
Blitz-64:	

Emulator	
Reference	
Manual	

Harry	H.	Porter	III	

HHPorter3@gmail.com	

18	October	2022		

This	document	describes	the	Blitz-64	emulator.	

	 Available	Online: Blitz64.org/Documentation/B64-Emulator.pdf

http://Blitz64.org/Documentation/B64-Emulator.pdf
mailto:HHPorter3@gmail.com?subject=FloatingPointNumbers%20Paper

Table	of	Contents	
Chapter	1:	Overview	 	5
Emulators	and	Virtual	Machines	 	5
The	Blitz	Emulator:	An	Introduction	 	8

Chapter	2:	Example	Usage	 	12
Summary	 	12
Compiling	and	Linking	a	Program	 	12
Invoking	the	Emulator	 	14
Debugging:	An	Example	 	17
Debugging:	A	Second	Example	 	22

Chapter	3:	Commands	 	31
Introduction	 	31
The	Commands	 	33

q quit 33
h help 33
i info 35
r regs 37
r1, r2, … r15 38
tlb 38
csr 39
pc 40
setmem 41
ld 42
st 44
dm dumpmem 45
dm2 dumpmem2 48
dis 49
d 51
stack 51
stack2 54
sm stackmem 54
globals 55
trans 57
addr 60
addr2 60
read 61
write 61
cores 62
sel 64
<\n> 65

Emulator	Reference	Manual	/	Porter	 Page	 	of	2 147

Table	of	Contents	

sched 65
startall 69
stopall 69
start 70
stop 71
symbols 71
dinfo 72
find 72
find2 74
where 74
g go 75
s step 76
n stepn 77
t 77
watch 81
reset 83
rerun 84
hex 86
dec 86
ascii 86
parms 87
rom 90
serial 97

Chapter	4:	Errors	and	Warnings	 	100
Problems	During	Emulation	 	100
Fatal	Error	 	100
Command	Line	Errors	 	100
The	“-nowarn”	Command	Line	Option	 	101
Execution	Errors	 	101
Program	Logic	Errors	 	103
DIV	/	REM	Implementation	Dependencies	 	104
Floating	Point	Dependencies	 	104
Tight	InWinite	Loops	 	105

Chapter	5:	Miscellaneous	Instructions	 	107
The	SLEEP1	Instruction	 	107
The	SLEEP2	Instruction	 	107
The	DEBUG	Instruction	 	108
The	BREAKPOINT	Instruction	 	112
The	CONTROL	and	CONTROLU	Instructions	 	113

Software	Reference	Manual	/	Porter	 	 Page	 	of	3 147

Table	of	Contents	

Chapter	6:	Memory-Mapped	I/O	Devices	 	115
Introduction	 	115
The	BootROM	Area	 	115
The	SecureStorage	Area	 	116
The	SimpleSerial	Device	 	117
The	HostInterface	Device	 	119
Other	Devices	 	125

Chapter	7:	Porting	and	Host	Issues	 	126
Command	Line	Options	 	126
Development	on	Apple	macOS	 	127
Host	Compatibility:	Porting	to	Windows,	Linux	 	129

Chapter	8:	BlitzHEX1,	BlitzHEX2,	and	Hexify	 	133
Quick	Summary	 	133
Introduction	 	133
BlitzHEX1	File	Format	 	136
BlitzHEX2	File	Format	 	138
Hexify	 	140
Input	Requirements	 	142
Output	Form:	System	Verilog	 	143
Output	Form:	HEX	File	Format	 	143

About	This	Document	 	145
Document	Revision	History	/	Permission	to	Copy	 	145
Corrections	and	Errors	 	145

Recent	Changes	 	146

About	the	Author	 147

Software	Reference	Manual	/	Porter	 	 Page	 	of	4 147

Chapter	1:	Overview	

Emulators	and	Virtual	Machines	

In	order	to	be	run,	a	program	must	be	written	and	compiled	for	a	particular	
computer.	However,	if	you	want	to	execute	the	program	on	a	different	computer	
system,	there	is	a	problem.	The	executable	program	Wile	cannot	be	run	on	a	computer	
other	than	the	one	it	was	originally	intended	to	execute	on.	

To	run	the	program	on	a	different	computer,	we	use	a	virtual	machine.	A	virtual	
machine	is	a	piece	of	software	that	sits	between	one	computer	(the	host)	and	the	
application	program.	It	provides	the	illusion	to	the	application	program	that	it	is	
running	on	the	computer	it	was	intended	for,	although	it	is	actually	running	on	a	
different	computer.	

The	computer	actually	being	used	is	called	the	“host	computer”.	The	computer	that	
the	application	program	was	compiled	for	is	called	the	“target	computer”.	

There	are	two	different	kinds	of	“virtual	machine”	software.	We	use	the	term	
“interpreter”	for	one	type	and	“emulator”	for	the	other.	We	should	note	that	people	
often	use	the	term	“virtual	machine”	for	either	or	both	types. 	1

The	distinction	depends	on	whether	the	target	machine	is	real	hardware	or	not.	

