX	functionality	is	mirrored.	Each	of	the	
functions	described	in	this	section	simply	invokes	the	corresponding	function	on	the	
host	system.


One	important	difference	with	Unix	is	that	if	the	errno	variable	may	be	set,	then	it	
will	be	set	in	Blitz.	With	Unix,	the	errno	variable	is	often	set	if	there	is	an	error	but	
unchanged	if	there	was	no	error.


errno  

var errno: int

The	package	defines	this	global	variable.	Upon	errors	in	any	of	the	file	functions,	
errno	will	be	set	to	a	numeric	code	that	corresponds	to	the	error.


Unlike	Unix,	errno	is	always	set,	even	if	there	is	no	error.	Any	function	that	may	set	
errno	will	always	set	errno.	The	condition	of	“no	error”	is	assigned	the	value	of	0.


The	following	constants	are	defined	in	this	package	and	should	be	used	instead	of	
the	integer	values. 
39

	The	intent	is	that	the	error	names,	the	numeric	codes,	and	the	meanings/descriptions	of	the	39

error	conditions	are	the	same	as	in	the	underlying	host	OS.	For	example,	EINVAL	is	defined	as	22.

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
121 217



Chapter	5:	HostInterface	Package


EPERM	 Operation	not	permitted

ENOENT	 No	such	file	or	directory

EIO	 Input/output	error

EBADF	 Bad	file	descriptor

ENOMEM	 Cannot	allocate	memory

EACCES		 Permission	denied

EFAULT	 Bad	address

EEXIST		 File	already	exists

ENOTDIR	 Not	a	directory

EINVAL	 Invalid	argument

EMFILE	 Too	many	open	files

ENAMETOOLONG	 File	name	too	long


FILE

This	package	defines


type FILE = struct … endStruct

Objects	of	type	FILE	are	used	to	identify	files	to	be	read	from	and	written	to	and	are	
normally	referred	to	with	pointers,	as	in:


var myFile: ptr to FILE
…
myFile = fopen ("hello.txt", "r")
if myFile == null
  perror ("Problems")
else
  ch = fgetc (myFile)
  …

stdin, stdout, stderr

This	package	defines	the	following,	which	can	be	used	without	being	opened	first:


var

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
122 217



Chapter	5:	HostInterface	Package


  stdin:  ptr to FILE = …
  stdout: ptr to FILE = …
  stderr: ptr to FILE = … 

useful constants

This	package	defines	the	following	useful	constants:


const
  EOF = -1

  EXIT_FAILURE = 1
  EXIT_SUCCESS = 0

and	the	following	values,	which	are	used	by	the	fseek	function:


const
  SEEK_SET = 0
  SEEK_CUR = 1
  SEEK_END = 2

fopen  

function fopen (filename: String,
                mode: String)
                    returns ptr to FILE
                        [ Max_Stack_Usage = 184 ]

Every	file	must	be	opened	before	being	read	or	written.		A	new	FILE	object	is	
allocated	on	the	heap	and	a	pointer	to	it	is	returned.	This	FILE	object	is	then	used	in	
the	read	and	write	operations.


The	mode	argument	follows	the	Unix	conventions:

"r"	 The	file	must	already	exist.	The	initial	position	will	be	at	the	beginning.	

Only	reading	is	allowed.

"r+"	 The	file	must	already	exist.	The	initial	position	will	be	at	the	beginning.	

Both	reading	and	writing	are	allowed.


Software	Reference	Manual	/	Porter	 	 Page	 	of	 
123 217



Chapter	5:	HostInterface	Package


"w"	 Create	file	or	truncate	it	to	zero	length	if	it	already	exists.	Only	writing	is	
allowed.


"w+"	 Create	file	or	truncate	it	to	zero	length	if	it	already	exists	Both	reading	and	
writing	are	allowed.


"a"		 Create	file	if	necessary,	otherwise	position	it	at	file	end.	Only	writing	is	
allowed.


"a+"	 Create	file	if	necessary,	otherwise	position	it	at	file	end,	Both	reading	and	
writingare	allowed.	Note	with	"a+":	Check	host	differences	on	initial	
position	for	reading.


			

If	there	is	any	error,	null	is	returned	and	errno	is	set	to	indicate	the	error.


The	following	things	cause	errors:

	 •	The	filename	is	null.

	 	 ENOENT:	“No	such	file	or	directory”

	 •	The	filename	is	longer	than	HOST_DEVICE_BUFFER_SIZE.

	 	 ENAMETOOLONG:	“File	name	too	long”

	 •	The	mode	is	bad.

	 	 EINVAL:	“Invalid	argument”

	 •	The	host	OS	had	an	error.

	 	 ENOENT:	“No	such	file	or	directory”

	 	 EACCES	:	“Permission	denied”

	 	 ENOMEM:	“Memory	alloc	failed”


This	function	allocates	space	on	the	heap	and	may	also	throw	heap-related	errors.


fclose  

function fclose (fileID: ptr to FILE)
                     [ Max_Stack_Usage = 40 ]

All	I/O	operations	are	first	completed	and	buffers	are	flushed.	Then	the	file	is	closed	
and	the	FILE	object	is	freed.


The	errno	variable	will	be	set.


The	fileID	argument	must	not	be	null..


Software	Reference	Manual	/	Porter	 	 Page	 	of	 
124 217



Chapter	5:	HostInterface	Package


remove  

function remove (filename: String) returns int
                     [ Max_Stack_Usage = 48 ]

The	given	filename	is	removed	and	deleted.


The	errno	variable	will	be	set.	On	success	this	function	returns	0	and	errno	=	0.	On	
failure,	this	function	returns	-1	and	errno	≠	0.


If	the	file	doesn’t	exist,	then	errno	is	set	to


	 ENOENT:	“No	such	file	or	directory”


feof  

function feof (fileID: ptr to FILE) returns bool
                     [ Max_Stack_Usage = 56 ]

This	function	returns	true	if	at	EOF.


NOTE:	This	functions	follows	the	host,	so	true	may	not	be	returned	until	after	the	
program	tries	to	read	past	the	end.


fgetc  

function fgetc (fileID: ptr to FILE) returns int
                     [ Max_Stack_Usage = 48 ]

This	function	returns	the	next	byte	from	the	file/stream,	as	a	value	in	the	range	0	...	
+255.


Any	attempt	to	read	beyond	the	end	of	the	file/stream	returns	EOF,	which	is	-1.


Software	Reference	Manual	/	Porter	 	 Page	 	of	 
125 217



Chapter	5:	HostInterface	Package


Continuing	to	call	this	function	after	EOF	is	not	an	error.


The	errno	variable	will	be	set.	On	success	this	function	returns	0	…	255	and	errno	=	
0.	On	failure,	this	function	returns	EOF	and	errno	will	indicate	the	cause.


fputc  

function fputc  (ch: int, fileID: ptr to FILE) returns int
                     [ Max_Stack_Usage = 168 ]

Writes	the	byte	ch	to	the	file/stream.	Only	the	least	significant	8	bits	are	used,	so	it	
can	be	viewed	either	as	a	number	in	the	range	0	...	+255	or	the	range	-128	...	+127.


The	errno	variable	will	be	set.	On	success	this	function	returns	the	byte	in	the	range	
0	…	255	and	errno	=	0.	On	failure,	this	function	returns	EOF	and	errno	will	indicate	
the	cause.


ungetc  

function ungetc (ch: int, fileID: ptr to FILE)
        [ Max_Stack_Usage = 40 ]

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
126 217



Chapter	5:	HostInterface	Package


This	will	clear	the	EOF	condition,	and	future	“getting”	will	return	the	pushed	back	
character(s)	before	resuming	getting	bytes	from	the	file/stream.


Any	attempt	to	push	EOF	(i.e.,	-1)	back	onto	the	file/stream	is	ignored.	It	is	legal	to	
push	back	bytes,	even	after	you	have	reached	EOF.


This	function	follows	POSIX	semantics.	Per	POSIX,	this	will	not	modify	the	
underlying	file/stream.	Only	one	character	of	pushback	is	guaranteed,	but	usually	
more	can	be	pushed	back.


Do	not	to	rely	on	multiple	pushbacks!


The	errno	variable	will	be	set.	An	attempt	to	pushback	something	besides	-1,	0	...	
255	will	set	errno	to	EINVAL.


perror  

function perror (str: String)
                     [ Max_Stack_Usage = 176 ]

This	function	checks	errno	and	prints


	 str:		message


	on	stderr	where	message	is	several	words	describing	the	error.


If	str	is	null,	then	it	just	prints	the	message	without	“:	”.


If	errno	is	0,	it	prints


	 str: Okay, no error


Software	Reference	Manual	/	Porter	 	 Page	 	of	 
127 217



Chapter	5:	HostInterface	Package


Any	errors	from	the	printing	itself	will	be	ignored	and	errno	will	be	unchanged	by	
this	function.


fread1  

function fread1  (buffPtr: ptr to void,
                  byteCount: int,
                  fileID: ptr to FILE)
                      returns int
                          [ Max_Stack_Usage = 56 ]

This	function	reads	bytes	from	the	file/stream	and	stores	them	at	the	location	in	
memory	given	by	buffPtr,	up	to	the	number	of	bytes	specified	by	byteCount.


This	function	returns	the	number	of	bytes	successfully	read	(even	if	errors	happen)	
and	the	count	may	be	zero.	When	EOF	is	reached,	errno	will	be	zero;	the	returned	
count	may	be	less	than	the	requested	byteCount.


There	may	be	several	reasons	that	the	bytes	are	not	all	read,	and	one	reason	is	that	
there	was	an	address	mapping	problem.	If	there	would	be	a	TLB	fault,	an	exception	
will	not	occur.	Instead,	the	I/O	will	just	stop.	This	could	be	before	any	bytes	were	
read	or	it	could	be	mid-way	through	the	read,	yielding	a	non-zero	return	value.	
Perhaps	this	can	be	cured	by	just	storing	a	byte	into	the	next	address	in	the	buffer,	
which	will	cause	the	fault	directly.	But	beware!	Even	if	a	byte	could	be	stored	ok,	
there	might	be	interrupts	and/or	thread	switching	and	the	call	might	still	fail	again	
on	the	next	attempt	without	processing	any	bytes.


A	byteCount	of	0	is	allowed.

	


fwrite1  

function fwrite1 (buffPtr: ptr to void,
                  byteCount: int,
                  fileID: ptr to FILE)
                      returns int
                          [ Max_Stack_Usage = 56 ]

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
128 217



Chapter	5:	HostInterface	Package


This	function	writes	the	number	of	bytes	specified	by	byteCount	to	the	file/stream	
from	the	location	in	memory	given	by	buffPtr.


This	function	returns	the	number	of	bytes	successfully	written	(even	if	errors	
happen)	and	may	be	zero.	The	returned	value	will	be	nonzero	if	and	only	if	the	
returned	value	is	not	equal	to	the	desired	byteCount.


There	may	be	several	reasons	that	the	bytes	are	not	all	written,	and	one	reason	is	
that	there	was	an	address	mapping	problem.	If	there	would	be	a	TLB	fault,	an	
exception	will	not	occur.	Instead,	the	I/O	will	just	stop.	This	could	be	before	any	
bytes	were	written	or	it	could	be	mid-way	through	the	write,	yielding	a	non-zero	
return	value.	Perhaps	this	can	be	cured	by	just	loading	a	byte	from	the	next	address	
in	the	buffer,	which	will	cause	the	fault	directly.	But	beware!	Even	if	a	byte	could	be	
loaded	ok,	there	might	be	interrupts	and/or	thread	switching	and	the	call	might	still	
fail	again	on	the	next	attempt	without	processing	any	bytes.


A	byteCount	of	0	is	allowed.


fseek  

function fseek  (fileID: ptr to FILE,
                 offset: int,
                 whence: int)
                     [ Max_Stack_Usage = 40 ]

The	whence	argument	should	be	either:

	 1	=	SEEK_SET

	 2	=	SEEK_CUR

	 3	=	SEEK_END


This	function	changes	to	the	current	position	in	the	file.	The	new	position	can	be	
specified	relative	to	the	beginning	of	the	file,	the	current	position,	or	the	end	of	the	
file.	The	whence	argument	determines	which.


A	positive	offset	moves	forward	in	a	file,	and	a	negative	offset	moves	back	toward	
the	file	beginning.


Software	Reference	Manual	/	Porter	 	 Page	 	of	 
129 217



Chapter	5:	HostInterface	Package


This	function	may	indirectly	cause	reads	and/or	writes	to	the	file	to	occur.


It	is	an	error	to	seek	to	before	the	beginning	of	the	file.


It	is	not	an	error	to	seek	to	beyond	the	end	of	the	file.	If	this	happens	and	subsequent	
writes	occur	at	this	new	position,	the	skipped	over	bytes	will	be	written	with	zeros.


The	EOF	indicator	will	be	cleared.	Any	bytes	pushed	back	with	ungetc	will	be	
discarded.


ftell  

function ftell  (fileID: ptr to FILE) returns int
                     [ Max_Stack_Usage = 48 ]

This	function	returns	the	current	position	in	the	file,	i.e.,	0	...	fileSize.


Upon	an	error,	errno	will	be	set	and	-1	returned.	Otherwise	errno	will	be	set	to	
zero.


When	the	file	is	positioned	before	the	first	byte,	it	returns	0.


When	the	file	is	positioned	at	EOF	(after	the	last	byte),	it	returns	the	file	size	in	
bytes.


fputs  

function fputs  (src: String,
                 fileID: ptr to FILE)
                     returns bool
                         [ Max_Stack_Usage = 240 ]

This	function	writes	the	bytes	in	src	to	the	file/stream.	As	is	the	convention	in	Blitz,	
all	bytes	in	the	string	up	to	the	current	size	are	written. 
40

	This	differs	from	Unix,	in	which	everything	up	to,	but	never	including,	the	\0	byte	is	written.40

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
130 217



Chapter	5:	HostInterface	Package


If	all	is	ok	this	function	returns	true.	If	an	error	occurs,	it	returns	false	and	errno	
indicates	the	nature	of	the	error.


fread  

function fread  (buffPtr: ptr to void,
                 size: int,
                 count: int,
                 fileID: ptr to FILE)
                     returns int
[ Max_Stack_Usage = 8 ]

This	function	returns	the	count	of	items	successfully	read.	


NOTE:	Not	yet	implemented.


fwrite  

function fwrite (buffPtr: ptr to void,
                 size: int,
                 count: int,
                 fileID: ptr to FILE)
                     returns int
[ Max_Stack_Usage = 8 ]

This	function	returns	the	count	of	items	successfully	written.


NOTE:	Not	yet	implemented.


fgets  

function fgets  (dest: String,
                 fileID: ptr to FILE)
                     returns bool

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
131 217



Chapter	5:	HostInterface	Package


[ Max_Stack_Usage = 8 ]

This	function	reads	bytes	from	the	file/stream	up	to	EOF,	a	‘\n’	character,	or	the	
maximum	array	size.


If	all	is	ok	this	function	returns	true.	If	an	error	occurs,	it	returns	false	and	errno	
indicates	the	nature	of	the	error.


NOTE:	Not	yet	implemented.


Implementation	


A	Blitz	program	runs	as	machine	code	on	a	Blitz	hardware	core,	which	is	intended	to	
be	a	bare	machine	running	nothing	else.	When	emulated,	the	Blitz	emulator	must	
faithfully	behave	exactly	the	way	a	Blitz	hardware	core	is	suppose	to	act.


Of	course	the	emulator	runs	on	a	Unix/Linux/POSIX	host	operating	system.	The	
question	is	how	can	the	Blitz	program	gain	access	to	the	underlying	host	OS	if	all	it	
can	do	it	execute	machine	instructions.


The	answer	is	that	there	is	a	sort	of	“backdoor”.	The	emulator	is	tasked	with	
implementing	a	number	of	devices,	such	as	the	“SimpleSerial”	device.	To	provide	the	
backdoor	to	the	host,	another	I/O	device	has	been	added,	called	the	“HostDevice”.


From	the	point	of	view	of	running	Blitz	machine	code,	the	host	OS	is	a	device.	The	
Blitz	code	can	communicate	with	it	by	controlling	this	“device”	in	order	to	send	and	
receive	information.


Within	the	emulator,	which	is	charged	with	emulating	devices,	the	HostDevice	is	
“emulated”	by	simply	invoking	system	calls	to	the	underlying	host	OS.


Currently,	the	“HostDevice”	occupies	a	single	page	in	the	memory-mapped	I/O	space	
at	address	4_0010_8000.	The	running	Blitz	code	sends	commands	and	data	to	the	
host	by	writing	to	predefined	addresses	on	this	page.	The	Blitz	code	gets	status	and	
information	from	the	host	by	reading	from	addresses	in	this	page.


The	details	can	be	found	in	the	following	functions	within	the	Blitz	emulator,	i.e.,	
within	blitz.c:


Software	Reference	Manual	/	Porter	 	 Page	 	of	 
132 217



Chapter	5:	HostInterface	Package


void putHostDevice (int64_t addr, int64_t value) {…}
int64_t getHostDevice (int64_t addr) {…}

You	can	consult	these	functions	for	details,	but	essentially	it	works	like	this.


Several	memory	locations	are	used	to	transfer	arguments	to	the	host	function.	The	
Blitz	code	will	store	values	into	these	addresses	as	the	first	step.	One	location	in	
particular	(0x4_0010_8020)	is	used	to	store	a	function	code.	This	code	tells	which	
host	function	is	needed.	(1=fopen,	2=fclose,	…)


To	perform	the	call	to	the	host	function,	the	Blitz	code	will	read	from	a	particular	
location		called	“do_it”	(0x4_0010_8050).	The	read	operation	will	invoke	the	host	
function.	Like	most	C	programs,	the	emulator	will	be	suspended	for	the	duration	of	
the	system	call	and,	when	it	completes,	the	emulator	will	once	again	gain	control.	
The	emulator	will	then	determine	a	status	code	—	basically	errno	—	and	this	will	be	
the	result	of	the	read	to	the	“do_it”	address.


From	the	viewpoint	of	the	executing	Blitz	code,	reading	from	the	“do_it”	location	will	
both	cause	the	operation	to	occur	and	return	the	status	from	the	operation.	Some	
file	functions	also	return	a	result	as	well	as	setting	errno.	For	example,	fgetc	returns	
a	character	of	data.	For	this,	there	is	a	second	location	in	the	HostDevice	page	called	
RET_VAL	(0x4_0010_8048)	in	which	the	additional	data	is	stored	byte	the	emulator.


The	fopen	and	remove	operations	must	pass	a	pathname	to	the	host	OS.	The	
HostDevice	page	also	contains	a	1,024	byte	chunk	of	space	which	is	set	aside	for	
storing	that	pathname.	The	Blitz	code	will	store	the	pathname	in	that	region	before	
reading	from	“do_it”. 
41

The	command	line	arguments	to	the	Blitz	application	program	are	specified	on	the	
command	line	of	the	Blitz	emulator.	For	example


% blitz -g MyProgram.exe -args “-a -b -c”

will	pass	the	following	string	to	the	Blitz	program:


-a -b -c

	It	is	done	this	way,	rather	than	having	the	emulator	read	the	pathname	from	Blitz	memory,	since	there	41

could	be	a	page	fault	if	the	pathname	happens	to	lie	within	an	unmapped	page.	But	according	to	the	ISA,	
page	faults	do	not	occur	when	accessing	memory-mapped	addresses.	This	assumes	that	backdoor	to	the	
host	might	in	the	future	be	used	in	user-level	application	code.

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
133 217



Chapter	5:	HostInterface	Package


The	argument	string	“-a	-b	-c”	is	passed	from	the	emulator	to	the	running	Blitz	code	
through	the	HostDevice	page.	Two	addresses	used.	The	first	address	is	
0x4_0010_8000	(ARGS_SIZE)	and	can	be	queried	by	the	Blitz	code	to	determine	the	
number	of	bytes	in	the	string.	The	second	address	is	0x4_0010_8008	(ARGS_NEXT)	
and	can	be	queried	to	retrieve	a	single	byte	of	the	string.	The	bytes	are	returned	in	
order,	terminating	with	a	final	null	\0	byte.	The	Blitz	code	will	allocate	a	new	String	
and	read	from	this	address	repeatedly,	placing	the	bytes	in	this	new	String.


The	transfer	of	the	date-and-time	string	is	done	in	a	similar	way,	with	the	Blitz	code	
reading	from	address	0x4_0010_8010	(DATE_SIZE)	to	determine	the	number	of	
bytes	in	the	string	and	reading	from	address	0x4_0010_8018	(DATE_NEXT)	
repeatedly	to	fetch	the	bytes.	A	new	date	and	time	are	obtained	from	the	host	OS	
each	time	the	DATE_SIZE	address	is	queried,	and	the	current	position	(i.e.,	the	next	
byte	to	be	retrieved	from	DATE_NEXT)	is	reset	to	the	beginning	of	the	string	
whenever	DATE_SIZE	is	queried.


Software	Reference	Manual	/	Porter	 	 Page	 	of	 
134 217



Chapter	6:	Number	Package


Introduction


The	Number	package	contains	several	functions	useful	when	working	with	values	of	
type	double.


For	information	about	KPL’s	implementation	of	floating	point,	consult	the	chapter	in	
this	document	titled	“Floating	Point”.


If	the	programmer	uses	the	%e,	%f,	or	%g	FormatCodes	in	a	printf	or	sprintf	
statement,	then	this	package	must	be	included.	The	code	that	performs	the	
conversion	into	a	string	of	decimal	characters	is	also	available	directly	to	the	
programer	as	functions	like	doubleToString.


The	doubleToString	and	doubleToStringWithOptions	functions	convert	a	double	
value	into	a	decimal	representation,	analogously	to	“strfromd”	in	Unix/Linux/POSIX.


The	stringToDouble	and	stringToDoubleWithOptions	functions	work	in	the	
opposite	direction.	They	parse	a	string	looking	for	a	floating	point	number,	
analogously	to	“strtod”	or	“atod”	in	Unix/Linux/POSIX.


The	functions	isfinite,	isnormal,	and	isdenormal,	which	are	used	to	classify	a	
double	value,	are	also	included	in	this	package.


There	are	a	number	of	useful	constants	(such	as	FP_PI	and	FP_MAX_NORMAL)	
defined	here.


This	package	also	include	a	“big	number”	class.	In	Blitz	and	other	64-bit	computers	
int	values	are	limited	to	the	range


	 -9,223,372,036,854,775,808	…	+9,223,372,036,854,775,807


Software	Reference	Manual	/	Porter	 Page	 	of	135 217



Chapter	6:	Number	Package


While	ints	are	adequate	for	all	but	most	unusual	applications,	there	is	occasionally	a	
need	to	work	with	values	that	exceed	this	range.	The	“big	number”	classes	and	
methods	provide	this	capability.


doubleToString

function doubleToString (d: double) returns String

Given	a	double,	allocate	and	return	a	string	representing	the	value.	Here	are	
examples	of	what	might	be	returned:


0.0
-0.0
inf
-inf
nan
456.125
-5.0
1.23456e+123

Short	for	“doubleToStringWithOptions	(d,	true,	false,	15,	null)”.


