
Blitz-64:	
Summary	of	the	

Machine	Architecture	

Harry	H.	Porter	III	
Portland	State	University	

HHPorter3@gmail.com	

18	October	2022	

This	document	gives	an	overview	of	the	Instruction	Set	Architecture	(ISA)	of	the	
Blitz-64	processor	core.	

	 Available	Online: Blitz64.org/Documentation/B64-ISA-Summary.pdf

http://Blitz64.org/Documentation/B64-ISA-Summary.pdf

Table	of	Contents	
The	Blitz-64	Processor	 	3
General	Purpose	Registers	 	3
Control	and	Status	Registers	 	3
Kernel	and	User	Mode	 	4
Memory	and	Address	Spaces	 	4
Page	Tables	 	5
Machine	Instructions	 	6
Synthetic	Instructions	 	6
Instruction	Formats	 	6
Assembly	Code	 	7
Natural	Data	Types	 	8
Support	for	Legacy	Code	 	9
The	KPL	Language	 	9
Floating	Point	 	10
Error-Handling	Philosophy	 	10
Exception	Handling	 	11
System	Call	and	Return	 	13
Asynchronous	Interrupts	 	13
Instruction	Categories	 	13
Existing	Tools	 	14
Workload	and	Environmental	Expectations	 	15
Simplicity,	Reliability,	and	Usability	 	15
Documentation	 	16
Open	Source	 	16
Hardware	Core	-	System	Verilog	IP	 	16
Ongoing	Work	 	16

Document	Revision	 	17
Document	History	 	17
Permission	to	Copy	 	17

About	the	Author	 18

Blitz-64:	ISA	Summary	/	Porter	 Page	 	of	2 18

The	Blitz-64	Processor	

General	Purpose	Registers	

There	are	16	registers.	Each	register	is	64	bits	(8	bytes)	in	size.	Register	r0	is]ixed	at	
zero.	All	other	registers	(r1	…	r15)	are	treated	equally	and	identically	by	the	
machine	instructions.	

By	convention	some	registers	have	special	functions	and	are	given	alternative	
names.	Registers	r1	…	r7	are	used	for	argument	passing.	Register	s0	…	s2	are	as	
work	registers.	Register	t	is	used	for	temporary	results	in	synthetic	instructions.	
Register	sp	is	the	stack	pointer.	Register	lr	is	a	link	register	used	in	function	call	and	
return.	Register	gp	is	a	global	pointer	to	shared	data.	Register	tp	is	a	thread	pointer	
for	thread-speci]ic	data.	

Control	and	Status	Registers	

There	are	16	Control	and	Status	Registers	(CSRs).	Each	is	64	bits	and	each	has	a	
special,	dedicated	functions.	Five	CSRs	are	read-only.	A	particularly	important	
register	is	csr_status,	which	is	often	called	the	“status	word”.	(See	the	diagram	on	
the	next	page.)	

Among	other	things,	the	CSRs	are	used	to	enforce	the	privilege/protection	of	kernel	
code,	to	control	and	mask	interrupts,	and	to	facilitate	fast	switching	between	
processes.	

The	CSRs	may	only	be	accessed	by	privileged	instructions.	That	is,	they	are	only	
available	to	code	running	in	Kernel	Mode.	

There	is	only	one	set	of	general	purpose	registers	and	one	set	of	CSRs;	they	are	not	
copied	or	shadowed.	

Blitz-64:	ISA	Summary	/	Porter	 Page	 	of	3 18

Blitz-64:	Summary	of	the	Machine	Architecture	

Kernel	and	User	Mode	

There	are	two	processor	modes:	Kernel	Mode	and	User	Mode.	Some	instructions	
are	privileged.	Privileged	instructions	may	only	be	executed	when	running	in	
Kernel	Mode.	All	remaining	instructions	are	non-privileged	and	may	be	executed	
regardless	of	the	current	operating	mode.	