	Emulators	were	invented	Wirst	and	were	called	“virtual	machines”	back	in	the	days	of	the	IBM	1

System/360.	Around	the	time	of	LISP	and	the	Pascal	language,	the	term	“bytecode	interpreter”	was	
used.	Early	interpreters	had	a	terrible	reputation	for	poor	performance.	The	Java	language	
extended	the	term	“virtual	machine”	(somewhat	incorrectly)	to	mean	byte	code	interpreter,	in	
order,	I	think,	to	avoid	the	connotation	of	inefWiciency	and	because	“virtual"	sounded	groovy	at	the	
time.	As	for	the	inefWiciency	associated	with	interpreters,	several	things	have	happened.	First,	
portability	has	become	much	more	important	and	worth	the	loss	of	performance.	Second,	
computers	have	gotten	fast	enough	for	people	to	accept	the	degradation	in	speed	for	many	
applications.	Third,	compiler	technology	has	improved,	reducing	the	performance	penalty	of	
interpreted	code.

Emulator	Reference	Manual	/	Porter	 Page	 	of	5 147

Chapter	1:	Overview	

Emulator	

The	idea	is	that	the	target	computer	is	a	real	computer	but,	for	one	reason	or	
another,	that	hardware	is	unavailable.	The	programmer	wishes	to	develop	
code	for	the	target	computer,	running	and	debugging	it,	without	using	the	
actual	hardware	on	which	it	is	intended	to	run.	The	virtual	machine	software	
simulates	the	real,	physical	target	hardware.	

Interpreter	

The	idea	is	that	programs	will	always	run	on	the	virtual	machine	software	and	
no	real	hardware	will	ever	exist.	The	goal	is	to	facilitate	portability.	With	a	new	
host	computer,	only	the	virtual	machine	software	needs	to	be	ported.	Then,	
millions	of	application	programs	become	runnable	all	at	once.	In	this	case,	the	
design	of	the	target	“machine”	is	tailored	to	facilitate	fast	interpretation,	easy	
compiling,	and	ease	of	portability.	Often,	it	would	be	impractical	or	impossible	
to	implement	the	target	machine	in	hardware.	

As	an	example	of	an	emulator,	imagine	that	you	have	obtained	copy	of	a	program	
meant	to	run	on	an	extinct	device	(such	as	Tetris	on	a	GameBoy)	and	you	wish	to	run	
it	on	your	laptop.	You	need	an	emulator	that	can	emulate	the	GameBoy	as	the	target	
machine	on	your	host	computer.	

Emulators	are	often	used	during	the	development	of	new	computer	hardware.	The	
development	of	the	hardware	proceeds	in	parallel	to	the	development	of	the	
software.	Code	is	developed	and	debugged	on	the	emulator	before	the	hardware	is	
fully	available	and	many	programmers	can	be	coding	using	emulators	until	they	can	
get	their	hands	on	physical	devices.	

The	Java	Virtual	Machine	is	a	good	example	of	an	interpreter.	There	are	many	Java	
programs	in	existence	and	many	Java	Virtual	Machines	installed.	You’ve	probably	got	
a	Java	Virtual	Machine	on	your	computer.	So	you	can	easily	run	some	Java	code	
you’ve	downloaded	from	the	web	on	your	computer,	whether	its	a	Mac,	PC,	or	Linux	
box.	The	same	goes	for	Python,	although	Python	seems	to	have	reverted	to	using	the	
term	“interpreter”	rather	than	“virtual	machine”.	

We	should	also	mention	“simulators”.	Computer	software	is	digital	and	bits	are	
either	0	or	1.	At	least	this	is	the	way	software	views	the	machine	hardware.	However,	

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	6 147

Chapter	1:	Overview	

at	a	lower	level,	the	hardware	is	composed	of	analog	components	such	as	
transistors.	

During	the	development	of	new	circuitry,	“simulators”	are	used	to	model	the	
performance	of	analog	devices.	Due	to	the	analog	nature	of	the	hardware	(voltage	
levels,	resistance	and	capacitance,	manufacturing	variations,	etc.),	the	model	is	
imperfect.	A	simulator	models	the	hardware	at	a	deeper	level	where	uncertainty	and	
probabilities	exist.	Generally	speaking,	the	term	“simulate”	is	used	when	the	
modeling	is	not	100%	exact	and	“emulate”	when	the	model	is	perfectly	exact.	

Simulators	run	much	slower	than	emulators	because	they	are	modeling	at	a	greater	
level	of	detail.	As	an	example,	an	emulator	might	model	a	register	using	a	64	bit	
integer	variable	and	emulate	a	MOV	instruction	with	an	assignment	statement.	On	
the	other	hand,	a	simulator	might	model	each	individual	transistor	in	the	register.	
Each	transistor	involves	several	bits	of	data	as	well	as	information	about	wires	and	
connectivity.	To	model	a	MOV	instruction	might	involve	the	switching	of	hundreds	of	
transistors,	which	causes	the	execution	of	tens	of	thousands	of	instructions	in	the	
simulator.	So	a	simulator	can	easily	run	100	times	slower	than	an	emulator.	