NOTE:		This	function	always	allocates	a	new	string	on	the	heap.	It	frees	any	other	
memory	it	allocates.


doubleToStringWithOptions

function doubleToStringWithOptions (d: double,
                                    wantNice: bool,
                                    precision_: int,
                                    isInexactAddr: ptr to bool
                                        ) returns String

Given	a	double,	this	function	will	allocate	and	return	a	string	representing	the	value.	
Here	is	an	example	of	a	string	that	might	be	returned:


1.23456e+123

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
136 217



Chapter	6:	Number	Package


If	wantNice	is	true,	then	some	numbers	will	be	printed	in	a	more	human-friendly	
way,	like	this:


123.456
100000.0
0.00001

Here	is	a	typical	usage:


str = doubleToStringWithOptions (d, true, false, 17)

The	following	usage	is	recommended	to	fix	"4.999...999"	to	“5.0":


str = doubleToStringWithOptions (d, true, false, 15)

The	returned	value	for	special	cases	is	determined	by	PrintPreferences.	The	
defaults	are:


<pos infinity> as	determined	by	floatPosInf
<neg infinity> as	determined	by	floatNegInf
<not-a-number> as	determined	by	floatNaN
-0.0
0.0   or	  +0.0	 depending	on	floatPositiveSign

For	the	basic	case	(wantNice=false)	the	result	will	always	be	in	exponential	form.	
There	will	always	be	exactly	one	digit	to	the	left	of	the	decimal	point	and	there	will	
always	be	at	least	one	digit	to	the	right	of	the	decimal	point.	Trailing	zeros	will	be	
removed.	Here	are	some	examples:


-1.23125e+123
1.23456e+2
4.5e-10
1.0e+0

The	number	is	printed	with	exactly	precision	digits	of	accuracy,	although	trailing	
(insignificant)	zeros	are	removed.	In	other	words,	the	exact	value	will	be	rounded	to	
precision	digits	and	then	any	trailing	zeros	to	the	right	of	the	decimal	place	will	be	
removed.	However,	if	the	number	is	an	integral	value,	it	will	be	printed	with	as,	e.g.,	
“123.0”	and	not	“123.”.


A	precision	of	≤	0	will	default	to	16	if	wantNice	is	true,	and	17	otherwise.	A	
precision	of	16	is	nice,	since	it	turns	“3.9999999999999999”	into	“4.0”.	A	precision	

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
137 217



Chapter	6:	Number	Package


of	17	is	good	since	every	double	value	will	print	differently.	A	precision	of	1074	will	
give	the	exact	decimal	value	of	any	double;	values	above	1074	will	have	no	effect,	
since	trailing	zeros	are	removed.


NOTE:	Some	strings	with	17	digits	of	precision	will	map	to	the	same	value.	For	
example,	1.2345678901234567	and	1.2345678901234568	both	map	to	
0x3ff3c0ca428c59fb,	which	prints	as	the	former.


The	exponent	will	have	all	leading	zeros	removed,	which	C	doesn't	do.


If	wantNice	is	true,	we	will	print	some	numbers	in	a	friendlier	form.	Some	numbers	
will	be	printed	without	any	exponent.	There	will	always	be	at	least	one	digit	to	the	
right	of	decimal	point.	Integers	below	100,000,000,000,000,000.0	will	print	without	
an	exponent,	regardless	of	precision.	Otherwise,	values	will	be	printed	in	
exponential	form.


Here	are	some	examples:


-0.00000000045
123.456
45.0
123000000000.0
1.23125e+123

If	any	significant	zeros	were	removed,	then	isInexact	will	be	set	to	true,	otherwise	
to	false.	By	this	we	mean	that	true	will	be	stored	at	isInexactAddr.	If	isInexactAddr	
is	null,	it	is	ignored.


NOTE:		This	function	always	allocates	a	new	string	on	the	heap.	It	frees	any	other	
memory	it	allocates.


printDoubleLikeC

function printDoubleLikeC (d: double) returns String

Given	a	double,	this	function	allocates	a	string	of	digits	representing	the	value.	The	
intent	is	to	produce	exactly	the	same	characters	that	“%.17g”	in	C/C++	would	
produce.


Software	Reference	Manual	/	Porter	 	 Page	 	of	 
138 217



Chapter	6:	Number	Package


This	functionality	is	useful	in	the	KPL	compiler.	There	are	two	versions	of	the	
compiler,	one	coded	in	C++	and	the	other	in	KPL.	The	goal	is	that	both	versions	
should	produce	exactly	the	same	output.	To	test	the	compiler,	there	is	a	large	test	
suite	with	many	programs.	In	order	to	run	the	test	suite	and	compare	the	results,	we	
need	to	have	the	output	match	exactly,	in	order	to	avoid	lots	of	distracting	output.


There	are	a	couple	of	minor	discrepancies	—	concerning	whether	the	output	is	in	
999.999	form	or	in	9.999e99	form	—	but	the	match	is	exact	in	almost	all	cases.


NOTE:		This	function	always	allocates	a	new	string	on	the	heap.	It	frees	any	other	
memory	it	allocates.


doubleToAllDigits

function doubleToAllDigits (d: double,
                            timesTenToThePowerAddr: ptr to int)
                                returns String

Given	a	double,	this	function	allocates	a	string	of	digits	containing	a	decimal	integer.	
It	also	sets	timesTenToThePower	to	the	position	of	the	decimal	point.	Taken	
together,	this	will	be	an	exact	decimal	representation	of	the	value.


For	example,	d	=	470000.0	would	yield	“47”	with	timesTenToThePower	=	4.	For	
example,	d	=	-793.125	would	yield	“-793125”	with	timesTenToThePower	=	-3.	If	
the	number	is	negative,	the	string	will	begin	with	a	“-”	character.	But	“+”	will	never	
be	added.	For	+0.0,	-0.0,	posInf,	negInf,	or	NaN,	it	will	return	null,	with	
timesTenToThePower	=	1,	2,	3,	4,	or	5	respectively.


stringToDouble

function stringToDouble (str: String) returns double 

This	function	will	scan	a	number	and	return	the	value.	It	will	throw	the	following	if	
there	is	a	parse	error:


	 ERROR_stringToDoubleError


Software	Reference	Manual	/	Porter	 	 Page	 	of	 
139 217



Chapter	6:	Number	Package


The	following	examples	show	what	can	be	parsed:


	 “123.456”

	 “			+123.456e+10			”

	 “	+inf	”

	 “-inf”

	 “nan”

	 “-0.0”


A	decimal	point	or	“e”	is	required.	Underscores	are	allowed.


NOTE:	This	function	will	set	flags	UF-UNDERFLOW,	OF-OVERFLOW,	NX-INEXACT	if	
these	conditions	arise.


stringToDoubleWithOptions

function stringToDoubleWithOptions (str: String,
                                    startingPos: int,
                                    scanTrailingWhitespace: bool,
                                    simpleIntegerIsOk: bool,
                                    resultAddr: ptr to double,
                                    nextPosAddr: ptr to int
                                        ) returns bool

This	function	will	scan	the	string	str	which	is	expected	to	contain	a	floating	point	
number	and	it	will	store	the	value	as	a	double	at	resultAddr.


It	will	return	true	if	there	were	no	problems	and	false	if	the	input	string	was	in	error.


Here	are	some	examples	of	what	it	can	handle:


“			123.456						”

“			123										”	 	 	 —	depends	on	simpleIntegerIsOk

“			123.456			xx	”	 	 —	depends	on	scanTrailingWhitespace

“+123e+10”

“123E7”

“12_345_678.0000001”

“12345678.000_000_1”


Software	Reference	Manual	/	Porter	 	 Page	 	of	 
140 217



Chapter	6:	Number	Package


“-123.456e-10”

“+0.0”

“-0.0”

“inf”

“-inf”

“nan”

“		\t\t		123.456			\t\t		”


For	numbers,	there	are	two	options:


If	simpleIntegerIsOk	is	false,	then	either	a	decimal	point	or	“e”	is	required.


If	simpleIntegerIsOk	is	true,	then	inputs	like	“123”	are	acceptable.


A	leading	“+”	or	“-”	sign	is	optional	and	the	exponent	character	can	be	either	“e”	or	
“E”.	A	sign	on	the	exponent	is	optional.	Infinity	can	written	as	either	“inf”	or	
“infinity”	and	a	leading	“+”	or	“-”	sign	can	be	provided.	For	“inf”,	“infinity”	“nan”,	case	
is	ignored.


The	scan	for	a	number	begins	at	str[startingPos].	Leading	whitespace	(‘	’	and	‘\t’)	is	
ignored.


If	scanTrailingWhitespace	is	true,	the	string	will	be	checked	to	ensure	that	only	
whitespace	follows	the	number.	If	scanTrailingWhitespace	is	false,	the	scanning	
will	stop	on	the	first	character	past	the	number.	In	either	case,	nextPos	will	be	set	to	
the	index	of	where	the	scanning	stopped.


A	number	may	optionally	contain	underscores.	If	present,	they	must	be	spaced	
correctly. 	For	example:
42

	 “12_345_678.000_000_1”


Regardless	of	the	number	of	digits	provided,	this	algorithm	will	round	correctly,	
using	“round-to	nearest,	with	ties	to	even”.


	More	precisely,	if	any	underscores	are	present	to	the	left	of	the	decimal	point,	there	must	be	42

exactly	one	“_”	separating	each	group	of	3	digits	to	the	left	of	the	decimal	point;	the	number	must	
not	begin	with	“_”	and	there	must	not	be	an	“_”	between	the	ones	digit	and	the	decimal	point.	If	any	
underscores	are	present	to	the	right	of	the	decimal	point,	there	must	be	exactly	one	“_”	separating	
each	group	of	3	digits;	the	number	must	not	end	with	“_”	and	there	must	not	be	an	“_”	directly	after	
the	decimal	point.

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
141 217



Chapter	6:	Number	Package


If	the	number	has	a	small	number	of	digits	(roughly	16	or	fewer)	and	an	exponent	
within	-22	...	+22,	then	the	conversion	will	use	an	efficient	“fast-path”	algorithm.	For	
other	numbers,	an	algorithm	involving	BigInts	will	be	used .
43

NOTE:		This	function	always	allocates	a	new	string	on	the	heap.	It	frees	any	other	
memory	it	allocates.


NOTE:	This	function	will	set	flags	UF-UNDERFLOW,	OF-OVERFLOW,	NX-INEXACT	if	
these	conditions	arise.	A	parser	error	or	“nan”	will	not	set	NV-INVALID.


parseFloat

function parseFloat (str: String,
                     startingPos: int,
                     scanTrailingWhitespace: bool,
                     simpleIntegerIsOk: bool,
                     nextPosAddr: ptr to int,
                     resultAddr: ptr to int,
                     mantissaAsIntAddr: ptr to int,
                     mantissaAsBigIntAddr: ptr to ptr to Number,
                     decimalExpAddr: ptr to int)

--	Want	to	scan	trailing	whitespace?

--	Is	a	number	without	decimal	or	exponent	acceptable?

--	RESULTS:	next	position

--										code	(-1,1,2,3,4,5:	error,+inf,-inf,nan,+float,-float

--										mantissa	(if	mantissaAsBigNum	is	null

--										mantissa	if	the	value	requires	more	than	18	digits.

--										exponent,	adjusted	so	mantissa	interpreted	as	xxxx.0


This	function	parses	a	floating	point	number	and	returns	the	digits	(as	the	
mantissa)	and	the	exponent.


For	example,	the	input	“123.400e10”	will	be	returned	as:


	 mantissa	=	123400


	This	is	a	complex,	time-consuming	algorithm.	Everything	allocated	on	the	heap	will	be	freed.	The	43

algorithm	used	here	is	described	at:

https://www.exploringbinary.com/correct-decimal-to-floating-point-using-big-integers/

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
142 217



Chapter	6:	Number	Package


	 exponent	=	7


Note	that	123.400e10	=	1234000000000.0	=	123400.0e7


This	function	will	also	accept


	 “inf”

	 “+inf”

	 “-inf”

	 “infinity”

	 “+infinity”

	 “-infinity”

	 “nan”


These	are	case-insensitive,	is	things	like	“+InFiniTY”	are	accepted.


The	result	will	always	be	set	to	indicate	what	was	seen:


	 -1	 Parse	Error

	 1	 +inf

	 2	 -inf

	 3	 nan

	 4	 +number

	 5	 -number


The	mantissa	value	will	be	returned	as	a	64-bit	int,	unless	it	is	very	close	to	
MAX_64.	Otherwise,	it	will	be	returned	as	a	BigInt.	If	the	mantissa	is	returned	as	an	
int,	mantissaAsBigInt	will	be	set	to	null.

	

The	exponent	is	returned	as	an	int.	If	the	user	should	ever	provide	a	string	with	an	
extremal	exponent	(such	as	“1.0e+123456789012345678901234567890”),	it	will	
be	treated	as	an	error.


The	“...Addr"	parameters	must	not	be	null.


The	input	can	be	required	to	contain	either	a	decimal	point	or	an	exponent.	
However,	if	simpleIntegerIsOk	is	true,	then	the	input	need	not	contain	either.	If	a	
decimal	point	appears,	then	there	must	be	at	least	one	digit	before	it	and	at	least	one	
digit	after	it.


Software	Reference	Manual	/	Porter	 	 Page	 	of	 
143 217



Chapter	6:	Number	Package


This	function	will	return	the	stopping	position	as	nextPos.	With	
scanTrailingWhitespace,	the	user	can	elect	to	have	the	function	either	ensure	that	
only	whitespace	follows	the	number,	or	to	simply	stop	after	a	complete	number	has	
been	parsed.	If	we	do	not	scan	trailing	whitespace,	then	nextPos	will	be	the	index	of	
the	character	following	the	number	(or	the	string	length,	if	there	are	no	more	
characters).


If	we	ignore	trailing	whitespace,	things	like	“info”	will	be	accepted	as	“inf”,	stopping	
at	the	“o”.	This	means	that	“infiniti…”	(which	is	misspelled)	will	be	accepted	as	“inf”	
with	“initi…"	remaining	to	be	scanned.	Likewise	“nanXXX”	will	be	accepted	as	legal	
input	if	we	ignore	trailing	whitespace.	The	caller	may	wish	to	check	to	make	sure	the	
next	character	is	not	a	letter/digit/underscore,	and	flag	such	inputs	as	errors.


If	there	is	a	parse	error,	nextPos	will	be	updated.	It	will	be	set	to	some	value	within	
0..stringSize	(i.e.,	just	just	beyond	the	last	character).	It	will	point	to	some	spot	that	
is	approximately	where	the	problem	occurred.


MEMORY	USAGE:	This	function	may	allocate	space	on	the	heap.	It	will	free	
everything	allocated,	except	the	BigInt	it	returns	in	mantissaAsBigInt.	If	there	is	a	
parse	error,	it	will	set	mantissaAsBigInt	to	null	and	free	everything	it	allocated.


parseInteger

function parseInteger (str: String,
                       startIndex: int,
                       newStartAddr: ptr to int)
                            returns ptr to Integer

This	function	creates	and	returns	either	a	SmallInteger	if	possible	or	a	BigInt	
object,	if	the	value	is	not	within	the	range	of	SmallInteger.


The	string	is	scanned	from	str[startIndex]	until	the	end	of	the	string.	The	parsing	
will	stop	with	the	first	character	after	the	integer.	If	successful,	the	stopping	location	
will	be	stored	at	newStartAddr.	If	unsuccessful,	newStartAddr	will	not	be	
modified.


If	no	valid	integer	was	found,	then	this	function	returns	null.


Software	Reference	Manual	/	Porter	 	 Page	 	of	 
144 217



Chapter	6:	Number	Package


Upon	success,	this	function	will	scan	the	following:


(' ' | '\t')*   ( + | - | ε )    DecimalDigit+

NOTE:	This	function	accepts	0,	00,	000...,	+0,	+00,	+000...	but	not	-0,	-00,	-000…


NOTE:		Upon	success,	this	function	will	allocate	a	new	object	on	the	heap.	It	frees	
any	other	memory	it	allocates.


fpclassify

function fpclassify (d: double) returns int

This	function	returns	one	of	the	following	values:


1 FP_NAN
2 FP_INFINITE
3 FP_ZERO
4 FP_NORMAL
5 FP_SUBNORMAL	 —		Not	including	+0.0	or	-0.0

NOTE:	Zero	values	are	usually	considered	subnormal	numbers,	but	this	function	
doesn’t	classify	them	as	such.	Instead,	it	follows	the	Unix/Linux/POSIX	pattern.


isfinite

function isfinite (d: double) returns bool

This	function	returns	true	for	zero,	normal,		and	subnormal	values;	and	false	for	
nan,	+inf,	-inf.


isnormal

function isnormal (d: double) returns bool

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
145 217



Chapter	6:	Number	Package


This	function	returns	true	for	any	“normal”	floating	point	number	and	false	for	any	
nan,	+inf,	-inf,	zero,	and	subnormal	value.


isdenormal

function isdenormal (d: double) returns bool

This	function	returns	true	for	a	“denormal”	(i.e.,	“subnormal”)	floating	point	number	
and	false	for	any	nan,	+inf,	-inf,	+0.0,	-0.0,	and	normal	value.


NOTE:	Zero	values	are	usually	considered	subnormal	numbers,	but	this	function	
doesn’t	classify	them	as	such.	Instead,	it	follows	the	Unix/Linux/POSIX	pattern	
followed	in	fpclassify. 

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
146 217



Chapter	7:	Floating	Point


Introduction


This	chapter	assumes	you	are	familiar	with	floating	point	numbers.	There	are	many	
introductions	to	floating	point	arithmetic,	including:


	 “An	Overview	of	Floating	Point	Numbers”,	by	Harry	H.	Porter	III


Single	and	Double	Precision


Blitz	implements:


	 Double	Precision	Floating	Point


Blitz	does	not	implement	single	precision	floating	point.


Perhaps	some	implementations	will	add	support	for	single	precision,	but	this	would	
be	an	extension	of	the	Blitz-64	ISA	(Instruction	Set	Architecture)	specification. 
44

The	floating	point	instructions	are	all	Format-A	instructions	and	there	is	plenty	of	
additional	room	in	the	op-code	space	for	more	instructions	and	there	are	no	major	
barriers	to	adding	it.


Single	precision	was	not	included	because	it	adds	(1)	complexity	to	the	ISA,	(2)	
complexity	to	the	KPL	language,	(3)	effort	to	any	implementation,	and	(4)	size	and	
power	consumption	to	any	circuit.	Any	single	precision	calculation	can	be	done	with	

	This	statement	applies	to	the	version	documented	here.	Refer	to	the	section	titled	“About	This	Document”	44

for	details.

Software	Reference	Manual	/	Porter	 Page	 	of	147 217



Chapter	7:	Floating	Point


greater	accuracy	using	double	precision,	so	there	is	no	arithmetic	advantage	to	using	
single	precision.


Of	course	single	precision	require	half	the	memory	and	can	thus	be	moved	around	
faster.	And	some	single	precision	operations	can	be	performed	faster	than	double	
precision.


Performance	optimization	is	best	addressed	with	a	very	different	architectural	
design.	Double	precision	is	included	for	doing	the	relatively	small,	quick	calculations	
that	are	occasionally	required	for	programs,	such	as	computing	performance	or	
“percentage	utilization	of	some	resource”.	For	intense	numerical	computation,	such	
as	neural	simulations	or	image	rendering,	special	purpose	engines	are	clearly	the	
better	choice.


IEEE	754


The	IEEE	754	standard	defines	how	computers	shall	implement	floating	point	
numbers.	It	is	long	and	complex,	but	modern	computers	follow	it.


Blitz-64	follows	the	IEEE	754	floating	point	standard.


The	IEEE	standard	has	some	optional	aspects	and	variations.	The	IEEE	standard	
states	that	if	double	precision	is	implemented,	the	single	precision	must	also	be	
implemented.	So	right	away,	it	is	clear	that	Blitz	is	not	technically	in	conformance.


Nonetheless,	the	intent	of	Blitz	is	to	follow	IEEE	754	correctly	and	accurately	for	
those	aspects	that	are	implemented.


Floating	Point	Instructions


To	access	floating	point,	you	write	code	like	and	the	KPL	compiler	will	translate	it	
into	the	appropriate	floating	point	machine	instructions.	For	example:


    var
      d: double
    ...

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
148 217



Chapter	7:	Floating	Point


    d = d * 123.456e-10
    ...
    printf ("d = %g\n", d)

Here	are	the	machine	instructions	for	floating	point:


	 FADD		 RegD,Reg1,Reg2	 RegD	←	Reg1	+	Reg2

	 FSUB		 RegD,Reg1,Reg2	 RegD	←	Reg1	-	Reg2	

	 FMUL		 RegD,Reg1,Reg2		 RegD	←	Reg1	×	Reg2

	 FDIV		 RegD,Reg1,Reg2		 RegD	←	Reg1	/	Reg2

	 FMIN		 RegD,Reg1,Reg2		 RegD	←	MIN	(Reg1,	Reg2)

	 FMAX		 RegD,Reg1,Reg2		 RegD	←	MAX	(Reg1,	Reg2)

	 FNEG		 RegD,Reg1		 RegD	←	-Reg1

	 FABS		 RegD,Reg1		 RegD	←	ABSOLUTE_VALUE	(Reg1)

	 FSQRT		 RegD,Reg1		 RegD	←	SQUARE_ROOT	(Reg1)

	 FEQ		 RegD,Reg1,Reg2		 RegD	←	(Reg1	=	Reg2)	?	1	:	0	(float	compare)

	 FLT		 RegD,Reg1,Reg2	 RegD	←	(Reg1	<	Reg2)	?	1	:	0	(float	compare)

	 FLE		 RegD,Reg1,Reg2		 RegD	←	(Reg1	≤	Reg2)	?	1	:	0	(float	compare)

	 FGT		 RegD,Reg1,Reg2	 RegD	←	(Reg1	>	Reg2)	?	1	:	0	(float	compare)

	 FGE	 RegD,Reg1,Reg2		 RegD	←	(Reg1	≥	Reg2)	?	1	:	0	(float	compare)

	 FCVTFI		 RegD,Reg1	 Convert:	floating-point	←	int

	 FCVTIF		 RegD,Reg1	 Convert:	int	←	floating-point

	 FMADD		 RegD,Reg1,Reg2,Reg3	 RegD	←	(Reg1	×	Reg2)	+	Reg3

	 FNMADD		 RegD,Reg1,Reg2,Reg3	 RegD	←	(-(Reg1	×	Reg2))	+	Reg3

	 FMSUB		 RegD,Reg1,Reg2,Reg3	 RegD	←	(Reg1	×	Reg2)	-	Reg3

	 FNMSUB		 RegD,Reg1,Reg2,Reg3	 RegD	←	(-(Reg1	×	Reg2))	-	Reg3


	 GETFSTAT		RegD	 RegD	←	CSR_STATUS	[floating	bits]

	 PUTFSTAT		Reg1	 CSR_STATUS	[floating	bits]	←	Reg1


	 FCLASS		 RegD,Reg1	 RegD	←	classify(Reg1)	||	FLOAT_STATUS

The	FGT	and	FGE	instructions	are	synthetic	and	implemented	in	terms	of	FLT	and	
FLE.