Memory	and	Address	Spaces	

Memory	is	byte	addressable	and	Big	Endian.	Address	spaces	are	identi]ied	by	a	16	
bit	Address	Space	IdentiRier	(ASID).	The	ASID	of	the	currently	executing	process	is	
contained	in	the	csr_status	register.	

Blitz-64:	ISA	Summary	/	Porter	 	 Page	 	of	 	4 18

Blitz-64:	Summary	of	the	Machine	Architecture	

Program-generated	addresses	are	36	bits	in	length,	allowing	for	a	64	GByte	address	
space.	

Kernel	memory	and	all	memory-mapped	I/O	devices	are	constrained	to	reside	in	the	
lower	32	GBytes	of	the	address	space.	The	lower	32	GBytes	may	only	be	addressed	
by	the	operating	system,	i.e.,	code	running	in	Kernel	Mode.	

Application	code	—	code	running	in	User	Mode	—	may	only	address	bytes	in	the	
upper	32	GBytes.	The	upper	32	GBytes	is	the	virtual	address	space	of	a	process.	Of	
course,	these	addresses	will	be	mapped	into	physical	memory	and	I/O	addresses	via	
the	page	table	and	TLB	registers	by	the	Memory	Management	Unit	(MMU).	

Page	Tables	

The	Blitz-64	page	size	is	16	KBytes.	

Page	tables	are	only	two	levels,	not	three	or	four	as	in	other	systems.	This	relatively	
]lat	page	table]its	naturally	and	makes	the	entire	virtual	space	accessible.	

With	page	tables,	physical	memory	up	to	16	TBytes	is	supported,	i.e.,	using	44	bit	
physical	addresses.	

One	advantage	of	a	larger	page	size	and]latter	page	table	is	that	page	faults	happen	
less	frequently	and	page	table	lookup	time	is	reduced	when	compared	to	three-level	
tables	and	more	complex	organizations.	

Furthermore,	a	smaller	number	of	Translation	Lookaside	Buffer	(TLB)	registers	is	
needed	to	capture	a	process’s	working	set.	Together,	these	effects	reduce	context	
switching	time.	The	Address	Space	ID	(ASID)	in	the	status	word	allows	TLB	registers	
to	remain	valid	and	usable	across	multiple	context	switches.	

Page	Table	Entries	(PTEs)	can	be	marked	valid,	executable,	writable,	copy-on-
write,	and	dirty.	There	are	several	exception	types	associated	with	various	types	of	
page	fault.	

Blitz-64:	ISA	Summary	/	Porter	 	 Page	 	of	 	5 18

Blitz-64:	Summary	of	the	Machine	Architecture	

Machine	Instructions	

Machine	instructions	are	32	bits	in	size.	In	addition,	the	instruction	encoding	
supports	compressed	instructions	of	varying	sizes.	

At	this	time,	the	compressed	instructions	have	not	been	de]ined.	After	a	larger	code	
body	has	been	created	and	can	be	statistically	studied,	the	compressed	instruction	
set	will	be	de]ined.	In	order	to	de]ine	the	most	pro]itable	encoding,	we	need	to	
determine	instruction	execution	frequencies	accurately.	The	danger	in	de]ining	the	
compressed	instruction	set	prematurely	is	a	con]irmation	bias	effect	in	which	the	
compiler	favors	generating	compressed	instructions	because	they	are	compressed.	

Synthetic	Instructions	

A	number	of	instructions	are	synthetic,	which	means	they	are	not	implemented	in	
hardware.	Instead,	synthetic	instructions	are	translated	by	the	assembler	into	
equivalent	machine	instructions	that	perform	the	same	function.	The	distinction	
between	synthetic	and	machine	instructions	is	invisible	to	the	programmer	and	
compiler.	Since	the	machine	instruction	set	is	smaller	and	signi]icantly	simpler,	the	
hardware	logic	is	simpli]ied.	