A	simulator	is	usually	used	to	debug	the	hardware.	An	emulator	is	usually	used	to	
debug	the	software.	

An	emulator	will	execute	all	machine	instructions	exactly	the	same	way	as	the	
hardware	would.	Thus,	a	running	program	cannot	tell	whether	it	is	running	directly	
on	real,	physical	hardware	or	whether	it	is	running	on	top	of	an	emulator.	Since	the	
emulator	will	precisely	mimic	the	hardware,	every	register	and	every	byte	of	
memory	will	contain	exactly	the	same	contents,	whether	emulated	or	running	on	
hardware.	Every	instruction	will	execute	exactly	as	speciWied	by	the	Instruction	Set	
Architecture.	

However,	the	may	be	“holes”	in	the	illusion	and	there	may	be	several	differences	
between	the	execution	environment	provided	by	emulator	and	that	of	physical	
hardware.	For	example,	there	may	be	a	real-time	clock	and	a	program	might	be	able	
to	use	it	to	determine	whether	it	is	running	on	an	emulator	or	on	hardware.	It	can	
use	the	clock	to	time	the	execution	of	a	block	of	its	own	code	and	then,	based	on	the	
speed	of	execution,	the	program	can	make	determine	whether	it	is	being	emulated	
or	running	on	hardware.	

Also,	there	may	be	explicit	differences	with	the	I/O	devices	or	other	parts	of	the	
system	that	differ	between	the	emulator	and	physical	hardware.	The	emulator	is,	

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	7 147

Chapter	1:	Overview	

after	all,	for	the	purpose	of	developing	software.	It	may	be	unnecessary	to	emulate	
the	full	machine	in	order	to	fulWill	the	emulator’s	function.	Put	another	way,	there	
may	be	many	versions	of	the	hardware,	each	with	slightly	different	I/O	
conWigurations.	One	device	might	have	MicroSD	slot	while	another	device	has	a	USB	
connector	instead.	The	emulator	can	be	consider	just	another	variation,	with	its	own	
particular	conWiguration.	

The	Blitz	Emulator:	An	Introduction	

The	Blitz	emulator	is	a	program	named	“blitz”.	It	is	written	in	“C”	and	runs	on	the	
host	computer,	e.g.,	on	a	Mac	laptop.	The	program	emulates	a	Blitz	core,	which	
allows	programs	that	have	been	written,	compiled,	and	targeted	for	Blitz	hardware	
to	execute	on	a	host	machine	such	as	a	Mac	laptop.	

The	Blitz	emulator	is	a	line-oriented	program	and	is	run	from	a	shell	command	line.	

The	Blitz	emulator	is	capable	of	loading	a	Blitz	executable	Wile	in	to	to	memory.	The	
executable	Wile	should	be	prepared	(i.e.,	compiled,	assembled,	linked)	beforehand	
and	will	exist	as	a	Wile	on	the	host	machine.	It	will	conform	to	the	executable	Wile	
format,	as	described	in	the	document	“Blitz-64:	Assembler,	Linker,	and	Object	File	
Format”.	

The	Blitz	emulator	will	emulate	the	Blitz	processor	core,	including:	

	 •	The	General	Purpose	Registers	
	 •	The	Control	and	Status	Registers	(CSRs)	
	 •	The	Translation	LookAside	Buffer	Registers	
	 •	The	Main	Memory	
	 •	Several	I/O	Devices	

The	Blitz	Emulator	is	capable	of	emulating	a	multi-core	processor.	In	many	
situations,	only	a	single	core	system	is	needed,	but	in	other	situations	there	may	be	a	
need	to	emulate	several	cores,	operating	on	shared	memory.	

The	emulator	can	be	conWigured	with	a	conWiguration	Wile,	which	contains	a	number	
of	parameters	that	describe	the	target	machine.	The	conWiguration	Wile	is	read	upon	
startup	of	the	emulator.	The	conWiguration	parameters	include:	

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	8 147

Chapter	1:	Overview	

	 •	The	number	of	cores	
	 •	The	topological	arrangement	if	the	target	is	multi-core	
	 •	The	amount	of	shared	main	memory	
	 •	The	amount	of	non-shared	memory,	private	and	local	to	each	core	
	 •	The	number	of	TLB	registers	
	 •	Where	in	target	memory	the	memory-mapped	I/O	devices	are	placed	
	 •	The	starting	value	for	the	PC	(program	counter)	
	 •	The	behavior	of	the	Blitz	DEBUG	machine	instruction	

The	emulator	runs	it	either	of	two	modes:	

	 •	Auto-go	ON	
	 •	Auto-go	OFF	

The	“auto-go”	mode	is	determined	by	a	command	line	Wlag.	Here	is	an	example	
command	line,	where	“auto-go”	is	enabled.	