The	FCLASS	instruction	is	going	away	and	will	be	replaced	by	GETFSTAT	and	
PUTFSTAT.


Software	Reference	Manual	/	Porter	 	 Page	 	of	 
149 217



Chapter	7:	Floating	Point


The	double	precision	values	are	stored	in	memory	and	registers.	When	in	memory,	
they	are	always	stored	at	doubleword-aligned	addresses.	The	general	purpose	
registers	are	used	for	floating	point;	there	are	no	“floating	point	registers”.	Floating	
values	are	moved	with	the	same	instructions	that	are	used	to	move	64	bit	signed	
integers,	namely	LOADD,	STORED,	MOV,	…


To	compare	floating	point	values,	the	programmer	can	write	code	like	this:


    if d1 == d2 ...
    if d1 != d2 ...
    if d1 <  d2 ...
    if d1 <=  d2 ...
    if d1 >  d2 ...
    if d1 >= d2 ...

Equality	comparison	of	two	floating	point	values	must	the	FEQ	instruction,	since	
there	are	special	rules	concerning	the	not-a-number	(NaN)	value.	There	is	no	“FNE”	
instruction;	the	compiler	will	generate	an	FEQ	instruction	instead.	To	compare	the	
actual	bits,	the	programmer	can	use	this:


    if copyBitsToInt (d1) == copyBitsToInt (d2) ...

Implementing	floating	point	in	silicon	is	expensive	and	it	is	envisioned	that	some	
implementations	will	choose	to	avoid	this	complexity.	So	these	instructions	may	
actually	be	emulated.	If	emulated,	the	running	program	will	be	none-the-wiser.	It	
will	produce	the	same	results,	although	it	will	of	course	run	slower,	to	the	extent	it	
uses	any	emulated	instructions.


The	GETFSTAT	and	PUTFSTAT	are	mandatory	and	must	be	included	in	any	
implementation.	Any	or	all	of	the	remaining	instructions	may	be	either	implemented	
or	cause	an	Emulated	Instruction	Exception.


It	is	envisioned	—	but	not	mandatory	—	that	if	any	of	the	following	instructions	are	
emulated,	they	are	all	emulated,	and	if	any	are	implemented	in	silicon,	then	they	are	
all	implemented	in	silicon:


FADD
FSUB
FMIN
FMAX
FNEG

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
150 217



Chapter	7:	Floating	Point


FABS
FEQ
FLT
FLE
FGT
FGE

It	is	envisioned	that,	if	the	above	instructions	are	emulated,	then	FMUL	will	also	be	
emulated.	However,	FMUL	is	significantly	more	complex	and	even	if	the	above	
instructions	are	implemented	in	silicon,	FMUL	may	be	emulated.


Likewise,	it	is	envisioned	that,	if	the	FMUL	is	emulated,	then	FDIV	will	also	be	
emulated,	but	a	hardware	implementation	of	FMUL	does	not	imply	a	hardware	
implementation	of	FDIV.	Division	is	more	complex	and	used	less	often	than	
multiplication,	so	it	may	make	sense	to	emulate	it.


Square	root	is	even	more	complex	and	used	less	often	than	division,	so	it	may	make	
sense	to	emulate	FSQRT,	even	when	FDIV	is	implemented	in	hardware.


It	is	envisioned	that	the	following	instructions	are	either	all	emulated	or	all	
implemented	in	silicon:


FMADD
FNMADD
FMSUB
FNMSUB

Likewise,	these	instructions	may	group	together:


FCVTFI
FCVTIF

The	overhead	to	invoke	a	function	is	less	than	the	time	to	invoke	an	emulation	
routine.	Calling	a	function	may	require	no	more	than	a	CALL	and	RET	instruction.	
Because	of	the	calling	conventions,	the	function	may	avoid	any	saving	of	registers	on	
the	stack.	But	when	we	emulate	an	instruction,	we	have	the	overhead	of	saving	
registers,	dispatching	to	the	right	code,	dissecting	the	instruction	and	obtaining	the	
arguments,	restoring	the	registers,	and	returning	to	the	interrupted	code.	Emulation	
of	instructions	should	be	avoided	if	at	all	possible	and	only	included	when	necessary	

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
151 217



Chapter	7:	Floating	Point


for	deficient	implementations.	Even	an	implementation	in	which	the	pipeline	is	
inoperative	and	


If	an	operation	will	always	be	implemented	in	software,	it	is	far	better	to	avoid	
adding	it	to	the	instruction	set.	It	is	better	to	make	it	a	first-class	function	and	
require	all	programs	to	call	it.


The	square	root	operation	is	really	complex	and	almost	certainly	would	be	
emulated.	For	this	reason	there	is	no	“FSQRT”	instruction.


We	chose	the	prefix	“F”	for	“floating”	rather	than	“D”	for	“double”	to	prevent	
confusion	with	“doubleword”	integers.	If,	in	the	future	implementation,	single	
precision	instructions	are	added,	we	propose	that	the	new	instructions	add	“.S”	for	
“single”:


	 double	precision	 single	precision

FADD FADD.S
FSUB FSUB.S
FMUL FMUL.S
FDIV FDIV.S

	 …	 …


Double	Precision	Numbers


Here	is	the	representation	of	a	64-bit	double	precision	floating	point	value:





The	interpretation	of	the	“exponent”	bit	patterns	is:


	 Bit	Pattern	 Meaning	of	Exponent	Field

	 000 0000 0000	 -1022	—	Denormalized	Numbers,	including	zero	

	 000 0000 0001	 -1022


Software	Reference	Manual	/	Porter	 	 Page	 	of	 
152 217



Chapter	7:	Floating	Point


	   ...	 ...

	 011 1111 1110	 -1	

	 011 1111 1111	 0	

	 100 0000 0000	 +1	

	   ...	 ...

	 111 1111 1110	 +1023	

	 111 1111 1111	 Infinity,	Not-a-Number


Infinity		If	the	exponent	is	all	ones	(i.e.,	111_1111_1111),	then	the	value	of	the	
fraction	matters.	If	the	fraction	is	all	zeros,	then	the	value	is	+∞	or	–∞	depending	on	
the	sign	bit.


	 +∞:

0x7FF0000000000000 =

  0 11111111111 0000000000000000000000000000000000000000000000000000

	 -∞:

0xFFF0000000000000 =

  1 11111111111 0000000000000000000000000000000000000000000000000000

Not-A-Number		If	the	exponent	is	all	ones	(i.e.,	111_1111_1111)	and	the	value	of	the	
fraction	is	not	all	zeros,	then	NaN	is	represented.	There	are	multiple	representations	
that	are	to	be	interpreted	as	NaN	values.	Here	are	two	common	representations	for	
NaN:


	 NaN:

0xFFFFFFFFFFFFFFFF =

  1 11111111111 1111111111111111111111111111111111111111111111111111

0x7FF8000000000000 =
  0 11111111111 1000000000000000000000000000000000000000000000000000

Normalized	Numbers		If	the	exponent	field	is	not	all	zeros	and	not	all	ones,	then	
the	value	represented	is:


	 (-1)sign		×		1.fraction		×		2exponent


where	fraction	represents	the	52	bit	pattern	in	bits	[51:0]	as	a	binary	fixed	point	
number. 
45

	For	example,	“110.1”	is	the	binary	fixed	point	representation	for	the	number	we	write	in	decimal	as	6.5	45

and	“1000.01”	is	the	number	8.25.	As	you	can	see,	“1.fraction”	ranges	from	1.0000…0	to	binary	1.1111…1,	
which	(when	expressed	in	decimal)	is	from	1.0	to	something	like	1.9999…9.

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
153 217



Chapter	7:	Floating	Point


The	exponent	ranges	from	-1022	to	+1023.


For	double	precision,	the	“bias”	is	defined	as	+1023.


The	meaning	of	the	exponent	bits	[62:52]	can	be	determined	by	interpreting	them	
as	an	integer	within	1	…	2046	(i.e.,	within	000_0000_0001	…	111_1111_1110)	and	
subtracting	the	bias,	to	give	an	exponent	in	the	range	-1022	…	+1023. 
46

The	most	significant	bit	indicates	the	sign,	with	1=negative.


Denormalized	Numbers		If	the	exponent	field	is	all	zeros	(i.e.,	000_0000_0000),	
then	the	value	is	a	“denormalized”	number .	The	value	of	the	number	is:
47

	 (-1)sign		×		0.fraction		×		2-1022


The	leading	implicit	“1”	bit	is	no	longer	assumed;	it	is	now	“0”.	Also	the	exponent	is	
always	-1022,	which	happens	to	be	the	smallest	exponent	for	normalized	numbers.


Examples:	The	largest	normalized	number	is:


In	binary:		1.111111111...11111111111	×	2+1023	 (There	are	1+52	ones)

Representation:		0x7FEF_FFFF_FFFF_FFFF

Decimal	approximation:		1.7976931348623157	×	10+308


The	smallest	positive	normalized	number	is:


In	binary:		1.000000000...00000000000	×	2-1022	 (There	are	52	zeros)

Representation:		0x0010_0000_0000_0000

Decimal	approximation:		2.2250738585072014	×	10-308


The	largest	denormalized	number	is:


In	binary:		0.111111111...11111111111	×	2-1022		 (There	are	52	ones)

Representation:		0x000F_FFFF_FFFF_FFFF

Decimal	approximation:		2.2250738585072009	×	10-308


	The	following	names	are	sometimes	used:	emin	=-1022,	emax	=	+102346

	The	term	“subnormal”	is	synonymous	with	“denormal”	and	“denormalized”.47

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
154 217



Chapter	7:	Floating	Point


The	smallest	positive	denormalized	number	is:


In	binary:		0.000000000...00000000001	×	2-1022

Representation:		0x0000_0000_0000_0001

Decimal	approximation:		4.9406564584124654	×	10-324


Zero	is	represented	as	a	denormalized	number:


In	binary:		0.000000000...00000000000	×	2-1022

Representation:		0x0000_0000_0000_0000

Exact	value:	+0.0


There	are	two	zero	values.	The	zeros	are	generally	considered	to	be	“denormalized	
numbers”.


	 +0.0:

0x0000000000000000 =

  0 00000000000 0000000000000000000000000000000000000000000000000000

	 -0.0:

0x8000000000000000 =

  1 00000000000 0000000000000000000000000000000000000000000000000000

Decimal	Representation


All	floating	point	numbers	can	be	represented	exactly	in	decimal.	Of	course	all	
integer	values	can	be	represented	exactly,	and	the	decimal	representation	is	always	
more	concise :
48

	 Binary	 Decimal	Equivalent

	 11000000111001	 12,345


While	every	binary	floating	point	value	can	be	represented	exactly	in	decimal,	some	
values	require	a	lot	of	digits	to	represent	exactly.


	To	be	precise,	it	is	equally	concise	for	0	and	1.48

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
155 217



Chapter	7:	Floating	Point


For	example,	the	smallest	denormalized	number	(0.000000000...00000000001	×	
2-1022,	which	equals	2-1074)	has	1074	digits	to	the	right	of	the	decimal	point,	751	of	
which	are	significant.	It	is	exactly:


0.000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000000000000
00000494065645841246544176568792868221372365059802614324764425585682500675507270
20875186529983636163599237979656469544571773092665671035593979639877479601078187
81263007131903114045278458171678489821036887186360569987307230500063874091535649
84387312473397273169615140031715385398074126238565591171026658556686768187039560
31062493194527159149245532930545654440112748012970999954193198940908041656332452
47571478690147267801593552386115501348035264934720193790268107107491703332226844
75333572083243193609238289345836806010601150616980975307834227731832924790498252
47307763759272478746560847782037344696995336470179726777175851256605511991315048
91101451037862738167250955837389733598993664809941164205702637090279242767544565
229087538682506419718265533447265625

One	useful	property	of	double	precision	floating	point	numbers	is	this:


When	expressed	in	decimal	and	reduced	to	17	significant	digits,	every	double	
precision	floating	point	value	has	a	unique	representation.


Thus,	it	is	often	useful	to	display	no	more	than	17	significant	digits	of	a	number.	This	
allows	you	to	distinguish	two	different	numbers.	And	precision	beyond	17	digits	is	
not	really	useful,	since	nothing	in	the	physical	world	can	be	measured	accurately	to	
that	precision.


But	note	that	not	every	17	digit	number	can	be	represented	uniquely.


Some	decimal	values	that	differ	in	the	17th	significant	digit	will	map	into	the	same	
double	precision	floating	point	value.


For	example,	the	following	decimal	numbers:


0.40000000000000000
0.40000000000000001
0.40000000000000002

all	map	into:


0x3fd999999999999a

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
156 217



Chapter	7:	Floating	Point


Rounding


When	we	go	from	decimal	to	floating	point,	we	may	have	to	round,	since	not	all	
numbers	can	be	represented	exactly.	When	we	go	from	floating	point	to	decimal,	we	
may	have	to	round,	since	we	often	want	a	small,	human-friendly	number	of	digits.


Also,	when	an	operation	such	as	addition	or	multiplications	is	performed,	we	need	
to	round,	since	the	exact	result	often	cannot	be	precisely	represented	as	a	double	
precision	value.


The	IEEE	754	standard	defines	several	ways	to	round:


	 •	Round	toward	zero	(truncation)

	 •	Round	up,	toward	+	infinity

	 •	Round	down,	toward	-	infinity

	 •	Round	to	nearest,	with	ties	toward	zero

	 •	Round	to	nearest,	with	ties	toward	the	even	value


Blitz	implements	only	“round	to	nearest,	with	ties	to	even”.


“Round-toward-zero”	is	also	called	“truncation”	and	is	especially	easy	to	
implement:	just	ignore	any	extra	bits.	Ignoring	difficult	data	is	rarely	the	correct	way	
to	do	things.	The	situations	in	which	“round-up”	and	“round-down”	are	
mathematically	more	justifiable	than	“round-to-nearest”	are	unknown	to	me.


From	a	mathematical	perspective,	“round-to-nearest”	is	the	most	reasonable.	Blitz	
avoids	the	complexity	and	implementation	cost	of	supporting	multiple	rounding	
methods.


There	is	a	question	of	how	to	round	when	the	exact	value	is	exactly	half	way	
between	the	two	nearest	values	that	can	be	represented.


For	example,	if	we	wish	to	round	3.5	to	the	nearest	whole	number,	we	have	a	“tie”	
since	3.5	is	exactly	half	way,	so	there	are	two	“nearest”	values.


With	decimal	integers,	an	even	number	ends	in	0,	2,	4,	6,	or	8.	With	binary	numbers,	
an	even	number	ends	with	0	and	an	odd	number	ends	with	1.	We	can	extend	this	

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
157 217



Chapter	7:	Floating	Point


definition	to	double	precision	values.	The	bit	in	the	least	significant	place	
determines	whether	the	number	is	even	or	odd.


For	example:


even:

1.10110010110010010100110011110010100110101011010110110	×	2-123


odd:

1.10110010110010010100110011110010100110101011010110111	×	2-123


“Round-to-nearest-with-ties-to-even”	means	to	round	exact	ties	to	the	value	with	
a	zero	bit	in	the	least	significant	place.


In	terms	of	implementation	cost,	rounding	ties	“to	even”	as	opposed	to	rounding	ties	
“toward	zero”	is	not	significantly	different.	The	biggest	difficulty	is	in	detecting	an	
exact	tie,	but	this	is	not	significantly	harder	than	detecting	whether	a	value	is	a	tiny	
bit	above	or	a	tiny	bit	below	a	tie.	The	mechanism	for	rounding	a	value	up	is	
required	regardless	of	how	exact	ties	are	dealt	with.	Basing	the	direction	on	the	least	
significant	bit	is	not	particularly	difficult.


Things	To	Remember	About	Floating	Point


We	can	make	the	following	statements	about	floating	point	numbers:


•	 Every	floating	point	numbers	has	a	sign.	Every	number	is	either	positive	or	
negative.


•	 There	are	two	representations	for	zero:	positive	zero	(i.e.,	+0.0)	and	negative	
zero	(i.e.,	-0.0).


•	 There	are	two	representations	of	infinity:	positive	infinity	(+∞	or	+inf)	and	
negative	infinity		(-∞	or	-inf)


•	 The	exponent	may	be	positive	or	negative,	allowing	both	very	large	numbers	
and	very	small	numbers.


•	 There	is	a	special	representation	called	“not	a	number”	(“NaN”).	This	value	can	
represent	a	missing	value	or	the	result	of	an	undefined	operation,	such	as	

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
158 217



Chapter	7:	Floating	Point


divide-by-zero.	In	some	implementations	there	are	two	variations,	called	“quiet	
NaN”	and	“signaling	NaN”.


•	 Every	32-bit	integer	(i.e.,	every	integer	in	the	range	-2,147,483,648	to	
+2,147,483,647)	can	be	represented	exactly	with	a	64	bit	double	precision	
floating	point	number,	but	not	with	a	single	precision	float.	In	fact,	the	integer	
range	is	a	little	greater:	every	54-bit	integer	can	be	represented	exactly	in	
double	precision	floating	point.	Almost	all	larger	integers	will	get	rounded.


Floating	point	numbers	have	these	limitations:


The	range	of	the	exponents	is	limited.


The	amount	of	precision	is	limited.


The	limited	range	of	exponents	means	that	we	cannot	represent	very	large	numbers	
or	numbers	very	close	to	zero.	However,	10+308	is	a	truly	enormous	number	and	
10-308	is	really	small,	infinitesimally	close	to	zero.	It	is	difficult	to	imagine	any	
physical	quantity	that	would	be	measured	with	numbers	outside	of	this	range.


Likewise,	there	is	a	limit	on	precision,	although	it	is	unlikely	that	any	value	can	be	
measured	with	this	accuracy	or	that	such	accuracy	will	be	inadequate.


The	danger	is	this:


Complex	calculations,	particularly	involving	numerous	arithmetic	
operations,	will	introduce	errors	in	accuracy.


These	errors	may	tend	to	combine	and	accumulate,	causing	the	final	results	to	be	
grossly	inaccurate.	This	is	a	particular	risk	when	a	computed	value	is	the	product	of	
many	operations,	as	in	an	iterative	algorithm.


With	scientific	notation,	humans	often	express	the	amount	precision	or	accuracy	of	a	
value,	showing	the	accuracy	by	the	number	of	digits.	Measurements	that	are	more	
accurate	have	more	digits,	and	less	accurate	values	are	rounded	to	values	with	fewer	
digits.


For	example,	these	two	values	are	exactly	equal,	but	they	suggest	different	
confidences	in	their	accuracy:


Software	Reference	Manual	/	Porter	 	 Page	 	of	 
159 217



Chapter	7:	Floating	Point


	 7.25	×	106	

	 7.2500	×	106	


With	floating	point,	these	two	numbers	are	represented	identically.	After	all,	they	are	
really	the	same	number.


Each	floating	point	value	is	nothing	more	than	a	value.	There	is	no	
information	about	the	accuracy	of	that	value.


Since	there	is	a	finite	number	of	bits	available	for	each	number,	there	are	only	a	finite	
number	of	values	that	can	be	represented.	Consequently:


Many	values	cannot	be	represented.


Instead,	we	must	make-do	with	numbers	that	are	nearby	and	approximately	equal	to	
the	desired	value.	The	value	that	the	bits	of	a	floating	point	value	represent	will	be	
the	closest	approximation	to	the	true,	correct	value.	At	least	we	hope	so!


Floating	point	representation	is	fundamentally	a	binary	representation,	not	a	
decimal	representation.	As	a	consequence:


Many	simple	decimal	values	cannot	be	represented.


For	example,	the	following	commonly	used	number	can	be	represented	simply	and	
exactly	in	decimal,	but	cannot	be	represented	exactly	in	floating	point:


	 0.3


The	closest	we	can	come	with	double	precision	is:


	 0.299999999999999988897769753748434595763683319091796875


Because	of	the	limitations	of	floating	point,	almost	every	operation	(such	as	+,	-,	×,	
and	÷)	will	introduce	errors.	And	the	more	operations	that	are	performed,	the	
greater	the	inaccuracy	of	the	final	result.


Arithmetic	operations	are	almost	always	inexact	and	introduce	errors.


Errors	tend	to	get	larger	as	more	operations	are	performed.


Software	Reference	Manual	/	Porter	 	 Page	 	of	 
160 217



Chapter	7:	Floating	Point


Some	rational	numbers	require	an	infinite	number	of	digits	in	their	decimal	
representation.	For	example:


	 1/3		=		0.33333…


Likewise,	some	rational	numbers	may	require	an	infinite	number	of	bits	in	their	
binary	representation.


Regardless	of	whether	we	represent	a	rational	number	in	decimal	or	binary,	the	
infinite	strings	of	digits/bits	will	settle	into	a	simple	repeating	pattern.	This	is	true	
of	all	rational	numbers,	but	irrational	numbers	(e.g.,	𝜋,	√2)	do	not	have	such	simple	
decimal	or	binary	representations.	Neither	their	decimal	nor	their	binary	
expansions	will	ever	exhibit	a	repeating	pattern.


Some	numbers	many	have	a	finite	representation	in	decimal	but	require	an	infinite	
sequence	in	binary.	For	example,	the	following	number:


	 4.3


requires	an	infinite	binary	expansion	to	represent	it,	namely:


	 100.01001100110011…		=		100.01(0011)*


It	turns	out	that	every	binary	number	without	a	repeating	part	can	be	represented	
with	a	finite	number	of	decimal	digits.	Furthermore,	the	number	of	digits	to	the	right	
of	the	decimal	point	will	never	exceed	the	number	of	places	to	the	right	of	the	binary	
point.	For	example:


101.1101	(binary)		=		5.8125	(decimal)


Turning	to	floating	point	representation,	we	have	limited	number	of	bits	available,	
which	means	we	cannot	accommodate	arbitrary	precision. 	Not	every	number	is	49

representable,	so	we	must	round	numbers	to	a	nearby	number	that	is	representable.


For	example,	the	number	6.022		×	1023	can	only	be	represented	approximately,	even	
though	it	appears	not	to	have	a	great	amount	of	precision.	The	closest	number	that	
can	be	represented	using	a	double	precision	floating	point	is	slightly	larger:


	Recall	there	is	a	countable	infinity	of	rational	numbers	between	any	two	numbers,	yet	with	only	49

64	bits,	we	only	have	a	small	number	of	unique	representations.

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
161 217



Chapter	7:	Floating	Point


	 6.02200000000000027262976		×	1023


The	next-closest	number	is	a	little	less:


	 6.02199999999999960154112	×	1023


No	number	between	these	two	values	can	be	represented	exactly.