One	value	of	the	synthetic	instructions	is	that	the	programmer	/	compiler	can	use	
full	sized	addresses	and	data	values	(i.e.,	up	to	64	bits),	while	the	machine	
instructions	only	allow	immediate	values	that	are	limited	to	16	or	20	bits.	

Each	synthetic	instruction	is	usually	translated	into	a	single	machine	instruction,	
although	occasionally	two	or	more	instructions	are	required	if	a	particularly	large	
immediate	value	is	involved.	

Instruction	Formats	

There	are	4	forms	for	instructions,	termed	Formats	A,	B,	C,	and	D.	Format	A	
supports	only	register	operands,	with	up	to	4	registers.	Formats	B	and	C	instructions	
include	a	16	bit	immediate	value	and	2	registers.	Format	D	supports	a	20	bit	
immediate	value	with	only	one	register.	(See	the	diagram.)	

Blitz-64:	ISA	Summary	/	Porter	 	 Page	 	of	 	6 18

Blitz-64:	Summary	of	the	Machine	Architecture	

	

Assembly	Code	

The	assembly	code	is	typical.	For	example:	

MyLabel: addi r5,r3,0x123 # Compute r5 = r3 + 0x123

The	destination	register	is	always]irst	—	on	the	left	—	as	in	the	above	example.	

Blitz-64:	ISA	Summary	/	Porter	 	 Page	 	of	 	7 18

Blitz-64:	Summary	of	the	Machine	Architecture	

Here	is	another	example:	

Loop_3: # REPEAT
 loadd r1,0(r2) # Fetch 8 bytes from memory
 stored 0(r3),r1 # Store the doubleword
 addi r2,r2,8 # Increment pointers
 addi r3,r3,8 # .
 addi r4,r4,-1 # Decrement counter
 bnez r4,Loop_3 # UNTIL counter is 0

Natural	Data	Types	

Blitz-64	is	inherently	64	bit.	The	primary	data	type	is	the	64-bit	signed	integer	and	
most	of	the	instructions	are	designed	for	them.	Instructions	to	support	and	convert	
between	legacy	sizes	such	as	8,	16,	and	32	bits	are	also	provided.	

The	range	of	a	64	bit	signed	number	is	huge.	With	64	bit	numbers,	there	is	no	need	
to	perform	arithmetic	in	the	other	smaller	sizes.	There	is	certainly	no	need	for	
unsigned	numbers,	which	are	error-prone	and	commit	the	mathematically	dubious	
practice	of	ignoring	negative	values.	Instructions	for	perform	arithmetic	/	logic	
operations	on	legacy	sizes	of	8,	16,	and	32	bits	are	not	present	in	Blitz-64.	

To	save	space	in	memory,	numbers	must	sometimes	be	squeezed	into	smaller	
spaces.	Blitz-64	includes	instructions	to	support	squeezing,	either	with	range	
checking	or	without,	as	the	application	requires.	

Data	must	be	aligned	in	memory	with	the	natural	requirements:	

Data	Type	 Size	 Alignment	Required	
doubleword	 64	bits	 8	bytes	
word	 32	bits	 4	bytes	
halfword	 16	bits	 even	addresses	
byte	 8	bits	 <none>	

Blitz-64:	ISA	Summary	/	Porter	 	 Page	 	of	 	8 18

Blitz-64:	Summary	of	the	Machine	Architecture	

Support	for	Legacy	Code	

The	Blitz-64	system	is	not	intended	to	support	C	or	C++.	While	there	is	nothing	that	
prevents	these	languages	from	being	compiled	into	Blitz-64	assembler,	this	was	not	
a	design	priority.	