Shell% blitz -g MyExamplePgm.exe

The	“Shell%”	represents	the	Unix/Linux	shell	prompt.	

The	“auto-go”	mode	is	enabled	with	the	“-g”	option.	With	auto-go,	the	emulator	
immediately	begins	execution.	

Without	auto-go,	the	emulator	begins	in	command	mode,	which	gives	the	user	
control	to	execute	commands	before	execution	starts.	

The	emulator	is	either	executing	Blitz	machine	instructions	or	is	in	“command	
mode”.	Command	mode	is	also	called	“debugging	mode”.	

In	command	mode,	the	emulator	is	driven	by	commands,	which	the	user	enters.	The	
user	types	a	command,	it	is	executed,	and	the	emulator	then	prompts	for	the	next	
command.	

Here	are	some	of	the	important	emulator	commands:	

Command	 Abbreviation
help h Display	a	menu	of	commands
quit q Terminate	the	emulator
go g Begin	instruction	execution

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	9 147

Chapter	1:	Overview	

step s Execute	a	single	instruction
regs r Display	register	contents
info i Display	additional	details	about	core	state
rN Update	register	N	(r1,	r2,	…)	
csr	 	 Update	CSR	register
dumpMem dm Display	main	memory
setmem Modify	main	memory
dis Disassemble	contents	of	memory
stack Display	the	runtime	execution	stack
globals Display	contents	of	global	variable	

We	will	describe	these	commands	in	detail	later	in	this	document.	

The	executable	Wile	contains	information	helpful	to	the	debugger.	This	information	
comes	from	the	KPL	source	code.	For	example,	the	executable	Wile	contains:	

	 •	Variable	names	(locals,	globals,	and	parameters)	
	 •	Information	about	KPL	functions	and	methods	
	 •	Information	about	KPL	statements	
	 •	Information	about	stack	frames	

As	we	said	above,	the	emulator	is	the	debugger.	When	we	refer	to	the	“debugger”,	
we	mean	the	emulator	operating	in	command	mode.	In	other	words,	when	the	
emulator	is	not	executing	instructions,	it	is	in	command	mode.	The	user	can	use	the	
commands	listed	above	to	debug	the	code.	

Generally	speaking,	the	debugging	functions	of	the	emulator	work	closely	with	the	
compiler	and	the	information	placed	in	the	executable	Wile,	in	order	to	present	as	
much	information	as	possible	in	source-level,	KPL	terms.	

For	example,	when	an	error	occurs,	the	emulator	will	immediately	show	the	source	
Wile	name	and	the	line	number	within	the	source	code	where	execution	was	at	the	
moment	of	the	error.	The	user	can	immediately	view	the	calling	stack,	to	see	which	
functions	are	active	and	the	values	of	the	local	variables,	often	presented	in	a	form	
determined	by	their	KPL	types.	

The	emulator	reads	in	all	the	debugging	information	when	it	starts	up.	This	
information	comes	from	the	executable	Wile	and	is	not	placed	in	the	main	memory	of	
the	target	Blitz	machine.	

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	10 147

Chapter	1:	Overview	

When	Blitz	code	is	executing	on	Blitz	hardware	and	not	being	emulated,	the	
debugging	functions	will	be	performed	by	the	“native	debugger”	and	not	by	the	
emulator	running	in	command	mode.	The	native	debugger,	which	is	written	in	KPL	
(with	some	Blitz	assembly),	is	invoked	by	the	operating	system	when	errors	occur.	
The	native	debugger	is	not	documented	here.	

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	11 147

Chapter	2:	Example	Usage	

Summary	

This	chapter	walks	through	a	simple	example.	The	following	emulator	commands	
will	be	demonstrated:	

	 go	 Start	execution	
	 regs	 Display	register	values	
	 stack	 Show	the	runtime	stack	
	 globals	 Show	values	of	global	variables	
	 watch	 Watch	for	updates	to	a	memory	location	
	 hex	 Convert	hex	to	decimal	
	 where	 Find	out	where	execution	is	
	 find	 Find	the	location	of	a	function	
	 dis	 Disassemble	memory	
	 dumpmem	 Display	memory	contents	
	 dumpmem2	 Display	memory	contents	
	 step	 Single	step	execution	
	 rN	 Modify	a	register	
	 setmem	 Modify	memory	
	 quit	 Quit	the	emulator	

Compiling	and	Linking	a	Program	

We	start	by	creating	a	small	KPL	program	called	MyProgram.	Here	is	the	“.h”	
header	Zile	and	the	“.c”	code	Zile	for	our	program:		

MyProgram.h:	

header MyProgram

Emulator	Reference	Manual	/	Porter	 Page	 	of	12 147

Chapter	2:	Example	Usage	

 uses PrintPackage
 functions
 main ()
endHeader

MyProgram.c:	

code MyProgram
 function main ()
 printf ("Hello, world\n")
 endFunction
endCode

These	Wiles	can	be	created	with	your	favorite	text	editor. 	2

Next,	we	compile	this	package	to	produce	a	“.s”	assembly	Zile.	The	KPL	compiler	is	a	
tool	called	“kpl”.	