The	underlining	shows	17	digits,	which	is	why	we	say	that	doubles	can	represent	
values	with	“about”	17	digits	of	accuracy.


Programs	with	floating	point	involve	inaccuracy.	To	predict	the	expected	accuracy	of	
a	computation	is	not	at	all	trivial,	yet	should	not	be	ignored.


Floating	point	arithmetic	is	meant	to	mimic	mathematical	arithmetic,	but	it	must	be	
remembered	that	they	are	only	approximately	the	same:


•	 The	exact	value	or	result	of	an	operation	is	not	always	representable,	so	the	
computed	answer	is	often	not	mathematically	correct.


•	 Floating	point	addition	is	not	always	associative,	due	to	rounding	errors.	That	
is,	(x	+	y)	+	z	is	not	always	equal	to	x	+	(y	+	z).


•	 Floating	point	multiplication	is	not	always	associative.	That	is,

(x	*	y)	*	z	is	not	always	equal	to	x	*	(y	*	z).


•	 Floating	point	multiplication	does	not	always	distribute	over	addition	with	the	
exact	same	results.	That	is,	x	*	(y	+	z)	is	not	always	equal	to	(x	*	y)	+	(x	*	z).


However,	we	can	say	this:


•	 Floating	point	addition	and	multiplication	are	commutative,	like	math.	For	
example,	x+y	=	y+x,	so	you	don’t	have	to	worry	about	the	order	of	operands	for	
a	single	operation.


Software	Reference	Manual	/	Porter	 	 Page	 	of	 
162 217



Chapter	7:	Floating	Point


Compile-Time	v.	Runtime	Computation


The	KPL	compiler	will	simplify	expressions	when	it	can,	in	order	to	avoid	
performing	the	computation	at	runtime.	In	this	code:


const
  N = 123.456
...
d = d + (10.0 * N)

the	compiler	will	perform	the	multiplication	at	compile-time.	The	compiler	will	
perform	the	operations	in	the	same	order	and	in	the	same	way,	so	that	the	result	will	
be	exactly	the	same	as	if	it	had	been	performed	at	runtime. 
50

The	compiler	will	never	re-order	arithmetic	computations,	either	floating	point	or	
integer,	if	this	could	possibly	result	in	a	different	numerical	result	or	in	different	
overflow/error/rounding	behavior.


The	programmer	has	complete	control	over	the	order	of	arithmetic	
computations.


However,	this	means	that	certain	optimizations	that	might	be	desired	must	be	made	
explicitly	by	the	programmer.


The	programmer	can	control	the	order	of	operations	with	parentheses.	For	example,	
these	two	statements	will	yield	different	code.	They	execute	the	additions	in	a	
different	order:


 a = (b + c) + d
a = b + (c + d)

Exceptions	and	Error	Terminology


IEEE	754	defines	the	following	five	error	conditions:


	That	is,	assuming	the	program	compiles.	The	compiler	will	flag	some	operations	as	errors.	For	example,	50

“0.0	/	0.0”	will	be	flagged	since	this	operation	is	invalid	and	yields	not-a-number.	If	the	programmer	truly	
wants	a	“not-a-number”,	then	nan	must	be	used	explicitly.

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
163 217



Chapter	7:	Floating	Point


	 Invalid

	 Overflow

	 Underflow

	 Divide-by-zero

	 Inexact


In	IEEE	754,	these	are	called	“exceptions”,	but	we	avoid	this	terminology.	In	Blitz,	the	
term	“exception”	is	used	differently	to	mean	hardware	exception	processing.	Here	
are	a	few	of	the	Blitz	exceptions:


	 Illegal	Instruction	Exception

	 Unaligned	LOAD	/	STORE	Exception

	 Syscall

	 …	etc	…


None	of	the	floating	point	error	conditions	will	cause	exception	processing	in	Blitz.	
Instead,	the	occurrence	of	an	error	will	set	a	status	bit,	which	can	be	checked	by	
software	later.


In	Blitz,	there	is	an	important	status	register	called	CSR_STATUS,	which	controls	the	
processor	execution.	Among	other	things,	the	register	contains	these	fields:


	 FLOAT_ROUND	(2	bits)

	 FLOAT_STATUS	(5	bits)


The	FLOATING_ROUND	bits	are	meant	to	determine	which	rounding	technique	will	
be	used.


The	5	bits	of	the	FLOATING_STATUS	fields	are	given	these	names:


	 NV	-	Invalid

	 OF	-	Overflow

	 UF	-	Underflow

	 DZ	-	Divide-by-zero

	 NX	-	Inexact


These	bits	correspond	one-to-one	to	the	error	conditions	required	by	IEEE	754.	
When	the	“exception”	(as	IEEE	calls	it)	arises,	the	corresponding	bit	is	set	to	1.	The	
bits	are	sticky	and	remain	set.	These	bits	are	not	cleared	by	the	floating	point	

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
164 217



Chapter	7:	Floating	Point


instructions;	instead	they	are	cleared	by	an	explicit	operation.	Typically,	these	5	bits	
are	cleared	when	a	program	begins	execution.	Subsequently,	they	can	be	be	
examined,	if	desired,	to	determine	whether	an	error	has	arisen	during	computation.


In	the	design	of	the	Blitz	ISA,	creating	an	exception	for	floating	point	errors	was	
considered,	but	rejected. 
51

Here	is	the	meaning	of	these	error	conditions:


NV-Invalid	operation

The	result	is	mathematically	undefined,	e.g.,	the	square	root	of	a	negative	
number.	The	result	is	NaN.


DZ-Division	by	zero

An	operation	on	finite	operands	gives	an	exact	infinite	result,	e.g.,	1.0/0.0	or	
log(0.0).	The	result	is	±inf.


OF-Overflow

A	result	is	too	large	to	be	represented	correctly	(i.e.,	its	exponent	with	an	
unbounded	exponent	range	would	be	larger	than	emax).	The	result	is	±inf.


UF-Underflow

A	result	is	very	small	(outside	the	normal	range)	and	is	inexact.	The	result	is	a	
subnormal	or	zero.


	The	proposal	was	to	have	a	single	exception	type	called	“FLOATING_INVALID_EXCEPTION”.	Recall	that	the	51

NV-Invalid	bit	in	FLOAT_STATUS	is	set	to	1	whenever	an	operation	that	does	not	have	NaN	as	arguments	
produces	a	NaN	result.	The	proposal	would	add	a	single	bit	to	CSR_STATUS	called	
“FLOATING_EXCEPTION_ENABLED”,	which	would	be	set	and	cleared	by	software.	Whenever	a	NaN	is	
produced,	i.e.,	whenever	an	operation	is	found	to	be	invalid	and	the	NV	bit	is	set,	and	when	
FLOATING_EXCEPTION_ENABLED	is	true,	a	FLOATING_INVALID_EXCEPTION	would	occur.	The	flow	of	
control	would	be	interrupted	and	a	trap	handler	would	be	invoked,	in	the	same	way	as	for	the	other	Blitz	
exceptions.


Such	an	exception	would	mirror	the	ARITHMETIC_EXCEPTION	which	applies	to	integer	arithmetic.	In	
general,	this	fits	with	the	Blitz	philosophy	to	check	all	operations	for	errors	and	immediately	stop	and	
report	an	error	when	it	occurs.	One	problem	is	that	floating	instructions	can	be	expected	to	require	many	
cycles.	In	any	pipelined	architecture,	it	seems	there	is	a	choice	between	allowing	imprecise	interrupts	or	
imposing	a	large	implementation	overhead,	especially	if	we	wish	to	keep	the	pipeline	full	with	unrelated	
instructions	that	happen	to	follow	a	floating	instruction.	Neither	choice	is	palatable.	But	most	importantly,	
we	already	have	a	mechanism	—	the	NaN	itself	—	for	detecting	errors,	whereas	with	integer	arithmetic	
there	is	no	other	way	to	detect	whether	an	error	has	occurred.


While	this	decision	is	subjective,	we	note	that	nothing	precludes	adding	this	mechanism	in	future	versions	
of	the	ISA.

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
165 217



Chapter	7:	Floating	Point


NX-Inexact

The	exact,	unrounded	result	is	not	representable	exactly.	The	result	is	the	
rounded	value.


Invalid	Operation


If	there	is	a	problem	with	some	floating	point	operation,	the	result	will	be	not-a-
number	(NaN)	and	the	NV-Invalid	bit	in	FLOATING_STATUS	will	be	set.


There	are	three	general	reasons	for	such	an	error:


•	One	of	the	operands	was	non-a-number	to	start	with.

•	The	result	is	mathematically	undefined.	For	example,	0/0.

•	The	result	is	a	complex	number.	For	example,	“square	root	of	a	negative”.


When	the	Result	is	Undefined


The	following	operations	will	result	in	NaN	and	the	NV-Invalid	bit	will	be	set.	Each	
of	these	is	associated	with	either	a	FADD,	FSUB,	FMUL,	or	FDIV	machine	instruction.


•	 +∞		+		−∞

•	 −∞		+		+∞

•	 +∞		−		+∞

•	 −∞		−		−∞

•	 ±0		×		±∞

•	 ±∞		×		±0

•	 ±0		÷		±0

•	 ±∞		÷		±∞


The	IEEE	standard	discusses	other	floating	point	operations	which	may	generate	
NaN	such	as:


Software	Reference	Manual	/	Porter	 	 Page	 	of	 
166 217



Chapter	7:	Floating	Point


•	 The	powr	function	defines		00,		1∞,		and		∞0		as	NaN. 
52

In	Blitz,	these	functions	will	be	implemented	in	software	in	the	future	and	will	be	
expected	to	follow	the	IEEE	specifications	and	to	set	the	NV-Invalid	bit.	


When	the	Result	is	a	Complex	Number


Here	are	some	operations	which	result	in	a	complex	number:


•	The	square	root	of	a	negative	number

•	The	logarithm	of	a	negative	number

•	The	inverse	sine	or	cosine	of	a	number	that	is	less	than	−1.0	or	greater	than	
+1.0


The	IEEE	spec	says	that	these	operations	should	yield	a	result	of	NaN	and	the	
“invalid	operation”	flag	should	be	set.


In	Blitz,	square	root	is	implemented	by	the	FSQRT	machine	instruction.	If	the	
argument	is	negative,	the	result	will	be	NaN	and	the	NV-Invalid	bit	will	be	set.


The	other	functions	may	be	implemented	in	software	in	the	future.	Of	course,	they	
will	be	expected	to	follow	the	IEEE	specification	and	set	the	NV-Invalid	bit	when	the	
result	is	a	complex	number.


Conversion	Between	Integers	and	Floating	Point


Floating	Point	→	Integer


The	following	Blitz-64	machine	instruction	converts	from	double	precision	to	a	64-
bit	integer:


fcvtif   r4,r5     # Floating ConVerT to Integer from Floating

	Traditionally,	the	pow	function	and	the	integer	exponent	pown	function	define	00,		1∞,		and		∞0		as	1.52

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
167 217



Chapter	7:	Floating	Point


This	instruction	will	be	executed	by	the	KPL	built-in	function	forceToInt,	which	is	
used	to	convert	a	double	value	to	an	int. 
53

What	if	the	argument	is	NaN?	The	IEEE	principal	that	“NaNs	must	always	be	
propagated”	cannot	be	followed	since	the	result	—	a	64-bit	signed,	twos	
complement	integer	—	cannot	represent	a	NaN	value.


Instead,	the	fcvtif	instruction	will	set	the	NV-Invalid	flag	in	the	CSR_STATUS	
register.	The	integer	result	will	be	“0”.


What	happens	when	the	floating	point	number	exceeds	the	range	of	the	integers?
The	integer	result	will	either	be	largest	positive	integer	or	the	most	negative	integer	
and	the	OV-Overflow	flag	will	be	set.


	 Result	if	too	large…

	 	 MAX_64	=	+9,223,372,036,854,775,807	=	0x7FFF,FFFF,FFFF,FFFF

	 Result	if	too	negative…

	 	 MIN_64	=	-9,223,372,036,854,775,808	=	0x8000,0000,0000,0000


Here	are	the	values	around	the	largest	signed	integer	(0x7FFF,FFFF,FFFF,FFFF	=	
9,223,372,036,854,775,807)	that	can	be	represented	exactly	with	double	precision	
floats:


	 +9,223,372,036,854,774,784.0

	 +9,223,372,036,854,775,808.0

	 +9,223,372,036,854,777,856.0


Note	that	the	integer	9,223,372,036,854,775,808	is	representable	exactly	as	a	
double	precision	float	since	it	is	1.0	×		263.	This	integer	can	be	expressed	as	the	
unsigned	number	0x8000,0000,0000,0000,	which	is	one	greater	than	we	can	
represent	as	a	signed	64	bit	integer.	(Of	course,	we	can	represented	its	negation	
-9,223,372,036,854,775,808	exactly	as	a	signed	integer	as	0x8000,0000,0000,0000.)


Using	double	precision	floats,	the	adjacent	values	to	this	large	number	differ	by	a	
substantial	amount,	due	to	the	loss	of	precision	at	this	magnitude.	The	integer	
representation	has	63	zero	bits	while	the	double	precision	representation	has	only	
52	zero	bits.	We	lost	11	bits.	Note	that	211	=	2,048	and	binary	1000_0000_0000	is	

	This	function	is	named	“force…”	rather	than	something	like	“doubleToInt”,	since	there	is	not	always	an	53

exact	conversion	and	accuracy	may	be	lost.	There	is	the	possibility	that	the	OV-Overflow,	NV-Invalid,	and	
NX-Inexact	bits	will	be	set.	Hopefully,	the	name	will	remind	the	programmer	of	these	error	possibilities.

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
168 217



Chapter	7:	Floating	Point


decimal	2,048.	Thus,	going	to	the	next	greatest	number,	will	add	2,048	to	the	value.	
Going	down	instead,	we	must	decrement	the	exponent	and	go	to:


	 1.1111111111111111111111111111111111111111111111111111	×	262


which	is	1,024	less.


For	Blitz-64,	the	test	for	overflow	is	this:	


If	the	floating	value	is	greater	than	+9,223,372,036,854,775,807.0	(including	+inf)	
then	the	OV-Overflow	and	NX-Inexact	bits	will	be	set	and	the	result	will	be	
+9,223,372,036,854,775,807	(i.e.,	0x7FFF,FFFF,FFFF,FFFF).


If	the	floating	value	is	more	negative	than	-9,223,372,036,854,775,808.0	(including	
-inf)	then	the	OV-Overflow	and	NX-Inexact	bits	will	be	set	and	
-9,223,372,036,854,775,808	(i.e.,	0x8000,0000,0000,0000)	will	be	used.


If	the	floating	point	value	is	not	an	integer	(i.e.,	if	it	has	non-zero	digits	to	the	right	of	
the	decimal	point,	as	in	4.5)	then	the	NX-Inexact	bit	will	be	set	and	the	value	will	be	
rounded	to	the	nearest	integer,	with	ties	to	even.


The	UF-Underflow	and	DZ-Divide-by-zero	bits	in	FLOAT_STATUS	will	be	
unchanged.


Note	that	in	the	“C”	language,	casting	a	“double”	to	an	“int64_t”	handles	error	cases	
differently.	Basically,	the	most	negative	value	(-9,223,372,036,854,775,808	=	
0x8000_0000_0000_0000)	is	used	as	an	indication	of	any	overflow	or	error.	The	
conversion	is	done	using	truncation,	not	rounding.	The	flags	that	IEEE	says	are	to	be	
set	(FE_INEXACT,	FE_INVALID,	FE_OVERFLOW)	are	apparently	ignored.


Integer	→	Floating	Point


The	following	Blitz-64	machine	instruction	converts	from	double	precision	to	a	64-
bit	integer:


fcvtfi   r4,r5     # Floating ConVerT to Float from Integer

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
169 217



Chapter	7:	Floating	Point


This	instruction	will	be	executed	by	the	KPL	built-in	function	forceToDouble,	which	
is	used	to	convert	an	int	value	to	a	double. 
54

The	range	of	floating	point	numbers	is	much	greater	than	integers,	so	there	is	no	
possibility	of	overflow.	However,	not	all	integers	can	be	represented	exactly.	In	some	
cases,	the	value	must	be	rounded	to	the	nearest	floating	point	value.


All	integers	in	this	range	can	be	represented	exactly	as	floating	point	numbers:


Decimal																																			 64-bit	Integer													 Double	Precision					

-253	 -9,007,199,254,740,992	 0xFFE0,0000,0000,0000	 0xC340,0000,0000,0000

	 												…

+253	 +9,007,199,254,740,992	 0x0020,0000,0000,0000	 0x4340,0000,0000,0000


Most	integers	outside	this	range	must	be	rounded,	and	the	rounding	rule	(i.e.,	round-
to-nearest,	with	ties	to	even)	will	be	used. 
55

If	the	integer	cannot	be	represented	exactly,	then	the	NX-Inexact	bit	in	
FLOAT_STATUS	will	be	set.	The	other	bits	(OF-Overflow,	UF-Underflow,	NV-
Invalid,	and	DZ-Divide-by-zero)	will	be	unchanged.


A	word-sized	integer	(i.e.,	a	32-bit	signed	number)	is	within	the	range:


	 -2,147,483,648	…	+2,147,483,647


Every	integer	in	this	range	can	be	represented	exactly	with	a	double	precision	
floating	point	number,	so	rounding	will	never	be	necessary.	The	52	bits	of	mantissa	
are	more	than	enough	to	represent	all	possible	32	bit	integers	with	perfect	accuracy.


	This	function	is	named	“force…”	rather	than	something	like	“intToDouble”,	since	there	is	not	always	an	54

exact	conversion	and	accuracy	may	be	lost.	There	is	the	possibility	that	the	OV-Overflow,	NV-Invalid,	and	
NX-Inexact	bits	will	be	set.	Hopefully,	the	name	will	remind	the	programmer	of	these	error	possibilities.

	Note	that	253	is	represented	as	a	binary	integer	as	a	“1”	followed	by	53	“0”s.	In	other	words,	it	requires	54	55

bits	to	represent.	In	a	double	precision	number	,	the	leading	“1”	bit	is	implicit	and	there	is	enough	room	for	
up	to	52	additional	bits.	All	numbers	smaller	than	253	can	be	represented	with	only	53	bits.	But	if	we	can	
accommodate	only	52	bits	after	the	leading	“1”,	how	can	we	accommodate	253,	a	54	bit	number?


Recall	that	after	the	explicit	bits,	we	assume	all	bits	to	the	right	are	implicitly	“0”s.	The	value	253	is	an	even	
power	of	2	so,	in	binary,	it	is	“1”	followed	only	by	“0”s.	Although	we	can	represent	this	number	exactly,	we	
cannot	represent	all	54	bit	numbers	exactly;	we	can	only	represent	the	even	values.	The	next	value	—	253+1	
—	cannot	be	represented	exactly.

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
170 217



Chapter	7:	Floating	Point


In	KPL,	if	the	programmer	uses	data	of	type	byte,	halfword,	or	word,	code	like	this	
will	work	fine:


var
  w: word
  d: double
...
d = w

The	compiler	will	use	the	FCVTFI	instruction.	There	is	no	need	for	the	programmer	
to	use	the	forceToDouble	function,	since	there	is	no	possibility	for	inexact	results	or	
errors.


Relational	Operations	with	NaN


There	are	some	strange	and	unexpected	behaviors	when	one	of	the	operands	to	a	
relational	comparison	is	NaN.


Normally,	an	operation	in	which	one	operand	is	NaN	is	required	to	yield	NaN	as	a	
result.	For	relational	operations,	the	result	is	normally	a	“boolean”	or	a	branch,	so	it	
is	not	possible	to	yield	a	NaN.


So	what	happens?	Here	is	the	rule:


Every	NaN	shall	compare	unordered	with	everything,	including	itself.


In	particular,	we	have:


	 			Operation					 			Result						 		Invalid	Operation

	 NaN	 <	 x	 false	 yes

	 NaN	 <=		 x	 false		 yes

	 NaN	 >	 x	 false		 yes

	 NaN	 >=	 x	 false		 yes

	 NaN	 ==	 x	 false		 no

	 NaN	 !=	 x	 true		 no


Note	that	this	implies	the	following	very	unexpected	results:


	 			Operation					 			Result						 		Invalid	Operation


Software	Reference	Manual	/	Porter	 	 Page	 	of	 
171 217



Chapter	7:	Floating	Point


	 NaN	 ==	 NaN	 false		 no

	 NaN	 !=	 NaN	 true		 no


Normally,	we	accept	these	equivalences:


	 This:		 is	the	same	as:

	 x	<	y	 NOT	(x	>=	y)

	 x	<=	y	 NOT	(x	>	y)

	 x	>	y	 NOT	(x	<=	y)

	 x	>=	y	 NOT	(x	<	y)


However,	these	are	not	true	when	one	of	the	operands	in	NaN!


Interesting	Behaviors	with	Zero	and	Infinity


Zero


The	bit	pattern	representation	of	zero	is:


	 +0.0 0x0000_0000_0000_0000

	 -0.0 0x8000_0000_0000_0000


Note	that	the	floating	point	representation	for	+0.0	is	bit-for-bit	identical	to	the	
representation	for	0	in	binary	integer	representation.


It	happens	to	be	true	that	-0.0	is	represented	identically	to	the	most	negative	signed	
integer,	but	this	is	less	useful.


Using	the	“==”	or	“!=”operators	in	KPL	will	use	the	FEQ	machine	instruction,	which	
follows	the	IEEE	spec	for	comparing	floating	point	values.	So	the	following	is	true:


	 +0.0		==		-0.0


If	you	want	to	distinguish	these	values,	the	use	code	like	this:


    if copyBitsToInt (d1) == copyBitsToInt (d2) ...

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
172 217



Chapter	7:	Floating	Point


    if copyBitsToInt (d1) == copyBitsToInt (-0.0) ...  See	footnote56

Although	+0.0	and	-0.0	compare	as	equal,	they	may	also	result	in	different	outcomes	
in	some	computations.	This	challenges	our	understanding	of	the	meaning	of	“equal”,	
to	say	the	least.


Infinity


There	are	two	infinities	which	are	represented	as	follows:


	 +∞ 0x7FF0000000000000

	 -∞ 0xFFF0000000000000


Dividing	by	zero	will	cause	the	DZ-Divide-by-zero	bit	to	be	set	and	the	result	to	be	
infinity.	Note	that:


	 1.0	/	+0.0	yields	+∞

	 1.0	/	-0.0	yields	–∞


Also:


	 ±0.0	/	±0.0	yields	NaN	and	sets	the	NV-Invalid	bit


Dividing	by	infinity	will	yield	zero.	For	example:


	 -0.0/-∞		yields	+0.0


Not-a-Number	(NaN)	


There	is	a	special	value	called	“not-a-number”,	which	is	often	abbreviated	“NaN”.	In	
KPL,	the	predefined	keyword	nan	is	used.	Some	arithmetic	operations	are	
considered	to	be	“undefined”	and,	when	attempted,	will	result	in	a	NaN	result,	to	
indicate	that	the	result	is	undefined.	Here	are	some	examples	of	operations	that	with	
yield	“not-a-number”.