Any	traditional	implementation	of	the	C	and	C++	programming	languages	assumes	
optimized	support	for	32	bit	arithmetic.	However,	Blitz-64	is	strongly	64	bit,	and	
the	emphasis	is	shifted	away	from	the	smaller	data	sizes	of	C	and	C++,	such	as	int,	
int32_t,	uint16_t,	…	

The	KPL	Language	

KPL	stands	for	Kernel	Programming	Language.	KPL	is	the	primary	systems	
programming	language	for	Blitz-64.	KPL	is	used	exclusively	where	C	or	C++	would	
be	used	in	a	traditional	Unix-based	operating	system.	

KPL	is	similar	to	C	/	C++	with	support	for:	

•	Classes	and	object-oriented	programming	
•	Direct	use	of	pointers	and	memory	manipulation	
•	Separate	compilation	of	large	programs	
•	Linkage	with	assembly	code	programs	
•	Familiar	constructs	(IF,	WHILE,	FOR,	…)	
•	Familiar	printing	with	printf	format	strings	

KPL	differs	from	C	/	C++	in	several	ways,	such	as:	

•	Try-Throw-Catch	mechanism	
•	Greater	attention	to	error	detection	and	reporting	
•	Simpler	syntax	
•	Cross-package	speci]ication	checking	
•	Parameterized	classes	(as	opposed	to	template	copying)	
•	Range	and	overrun	checking	for	all	arrays	

Blitz-64:	ISA	Summary	/	Porter	 	 Page	 	of	 	9 18

Blitz-64:	Summary	of	the	Machine	Architecture	

Floating	Point	

Blitz-64	includes]loating	point	instructions.	

There	is	no	separate	set	of]loating	point	registers.	Instead,	the	general	purpose	
registers	are	used.	This	decision	was	taken	in	order	to	reduce	context	switch	times,	
by	reducing	the	size	of	a	process’s	state	and	thus	the	time	required	to	save	that	state.	

Only	double	precision]loating	point	is	supported;	single	precision	is	not	supported.	
It	is	assumed	that	number-crunching	applications	will	use	specialized	processors	for	
]loating	point	computation.	But	since	there	is	occasionally	a	need	for]loating	point	
computation,	double	precision	is	included	in	the	Blitz-64	architecture.	

Some	Blitz-64	cores	may	choose	to	implement	the]loating	point	instructions	
directly	in	hardware.	Other	implementations	may	choose	not	provide	hardware	
support,	in	which	case	the	instructions	will	cause	an	Emulated	Instruction	
Exception,	and	will	be	implemented	in	software	by	trap	handlers.	

Error-Handling	Philosophy	

Blitz-64	seeks	to	catch	all	programming	errors	and	we	put	an	emphasis	on	
performing	as	much	runtime	checking	as	possible.	We	understand	that	execution	
speed	and	performance	are	important,	but	the	Blitz-64	position	is	that	error-
checking	is	neglected	in	other	ISAs.	

This	is	a	signi]icant	difference	between	Blitz-64	and	other	processor	architectures.	

Modern	software	is	growing	exponentially	in	complexity.	The	proliferation	of	subtle	
bugs	is	intolerable.	Software]laws	are	dif]icult	to	identify	and	expunge.	Blitz-64	
adopts	a	decidedly	conservative	and	cautious	approach,	adding	much	more	runtime	
error	checking	than	competing	ISAs.	It	is	hoped	that	this	tradeoff	will	ultimately	
make	the	software	more	reliable	and	fault-tolerant,	as	well	as	making	the	debugging	
process	faster	and	more	thorough.	

For	example,	by	restricting	arithmetic	to	64	bit	signed	numbers,	we	reduce	over]low	
possibilities	dramatically	since	most	commonly	occurring	integer	values	are	handled	
without	issue.	And	by	also	checking	all	arithmetic	operations	for	overRlow,	
Blitz-64	deals	with	errors	directly,	rather	than	simply	ignoring	problems	and	
producing	incorrect	result	values.	