Shell% kpl MyProgram -d ../ -o MyProgram.s

In	this	document,	“Shell%”	will	be	used	to	represent	the	Unix/Linux	shell	prompt.	
User	input	is	shown	like this.	

Our	example	package	uses	PrintPackage,	which	uses	packages	System	and	
HostInterface.	The	compiler	will	need	to	access	the	header	Wiles	for	these	packages.	
The	“-d”	option	to	the	compiler	is	followed	by	the	directory	pathname	where	these	
header	Wiles	are	to	be	found,	if	not	in	the	current	directory.	So	this	assumes	that	Wiles	
“../PrintPackage.h”,	“../System.h”,	and	“../HostInterface.h”	all	exist.	

Next,	we	invoke	the	Blitz	assembler	to	produce	a	“.o”	object	Zile.	The	Blitz	assembler	
is	a	tool	called	“asm”:	

Shell% asm MyProgram.s -o MyProgram.o

Next,	we	must	link	the	object	Wile	using	the	Blitz	“link”	command,	as	shown	next.	

(This	line	has	been	broken	into	multiple	lines	for	clarity.)	

Shell% link MyProgram.o ../runtime.o ../HostInterface.o
 ../System.o ../PrintPackage.o

	The	TextEdit	app	for	macOS	works	for	me.2

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	13 147

Chapter	2:	Example	Usage	

 -o MyProgram.exe -k

Our	example	package	uses	PrintPackage,	which	uses	packages	System	and	
HostInterface.	All	KPL	programs	must	also	be	linked	with	some	assembly	functions,	
which	come	from	runtime.s.	

To	keep	things	simple,	we	are	not	using	any	libraries	for	this	example.	

In	practice	the	Unix/Linux	“make”	facility	could	be	used.	The	compile/assemble/
link	commands	would	be	collected	in	a	“makeZile”	and	the	user	would	simply	type	
“make”	to	compile,	assemble,	and	link	any	and	all	Wiles	necessary,	according	to	
dependencies	and	details	about	which	Wiles	have	been	modiWied	recently:	

Shell% make

Typing	“make”	is	a	lot	quicker	and	the	make	facility	makes	sure	that	everything	that	
needs	to	be	updated	will	get	updated.	

We	assume	that	runtime.s	and	the	System,	HostInterface,	and	PrintPackage	
packages	have	been	compiled	and	assembled	previously.	Using	an	appropriate	
makeZile	will	ensure	they	get	recompiled	and	reassembled	if	they	have	been	
modiWied	and	their	object	Wiles	are	out	of	date.	

Assuming	there	were	no	errors,	then	the	following	executable	Wile	has	been	
produced.	

	 MyProgram.exe	

We	are	ready	to	run	our	example	program	using	the	emulator.	

Invoking	the	Emulator	

Next,	we	will	invoke	the	emulator	tool	from	the	Unix/Linux	shell	command	line.	The	
emulator	prints	a	few	opening	lines	and	then	waits	for	a	command.	

Shell% blitz MyProgram.exe
Reading executable file...
The executable file (MyProgram.exe) was loaded. The _entry address (0x00001885C)
was loaded into the PC.

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	14 147

Chapter	2:	Example	Usage	

===
===== =====
===== The Blitz-64 Machine Emulator =====
===== by Harry H. Porter III =====
===== 6 August 2019 =====
===== =====
===

Enter a command at the prompt. Type 'quit' to exit or 'help' for info about
commands.
E>

When	in	debugging	mode	(i.e.,	command	mode),	the	emulator	prints	the	prompt	

E>

and	and	waits	for	user	input.	If	we	type	“q”	(or	“quit”),	then	emulator	immediately	
terminates.	

If	we	type	“g”	(or	“go”),	then	emulator	begins	executing	instructions	and	we	see	
output	from	the	program:	

E> g
Beginning execution...
Hello, world

==================== KPL PROGRAM TERMINATION ====================
Done!
E>

At	the	prompt,	we	can	type	“r”	(or	“regs”)	to	display	the	contents	of	the	registers:	

E> r
===
 csr_instr = 0x0000000000000772
 csr_cycle = 0x0000000000001656
 csr_timer = 0x7fffffffffffe9b8
 csr_status = 0x0000000000000003
 (ASID: 0x0000, FlRound: 00 Nearest,
 NV/OF/UF/DZ/NX: 00000, SingleStep: 0,
 InterruptsEnabled: 1, KernelMode: 1)
 csr_stat2 = 0x0000000000000000
 csr_prevpc = 0x0000000000000000
 csr_cause = 0x0000000000000000
 csr_bad = 0x0000000000000000
 csr_addr = 0x0000000000000000
 csr_ptr = 0x0000000000000000
======================== REGISTERS ========================
 r1 = 0x0000000000000000