	You	could	code	something	like	“if copyBitsToInt (d1) == 0x8000_0000_0000_0000…”	but	56

the	compiler	will	generate	the	same	code,	and	it	seems	a	lot	less	clear.

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
173 217



Chapter	7:	Floating	Point


	 0	/	0

	 ∞	/	∞

	 0	*	∞	


Other	operations	are	mathematically	defined	but	give	a	complex	result,	which	
cannot	be	represent.	Complex	numbers	are	not	handled	by	floating	point,	so	
operations	such	as	the	following	will	return	NaN.


	 Square	root	of	a	negative	number

	 Log	of	a	negative	number


Another	use	of	NaN	is	to	represent	an	uninitialized	or	missing	value.	If	a	variable	is	
used	before	it	is	initialized,	spurious	incorrect	results	might	occur,	but	this	can	be	
avoided	if	the	variable	contains	NaN.


There	are	several	bit	patterns	that	can	be	used	to	represent	NaNs,	so	there	is	not	a	
single	bit	pattern	for	NaN.


A	value	is	defined	to	represent	NaN	if	(1)	the	exponent	field	is	all	1’s,	and	(2)	the	bits	
of	the	fraction	field	are	not	all	zero.	(If	the	fraction	bits	are	all	zero,	then	the	value	is	
either	+∞	or	–∞.)	The	sign	bit	of	a	NaN	value	is	ignored.


The	KPL	programmer	may	use	the	keyword	nan	in	program	code.	The	
representation	used	here	for	NaN	is	0x7ff8000000000000,	so	the	following	is	
always	true:


copyBitsToInt (nan) == 0x7ff8000000000000

The	floating	point	operations	that	yield	a	NaN	result	will	always	use	this	value.	
However,	since	there	are	multiple	bit	patterns	that	should	be	interpreted	as	NaN,	the	
programmer	should	always	test	for	NaN	with	the	isnan	function,	as	in:


if isnan (d) ...

Signaling	and	Quiet	NaNs	


Software	Reference	Manual	/	Porter	 	 Page	 	of	 
174 217



Chapter	7:	Floating	Point


Blitz	does	not	implement	“signaling”	NaNs.	This	section	is	educational	and	does	not	
apply	to	Blitz.


Although	we	normally	just	talk	about	NaN,	the	IEEE	spec	actually	describes	two	
kinds	of	NaN:	“signaling	NaN”	and	“quiet	NaN”.


A	“signaling	NaN”	is	supposed	to	cause	a	break	in	the	flow	of	execution	when	it	is	
encountered	in	a	computation.	That	is,	a	trap	or	exception	of	some	sort	will	occur,	
and	the	normal	instruction	sequence	will	be	interrupted	immediately.	Signaling	
NaNs	might	reasonably	used	for	uninitialized	values:	their	use	may	represent	a	
program	bug	which	needs	attention.	In	theory,	signaling	NaNs	might	also	be	used	as	
placeholders	for	values	(such	as	complex	numbers)	which	require	special	handling.


The	idea	with	a	“quiet	NaN”,	is	that	it	can	be	used	as	an	operand	in	arithmetic	
operations	and	it	will	simply	be	propagated	during	computation.	That	is,	if	one	of	
the	operands	to	some	operation	is	a	quiet	NaN,	the	result	will	also	be	a	quiet	NaN.	
This	allows	a	lengthy	sequence	of	operations	to	be	performed	quickly	with	no	
special	testing	for	problems.	Once	a	NaN	appears,	as	a	result	of	some	error,	it	will	
persist	in	the	chain	of	computations.	Each	subsequent	operation	will	complete	
normally,	without	causing	an	exception	or	trap	even	though	some	sort	of	error	
occurred	earlier	in	the	sequence.		If	any	problems	occur	at	any	step	of	the	
computation,	the	final	result	will	be	a	quiet	NaN.	Therefore,	it	is	sufficient	to	perform	
only	a	single	test	for	NaN	after	the	entire	computation	to	see	if	any	errors	arose	at	
any	stage	of	the	computation.


The	IEEE	spec	does	not	require	signaling	NaNs;	they	are	optional.


The	Blitz	approach	is	for	the	hardware	to	interpret	all	NaN	values	identically,	
basically	as	quiet	NaNs.


As	mentioned	previously,	there	are	several	bit	patterns	that	are	interpreted	as	NaN;	
there	is	no	single	bit	pattern	for	NaN.	A	value	is	defined	to	represent	NaN	if	(1)	the	
exponent	field	is	all	1’s,	and	(2)	the	bits	of	the	fraction	field	are	not	all	zero.	The	sign	
bit	is	ignored.


If	a	distinction	between	quiet	and	signaling	NaN	is	implemented	—	in	Blitz,	it	is	not	
—	then	one	of	the	bits	in	the	fraction	field	will	be	used	to	distinguish	between	quiet	
and	signaling.	


Software	Reference	Manual	/	Porter	 	 Page	 	of	 
175 217



Chapter	7:	Floating	Point


The	exact	bit	patterns	for	NaN	are	not	fully	specified	and	can	vary	between	
implementations.


We	can	say	that	a	value	with	all	bits	set	to	one	(i.e.,	the	representation	for	the	signed	
integer	-1	which	is	0xFFFF	FFFF	or	0xFFFF	FFFF	FFFF	FFFF)	will	definitely	
represent	a	NaN	and	will	almost	certainly	represent	a	quiet	NaN.	For	example,	the	
all-ones	pattern	will	be	a	quiet	NaN	for	Intel,	AMD,	SPARC,	ARM,	RISC-V,	etc.


Mixing	Single	and	Double	Precision	Using	NaN


There	are	many	bits	in	the	fraction	field,	and	the	only	requirement	for	NaN	is	that	
they	cannot	all	be	zero.	Thus,	there	is	room	to	store	some	additional	data	within	
the	NaN.	So	a	NaN	can	carry	a	sort	of	“payload”	value	in	the	fraction	bits.	This	
capability	may	or	may	not	be	used	in	a	particular	implementation	of	IEEE	
754-2008.


For	example,	the	fraction	field	in	a	double	is	52	bits.	Assume	that	one	bit	is	
reserved	to	be	always	set	to	indicate	that	this	is	a	NaN,	and	assume	that	a	second	
bit	is	reserved	and	used	to	distinguish	between	a	quiet	NaN	and	a	signaling	NaN.	
This	leaves	50	bits	that	can	be	used	to	store	an	arbitrary	value.	Notice	that	this	is	
enough	room	to	store	an	entire	single	precision	floating	point	number.


Imagine	a	machine	that	implements	double	precision	arithmetic	and	uses	64-bit	
registers	to	store	floating	point	values.	How	might	this	machine	store	32-bit	single	
precision	values	in	these	same	registers?


Any	64-bit	value	in	which	the	high	order	32	bits	are	set,	will	be	always	recognized	
as	a	NaN.	One	approach	to	storing	a	single	precision	value	in	a	64	bit	register	is	to	
store	the	single	precision	value	in	the	least	significant	bits	32	bits	and	all	1s	in	the	
most	significant	32	bits.


All	single	precision	operations	will	only	look	at	the	least	significant	32-bits	of	the	
operands	and,	for	the	result	value,	will	always	set	the	most-significant	32	bits	to	1s.


Any	accidental	attempt	to	perform	a	double	precision	operation	on	a	register	
containing	a	single	precision	value,	will	interpret	that	operand	as	a	NaN.


Normalized	and	Denormalized	Numbers


Software	Reference	Manual	/	Porter	 	 Page	 	of	 
176 217



Chapter	7:	Floating	Point


Not	every	number	is	representable	and	the	representable	numbers	are	spaced	out	
on	the	number	line.	So	each	possible	floating	point	value	is	separated	by	a	numerical	
distance	from	the	next	smallest	number	and	from	the	next	largest	number.	As	the	
numbers	get	smaller	and	closer	to	zero,	the	spacing	gets	smaller	and	the	numbers	
are	closer	together.	As	the	numbers	get	larger,	the	spacing	is	farther	apart.


For	example,	the	following	numbers	differ	by	a	very	small	amount:


	 4.567	×	10-25

	 4.568	×	10-25


On	the	other	hand,	these	two	numbers	differ	by	a	very	large	amount:


	 4.567	×	10+25

	 4.568	×	10+25


However	in	both	examples	above,	the	accuracy	is	the	same:	4	digits	of	precision.


However,	there	is	only	a	limited	number	of	bits	available	to	represent	the	exponents.	
Exponents	cannot	continue	to	get	more	negative	and	we	cannot	represent	smaller	
and	smaller	numbers,	ever	more	close	to	zero.	Therefore,	this	pattern	of	the	floating	
point	numbers	becoming	spaced	ever	more	closely	as	they	get	closer	and	closer	to	
zero	cannot	continue.	Something	has	to	change	as	the	numbers	get	smaller	and	
approach	zero.


What	happens	is	that	below	some	size,	the	representable	values	are	simply	spaced	
uniformly	all	the	way	down	to	zero.	This	is	the	role	of	denormalized	numbers.


Most	floating	point	numbers	are	“normal”	numbers.	Normal	numbers	have	about	7	
digits	of	accuracy	(for	single	precision)	and	16	digits	of	accuracy	(for	double	
precision).	In	other	words,	we	can	approximate	any	desired	value	with	about	7	(or	
16)	digits	of	accuracy.


Another	way	to	look	at	denormalized	numbers	is	this:	For	very	small	values,	we	
cannot	approximate	the	value	with	full	accuracy.	As	we	get	closer	and	closer	to	zero,	
we	can	approximate	the	true	value	with	fewer	and	fewer	places	of	accuracy.	For	
really	tiny	values,	we	may	even	be	forced	to	use	0.0	to	represent	the	value,	
essentially	losing	all	accuracy.


Software	Reference	Manual	/	Porter	 	 Page	 	of	 
177 217



Chapter	7:	Floating	Point


We	can	make	the	following	statements	about	denormalized	numbers:


•	 All	denormalized	numbers	are	very	close	to	zero.

•	 Denormalized	numbers	extend	on	both	the	positive	and	negative	sides	of	
zero.


•	 +0.0	and	-0.0	are	themselves	represented	as	denormalized	numbers.

•	 All	denormalized	numbers	are	regularly	and	evenly	spaced.	(Exception:	+0.0	
and	-0.0	have	an	infinitesimal	difference	and	are	considered	equal.)


•	 The	largest	denormalized	number	is	just	less	than	the	smallest	positive	
normal	number.


•	 Likewise,	the	most	negative	denormalized	number	is	just	greater	than	the	
least	negative	normal	number.


•	 It	is	generally	safe	to	ignore	the	distinction	between	normalized	and	
denormalized	numbers	when	using	floating	point	in	your	applications.


There	are	rules	for	determining	the	precision	of	the	results	of	an	arithmetic	
calculation	involving	scientific	notation.	But	if	very	small	values	(i.e.,	denormalized	
numbers)	arise	during	a	computation,	then	your	assumptions	about	precision	will	
be	violated	and	the	final	results	will	have	reduced	precision.	In	some	cases,	the	final	
result	will	be	a	meaningless,	incorrect	value.


Warning:	Always	remember	that	numbers	as	represented	in	computers	are	NOT	
true	mathematical	numbers.	Computer	arithmetic	is	NOT	mathematical	arithmetic.	
Remember:	“int”s	are	not	integers	and	“floats”	are	not	real	or	rational	numbers.


Computer	values	and	computation	are	mere	approximations	of	mathematically	
pure	ideals.	A	good	programmer	knows	how	important	it	is	to	understand	and	
remember	their	differences	in	creating	reliable	software.


Named	Values


Here	are	some	important	constants,	which	can	be	used	in	KPL	code:


	 Constant	 IEEE	Name 	 Value	 Approx	value				
57

	In	order	to	follow	the	Blitz	naming	conventions,	Blitz	does	not	use	the	official	names	specified	by	IEEE	57

754.

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
178 217



Chapter	7:	Floating	Point


	 FP_EPS	 eps	 2-52	 2.2204	×	10-16

	 FP_MIN_NORMAL	 realmin	 2-1022	 2.2251	×	10-308

	 FP_MAX_NORMAL	 realmax	 (2-eps)1023	 1.7977	×	10+308

	 FP_MAX_DENORMAL	 	 footnote 	 2.2251	×	10-308
58

	 FP_MAX_SUBNORMAL	 	 …same…

	 FP_MIN_DENORMAL	 	 2-1074	 4.9407	×	10-324

	 FP_MIN_SUBNORMAL	 	 …same…

	 FP_EMIN	 emin	 -1022	 

	 FP_EMAX	 emax	 1023


The	machine	epsilon	(eps)	is	the	distance	from	1.0	to	the	next	larger	floating	point	
number.


The	KPL	keywords	nan	and	inf	can	be	used	and	it	is	common	to	see	the	following	in	
KPL	code:


	 nan

	 +inf	or	just	inf

	 -inf

	 +0.0	or	just	0.0

	 -0.0


For	example:


	 if d == -inf

	   d = nan

endIf


Conversion	to	Decimal


IEEE	754	requires	an	ability	to	convert	floating	point	values	to	and	from	decimal	
character	strings.


	The	value	is	4,503,599,627,370,495	×	2-1074,	which	equals	0x0.F_FFFF_FFFF_FFFF	×	2-1022.58

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
179 217



Chapter	7:	Floating	Point


Conversion	to	an	external	character	sequence	followed	by	conversion	back	will	
recover	the	original	value,	as	long	as	17	decimal	digits	are	used	and	“round-to-
nearest	with	ties	to	even”	is	used.


In	other	words,	the	following	conversions	will	yield	the	same	value:


	 double	→	decimal	character	string	→	double


as	long	as	the	character	string	contains	at	least	17	digits,	and	this	is	true	in	Blitz.


The	following	functions	are	the	most	useful:


doubleToString (d: double) returns String
stringToDouble (str: String) returns double

In	addition,	the	following	functions	allow	more	control	over	the	conversion:


doubleToStringWithOptions (...) returns String
stringToDoubleWithOptions (...) returns bool
parseFloat (...)

Furthermore,	double	values	can	be	converted	into	decimal	with	printf	and	sprintf,	
which	will	actually	invoke	the	above	functions	to	do	the	work.	The	function	
doubleToString	is	more-or-less	equivalent	to


printf ("%g", ...)

These	functions	are	documented	elsewhere.


Printing	-	%e,	%f,	%g


Floating	point	numbers	can	be	printed	with	printf	using	any	one	of	three	different	
formatting	codes.	(Printing	with	printf	is	documented	fully	elsewhere.)


The	simplest	and	recommended	method	is	to	print	with	format	code	%g:


var d: double
...
printf ("value = %g\n", d)

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
180 217



Chapter	7:	Floating	Point


If	the	value	is	reasonable	and	can	be	printed	without	too	many	digits,	it	will	be	
printed	without	exponent.	Otherwise,	the	value	will	be	printed	with	exponent.


123.456
3.456e-100

With	formatting	code	%e,	the	number	will	always	be	printed	with	exponent:


printf ("value = %e\n", d)

For	example:


1000.0	 as	printed	with	%g
1.0e3 	 as	printed	with	%e

Consider	the	following	code:


d = 0.3
printf ("%g")
printf ("%e")

The	default	precision	with	%e	is	17	digits.	This	decimal	value	0.3	cannot	be	
represented	exactly	with	a	floating	point	number.	With	17	digits,	it	will	be	printed	
as:


2.9999999999999999e-1

The	default	precision	with	%g	is	16	digits.	This	same	value	will	be	printed	as:


0.3

If	you	want	exactness,	use	%e.	If	you	want	readability,	use	%g.


With	formatting	code	%f,	the	value	will	be	printed	with	a	fixed,	unchanging	number	
of	digits	to	the	right	of	the	decimal	point.


printf ("value = %.4f\n", d)

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
181 217



Chapter	7:	Floating	Point


Formatting	code	%f	will	produce	output	such	as	the	following,	which	can	be	good	
for	printing	columns.


0.0007
1.0000
3.1416

With	%e,	%f,	and	%g,	the	following	option	may	be	included:


	 •	field	width

	 •	left	justification

	 •	precision

	 •	separators


If	a	field	width	is	given,	as	in:


printf (">>>%10g<<<", d)

the	value	is	printed	with	padding	blanks,	as	in:


>>>      12.5<<<

If	the	left	justification	flag	(a	hyphen)	is	included,	as	in:


printf (">>>%-10g<<<", d)

the	output	is	left-justified	within	the	field:


>>>12.5      <<<

A	precision	may	be	included	and	is	written	following	a	period	character	(“.”),	as	in:


printf ("%.5g", d)

For	%e	and	%g,	the	value	will	be	rounded	to	that	number	of	digits:


3.1416	 This	is	pi,	rounded	to	the	nearest	5	digits.

For	%f,	the	precision	indicates	the	number	of	digits	to	the	right	of	the	decimal	point.	
For	example:


Software	Reference	Manual	/	Porter	 	 Page	 	of	 
182 217



Chapter	7:	Floating	Point


printf ("%.5f", d)

prints:


3.14159	 This	is	pi,	printed	to	5	decimal	places.

The	separator	flag	is	“#”.	If	present,	the	value	will	have	separators	inserted	for	
easier	reading.	For	example:


printf ("%#g", d)

prints	like	this:


12,345,678.0 	 #	adds	commas	to	the	left	of	the	decimal
57.000_000_01 #	adds	underscores	to	the	right

The	following	special	values	may	be	encountered.	Regardless	of	which	formatting	
code	is	used,	they	will	print	as: 
59

<pos infinity>
<neg infinity>
<not-a-number>

The	following	are	configurable	options:


	 •	How	are	“+infinity”	and	“-infinity”	to	be	printed?

	 •	How	is	“not-a-number/	NaN”	to	be	printed?

	 •	Is	a	leading	“+”	sign	to	be	printed?

	 •	Is	“+”	to	be	printed	for	positive	exponents?


Also,	the	characters	used	as	separators	and	the	decimal	point	can	be	changed.	The	
defaults	are:


.	 Decimal	point
,	 Separator	to	the	left	of	the	decimal	point
_	 Separator	to	the	right	of	the	decimal	point

You	can	change	the	defaults	to	accommodate	European	conventions,	as	in:


	The	brackets	<>	are	included.	We	elected	to	use	these	as	defaults,	rather	than	the	traditional	“inf”,	“-inf”,	59

and	“nan”	strings	used	in	Unix-like	systems,	but	this	is	configurable	if	you	prefer	the	shorter	forms.	You	can	
even	use	Unicode,	as	in	“-∞”.

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
183 217



Chapter	7:	Floating	Point


10.000.000,0
0,5
7,000 000 001

These	settings	apply	to	any	use	of	%e,	%f,	and	%g	and	can	be	modified	if	needed.	
This	is	documented	elsewhere. 

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
184 217



Chapter	8:	Stack	Management


Stack	Usage


KPL	utilizes	a	runtime	stack.	Whenever	a	function	or	method 	is	invoked,	a	stack	60

frame	is	allocated.	Stack	frames	are	sometimes	called	activation	records.


Local	variables,	parameters	and	the	return	address	can	often	be	stored	only	in	
registers,	but	sometimes	they	will	need	to	be	stored	in	memory.	When	stored	in	
memory,	they	are	placed	in	the	stack.


A	stack	frame	is	created	when	a	function	is	invoked,	and	is	destroyed	(i.e.,	
deallocated)	when	the	function	returns.	Stack	frames	are	allocated	by	pushing	onto	
the	stack	and	they	are	deallocated	by	popping	off	the	stack.


Blitz-64	has	been	designed	so	that	functions	can	sometimes	avoid	allocating	a	stack	
frame.	A	leaf	function 	that	requires	no	temporary	storage	can	avoid	creating	a	61

stack	frame.


The	stack	frame	is	created	by	the	initial	code	in	the	function,	which	is	called	the	
function	prologue.	This	code	will	also	zero	out	all	the	local	variables,	as	required	by	
KPL.	The	stack	top	is	pointed	to	by	the	stack	top	pointer,	which	is	kept	in	register	
r15	(“sp”).	The	stack	grows	downward	from	high	memory	so	allocating	a	stack	
frame	is	achieved	by	subtracting	the	frame	size	from	sp.	Deallocating	a	frame	is	
achieved	by	adding	that	same	value	back	to	sp.


Many	programs	also	require	dynamically	allocated	memory	on	a	heap.	In	the	
simplest	approach,	the	heap	and	the	stack	share	a	region	of	the	virtual	address	
space.	The	stack	grows	downward	from	the	top	of	the	space	and	the	heap	grows	
upward	from	the	bottom	of	the	space.	This	way,	the	available	space	may	be	used	for	

	As	far	as	stacks	are	concerned,	functions	and	methods	work	the	same	way.60

	A	leaf	function	is	a	function	that	does	not	invoke	any	other	functions.	61

Software	Reference	Manual	/	Porter	 Page	 	of	185 217



Chapter	8:	Stack	Management


either	stack	or	heap,	as	needed.	When	the	stack	and	the	heap	meet,	then	the	
program	has	run	out	of	memory.


Elsewhere,	we	discuss	how	the	size	of	the	stack	can	be	bounded	with	the	
Max_Stack_Usage	clause	in	KPL.	The	Max_Stack_Usage	mechanism	allows	the	
programmer	to	determine	and	verify	at	compile-time	that	a	program’s	stack	will	not	
exceed	some	limit.


Whether	or	not	we	know	the	maximum	stack	size	before	runtime,	there	are	several	
approaches	to	dealing	with	the	problem	of	stack	memory	requirements,	which	we	
discuss	next.


The	main	issues:


•	How	much	space	to	allocate	for	the	stack?

•	How	to	determine	if	the	allocation	is	exceeded?

•	What	to	do	when	the	allocation	is	exceeded?


Software	Reference	Manual	/	Porter	 	 Page	 	of	 
186 217



Chapter	8:	Stack	Management


Stack	Protocol	#1


Imagine	a	large	program	with	1,000	functions	and	imagine	that	each	requires	1,000	
bytes,	which	seems	quite	generous.	This	program	will	never	need	more	than	
1,000,000	bytes	for	its	stack,	which	is	a	relatively	small	amount	of	memory	and	a	
tiny	fraction	of	the	virtual	address	space.


The	simplest	approach	is	to	preallocate	a	fixed	amount	of	memory	to	the	stack.	
The	idea	is	that	all	programs	will	be	given	some	default	amount	of	space. 
62

A	default	amount	of	16	MiBytes	seems	more	than	enough	for	non-recursive	
programs	and	probably	enough	for	most	recursive	programs,	as	well.	A	16	MiByte	
stack	will	occupy	a	mere	1/2,048	of	the	virtual	address	space 	so	there	is	plenty	of	63

room	for	such	a	stack.