Blitz-64:	ISA	Summary	/	Porter	 	 Page	 	of	 	10 18

Blitz-64:	Summary	of	the	Machine	Architecture	

It	remains	to	be	seen	whether	the	demand	for	fault-tolerance	is	vigorous	enough	to	
support	the	Blitz-64	philosophy.	The	Blitz-64	approach	targets	mission	critical	
applications	—	where	correctness	outweighs	speed	—	over	non-critical	software,	
such	as	gaming	and	entertainment.	

Exception	Handling	

Blitz-64	de]ines	a	number	of	types	of	exceptions.	Exceptions	are	caused	by	an	error	
arising	during	the	execution	of	an	instruction.	Any	exception	will	invoke	“exception	
handling".	There	is	a	single	trap	hander	routine,	which	will	save	thread	state	and	
dispatch	to	the	appropriate	handler	code.	

In	some	case,	such	as	page	faults,	the	exception	handler	will	repair	the	problem	and	
execution	will	resume	where	it	was	interrupted.	

For	fatal	problems,	the	exception	handler	will	return	to	the	interrupted	process,	but	
will	throw	an	error	in	the	KPL	language.	A	fault-tolerant	application	program	will	
catch	and	the	error	and	take	corrective	action.	For	simpler	programs	which	do	not	
provide	code	to	catch	the	error,	the	exception	will	immediately	invoke	debugging.	

The	Blitz-64	ISA	was	designed	in	such	a	way	that	the	location	at	which	an	exception	
occurs	is	always	captured.	The	system	always	reports	the	exact	nature	of	the	
error	and	the	exact	location	at	which	it	occurred,	leading	to	faster	and	easier	
debugging.	The	error	reporting	is	in	source	code]ile	and	line	number	form.	

All	arithmetic	instructions	are	checked	for	over]low	and	any	over]low	problem	
arising	during	execution	will	cause	an	Arithmetic	Exception.	It	is	simply	
unacceptable	to	continue	any	computation	silently	with	incorrect	results,	and	
Blitz-64	strives	to	avoid	this.	

The	“load”	and	“store”	instructions	access	memory	and	these	instructions	have	
alignment	requirements.	Normally,	all	KPL	code	will	meet	the	requirements,	but	for	
those	occasions	where	the	alignment	requirement	is	not	met,	a	Load	/	Store	
Alignment	Exception	will	be	signaled.	The	handler	code	can	be	invoked	to	
complete	the	operation	and	Blitz-64	includes	several	instructions	designed	to	speed	
this	operation.	

Blitz-64:	ISA	Summary	/	Porter	 	 Page	 	of	 	11 18

Blitz-64:	Summary	of	the	Machine	Architecture	

The	“null”	value	is	commonly	used	in	pointer	operations.	As	every	programmer	
knows,	a	common	program	mistake	is	to	dereference	a	null	pointer.	With	Blitz-64,	
addresses	are	always	checked	in	hardware	and	a	Null	Address	Exception	will	be	
signaled	to	let	the	programmer	know	exactly	what	has	happened	and	where	it	
happened.	

Any	attempt	to	execute	invalid	instructions	will	result	in	an	Invalid	Instruction	
Exception.	Furthermore,	any	attempt	by	User	Mode	code	to	execute	privileged	
Kernel	Mode	instructions	will	result	in	this	same	exception.	

There	are	several	exception	types	to	support	debugging,	namely	the	Debug	
Exception,	the	Breakpoint	Exception,	and	the	Singlestep	Exception.	

Some	instructions	(typically	the]loating	point	instructions)	may	not	be	
implemented	in	a	particular	core,	for	example,	to	save	chip	real	estate	or	reduce	
processor	complexity.	When	such	instructions	are	encountered	at	runtime,	an	
Emulated	Instruction	Exception	will	be	signaled,	allowing	OS	handler	code	to	
emulate	the	missing	operation.	The	executing	program	code	will	be	none-the-wiser.	