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	15 147

Chapter	2:	Example	Usage	

 r2 = 0x0000000000000001 (decimal: 1)
 r3 = 0x0000000000001c30 (decimal: 7216)
 r4 = 0xffffffffffffffff (decimal: -1)
 r5 = 0x0000000000001e68 (decimal: 7784)
 r6 = 0x000000000000000d (decimal: 13)
 r7 = 0x000000000000000d (decimal: 13)
 r8 t = 0x000000000000000d (decimal: 13)
 r9 s0 = 0x000000000fffffb8 (decimal: 268435384)
 r10 s1 = 0x000000000fffffb8 (decimal: 268435384)
 r11 s2 = 0x0000000000000000
 r12 tp = 0x0000000005f77078 (decimal: 100102264)
 r13 gp = 0x0000000000010000 (decimal: 65536)
 r14 lr = 0x000000000000bcac (decimal: 48300)
 r15 sp = 0x000000000fffffc0 (decimal: 268435392)
 Instruction time (all cores) = 1906
=============== NEXT INSTRUCTION TO EXECUTE ===============
 PC = 0x000018968 Address = 0x18968 [PHYSICAL]
 Within Function "EmulatorShutdown" [runtime.s]
 000018968: 19000040 jump TerminateRuntime # PC + 0x4
E>

In	this	document,	I	am	editing	the	computer	output	a	little,	but	I’m	only	changing	the	
spacing	to	make	long	lines	easier	to	read.	

As	another	example,	we	can	execute	the	emulator	with	the	“auto-go”	option,	which	
is	enabled	with	“-g”	on	the	command	line.	We	also	use	“-nowarn”,	which	suppresses	
warnings	and	unnecessary	messages.	

We	will	also	modify	our	program	by	adding	a	call	to	the	EmulatorShutdown	
function:	

MyProgram.c:	

code MyProgram
 function main ()
 printf ("Hello, world\n")
 EmulatorShutdown (0)
 endFunction
endCode

We	can	recompile	it:	

Shell% make

Now	when	we	execute	our	KPL	program,	we	see	nothing	but	the	output	from	the	
program.	

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	16 147

Chapter	2:	Example	Usage	

Shell% blitz MyProgram.exe -g -nowarn
Hello, world
Shell%

Debugging:	An	Example	

Next	we	will	modify	our	example	to	add	a	couple	of	functions.	This	code	has	a	bug,	
as	we	will	see.	

MyProgram.c:	

1:	 code MyProgram
2:	
3:	 function main ()
4:	 var
5:	 i: int = 4
6:	 j: int = 5
7:	 foo1 (i + j)
8:	 printf ("Goodbye\n")
9:	 EmulatorShutdown (0)
10:	 endFunction
11:	
12:	 function foo1 (x: int)
13:	 foo2 (x)
14:	 endFunction
15:	
16:	 function foo2 (myArg: int)
17:	 printf ("myArg = %d\n", myArg)
18:	 myArg = 1 / (myArg - 9)
19:	 endFunction
20:	
21:	 	endCode

In	this	document,	some	lines	will	be	highlighted	

like this

to	focus	your	attention	on	the	most	relevant	information.	

Next,	we	compile	and	run	this	program: 	3

	This	is	an	example	where	long	lines	were	edited	to	make	them	easier	to	read.3

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	17 147

Chapter	2:	Example	Usage	

Shell% make
...
Shell% blitz MyProgram.exe -g -nowarn
myArg = 9
====================
==================== "System: ERROR_ArithmeticException" was thrown but not
 caught within thread "Main Thread"
====================

The CATCH STACK is empty

********** RUNTIME ERROR: An "ARITHMETIC EXCEPTION" has occurred! **********

 Offending Instruction = 0x0000000000050767

***** Native debugger is not implemented - EXECUTION TERMINATING *****

********** EMULATOR DEBUGGING: Type 'stack' for more info. **********

Execution is stopped at ASSIGN on line 18 in function "foo2" [MyProgram.c]
 005FAF0E4: 00050767 div r7,r6,r7
Done!

Entering machine-level debugger...
===
===== =====
===== The Blitz-64 Machine Emulator =====
===== by Harry H. Porter III =====
===== 6 August 2019 =====
===== =====
===

Enter a command at the prompt. Type 'quit' to exit or 'help' for
 info about commands.
E>

This	program	begins	in	function	main,	which	then	calls	function	foo1	which	then	
calls	function	foo2.	Function	foo2	prints	the	message	“myArg	=	9”	and	then	
attempts	to	divide	by	zero.	

This	division-by-zero	causes	an	Arithmetic	Exception,	which	throws	an	error.	
unfortunately,	our	little	program	fails	to	catch	this	error,	so	there	is	a	problem.	The	
initial	error	handling	occurs	in	Blitz	and	the	Wirst		line	indicates	the	nature	of	the	
error.	Then	the	program	gives	up	and	ceases	execution.	

Next,	emulator	debugging	begins	with	a	message	(also	highlighted	above),	telling	
where	in	the	source	code	the	problem	arose:	

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	18 147

Chapter	2:	Example	Usage	

	 •	On	line	18	in	Wile	MyProgram.c	
	 •	In	an	ASSIGNMENT	statement	
	 •	Within	a	function	named	“foo2"	

Finally,	the	debugger	prints	a	prompt	and	waits	for	a	user	command.	