Assuming	that	the	executable	code	occupies	1	GiByte	(a	truly	huge	program)	and	
that	shared	core	functions	occupy	another	1	GiByte,	this	leaves	30	GiBytes	for	the	
heap	and	stack	to	share.


It	is	important	to	detect	stack	overflow,	because	it	is	important	to	detect	all	errors.


In	the	first	approach	we	describe	here,	the	virtual	memory	system	is	used	to	detect	a	
stack	that	has	grown	beyond	its	preallocated	memory	region.


The	idea	is	that	the	virtual	address	space	will	contain	a	small	number	of	sentinel	
pages.	We	propose	a	default	of	128	pages,	which	equates	to	2	MiBytes.	A	sentinel	
page	is	dedicated	to	the	purpose	of	detecting	stack	overflow.	These	pages	are	
located	just	below	the	default	allocation	of	the	16	MiByte	stack	region.	The	kernel	
will	flag	these	pages	as	unmapped	and	any	attempt	to	read	or	write	to	them	will	be	
caught	by	the	kernel	and	will	indicate	that	stack	overflow	has	occurred.


In	KPL,	all	stack	frames	are	required	to	be	initialized	to	zero	values	and	this	is	done	
upon	entry	to	a	function.	The	function	prologue	code	will	write	zeros	into	each	
newly	allocated	stack	frame.	This	guarantees	that	the	sentinel	pages	will	be	touched	

	Our	initial	approach	was	to	set	the	stack	size	to	1	MiByte,	with	no	attempt	to	detect	overflow.	62

This	size	has	proved	adequate	for	all	programs	to-date.

	In	Blitz-64,	the	page	size	is	16	KiBytes,	so	this	is	1,024	pages	out	of	the	total	of	2,097,152	pages	63

available	in	the	virtual	address	space.	Also,	there	is	negligible	impact	on	the	page	table,	since	we	
assume	each	page	can	hold	2,048	page	table	entries.

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
187 217



Chapter	8:	Stack	Management


upon	function	entry,	at	the	time	the	stack	exceeds	its	preallocated	region,	and	before	
anything	else	happens.


For	most	programs,	this	protocol	will	be	adequate.	If	the	stack	region	is	exceeded,	it	
is	considered	a	fatal	error	and	the	thread	is	terminated.


Stack	Protocol	#1a


The	next	embellishment	is	to	allow	for	adjustment	of	the	size	of	the	stack	region.	
Now,	the	programmer	can	choose	the	size	of	the	stack	region.


It	may	make	sense	to	modify	the	format	of	the	object	and	executable	files	to	include	
a	“Stack	Allocation	Size”.	Perhaps	the	compiler	can	automatically	set	this	value.	A	
reasonable	approach	might	be	to	sum	up	the	frame	sizes	for	all	functions.	Using	this	
value	as	a	stack	limit	will	suffice	for	any	non-recursive	program,	and	increasing	it	in	
some	formulaic	way	would	probably	accommodate	most	programs	with	recursion. 
64

Nevertheless,	with	this	approach,	we	need	a	way	for	the	programmer	to	explicitly	
increase	the	stack	space	for	those	threads	that	exhibit	deeper	recursion	than	the	
default	size	accommodates.


Stack	Protocol	#2


The	next	most	flexible	approach	is	for	the	OS	kernel	to	adjust	the	stack	region	
dynamically.	This	removes	any	problems	around	recursive	programs	that	have	
unpredictable	stack	needs.	


With	this	technique,	sentinel	pages	are	used.	When	the	current	stack	region	is	
exceeded,	the	OS	kernel	will	get	a	virtual	memory	exception.	At	that	time,	the	kernel	
can	increase	the	stack	allocation	and	resume	execution	of	the	program.	The	program	
will	not	be	aware	of	this	interruption	and	will	not	be	aware	the	stack	region	has	
suddenly	grown	larger. 
65

	We	might	go	as	far	as	to	include	a	flag	in	the	object	and	executable	files	to	indicate	whether	the	program	64

can	be	determined	to	contain	no	recursion.	For	such	program,	no	sentinel	pages	are	necessary	and	we	can	
avoid	allocating	them.	But	the	sentinel	pages	do	not	impose	much	overhead,	since	the	page	are	never	
populated,	so	it	is	probably	not	worth	the	trouble.

	The	kernel	will	also	need	to	set	up	a	new	sentinel	region	before	returning	to	the	interrupted	65

program,	so	that	if,	in	the	future,	the	stack	once	again	exceeds	its	preallocated	size,	the	kernel	can	
once	again	increase	the	size	of	the	stack	region.

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
188 217



Chapter	8:	Stack	Management


With	this	approach,	there	must	also	be	coordination	with	the	memory	allocated	to	
the	heap.	The	kernel	must	monitor	both	the	size	of	the	stack	region	and	the	size	of	
the	heap.	As	the	heap	grows,	the	heap	manager	will	request	additional	pages	from	
the	kernel.	The	kernel	will	accommodate	a	growing	heap,	up	until	the	heap	reaches	
the	stack	sentinel	pages.	The	kernel	will	allow	the	stack	to	grow,	until	it	reaches	the	
heap,	leaving	no	room	for	the	sentinel	pages.


Multiple	Threads


Many	programs	are	expected	to	have	multiple	threads.


There	are	two	ways	to	accommodate	multiple	threads	and	cooperating,	concurrent	
processes.


In	the	first	approach,	at	the	time	a	new	thread	is	created,	the	entire	address	space	is	
copied.	In	this	approach,	there	is	one	thread	per	address	space	and	each	thread	
lives	in	a	completely	separate,	isolated	address	space.	Any	and	all	communication	
between	the	threads	must	involve	the	OS	kernel,	e.g.,	through	interprocess	“send”	
and	“receive”	operations.


In	the	second	approach,	several	threads	share	a	single	address	space.	This	
approach	is	useful	when	the	threads	perform	a	lot	of	coordination	and	
communication.	This	is	the	approach	preferred	for	most	Blitz-64	programs.


These	two	approaches	make	a	distinction	between	forking	a	thread	and	forking	a	
process.	When	a	thread	is	forked,	a	new	thread	is	added	to	the	current	address	
space.	When	a	process	is	forked,	a	new	address	space	is	created	and	the	new	thread	
goes	into	it.


In	Blitz-64,	the	term	“process”	means	an	address	space	and	all	of	the	threads	within	
it.	We	assume	that	it	is	typical	for	there	to	be	many	threads	within	a	single	process. 
66

All	threads	within	a	single	process	will	share	an	address	space.	All	threads	will	share	
the	read-only,	executable	code	section	and	all	threads	will	share	the	read-write,	
global	data	area.	Furthermore,	all	threads	in	a	process	will	share	the	heap	space.


	A	“process”	in	the	sense	we	use	it,	is	sometimes	called	a	“task”.	Historically,	the	term	“process”	66

was	conflated	with	“thread”.

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
189 217



Chapter	8:	Stack	Management


However,	each	thread	must	have	its	own	stack	region.


There	are	two	approaches	to	accommodating	programs	with	multiple	threads,	
which	we	describe	below.


•	Put	all	stacks	in	the	same	virtual	address	space	(protocol	#3)

•	Put	the	stacks	in	different	address	spaces	(protocol	#4)


Stack	Protocol	#3


In	this	approach,	all	stacks	will	be	in	the	same	virtual	address	space.	Therefore,	the	
stacks	must	occupy	different	address	ranges.	They	cannot	overlap.


As	an	example,	imagine	that	there	will	be	256	threads	and	each	stack	will	have	a	
default	size	of	16	MiBytes.	These	means	that	4	GiBytes	of	the	address	space	must	be	
allocated	for	stack	storage. 	Nevertheless,	this	is	a	modest	amount	of	address	space,	67

leaving	28	GiBytes	for	the	heap	and	other	things.


This	approach	can	accommodate	a	respectable	number	of	threads	(256)	each	with	a	
respectable	stack	size	(16	MiBytes).	In	fact,	there	is	plenty	of	address	space	to	
increase	these	numbers,	for	those	programs	that	need	it.


This	approach	has	the	advantage	that	there	is	not	too	much	interaction	with	the	
kernel	when	a	new	thread	is	created,	and	thread	creation	can	be	managed	from	
within	the	process	itself. 
68

Another	advantage	is	that	the	threads	can	share	data	that	is	located	on	the	stack.	For	
example,	one	thread	may	create	some	local	data	on	its	stack	and	pass	a	pointer	to	
that	local	stack	data	to	another	thread.	Of	course	the	first	thread	better	not	return	
before	the	second	thread	has	completed	using	the	data;	it	must	wait	for	a	signal	from	
the	second	thread	before	returning! 
69

	We’ll	also	need	some	sentinel	pages	for	each	stack	to	make	catch	any	stack	overflow	errors,	as	67

described	previously.

	For	example,	different	threads	might	be	given	stack	regions	of	differing	sizes,	and	these	sizes	can	68

be	determined	by	the	process	itself,	based	on	information	available	only	at	runtime.

	The	sharing		of	local	stack	data	between	threads	is	strongly	discouraged,	since	bugs	will	be	race-69

dependent	and	program	correctness	will	be	almost	impossible	to	verify.

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
190 217



Chapter	8:	Stack	Management


The	actual	parent	process	which	creates	the	threads	may	have	more	information	
about	how	many	threads	will	be	created	and	may	divide	the	available	address	space	
up	as	it	sees	fits,	perhaps	giving	some	threads	larger	stack	regions	than	other	
threads.


It	is	also	reasonable	for	the	parent	process	to	allocate	space	within	the	heap	for	each	
thread’s	stack	region.	Then,	whenever	a	thread	completes	and	terminates,	the	
parent	can	free	that	stack	region,	making	it	available	for	future	threads. 
70

Stack	Protocol	#4


In	this	approach,	all	threads	will	share	code,	global	data,	and	the	heap,	but	the	
threads	will	not	share	stack	space.	Instead,	the	stacks	for	each	thread	will	be	located	
at	the	same	address	range.


In	other	words,	the	data	that	a	given	address	refers	to	may	be	dependent	on	which	
thread	is	involved.	The	threads	can	communicate	through	shared	global	data	in	the	
R/W	section	and	through	data	in	the	heap.	But	a	pointer	to	a	local	stack	variable	is	
not	usable	in	another	thread. 
71

The	benefit	of	this	approach	is	that	the	parent	process	doesn’t	need	to	specify	a	
maximum	stack	size	when	a	thread	is	created.	Each	stack	is	allowed	to	grow	until	it	
reaches	the	top-most	page	occupied	by	the	heap,	giving	the	greatest	room	for	
growth.


	Each	stack	should	have	some	sentinel	pages	to	catch	stack	overflow	errors	and	these	pages	need	70

to	be	marked	by	the	OS	kernel	so	that	accesses	to	them	will	signal	a	stack	overflow	error.	This	
requires	the	heap	manager	to	be	page-aware,	making	the	heap-based	approach	more	complicated.	
This	approach	might	only	be	appropriate	for	extremely	large	and	complex	programs.

	This	approach	involves	a	little	more	complexity	for	the	OS	kernel.	In	Blitz-64	architecture,	71

address	spaces	are	managed	with	ASIDs	(Address	Space	Identifiers).	Each	thread	will	need	a	
different	ASID	number.	The	kernel	will	essentially	establish	a	unique	address	space	for	each	thread	
and	the	address	spaces	will	effectively	share	the	pages	on	which	the	global	data,	code,	and	heap	
reside.

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
191 217



Chapter	8:	Stack	Management


Stack	Protocol	#5


The	previous	approaches	make	sense	for	programs	executed	as	user	processes	by	an	
OS	kernel	that	implements	virtual	memory.	Not	all	programs	operate	in	a	such	an	
environment.


KPL	is	also	intended	for	standalone	programs	running	on	bare	machines.	In	order	to	
make	the	Blitz-64	system	usable	for	embedded	and	single	chip	systems	where	
memory	and	other	resources	are	quite	limited,	there	is	another	approach	which	we	
describe	here.


In	this	approach,	the	programmer	will	determine	exactly	the	maximum	possible	
stack	usage	before	runtime	and	the	compiler	will	verify	and	check	that	the	program	
meets	the	specification.	Given	this	“maximum	stack	usage”	specification,	it	becomes	
possible	to	preallocate	a	much	smaller	memory	region	for	the	stack	with	confidence	
that	it	will	not	overflow.


The	previous	approaches	focussed	on	preallocating	a	large	memory	region	for	the	
stack,	hoping	that	it	was	adequately	large,	and	catching	any	stack	overflow	errors	
that	occurred.	If	more	space	can	be	allocated	to	the	stack	region,	then	then	thread	
can	continue,	but	if	not,	then	there	is	really	nothing	that	can	be	done.	The	thread	
must	be	aborted.	In	some	critical	applications,	it	is	unacceptable	to	allow	the	
possibility	—	however	remote	it	may	seem	—	that	a	thread	might	unexpectedly	run	
out	of	stack	space	and	have	to	be	perfunctorily	terminated.	Yet	allocating	overly	
large	stack	regions	may	be	unacceptable.


One	such	program	requiring	this	approach	is	the	OS	kernel	itself.


We	want	to	keep	the	memory	occupied	by	the	OS	kernel	as	small	as	possible,	in	
order	to	leave	the	maximal	amount	of	physical	memory	available	for	use	by	user	
level	address	spaces.	Another	issue	with	an	OS	kernel	is	that,	since	it	may	not	be	
memory	mapped,	the	techniques	of	using	sentinel	pages	may	not	work.


In	the	approach	here,	we	will	assume	that	the	program	exhibits	no	recursion.	This	is	
a	reasonable	assumption	for	OS	kernels,	small	embedded	systems,	and	programs	
demanding	high	reliability.


For	each	function	or	method,	the	programmer	will	determine	how	much	stack	space	
is	required.	In	other	words,	the	programmer	will	have	to	specify	(in	the	KPL	source	

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
192 217



Chapter	8:	Stack	Management


code)	the	number	of	bytes	that	will	be	pushed	onto	the	stack	whenever	the	function	
or	method	is	called.


Using	the	Max_Stack_Usage	Clause


KPL	has	a	special	syntactic	construct	to	support	this	and	the	compiler	will	verify	that	
the	code	meets	the	constraint.	With	the	Max_Stack_Usage	clause,	the	programmer	
can	specify	at	compile-time	how	much	stack	space	a	method	or	function	will	use,	
and	the	compiler	will	check	to	verify	that	the	method	or	function	can	never	exceed	
this	limit.


In	order	to	use	the	Max_Stack_Usage	mechanism,	the	programmer	must	first	
determine	the	size	of	the	stack	frame	for	each	function	and	method	in	the	program.


The	KPL	compiler	has	a	command	line	option	“-stack”	which	will	cause	the	compiler	
to	print	information	about	the	frame	sizes	of	all	functions	and	methods. 
72

    % kpl MyPack … -stack

The	maximum	amount	of	stack	space	required	by	any	function	or	method	is	the	
frame	size	plus	the	maximum	stack	usage	for	any	function	or	method	that	might	be	
called.


Let’s	see	how	it	can	be	computed	with	an	example.


Imagine	our	program	has	a	function	called	“f”	that	does	not	call	any	other	functions.	
Assume	we	know	the	frame	size,	from	compiling	with	the	“-stack”	option:


    f    frame size = 200 bytes

Then	we	can	conclude:


    f    max stack usage = 200 bytes

Next,	suppose	that	we	have	a	second	function	“g”and	we	know	its	frame	size:


    g    frame size = 100 bytes

	A	language	reference	manual	should	describe	the	language	and	not	a	particular	implementation,	72

but	this	seems	like	the	best	way	to	motivate	the	KPL	features	involved.

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
193 217



Chapter	8:	Stack	Management


Let’s	assume	that	“g”	only	calls	“f”.


If	“g”	is	invoked,	it	will	allocate	100	bytes	and,	if	it	happens	to	invoke	“f”,	there	will	
be	an	additional	200	bytes	pushed	onto	the	stack,	at	most.	So	we	can	conclude:


    g    max stack usage = 300 bytes

Next,	assume	there	is	a	third	function	called	“h”	and	we	know	its	frame	size:


    h    frame size = 1000 bytes

We	examine	the	program	and	determine	that	“h”	may	invoke	“f”	and	“g”.	Of	course,	
“h”	can	only	invoke	one	function	at	a	time.	If	“h”	happens	to	only	invoke	“f”	on	some	
execution,	then	that	execution	will	only	require	1200	bytes.


But	for	another	execution,	“h”	might	invoke	“g”	which	requires	more	stack	space.	So,	
in	the	worst	case,	“h”	can	invoke	“g”	which	will	push	an	additional	300	bytes.	Of	the	
all	the	functions	that	“h”	may	invoke	directly,	we	must	look	at	the	one	that	has	the	
maximum	stack	usage.	This	is	“g”.


    h    max stack usage = 1300 bytes

In	this	example,	we	have	determined	the	maximum	number	of	bytes	that	might	be	
required	when	each	of	these	functions	is	executed.	Proceeding	the	same	way,	the	
programmer	can	determine	the	maximum	stack	usage	for	all	functions	and	methods	
in	the	program.


The	maximum	stack	usage	for	a	thread’s	“main”	function	is	then	the	greatest	number	
of	bytes	required	for	that	thread,	which	is	the	maximum	stack	usage	we	have	
computed.	It	is	only	an	upper	limit;	it	may	be	that	there	is	no	way	the	main	function	
can	actually	consume	that	much	stack	space.	However,	we	can	be	certain	that	it	will	
never	use	more	bytes.


To	specify	the	maximum	stack	usage	for	a	function,	the	KPL	uses	this	syntax:


    function ID (Args) [ returns Type ] [ '[' Max_Stack_Usage = Expr ']' ]

For	example,	functions	from	the	example	above	might	be	declared	like	this:


Software	Reference	Manual	/	Porter	 	 Page	 	of	 
194 217



Chapter	8:	Stack	Management


    functions
      f (x, y: int) returns int [ Max_Stack_Usage = 200 ]
      g (x, y: int) returns int [ Max_Stack_Usage = 300 ]
      h (x, y: int) returns int [ Max_Stack_Usage = 1000 ]

If	the	Max_Stack_Usage	clause	is	used,	it	must	appear	on	both	the	function	
prototype	and	the	function	itself	and	the	values	must	be	equal.


    functions
      f (…) returns … [ Max_Stack_Usage = 200 ]

    function f (…) returns … [ Max_Stack_Usage = 200 ]
      ...
    endFunction

If	the	Max_Stack_Usage	clause	is	used	on	a	method,	the	clause	must	appear	only	on	
the	prototype,	not	the	method	itself:


    class ...
      methods
        myMeth (…) returns … [ Max_Stack_Usage = 500 ]
      ...
    behavior ...
      method myMeth (…) returns …
        ...
      endMethod
      ...

The	Max_Stack_Usage	clause	may	also	appear	on	function	types,	as	in:


    ptr to function (int, int) returns int [ Max_Stack_Usage = 100 ]

Any	method	or	function	with	a	Max_Stack_Usage	clause	may	only	invoke	methods	
and	functions	that	also	have	Max_Stack_Usage	clauses.	If	a	Max_Stack_Usage	clause	
appears,	the	compiler	will	enforce	it.


Software	Reference	Manual	/	Porter	 	 Page	 	of	 
195 217



Chapter	8:	Stack	Management


KPL’s	Max_Stack_Usage	system	works	in	practice.  73

	Experience	has	shown	that	it	is	often	time	consuming	to	obtain	tight	limits.	The	best	approach	73

seems	to	be	to	complete	all	debugging	and	testing	before	adding	any	Max_Stack_Usage	clauses.


The	annoyance	comes	whenever	a	function	is	changed.	Simply	adding	a	“print”	statement	to	some	
function	can	increase	its	stack	usage.	This	has	a	cascading	effect,	causing	violations	of	every	
function	that	invokes	the	modified	function,	and	violations	in	every	function	that	calls	them,	and	so	
on.	So	adding	Max_Stack_Usage	clauses	before	debugging	is	complete	causes	extra	work	and,	as	
far	as	I	can	tell,	debugging	never	seems	to	be	complete.	One	approach	is	to	avoid	specifying	tight	
constraints.	Instead,	the	idea	is	to	add	a	few	extra	bytes	to	the	Max_Stack_Usage	clauses	to	
accommodate	small	future	changes	to	the	code.	Of	course,	this	can	translate	into	wasted	memory	
in	the	preallocated	stack	region.

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
196 217



Chapter	9:	Heap	Management


Using	the	Heap	System


In	KPL,	memory	on	the	heap	can	be	allocated	with	the	alloc	expression	or	by	calling	
the	function	MemoryAlloc.	After	use,	the	memory	should	be	freed	with	the	free	
statement.


KPL	supports	several	“heap	management	algorithms”,	which	are	numbered.


Heap	Management	Algorithm	#0	is	the	default	and	will	suffice	for	almost	all	
programs.	Heap	Management	Algorithm	#1	is	more	complex.	At	this	writing,	more	
complex	algorithms,	such	as	Heap	Management	Algorithm	#2,	which	are	
described	in	this	chapter,	are	not	yet	implemented.


Heap	Management	Algorithm	#0	is	the	default.	In	it,	memory	is	allocated	
sequentially	and	the	free	statement	is	a	nop.	A	large	region	of	memory	is	
preallocated	to	contain	the	heap	and	this	region	does	not	grow.	The	size	of	the	heap	
region	is	determined	by	the	constant	HEAP_SIZE,	which	is	found	in	the	System	
package.	If	a	different	size	is	required,	this	constant	can	be	altered	and	the	program	
recompiled.	This	approach	is	fastest	and	most	efficient,	works	perfectly	for	most	
programs,	and	should	be	used	unless	there	is	a	compelling	reason	otherwise.


Heap	Management	Algorithm	#1	allocates	memory	sequentially	and	the	free	
statement	is	a	nop,	just	as	in	the	default	algorithm.	However,	a	hidden	“byteCount”	
field	is	stored	with	each	allocation. 	This	allows	the	heap	functions	to	perform	some		74

error	checking	which	is	not	possible	in	the	default	algorithm.	In	particular,	attempts	

	The	byteCount	field	is	a	doubleword	preceding	the	chunk	of	memory	returned	to	the	74

application	program.	The	pointer	returned	from	a	memory	request	will	point	to	the	address	
following	this	hidden	field.	The	application	program	should	ignore	this	hidden	field,	effectively	
remaining	unaware	of	its	existence.

Software	Reference	Manual	/	Porter	 Page	 	of	197 217



Chapter	9:	Heap	Management


to	free	memory	more	than	once	will	be	caught.	Also,	if	a	memory	leak 	is	detected,	75

it	is	possible	with	this	algorithm	to	go	through	the	heap	sequentially	and	identify	the	
objects	that	have	not	been	freed.	Getting	information	about	these	objects	can	assist	
in	locating	the	leak.


Just	as	in	the	default	approach,	a	large	region	of	memory	is	preallocated	to	contain	
the	heap	and	this	region	does	not	grow.	The	initial	size	of	the	heap	region	can	be	
adjusted	with	the	constant	HEAP_SIZE.