Certain	exceptions	must	never	occur	when	the	processor	is	executing	handler	code,	
or	else	in]inite	regress	occurs.	Thus,	an	exception	will	be	promoted	to	a	Kernel	
Mode	Exception	if	it	occurs	within	handler	code.	

A	processor	core	may	perform	some	internal	error	checking.	When	a	violation	is	
detected,	a	Hardware	Fault	Exception	will	be	signaled,	allowing	failsafe	procedures	
to	be	initiated.	

A	number	of	exception	types	are	associated	with	supporting	page	tables	and	virtual	
address	spaces.	If	a	user	process	tries	to	access	kernel	memory,	a	Page	Illegal	
Address	Exception	is	signaled.	If	the	page	table	register	is	incorrect,	a	Page	Table	
Exception	is	signaled.	If	a	page	is	missing	or	invalid,	a	Page	Invalid	Exception	is	
signaled.	If	a	write	to	a	page	not	marked	writable	is	attempted,	a	Page	Write	
Exception	is	signaled.	If	an	instruction	is	fetched	from	a	page	not	marked	
executable,	a	Page	Fetch	Exception	is	signaled.	If	a	write	to	a	non-dirty	page	is	
attempted,	a	Page	First	Dirty	Exception	is	signaled.	If	a	write	to	a	non-dirty	page	
marked	copy-on-write	is	attempted,	a	Page	Copy-On-Write	Exception	is	signaled.	

Blitz-64:	ISA	Summary	/	Porter	 	 Page	 	of	 	12 18

Blitz-64:	Summary	of	the	Machine	Architecture	

System	Call	and	Return	

The	“syscall”	instruction	is	treated	as	an	exception.	A	jump	is	made	to	the	trap	
handler,	which	dispatches	to	the	appropriate	handler	function	code.	The	syscall	
instruction	contains	a	10	bit	immediate	value,	essentially	allowing	for	1,024	distinct	
syscall	instructions.	So	for	the	1,024	most	common	syscalls,	the	dispatching	is	
optimized	to	be	particularly	fast.	The	corresponding	system	call	“return”	instruction	
is	designed	so	that,	for	short	operations	not	requiring	a	context-switch,	the	return	is	
simple	and	fast.	

Asynchronous	Interrupts	

There	are	several	sources	for	external	interrupts	and	each	is	handled	in	a	manner	
similar	to	synchronous	exceptions.	Interrupts	coming	from	outside	the	instruction	
stream	are	said	to	be	“asynchronous”,	since	their	timing	is	unrelated	to	the	
instruction	currently	in	execution.	Examples	include	Timer	Interrupts,	I/O	
Interrupts,	DMA	Controller	Interrupts,	and	Communication	Interrupts	from	
tightly	coupled	cores	in	a	multi-processor	array.	

Asynchronous	interrupts	invoke	trap	handling	and	exception	processing	in	the	same	
way	as	synchronous	exceptions	caused	by	error	conditions	occurring	during	normal	
instruction	execution.	

Instruction	Categories	

Blitz-64	includes	123	unique	machine	instructions	and	60	synthetic	instructions.	
These	are	fully	described	in	the	Instruction	Set	Architecture	(ISA)	document.	

Roughly	speaking,	the	instructions	can	be	grouped	into	the	following	categories:	

•	Arithmetic	
•	Logic	and	shifting	
•	Sign	extension	and	range	checking	
•	Byte	/	Endian	reordering	
•	Testing	(with	boolean	result)	
•	Test	and	branch	
•	Data	manipulation	for	large	values	

Blitz-64:	ISA	Summary	/	Porter	 	 Page	 	of	 	13 18

Blitz-64:	Summary	of	the	Machine	Architecture	

•	Call,	return,	switch,	and	method	dispatch	
•	Memory	load	and	store	
•	Support	for	unaligned	load	and	store	
•	System	call	and	return	
•	CSR	register	manipulation	
•	TLB	register]lushing	
•	Debug	/	breakpoint	
•	Sleep	/	shutdown	/	power	control	
•	Floating	point	computations	
•	Methodology	to	accommodate	unspeci]ied	/	non-standard	instructions	