Next,	let’s	enter	the	“stack”	command.	This	will	give	a	summary	of	the	calling	
history	for	this	function.	

E> stack
 Function/Method Execution at... File
 ============================== ==================== ==============================
 EmulatorDebuggingRequested runtime.s
 invokeDebugger CALL line 2312 System.c
 RuntimeErrorArithmeticExceptio CALL line 2190 System.c
 _runtimeErrorArithmeticExcepti runtime.s
 foo2 ASSIGN line 18 MyProgram.c
 foo1 CALL line 13 MyProgram.c
 main CALL line 7 MyProgram.c
 _kplEntry MyProgram.c
 _entry runtime.s

-------------------- EmulatorDebuggingRequested --------------------
Execution is stopped within Function "EmulatorDebuggingRequested" [runtime.s, line 0]
 Code Address: 000018954
 Frame: 00ffffed0 - 00ffffee0, size = 0x10 (decimal 16)
 offset 0 0x0000... 00ffffed0: 000000000000cc38 codeAddress: int = 52280
I can show you the frames of the callers. How many more frames would
 you like to see (hit ENTER if none)?

The	stack	shows	the	functions	that	are	active	at	the	time	of	the	error	(main,	foo1,	
and	foo2)	and	I	have	highlighted	these	lines.	We	also	see	two	functions	that	are	
called	upon	program	startup	(_entry,	and	_kplEntry)	which	are	still	active.	After	the	
error	arises,	four	more	functions	are	invoked	as	part	of	the	error	handling	sequence,	
but	we	can	ignore	these.	

After	that,	we	see	a	representation	of	the	stack	frame	at	the	top	of	the	stack.	This	is	
for	a	function	called	EmulatorDebuggingRequested	.	This	function	and	the	other	
three	functions	at	the	top	of	the	calling	stack	are	not	particularly	interesting	since	
they	happen	after	the	error.	

This	ends	with	a	request	for	the	user	to	type	a	number.	The	stack	only	contains	9	
functions,	but	we	will	type	999	in	order	to	see	the	entire	stack.	

I can show you the frames of the callers. How many more frames would
 you like to see (hit ENTER if none)? 999

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	19 147

Chapter	2:	Example	Usage	

-------------------- invokeDebugger --------------------
Execution is stopped at CALL on line 2312 in function "invokeDebugger" [System.c]
 Code Address: 000006a04
 Frame: 00ffffee0 - 00ffffef0, size = 0x10 (decimal 16)
 arg offset 16 0x0010... 00ffffef0: 000000000000cc38 codeAddress: int = 52280

-------------------- RuntimeErrorArithmeticException --------------------
Execution is stopped at CALL on line 2190 in function "RuntimeErrorArithmeticException"
 [System.c]
 Code Address: 0000064dc
 Frame: 00ffffef0 - 00fffff58, size = 0x68 (decimal 104)
 arg offset 104 0x0068... 00fffff58: 000000000000cc38 codeAddress: int = 52280
 arg offset 112 0x0070... 00fffff60: 0000000000050767 offendingInstr: int = 329575
 offset 80 0x0050... 00fffff40: 0000000000002be8 errorID: String = "System:
ERROR_ArithmeticException"
 offset 88 0x0058... 00fffff48: 0000000000006498 codeAddr_notUsed: int = 25752

-------------------- _runtimeErrorArithmeticException --------------------
Execution is stopped within Function “_runtimeErrorArithmeticException"
 [runtime.s, line 0]
 Code Address: 000018774
 Frame: 00fffff58 - 00fffff70, size = 0x18 (decimal 24)

-------------------- foo2 --------------------
Execution is stopped at ASSIGN on line 18 in function "foo2" [MyProgram.c]
 Code Address: 00000cc30
 Frame: 00fffff70 - 00fffffa0, size = 0x30 (decimal 48)
 arg offset 48 0x0030... 00fffffa0: 0000000000000009 myArg: int = 9

-------------------- foo1 --------------------
Execution is stopped at CALL on line 13 in function "foo1" [MyProgram.c]
 Code Address: 00000cb98
 Frame: 00fffffa0 - 00fffffb0, size = 0x10 (decimal 16)
 arg offset 16 0x0010... 00fffffb0: 0000000000000009 x: int = 9

-------------------- main --------------------
Execution is stopped at CALL on line 7 in function "main" [MyProgram.c]
 Code Address: 00000cb40
 Frame: 00fffffb0 - 00ffffff0, size = 0x40 (decimal 64)
 offset 40 0x0028... 00fffffd8: 0000000000000004 i: int = 4
 offset 48 0x0030... 00fffffe0: 0000000000000005 j: int = 5

-------------------- _kplEntry --------------------
Execution is stopped within Function "_kplEntry" [MyProgram.c, line 0]
 Code Address: 00000c8a4
 Frame: 00ffffff0 - 00ffffff8, size = 0x8 (decimal 8)

-------------------- _entry --------------------
Execution is stopped within Function "_entry" [runtime.s, line 0]
 Code Address: 000018888
 Frame: 00ffffff8 - 010000000, size = 0x8 (decimal 8)
E>

The	frames	for	the	three	functions	of	interest	are	highlighted.	We	can	see	that	the	
error	occurred	in	function	foo2	which	was	called	from	function	foo1,	which	was	
called	from	the	main	function.	