Heap	algorithms	#0	and	#1	are	appropriate	for	use	in	both	the	kernel	and	user-level	
programs.	Algorithm	#2	is	only	for	user-level	programs.


With	Heap	Management	Algorithm	#2,	the	size	of	the	heap	region	is	not	fixed.	
Instead,	the	heap	will	grow	as	necessary.	The	algorithm	will	request	additional	
pages	from	the	OS	kernel,	potentially	consuming	the	vast	stretch	of	virtual	memory	
between	the	heap	and	the	stack.	Also,	the	free	operation	is	no	longer	a	nop.	
Requests	by	the	application	for	memory	will	either	be	satisfied	by	reusing	
previously	freed	memory	or	be	satisfied	by	requesting	additional	pages	from	the	OS	
kernel.


If	the	programmer	wishes	to	use	anything	other	than	the	default	algorithm,	the	
function	initializeHeap	should	be	called	before	any	allocations	are	attempted. 	The	76

argument	to	initializeHeap	is	an	integer	with	the	meaning


	 0:	Default	Heap	Management	Algorithm

	 1:	Heap	Management	Algorithm	#1

	 2:	Heap	Management	Algorithm	#2

	 …


	A	“memory	leak”	occurs	when	a	chunk	of	memory	is	allocated	but	never	freed.	With	a	memory	75

leak	bug,	the	heap	will	gradually	will	fill	up	with	unused	objects,	ultimately	causing	problems.

	During	KPL	initialization,	initializeHeap	(0)	will	always	be	called,	so	the	programmer	does	not	76

need	to	invoke	initializeHeap	if	the	default	algorithm	is	sufficient.	

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
198 217



Chapter	9:	Heap	Management


At	any	time,	the	programmer	may	invoke	the	following	functions:


getHeapRemaining       () returns int
getHeapCurrentInUse    () returns int
getHeapTotalAllocation () returns int
getHeapTotalFreed      () returns int
checkHeapConsistency   ()
runThruHeap            ()

With	algorithms	#0	and	#1,	in	which	the	free	operation	is	a	nop,	the	
getHeapRemaining	function	returns	the	number	of	unallocated	bytes	remaining	in	
the	heap.	The	getHeapCurrentInUse	function	returns	the	number	of	bytes	that	
have	been	allocated	by	the	application	program	but	not	yet	freed.	The	
getHeapTotalAllocation	and	getHeapTotalFreed	functions	give	the	number	of	
bytes	that	have	been	allocated	and	freed	over	the	lifetime	of	the	program.


The	checkHeapConsistency	function	would	not	normally	be	called,	but	may	be	of	
some	use	if	there	are	bugs	and	the	programmer	suspects	that	the	hidden	heap	
structures	have	somehow	become	corrupted. 
77

In	heap	management	algorithm	#1	is	in	use	and	a	memory	leak	has	been	detected,	
the	programmer	can	invoke	runThruHeap.	This	function	will	print	some	
information	about	the	chunks	of	memory	that	have	been	allocated	but	not	freed,	
which	can	aid	debugging.


If	the	heap	fills	up	and	there	is	no	remaining	space	to	satisfy	an	allocation	request	
from	the	application	code,	the	following	error	will	be	thrown:


	 ERROR_HeapFull


With	algorithms	#0	and	#1,	this	error	is	real	possibility	and	can	be	dealt	with	by	
modifying	HEAP_SIZE	and	recompiling	the	program.	With	algorithm	#2—the	
algorithm	appropriate	for	user-level	code	which	is	only	limited	by	the	size	of	the	
virtual	address	space—this	error	will	probably	not	occur	before	other	errors	related	
to	address	space	page	limits	are	detected.


	For	example,	if	the	program	is	writing	to	memory	chunks	that	have	already	been	freed,	there	is	a	77

possibility	that	the	checkHeapConsistency	function	could	catch	this,	if	heap	management	
algorithm	#1	is	in	use.

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
199 217



Chapter	9:	Heap	Management


The	program	can	catch	ERROR_HeapFull	using	KPL’s	try-throw-catch	mechanism,	
or	can	accept	the	normal	error	handling	process.


If	the	heap	algorithms	detect	other	errors,	then	the	following	error	will	be	thrown:


	 ERROR_HeapViolation


There	is	an	error	message	parameter	giving	more	info.	Example	violations	include	
(1)	a	negative	byteCount	in	a	request	and	(2)	the	detection	of	a	heap	inconsistency.


Allocating	and	Freeing


Recall	that	in	KPL	there	are	two	ways	to	allocate	memory	on	the	heap.


First,	the	alloc	clause	can	be	executed,	as	in:


    objPtr = alloc MyClass { ... }
    arrPtr = alloc array of int { k of -1 }

The	alloc	construct	allows	for	additional	type-specific	initialization	and	the	
allocated	data	is	guaranteed	to	be	initialized	with	zero	values	if	no	initialization	is	
present.


Second,	the	program	can	explicitly	call	the	function	MemoryAlloc:


    var p: ptr to byte
    p = MemoryAlloc (n)   -- n = number of bytes to allocate

The	MemoryAlloc	simply	returns	a	pointer	to	the	new	memory	region .
78

Any	memory	allocated	by	MemoryAlloc	is	not	guaranteed	to	be	zeroed	before	use,	
although	the	alloc	clause	is	guaranteed	to	initialize	memory.


In	either	case,	if	the	heap	is	full	and	no	more	memory	remains,	the	error	
ERROR_HeapFull	will	be	thrown.


	The	request	can	be	for	any	positive	number	of	bytes;	it	need	not	be	a	multiple	of	8	but	the	78

amount	of	memory	allocated	will	be	rounded	up.	The	returned	address	will	always	be	doubleword	
aligned.

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
200 217



Chapter	9:	Heap	Management


To	deallocate	the	space,	the	free	statement	can	be	used,	or	the	function	
MemoryFree	may	be	called: 
79

    free objPtr
    free arrPtr
    ...
    MemoryFree (p)

NOTE:	Currently,	the	stack	usage	of	the	MemoryAlloc	and	MemoryFree	functions	
is	not	considered	when	the	compiler	verifies	the	Max_Stack_Usage	clauses.	
Functions	like	this	impose	a	small,	fixed	overhead	on	all	functions.	Changing	the	
algorithm	to	something	unusual	could	cause	this	fixed	overhead	to	be	exceeded.


Selecting	a	Heap	Management	Algorithm


In	KPL,	the	function	type	makes	it	possible	to	reconfigure	the	heap	management	
algorithm.	The	actual	algorithm	employed	whenever	MemoryAlloc	or	MemoryFree	
is	invoked	may	be	changed	by	the	programmer. 
80

The	following	fields	in	the	ThreadData	object	determine	which	functions	are	
actually	invoked	whenever	an	alloc	is	executed	or	whenever	MemoryAlloc	or	
MemoryFree	is	called:


    memAllocFun: ptr to function (int) returns ptr to byte
    memFreeFun:  ptr to function (ptr to byte)

The	function	KPLInitialize	contains	this	code:


    memAllocFun = KPLDefaultMemoryAlloc
    memFreeFun  = KPLDefaultMemoryFree

There	are	a	number	of	algorithms	to	manage	heap	memory.	The	default	is	described	
next.


	The	free	statement	simply	invokes	MemoryFree.	Either	technique	can	be	used	to	return	79

memory	to	the	heap,	regardless	of	whether	it	was	allocated	with	alloc	or	MemoryAlloc.

	In	fact,	different	threads	within	a	single	process	may	even	use	different	algorithms,	although	80

that	would	be	very	unusual.

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
201 217



Chapter	9:	Heap	Management


We’ll	refer	to	the	code	invoking	MemoryAlloc	and	MemoryFree	as	the	“application	
program”	to	distinguish	it	from	the	heap	management	algorithms.


Heap	Algorithm	#0


In	this	section	we	describe	and	discuss	the	simplest	approach	to	heap	management,	
which	is	implemented	in	the	functions	KPLDefaultMemoryAlloc	and	
KPLDefaultMemoryFree.


The	idea	is	that	a	large	region	of	memory	is	preallocated	to	contain	the	heap.	Newly	
allocated	objects	are	placed	one-after-the-other.	The	default	MemoryFree	operation	
is	ignored	and	is	a	nop.


The	heap	will	grow	upward	until	space	is	exhausted,	at	which	time	the	
ERROR_HeapFull	is	thrown.


The	default	approach	has	a	number	of	benefits.


KPL	specifies	that	the	user	address	space	will	be	initialized	to	zeros.	All	pages	must	
be	zeroed	by	the	OS	kernel	before	being	added	to	a	virtual	address	space	to	prevent	
information	from	leaking	from	one	process	to	another.	This	default	approach	is	
optimal,	since	there	is	no	need	for	any	additional	zeroing	of	memory.	Regions	are	
only	allocated	once,	and	will	have	been	zeroed	by	the	kernel,	so	all	allocations	take	a	
fixed	quick	time,	independent	of	the	number	of	bytes	being	allocated.


The	allocation	is	extremely	quick,	since	it	requires	nothing	more	than	a	couple	of	
additions	and	a	limit	check.


All	available	memory	in	the	heap	region	is	devoted	to	user	data;	additional	data	
structures	and	hidden	header	words	are	not	needed.


The	free	operation	is	fast	since	it	is	a	nop.	Ultimately,	the	process	will	terminate	and,	
at	that	time,	all	pages	from	the	address	space	will	be	returned	to	the	kernel’s	pool	of	
free	pages.	Thus,	the	time	spent	on	memory	reclamation	is	truly	minimal.


In	the	very	simplest	approach,	the	heap	space	can	be	predefined,	in	which	case	there	
is	no	interaction	with	the	OS.	The	heap	is	essentially	a	fixed	array,	allocated	when	the	
address	space	is	created.	This	situation	is	really	the	simplest	and	has	worked	
surprisingly	well	for	a	number	of	complex	programs	to-date.


Software	Reference	Manual	/	Porter	 	 Page	 	of	 
202 217



Chapter	9:	Heap	Management


If	the	application	program	is	running	in	a	user-level	virtual	address	space,	we	can	
grow	the	heap	as	needed.	So	we	start	with	a	small	heap	and,	when	it	is	all	used	up,	
we	add	pages.	With	this	approach,	the	heap	can	grow	and	grow	until	either	it	hits	
the	stack	or	it	reaches	some	page	limit	imposed	by	the	OS.


The	best	approach	is	to	keep	track	of	the	current	top	of	the	heap,	and	have	
MemoryAlloc	explicitly	ask	the	OS	for	additional	pages	when	they	are	needed.


An	alternate	approach	is	to	simply	use	any	and	all	memory	in	the	virtual	address	
space	with	explicitly	coordinating	with	the	OS.	Initially,	MemoryAlloc	will	only	
touch	pages	in	the	small	region	of	memory	where	the	heap	starts,	but	as	the	
application	requires	more	memory,	higher	and	higher	addresses	will	be	accessed.	
The	OS	would	presumably	allocate	physical	pages	to	populate	the	address	space	“on	
the	fly”	as	they	are	needed	and	accessed.	If	the	OS	implements	sentinel	pages	for	the	
stack,	then	a	heap	overrun	will	be	detected	when	the	heap	runs	into	the	stack	or—
more	precisely—when	the	heap	runs	into	the	stack	sentinel	pages. 
81

The	Blitz-64	architecture	limits	the	size	of	a	virtual	address	spaces	to	32	GiBytes.	
This	size	permits	a	lot	of	data,	which	should	suffice	for	all	reasonable	program. 	In	82

situations	where	this	limit	becomes	insufficient,	it’s	time	to	break	the	program	into	
multiple	processes.


Many	programs	tend	to	have	two	phases.	Roughly	speaking,	in	the	first	phase,	a	data	
structure	is	created.	During	this	phase,	the	program	allocates	memory	from	the	
heap.	In	the	second	phase,	the	program	tends	to	process	the	data	structure	it	created	

	The	problem	here	is	that	the	application	might	request	a	huge	amount	of	memory	in	such	a	way	81

that	the	newly	allocated	chunk	of	memory	includes	any	and	all	sentinel	pages	and	runs	into	the	
stack	region.	The	application	might	choose	to	begin	using	the	higher	addresses	in	this	newly	
allocated	chunk,	which	are	actually	bytes	in	use	by	the	stack.	This	is	a	very	unlikely	scenario,	but	
it’s	just	the	kind	of	thing	that	is	incompatible	with	the	Blitz	philosophy.	Therefore,	the	heap	
allocation	algorithm	must	coordinate	with	the	OS	kernel	to	verify	that	the	heap	top	remains	below	
the	stack	sentinel	pages.

	What	is	a	“reasonable	sized”	program?	Imagine	a	program	with	10	million	lines	of	code,	with	82

100	bytes	of	machine	instructions	per	line,	which	is	truly	huge.	Yet	the	code	only	consumes	1	
GiByte.	As	for	data,	imagine	storing	the	novel	“War	and	Peace”	in	memory,	consuming	10	bytes	per	
character,	which	is	generous.	You	can	store	10	copies	of	“War	and	Peace"	in	under	1	GiByte,	so	after	
code	and	data,	there	is	still	huge	amount	of	space	remaining.	In	fact,	you’ve	still	got	enough	room	
for	several	hours	of	HD-quality	video.	A	32	GiByte	virtual	address	space	is	really,	really	large.	And	
keep	in	mind	this	limit	is	only	per	process.

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
203 217



Chapter	9:	Heap	Management


earlier.	All	data	accumulated	is	kept	around	and	nothing	is	freed,	since	it	is	difficult	
to	know	which	data	items	will	be	needed	in	the	future.


For	programs	like	this,	there	is	really	no	good	reason	to	free	memory.	It	is	more	
efficient	to	free	all	memory	in	bulk,	when	the	program	terminates.	Furthermore,	
freeing	memory	will	not	make	any	difference.	If	some	execution	of	the	program	was	
destined	to	run	out	of	memory,	freeing	wouldn’t	have	helped	anyway,	if	all	the	
allocations	precede	the	first	“free”	operation.


However,	a	few	programs	do	not	have	this	behavior.	For	example,	long-running	
programs	can	pose	a	problem	because	they	are	periodically	allocating	and	then	
freeing	memory,	as	demands	to	the	program	come	and	go.	If	the	memory	is	not	freed	
for	such	programs,	then	eventually	the	heap	space	will	become	exhausted. 
83

In	the	initial	Blitz	implementation,	the	heap	size	was	fixed	at	1,000,000	bytes	by	a	
constant	in	System.c.	This	size	has	sufficed	for	all	programs	to-date. 
84

The	“allocate-and-never-free”	approach	seems	very	appropriate	for	an	OS	kernel,	
where	we	have	these	goals:


•	 Allocate	as	much	memory	to	user	space	as	possible

•	 Avoid	any	complex	heap	algorithm,	which	might	introduce	unpredictable	
delays


Management	of	kernel	resources	(e.g.,	page	frames)	inside	the	kernel	will	likely	be	
handled	differently	than	a	simple	heap,	but	the	kernel	may	still	need	a	traditional	
heap,	particularly	during	start-up.	The	idea	is	that	a	small	number	of	objects	will	be	
allocated	during	startup	but	after	process	scheduling	begins,	no	new	heap	space	will	
be	allocated.	So	a	heap	that	grows	initially	can	be	used	to	allocate	the	basic	objects	
used	by	the	kernel,	but	then	the	heap	is	“closed	for	business”	and	all	remaining	
space	is	reallocated	to	the	paging	system.	


For	most	user-level	programs,	the	allocate-and-never-free	approach	is	perfect.	But	
for	a	few	user-level	programs,	it’s	clearly	inadequate.


	Usually,	the	program	is	going	to	fail	because	it	requires	so	many	pages	that	it	exceeds	some	limit	83

imposed	by	the	OS	and	is	aborted	as	a	result.	But	it	is	also	possible	that	the	32	GiByte	virtual	
address	space	limit	itself	might	cause	the	failure.

	A	chess-playing	program	challenged	this	rather	modest	heap	limit.	But	even	with	such	a	small	84

heap	size,	the	limiting	factor	for	this	program	was	processing	speed,	not	memory	usage.

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
204 217



Chapter	9:	Heap	Management


Heap	Algorithm	#1


A	memory	leak	occurs	when	a	program	fails	to	free	memory	that	it	no	longer	needs.	
It	is	important	to	verify	that	programs	do	not	contain	memory	leaks.


Although	we	can	often	avoid	the	complexity	of	a	heap	algorithm	that	reclaims	and	
re-uses	free	space,	we	still	want	to	develop	code	that	contains	no	memory	leaks,	
under	the	assumption	that	our	code	will,	in	the	future,	be	used	in	contexts	where	
memory	is	reclaimed	and	re-used.


In	the	approach	described	in	this	section,	we	will	use	a	simple	algorithm	that	will	
allow	us	to	detect	memory	leaks.


Our	program	will	invoke	MemoryFree	to	release	all	unused	memory.	As	with	the	
simplest	heap	approach,	the	MemoryFree	operation	will	be	nop,	in	the	sense	that	
we	don’t	actually	reclaim	the	memory	space.


However	we	will	add	a	way	to	verify	that	everything	we	allocate	is	ultimately	freed.


Just	as	in	Heap	Algorithm	#0,	the	MemoryAlloc	function	will	allocate	memory	in	
sequential	order,	at	increasing	memory	addresses,	until	memory	is	exhausted.	After	
a	region	of	memory	is	freed	with	the	MemoryFree	function,	it	will	never	be	re-used.


However,	we	will	keep	track	of	how	much	memory	has	been	freed,	so	that	at	any	
time,	we	can	answer	the	following	questions:


•	 How	many	bytes	have	been	allocated?

•	 How	many	bytes	have	been	freed?

•	 How	many	bytes	remain	in	use?


If	any	bytes	remain	“in	use”	in	an	application	that	was	supposed	to	clean	up	after	
itself,	then	we	have	a	memory	leak.


To	implement	this,	we	will	add	a	“hidden”	field	to	every	allocation.	The	hidden	field	
will	be	a	doubleword	and	will	contain	the	number	of	bytes	in	the	memory	region.


Software	Reference	Manual	/	Porter	 	 Page	 	of	 
205 217



Chapter	9:	Heap	Management


For	example,	if	the	call	to	MemoryAlloc	asks	for	40	bytes ,	a	region	of	48	bytes	will	85

be	carved	out	of	the	heap.	The	first	8	bytes	will	become	the	hidden	“byteCount”	field	
and	are	filled	in	by	MemoryAlloc.	Then	MemoryAlloc	will	return	a	pointer	to	the	
second	doubleword,	i.e.,	offset	8.	The	calling	program	will	be	unaware	of	the	hidden	
byteCount	field	and	it	should	remain	unchanged	until	the	chunk	of	memory	is	
freed. 
86

At	some	later	time,	the	program	will	issue	a	call	to	MemoryFree,	providing	a	pointer	
to	the	memory,	which	will	of	course	be	the	address	of	the	second	doubleword	in	the	
region	of	48	bytes.	By	retrieving	the	hidden	byteCount,	MemoryFree	can	adjust	the	
counters	to	track	the	number	of	bytes	that	have	been	freed.


With	this	technique,	we	can	also	detect	any	attempt	to	free	memory	that	has	
previously	been	freed.	The	idea	is	that	MemoryFree	will	also	mark	the	byteCount	
field	to	indicate	that	this	chunk	has	been	freed.	The	simplest	way	to	mark	it	is	to	
negate	the	value	and	re-store	it	in	the	byteCount	field.


Then,	if	the	program	ever	calls	MemoryFree,	providing	a	pointer	to	a	region	with	a	
negative	byteCount,	MemoryFree	can	immediately	detect	this	and	issue	an	error	
saying	that	this	chunk	of	memory	has	already	been	freed.


With	this	technique,	we	might	also	be	able	to	obtain	some	useful	information	after	a	
memory	leak	has	been	detected.	Here’s	how.


As	the	program	runs	and	makes	calls	to	MemoryAlloc,	chunks	of	memory	will	be	
allocated	sequentially	and	adjacently,	from	the	beginning	of	the	heap,	on	up.	Each	
chunk	will	begin	with	a	byteCount,	thus	allowing	us	to	run	through	the	heap,	chuck-
by-chunk,	from	the	first	allocation	to	the	last.	We	can	detect	which	chucks	have	been	
freed	and	which	are	still	in	use	by	checking	whether	the	byteCount	is	negative	or	
not.	When	we	encounter	a	chuck	that	is	still	in	use—that	is,	with	a	positive	
byteCount—we	can	print	out	the	bytes.	If	it	is	an	object,	we	might	consider	
following	its	dispatch	table	pointer	to	print	the	class	name.	Otherwise,	we	might	try	
interpreting	the	chuck	as	an	array	of	bytes	and	printing	it.


	As	stated	elsewhere,	all	allocations	are	in	multiples	of	64-bit	doublewords.85

	We	make	the	assumption	the	application	program	is	well-behaved	and	doesn’t	touch	memory	86

addresses	that	have	not	been	legitimately	allocated	to	it,	but	of	course	this	sort	of	bug	can	happen	
in	KPL	and	the	application	program	might	mangle	the	hidden	byteCount,	which	will	cause	total	
havoc	with	the	heap	management	algorithm.

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
206 217



Chapter	9:	Heap	Management


Types	of	Heap	Errors


In	Blitz,	memory	is	allocated	on	the	heap	through	invocations	of	MemoryAlloc	and	
released	with	calls	to	MemoryFree.


Some	programs	simply	avoid	ever	calling	MemoryFree.	This	is	a	perfectly	
reasonable	approach	in	almost	all	situations	and	avoids	bugs.


But	programs	that	actively	free	memory	can	suffer	from	several	types	of	bugs:


•	Premature	Frees:	Memory	is	freed	too	soon

•	Memory	Leaks:	Memory	is	freed	too	late

•	Multiple	Frees:	Memory	is	freed	more	than	once

•	Random	Frees:	A	bad	address	is	provided


The	first	error	is	premature	freeing.	A	region	of	memory	is	freed,	although	the	
program	maintains	a	pointer	to	the	region	and	subsequently	reads	or	writes	to	the	
region.


Premature	freeing	is	a	nasty	bug.	Unfortunately,	the	program	may	often	work	
correctly,	in	spite	of	this	presence	of	this	bug.	Perhaps	the	prematurely	freed	region	
was	not	re-allocated	before	being	reused	so	the	program	happens	to	produce	the	
correct	output.	Or	perhaps	the	region	contains	some	new,	different	data.	Perhaps	a	
read	from	the	region	happens	to	return	a	reasonable	but	incorrect	value;	perhaps	a	
write	to	the	region	overwrites	some	data	with	a	reasonable	but	incorrect	value.	In	
short,	the	program	with	this	bug	can	often	continue	to	work	correctly.	Or	the	
program	can	work	incorrectly	without	being	noticed,	which	is	more	insidious.