Existing	Tools	

The	following	software	tools	are	completed	at	this	time:	

•	Assembler	
•	Linker	
•	Library	creation	tool	
•	KPL	Compiler	
•	Blitz-64	Processor	Virtual	Machine	(Emulator)	

The	assembler	is	a	full-function	assembler,	with	expression	evaluation	and	a	number	
of	assembler	directives	(i.e.,	pseudo-ops).	Transforming	synthetic	instructions	into	
machine	code	sequences	is	done	by	both	the	assembler	and	the	linker.	

The	assignment	to	memory	addresses	can	affect	the	translation	from	synthetic	
instructions	to	machine	instructions.	Furthermore,	the	translation	from	synthetic	
instruction	to	machine	instruction	can	affect	the	address	assignments.	The	
assembler	and	linker	work	together	with	complex	algorithms	to]ind	the	best	
translation.	

The	assembler	handles	the	full	assembly	language.	The	KPL	compiler	compiles	the	
full	KPL	language.	And	the	virtual	machine	emulates	the	full	Blitz-64	ISA.	In	fact,	the	
virtual	machine	emulates	a	multiprocessor	with	an	arbitrary	number	of	cores.	

The	KPL	compiler	is	written	in	C++	and	the	remaining	tools	are	written	in	C.	Both	
the	assembler	and	the	compiler	have	also	been	ported	to	KPL.	

Blitz-64:	ISA	Summary	/	Porter	 	 Page	 	of	 	14 18

Blitz-64:	Summary	of	the	Machine	Architecture	

Workload	and	Environmental	Expectations	

The	following	seem	to	be	distinct,	non-overlapping	market	niches:	

	 •	Small,	embedded	systems	—	such	as	the	AVR	chip	and	Arduino	platform	
	 •	Systems	running	Linux/Unix	—	such	as	the	ARM,	x-86,	and	Risc-V	

The	Blitz-64	architecture	is	targeted	at	the	space	between	these	extremes.	

The	core	design	is	targeted	at	application	loads	in	which	each	core	will	typically	host	
100	to	1000	simultaneous	threads,	with	perhaps	100	virtual	address	spaces.	
Address	spaces	are	expected	to	range	from	very	small,	up	to	1	or	2	gigabytes.	
Although	the	maximum	virtual	address	space	is	32	GiBytes,	we	expect	applications	
larger	than	a	few	gigabytes	to	be	broken	into	multiple	cooperating	processes,	for	a	
variety	of	reasons.	

Multiple	cores	—	perhaps	on	a	single	chip	—	are	expected	to	be	arrayed	in	two	or	
three	dimensional	arrays.	Multiprocessor	arrays	of	smaller,	simple	cores	are	
expected	to	be	more	widely	deployed	in	the	future,	in	support	of	complex	parallel	
applications.	

Blitz-64	is	intended	to	be	a	cleaner	core	design	which	can	be	implemented	with	a	
smaller	silicon	footprint.	Our	thinking	is	that	a	smaller	core	allows	more	cores	to	be	
placed	on	a	single	die,	thus	increasing	the	overall	computational	horsepower	within	
a	single	silicon	package.	

Simplicity,	Reliability,	and	Usability	

Smaller,	simpler	designs	are	more	easily	understood.	For	applications	requiring	high	
reliability,	a	complex	computer	system	presents	a	challenge	to	implementation,	
testing,	veri]ication,	and	certi]ication.	Blitz-64	is	intended	to	be	simple	enough	to	be	
understood	by	mortals,	yet	powerful	and	functional	enough	to	be	deployed	
effectively	for	serious	engineering	applications.	We	also	feel	there	is	a	need	for	a	
system	of	moderate	complexity	for	educational	purposes,	and	hope	that	Blitz-64	can	
also]ill	this	void.	

Blitz-64:	ISA	Summary	/	Porter	 	 Page	 	of	 	15 18

Blitz-64:	Summary	of	the	Machine	Architecture	

Documentation	

Please	consult	the	following	for	more	detail:		

•	Blitz-64:	ISA	Quick	Reference	Card			(6	pages)	
•	Blitz-64:	Instruction	Set	Architecture	Reference	Manual			(340	pages)	
•	Blitz-64:	Assembler,	Linker,	and	Object	File	Format			(289	pages)	
•	An	Introduction	to	KPL:	A	Kernel	Programming	Language			(207	pages)	
•	KPL	Syntax			(17	pages)	

These	are	available	online	at:	Blitz64.org	

Open	Source	

The	Blitz-64	design	is	open	and	free	to	use	without	license.	The	software	is	also	free	
and	open.	

Hardware	Core	-	System	Verilog	IP	

There	is	at	least	one	implementation	of	the	Blitz-64	processor	core	—	The	Weedman	
Core	—	written	in	System	Verilog.	For	details,	contact	HDL	Express	at:	

www.hdlexpress.com	

Ongoing	Work	

The	Blitz-64	project	is	active	and	ongoing.	Future	work	includes	these	themes:	

•	Porting	the	software	toolchain	to	KPL	
•	Designing	and	creating	the	Blitz	OS	
•	Increasing	and	improving	the	documentation	
•	Re]inement	of	the	hardware	IP	cores	

Blitz-64:	ISA	Summary	/	Porter	 	 Page	 	of	 	16 18

http://Blitz64.org
http://www.hdlexpress.com

Document	Revision	

Document	History	

Version	numbers	are	not	used	to	identify	revisions	to	this	document.	Instead	the	
date	and	the	author’s	name	is	used.	The	history	of	this	document	is:	

Date	 Author	
20	February	2020	 Harry	H.	Porter	III		<document	created>	
6	March	2020	 Harry	H.	Porter	III		
18	October	2022	 Harry	H.	Porter	III		<current	version>	

Permission	to	Copy	

This	document	may	be	shared	but	do	not	modify	this	document.	Any	material	lifted	
should	be	referenced.	

Blitz-64:	ISA	Summary	/	Porter	 Page	 	of	 	17 18

About	the	Author		
Professor	Harry	H.	Porter	III	teaches	in	the	Department	of	Computer	Science	at	
Portland	State	University.	He	has	produced	several	video	courses,	notably	on	the	
Theory	of	Computation.	Recently	he	built	a	complete	computer	using	the	relay	
technology	of	the	1940s.	The	computer	has	eight	general	purpose	8	bit	registers,	a	
16	bit	program	counter,	and	a	complete	instruction	set,	all	housed	in	mahogany	
cabinets	as	shown.	Porter	also	designed	and	constructed	the	BLITZ	System,	a	
collection	of	software	designed	to	support	a	university-level	course	on	Operating	
Systems.	Using	the	software,	students	implement	a	small,	but	complete,	time-sliced,	
VM-based	operating	system	kernel.	Porter	has	habit	of	designing	and	implementing	
programming	languages,	the	most	recent	being	a	language	speci]ically	targeted	at	
kernel	implementation.	

Porter	holds	an	Sc.B.	from	Brown	University	and	a	Ph.D.	from	the	Oregon	Graduate	
Center.	

Porter	lives	in	Portland,	Oregon.	When	not	trying	to]igure	out	how	his	computer	
works,	he	skis,	hikes,	travels,	and	spends	time	with	his	children	building	things.	

Professor	Porter’s	website: www.cs.pdx.edu/~harry	

Blitz-64:	ISA	Summary	/	Porter	 	 Page	 	of	 	18 18

http://www.cs.pdx.edu/~harry