A	premature	free	can	easily	go	unnoticed,	producing	incorrect	results.	The	bug	can	
also	be	intermittent,	causing	errors	and	failures	on	some	runs	and	not	others,	due	to	
the	vagaries	of	memory	allocations.


Once	the	bug	is	noticed,	it	can	be	exceedingly	difficult	to	track	down	and	understand.	
The	bug	might	be	manifested	because	some	data	is	mysteriously	incorrect,	as	the	
result	of	a	write	to	a	prematurely	free	memory	region.	The	actual	bug	is	entirely	
unrelated	to	the	data	that	was	damaged	and	may	have	happened	much	earlier	in	
execution.


Another	thing	that	makes	premature	free	bugs	particularly	difficult	to	track	down	is	
the	fact	that	they	can	be	very	sensitive	to	memory	layout.	A	small	change	to	the	

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
207 217



Chapter	9:	Heap	Management


program	can	change	the	buggy	behavior,	making	the	bug	intermittent.	For	example,	
adding	a	print	statement	to	the	program	during	debugging	can	subtly	change	where	
things	are	placed	in	memory,	causing	the	bug	to	seem	to	disappear.


With	“safe”	and	“unsafe”	constructs,	we	have	mostly	assumed	that	a	program	
containing	only	safe	constructs	can	not	crash.	If	there	are	errors,	then	either	the	
program	will	output	incorrect	results	or	an	appropriate	error	message	will	be	
printed,	but	it	will	not	lose	control	and	exhibit	unpredictable	behavior.


Unfortunately,	a	premature	free	bug	violates	this	assumption.	Consider	a	situation	in	
which	the	program	retains	a	pointer	to	a	region	of	memory	that	is	freed;	then	some	
new	object	is	allocated	in	that	same	memory	region;	finally,	the	original	pointer	is	
used	to	store	into	memory,	randomly	overwriting	fields	in	that	new	object.	This	can	
lead	to	a	crash,	even	though	the	program	only	contains	safe	constructs .
87

The	bug	of	premature	freeing	is	vile,	abominable,	and	very	dangerous	and	is	a	very	
good	reason	to	use	languages	with	automatic	garbage	collection,	where	it	cannot	
occur.	Of	course,	if	the	MemoryFree	operation	is	implemented	as	a	nop,	as	in	Heap	
Algorithm	#0	and	Heap	Algorithm	#1,	the	safety	guarantee	is	preserved.


The	second	error	is	a	memory	leak.	In	this	case,	the	program	fails	to	free	a	memory	
region	that	is	no	longer	needed.	As	a	result,	nothing	happens	for	a	while.	Instead,	the	
heap	gradually	fills	up	with	old,	unneeded	data,	until	the	heap	limit	is	exceeded	and	
the	program	fails.


In	some	sense,	a	memory	leak	bug	is	less	serious	since	the	program	output	will	be	
correct	and	nothing	will	happen	until	the	program	exhausts	the	available	heap	
space.	If	the	program	produces	output,	it	will	at	least	be	correct.


However,	a	memory	leak	bug	can	be	very	difficult	to	find.	Typically,	the	heap	is	not	
exhausted	immediately;	the	memory	leak	is	slow	and	it	may	take	quite	some	time	
before	the	program	fails.	This	complicates	debugging.


The	first	problem	is	to	determine	what	sorts	of	things	were	left	in	memory,	what	was	
not	freed	that	should	have	been.	The	second	challenge	is	to	determine	why	those	
objects	were	not	freed.	The	programmer	is	essentially	looking	for	the	something	that	

	Use	of	the	safe	statement	requires	the	-unsafe	option	when	compiling,	but	calling	MemoryFree	87

does	not	require	the	-unsafe	option.

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
208 217



Chapter	9:	Heap	Management


is	not	there.	Finding	something	that	is	missing	is	tricky,	because	it	is	hard	to	know	
where	to	look!


The	third	error	might	be	called	multiple	freeing.	The	problem	is	that	program	
attempts	to	free	a	region	it	has	already	freed.	This	is	generally	detectable,	as	with	
Heap	Algorithm	#1,	discussed	above.


A	final	error	might	be	called	random	freeing.	The	problem	is	that	the	program	calls	
MemoryFree	providing	a	completely	random	address.	This	address	was	never	
returned	from	a	call	to	MemoryAlloc.	The	address	may	or	may	not	even	be	in	the	
heap.


Generally	speaking,	this	error	is	rare	and	checking	for	it	may	impose	an	
unacceptable	overhead.	So	it	usually	makes	sense	to	avoid	checking	for	it,	letting	the	
program	fail	without	good	error	detection	when	it	occurs.


Of	course,	calling	MemoryFree	with	a	null	pointer	may	be	common,	but	this	will	
elicit	an	error	with	a	reasonable	error	message.


Given	all	these	factors,	the	conclusion	is	this:	The	simplest	memory	allocation	
algorithm	(in	which	nothing	is	ever	freed)	is	almost	always	the	best	solution.	It’s	
easy	and	efficient	and	doesn’t	suffer	from	the	bugs	of	premature	freeing,	memory	
leak,	and	multiple	freeing.	This	is	the	default	KPL	memory	management	algorithm	
and	it	should	be	used	unless	there	is	a	compelling	reason	otherwise.


If	the	simple	approach	will	not	work,	KPL	allows	the	programmer	to	implement	
whichever	the	memory	management	algorithm	makes	the	most	sense	for	the	
application.


Heap	Algorithm	#2


Next,	we	describe	the	second	approach	Blitz	will	use	to	manage	user-level	heaps.


Each	memory	chunk—either	allocated	or	free—will	begin	with	a	byteCount	field	in	
the	first	doubleword.	(Upon	return	from	MemoryAlloc,	the	caller	will	receive	a	
pointer	to	the	second	doubleword	so	the	byteCount	will	be	a	hidden	field	from	the	
user	program’s	perspective.)


When	a	chunk	of	memory	is	returned	via	MemoryFree,	the	byteCount	will	be	
negated,	which	will	flag	this	chunk	as	“free”.


Software	Reference	Manual	/	Porter	 	 Page	 	of	 
209 217



Chapter	9:	Heap	Management


Chunks	will	be	allocated	sequentially	in	the	region	dedicated	to	the	heap.	When	the	
heap	region	fills	up,	we	will	have	the	option	of	growing	the	heap	or	reclaiming	free	
space.


When	the	heap	region	fills	up,	our	initial	approach	will	be	to	grow	the	region.	That	
is,	the	MemoryAlloc	function	will	just	ask	the	OS	kernel	for	more	pages.	The	heap	
region	will	then	be	enlarged	and	the	allocation	will	proceed.	In	this	initial	“growth	
era”,	MemoryAlloc	will	ignore	the	free	chunks.	Any	chunk	returned	via	a	call	to	
MemoryFree	will	be	marked	with	a	negative	byteCount,	which	is	fast,	but	is	
otherwise	ignored.


The	benefit	of	this	approach	is	that	for	the	majority	of	programs	(which	never	
allocate	huge	amounts	of	memory),	MemoryAlloc	and	MemoryFree	will	be	fast.


At	some	point,	we	will	reach	a	numerical	page	boundary	which	will	signal	an	end	to	
the	initial	“growth	era”.	Instead	of	simply	growing	the	heap	region,	we	begin	the	
“reclamation	era”.


Now,	whenever	MemoryAlloc	is	invoked,	we	will	attempt	to	deliver	a	chunk	from	
memory	that	has	been	freed	previously.	Only	when	this	fails,	will	we	ask	the	OS	
kernel	for	additional	pages.


At	all	times	(i.e.,	from	the	very	first	call	to	MemoryAlloc)	we	will	maintain	these	
variables:


HeapRegionStart	 Address	of	the	first	byte	of	the	heap	region

HeapNextPtr	 Address	of	the	first	byte	beyond	all	free	and	allocated	

chunks

HeapRegionBeyond	 Address	of	next	byte	just	beyond	the	heap	region

HeapBytesAllocated	 Number	of	bytes	in	all	allocated	chunks

HeapBytesFree	 Number	of	bytes	in	all	free	chunks

HeapTotalAllocation	 Number	of	bytes	allocated,	including	those	later	freed


Software	Reference	Manual	/	Porter	 	 Page	 	of	 
210 217



Chapter	9:	Heap	Management


At	any	time,	these	variables	can	be	used	to	answer	the	questions :
88

•	 How	many	bytes	have	been	allocated?

•	 How	many	bytes	have	been	freed?

•	 How	many	bytes	remain	in	use?


During	MemoryAlloc,	we	first	determine	if	an	allocation	can	be	satisfied	by	just	
advancing	HeapNextPtr.	If	it	doesn’t	exceed	HeapRegionBeyond	then	we	simply	
carve	out	a	new	chunk,	advance	HeapNextPtr,	and	return.


If	we	are	in	the	“growth	era”,	we	ask	whether	we	are	still	below	the	limit	and	can	
remain	in	the	“growth	era”.	We	will	call	this	number


	 HEAP_GROWTH_LIMIT


If	we	are	below	this	limit	and	don’t	have	enough	bytes	at	the	top	of	the	heap	at	
HeapNextPtr,	then	we	immediately	call	the	OS	kernel	to	obtain	more	pages.	This	
allows	us	to	satisfy	the	demand	fairly	quickly.


We	will	just	keep	doubling	the	size	of	the	heap	region	until	we	reach	the	growth	
limit.	So	the	heap	region	can	start	at	(say)	1	MiByte	and	then,	when	this	is	found	to	
be	insufficient,	we	begin	doubling	the	heap	size.	Of	course,	if	the	request	to	
MemoryAlloc	is	larger	than	the	heap	region,	we’ll	use	that	instead	as	the	number	of	
bytes	to	request	from	the	OS	kernel.


However,	if	the	heap	region	size	is	has	reached	the	HEAP_GROWTH_LIMIT,	the	
“growth	era”	has	come	to	an	end	and	the	“reclamation	era”	has	begun.	This	is	
discussed	next.


First,	we	look	at	whether	the	amount	of	space	remaining	between	HeapNextPtr	and	
HeapRegionBeyond	plus	HeapBytesFree	is	enough	to	satisfy	the	request.	If	so,	
then	it	is	possible	that	we	can	find	a	chunk	large	enough	to	satisfy	the	request.	We’ll	
describe	“searching	the	free	space"	in	a	moment.


	The	answer	to	“How	many	bytes	have	been	allocated?”	is	HeapTotalAllocation	and	includes	the	88

number	of	bytes	allocated	since	the	program	began,	including	bytes	subsequently	freed.	The	
answer	to	“How	many	bytes	remain	in	use?”	is	HeapBytesAllocated.	The	difference	between	
these	two	numbers	provides	the	answer	to	“How	many	bytes	have	been	freed?”	We	can	also	
answer	this	question:“What	percent	of	the	current	heap	is	free	and	available	at	this	time,	i.e.,	how	
efficiently	is	heap	memory	utilized?”

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
211 217



Chapter	9:	Heap	Management


But	if	the	amount	of	free	space	remaining	is	too	small,	no	amount	of	searching	will	
succeed,	so	we	must	ask	the	OS	kernel	for	additional	pages	to	add	to	the	heap	region.	
We	assume	that	this	will	succeed	until	our	address	space	is	exhausted	or	we’ve	
reached	some	page	limit	imposed	by	the	OS	kernel.	If	the	kernel	cannot	give	us	
enough	pages,	then	we	will	throw	ERROR_HeapFull	if	the	program	is	not	
terminated	altogether. 
89

So	here	is	how	the	search	goes.


We	start	at	the	beginning	of	the	heap	region	and	go	through	it	sequentially,	chunk	by	
chunk.	Each	chunk	of	memory	in	the	heap	will	begin	with	a	byteCount.	If	negative,	
then	this	chunk	has	been	marked	as	free.	As	we	proceed	through	the	heap,	we	will	
watch	for	two	free	chunks	in	a	row.	Whenever	we	find	two	adjacent	free	chunks,	we	
will	coalesce/combine	them	into	a	single	free	chunk.


If	we	find	a	free	chunk	of	adequate	size	to	fulfill	the	MemoryAlloc	request,	we	will	
stop	and	return	the	memory	chunk.


If	the	free	memory	chunk	is	exactly	the	right	size,	we	can	return	it	as-is.	Otherwise,	
we	will	split	the	free	chunk	into	two	pieces.	We	will	set	the	size	of	the	first	piece	to	
the	desired	size	and	the	size	of	the	second	piece	to	the	remainder.	We	mark	the	
second	chunk	as	free	and	we	return	the	first	chunk	as	the	result.


(However,	if	the	remainder	from	such	a	split	would	be	smaller	than	the	minimum	
chunk	size	of	16	bytes,	we	can’t	split	it.	We	just	ignore	this	chunk,	and	continue	with	
the	search.)


At	any	time	in	this	search,	we	are	positioned	on	the	“current	chunk”.	Once	we	find	a	
chunk	to	satisfy	the	allocation	request,	we	remember	the	address	of	the	following	
chunk	so,	when	MemoryAlloc	is	subsequently	invoked,	we	can	begin	a	new	search	
from	right	after	the	previous	allocation.	Right	before	returning,	we	advance	the	
“current	chunk”	pointer	to	the	next	chunk	(which	may	be	the	second	half	of	a	free	
chunk	that	we	just	split)	and	save	it	so	that	the	next	search	will	begin	there.


	It	might	be	tempting	to	always	perform	the	search	for	free	space	before	the	call	to	the	OS	kernel	89

for	more	pages,	even	when	it	will	definitely	fail.	The	reason	is	that	there	may	be	some	free	chunks	
at	the	top	of	the	heap	region.	By	performing	the	search,	we	would	coalesce	these	free	chunks	into	a	
single	free	chunk	as	a	side-effect.	This	would	allow	them	to	be	combined	with	the	free	space	
obtained	from	the	kernel	call,	possibly	resulting	in	greater	memory	utilization.	But	we	won’t	do	
this.	It	is	likely	that	the	recent	calls	to	MemoryAlloc	will	have	performed	searches	for	free	
memory,	which	will	have	resulted	in	coalescing	the	top	free	chunks	anyway.

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
212 217



Chapter	9:	Heap	Management


When	the	search	reaches	the	end	of	the	heap,	i.e.,	HeapNextPtr,	we	see	if	the	last	
chunk	was	free.	If	so,	we	lower	HeapNextPoint	to	include	it,	essentially	eliminating	
any	free	chunk	at	the	top	of	the	heap	region.	In	any	case,	we	then	reset	the	pointer	to	
HeapRegionStart	and	continue	the	search.


We	must	remember	where	we	started	the	search.	If	we	reach	the	starting	point	
without	finding	a	chunk	big	enough	to	satisfy	the	request,	then	have	wrapped	
around	and	searched	the	entire	heap.	At	this	point,	we	must	invoke	the	OS	kernel	
asking	for	more	pages	to	add	to	the	heap	region.


By	remembering	where	we	left	off	on	the	last	search	and	by	wrapping	around	and	
searching	until	we	reach	our	starting	point,	we	are	implementing	a	“next-fit”	search.


Heap	Consistency	Checking


During	debugging,	the	programmer	may	need	to	detect	heap	problems	such	as:


•	Premature	Frees:	Memory	is	freed	too	soon

•	Memory	Leaks:	Memory	is	freed	too	late

•	Multiple	Frees:	Memory	is	freed	more	than	once

•	Random	Frees:	A	bad	address	is	provided


With	the	approach	presented	above,	we	have	the	ability	to	answer	“How	many	bytes	
are	currently	allocated?”	This	helps	in	detecting	memory	leaks.


We	can	detect	when	multiple	frees	fairly	easily.	Each	free	chunk	has	a	negative	
byteCount,	while	every	allocated	chunk	has	a	positive	byteCount.	The	
MemoryFree	operation	will	check	the	sign	of	the	byteCount	and	signal	an	error	if	it	
is	ever	negative.


During	MemoryFree,	we	can	perform	some	checks	that	might	catch	random	frees.	
For	example,	the	address	provided	must	be	a	doubleword	aligned	address	within	the	
heap	region.	When	we	fetch	the	byteCount,	it	is	expected	to	be	a	positive	value	
evenly	divisible	by	8,	such	that,	when	added	to	the	chunk’s	address,	it	does	not	
exceed	HeapNextPtr.	But	random	frees	are	less	common	and	it	is	not	worth	it	to	
perform	these	checks	on	every	call	to	MemoryFree.


Software	Reference	Manual	/	Porter	 	 Page	 	of	 
213 217



Chapter	9:	Heap	Management


Premature	frees	are	impossible	to	detect	within	MemoryFree,	because	nothing	is	
really	wrong	until	the	application	program	tries	read	or	write	newly	freed	chunk	of	
memory.


Due	to	bugs	in	the	application	program,	it’s	possible	that	the	heap	will	become	
corrupted.	We	can	create	a	function	(HeapConsistencyCheck)	which	will	run	
through	the	heap	and	look	for	problems.	Programmers	might	find	this	function	
useful	when	debugging	programs	with	particularly	nasty	heap	errors.


The	HeapConsistencyCheck	function	runs	through	the	entire	heap	region	and	
checks	all	byteCounts.	As	mentioned,	each	byteCount	should	be	a	number	divisible	
by	8	which,	when	added	to	the	chunk’s	address,	does	not	exceed	HeapNextPtr.	By	
noticing	which	byteCounts	are	positive	and	which	are	negative,	we	can	recompute	
HeapBytesAllocated	and	HeapBytesFree.	If	these	values	are	incorrect,	then	it	
indicates	something	went	wrong.


It	is	conceivable	that	a	premature	free	error	will	be	caught	by	the	
HeapConsistencyCheck	function,	but	not	likely.	Normally,	the	user	program	will	not	
modify	the	byteCounts	so,	even	if	the	chunk	is	freed	and	then	accessed	illegally,	the	
byteCount	is	unlikely	to	be	affected.	Although	unlikely,	we	might	see	a	consistency	
failure	if	chunks	are	split	and	coalesced	in	such	a	ways	that	a	byteCount	field	is	at	an	
address	that	was	previously	in	the	middle	of	a	previously	allocated	chunk.


If	we	are	serious	about	catching	heap	errors,	particularly	premature	free	errors,	we	
need	to	modify	the	MemoryFree	function	to	overwrite	the	entire	chunk	to	be	freed	
with	a	known	garbage	value.	Such	a	value	is	sometimes	called	a	“sentinel	value” .	If	90

the	application	program	reads	from	the	chunk	after	it	was	freed,	it	will	retrieve	this	
value	which	will	hopefully	cause	an	obvious	program	failure.	We	can	also	modify	the	
HeapConsistencyCheck	function	to	check	to	make	sure	every	free	chunk	contains	
only	this	special	sentinel	value.	This	can	catch	writes	to	previously	freed	memory,	as	
long	as	that	memory	has	not	already	been	reallocated	by	the	application	program.


To	aid	in	debugging,	we	may	also	want	to	modify	the	MemoryAlloc	function	to	
initialize	all	newly	allocated	memory.	Before	each	newly	allocated	chunk	is	returned	

	The	sentinel	value	should	be	an	easily	recognizable	number,	such	as	0x7777777777777777.	90

This	is	an	odd	number	that,	if	used	as	an	address	is	likely	to	cause	an	alignment	exception.	If	used	
in	an	arithmetic	computation,	it	may	remain	recognizable	in	the	result,	and	will	stand	out	in	during	
debugging.	If	interpreted	as	ASCII,	it	might	appear	as	“wwwwwwww”.

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
214 217



Chapter	9:	Heap	Management


to	the	application	program,	every	byte	will	be	filled	with	a	sentinel	value. 	If	this	91

sentinel	value	ever	appears	within	the	program,	we	can	assume	that	the	program	is	
picking	up	unwritten	data.	In	other	words,	it	is	reading	from	bytes	before	initializing	
them.	Recall	that	MemoryAlloc	is	NOT	guaranteed	to	initialize	memory	to	zeros.	
However,	newly	allocated	memory	will	almost	always	contain	zeros,	because	the	
heap	memory	is	coming	from	fresh	pages	in	the	address	space,	which	are	
guaranteed	to	be	zeroed	first.	Thus,	the	use	of	uninitialized	memory	can	escape	
detection	until	it	happens	that	the	memory	chunk	is	being	recycled	by	the	heap	
manager	and	contains	preexisting	values. 

	We	can	use	the	same	sentinel	value	to	keep	things	simple,	or	use	a	different	value	to	help	91

distinguish	between	a	premature	free	error	and	the	use	of	uninitialized	memory.

Software	Reference	Manual	/	Porter	 	 Page	 	of	 
215 217



About	This	Document


Document	Revision	History	/	Permission	to	Copy


Version	numbers	are	not	used	to	identify	revisions	to	this	document.	Instead	the	
date	and	the	author’s	name	is	used.	The	document	history	is:


Date	 Author

22	March	2021	 Harry	H.	Porter	III		<Document	created>

17	June	2021	 Harry	H.	Porter	III

10	November	2022	 Harry	H.	Porter	III		<current	version>


	 

In	the	spirit	of	the	open-source	and	free	software	movements,	the	author	grants	
permission	to	freely	copy	and/or	modify	this	document,	with	the	following	
requirement:


You	must	not	alter	this	section,	except	to	add	to	the	revision	history.	You	
must	append	your	date/name	to	the	revision	history.


Any	material	lifted	should	be	referenced.


Corrections	and	Errors


Please	contact	the	author	if	you	find…


	 •	Inaccurate	information	that	you	can	correct

	 •	Incomplete	information	that	you	can	fill	in

	 •	Confusing	text	that	needs	to	be	reworded


Thanks!


Software	Reference	Manual	/	Porter	 Page	 	of	216 217



About	the	Author	

Professor	Harry	H.	Porter	III	teaches	in	the	Department	of	Computer	Science	at	
Portland	State	University.	He	has	produced	several	video	courses,	notably	on	the	
Theory	of	Computation.	Recently	he	built	a	complete	computer	using	the	relay	
technology	of	the	1940s.	The	computer	has	eight	general	purpose	8	bit	registers,	a	
16	bit	program	counter,	and	a	complete	instruction	set,	all	housed	in	mahogany	
cabinets	as	shown.	Porter	also	designed	and	constructed	the	Blitz	System,	a	
collection	of	software	designed	to	support	a	university-level	course	on	Operating	
Systems.	Using	the	software,	students	implement	a	small,	but	complete,	time-sliced,	
VM-based	operating	system	kernel.	Porter	has	habit	of	designing	and	implementing	
programming	languages,	the	most	recent	being	a	language	specifically	targeted	at	
kernel	implementation.


Porter	holds	an	Sc.B.	from	Brown	University	and	a	Ph.D.	from	the	Oregon	Graduate	
Center.


Porter	lives	in	Portland,	Oregon.	When	not	trying	to	figure	out	how	his	computer	
works,	he	skis,	hikes,	travels,	and	spends	time	with	his	children	building	things.


Professor	Porter’s	website: www.cecs.pdx.edu/~harry


Software	Reference	Manual	/	Porter	 Page	 	of	 
217 217

http://www.cecs.pdx.edu/~harry