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	20 147

Chapter	2:	Example	Usage	

Now	let’s	look	more	closely	at	the	frame	for	the	main	function.	Here	are	the	relevant	
line	from	above,	repeated	with	different	highlighting:	

-------------------- main --------------------
Execution is stopped at CALL on line 7 in function "main" [MyProgram.c]
 Code Address: 00000cb40
 Frame: 00fffffb0 - 00ffffff0, size = 0x40 (decimal 64)
 offset 40 0x0028... 00fffffd8: 0000000000000004 i: int = 4
 offset 48 0x0030... 00fffffe0: 0000000000000005 j: int = 5

We	see	that	the	call	(to	foo1)	occurred	at	line	7	in	Wile	MyProgram.c.	We	also	see	the	
values	of	the	local	variables	i	and	j.	These	variables	have	type	integer,	and	their	
values	are	shown	in	decimal.	

To	illustrate	the	capabilities	of	the	debugger	to	display	the	values	of	variables	in	
human-friendly	source	form,	let’s	create	another	function	foo3:	

 function foo3 (myArg1: int, myArg2: bool)
 var
 localVar1: byte
 localVar2: halfword
 localVar3: word
 localVar4: int
 localVar5: double
 localVar6: String
 localVar7: Person
 localVar8: ptr to Person
 localVar9: array [5] of byte
 …
 myArg1 = 123
 myArg2 = true
 localVar1 = 'a'
 localVar2 = 12345
 localVar3 = 100200300
 localVar4 = MAX_64
 localVar5 = 3.141596
 localVar6 = "greetings"
 localVar7 = new Person {f = 57}
 localVar8 = & localVar7
 localVar9 = new array of byte {11,22,33,44,55}

 <<<		Execution	is	stopped	here		>>>
 …
 endFunction

Assume	that	execution	is	stopped	within	this	function.	Here	is	what	we	might	see	
with	the	“stack”	command. 	4

	This	output	was	edited	a	little,	but	only	spacing	to	make	long	lines	easier	to	read.4

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	21 147

Chapter	2:	Example	Usage	

-------------------- foo3 --------------------
Execution is stopped at RETURN on line 47 in function "foo3" [MyProgram.c]
 Code Address: 005faf284
 Frame: 00fffff48 - 00fffffb0, size = 0x68 (decimal 104)
 arg offset 104 0x0068... 00fffffb0: 000000000000007b myArg1: int = 123
 arg offset 112 0x0070... 00fffffb8: 01 myArg2: bool = true
 offset 94 0x005e... 00fffffa6: 61 localVar1: byte = 'a'
 (decimal 97)
 offset 92 0x005c... 00fffffa4: 3039 localVar2: halfword = 12345
 offset 88 0x0058... 00fffffa0: 05f8ef6c localVar3: word = 100200300
 offset 24 0x0018... 00fffff60: 7fffffffffffffff localVar4: int =
 9223372036854775807
 offset 32 0x0020... 00fffff68: 400921fd1569f490 localVar5: doubleFloat =
 3.141596
 offset 40 0x0028... 00fffff70: 0000000000002880 localVar6: String = "greetings"
 offset 48 0x0030... 00fffff78: 0000000005faf298 localVar7: object
 offset 64 0x0040... 00fffff88: 000000000fffff78 localVar8: ptr ---> to a
 Person object at 0x00fffff78
 offset 72 0x0048... 00fffff90: 0000000500000005 localVar9: array (currentSize =
 5, maxSize = 5)

As	you	can	see,	the	debugger	displays	values	in	terms	appropriate	for	the	type	of	the	
variable.	However,	the	debugger	lacks	information	about	the	Wields	in	objects	or	the	
element	types	in	arrays,	which	imposes	some	limits.	

Debugging:	A	Second	Example	

In	this	example,	we	will	exhibit	the	ability	to:	

	 •	See	if	a	particular	statement	is	executed	
	 •	Stop	the	program	at	a	given	place	
	 •	Disassemble	the	assembly	code	
	 •	Watch	for	any	change	to	a	variable	
	 •	Modify	the	variable		

For	this	example,	assume	we	have	a	global	variable	named	myGlob:		

var myGlob: int = -1

We	will	be	invoking	this	function:	

function foo4 (myArg: int) returns int
 myGlob = myArg + 456
 return myGlob * 100
endFunction

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	22 147

Chapter	2:	Example	Usage	

Let	us	assume	that	we	want	to	Wind	out	where	myGlob	is	being	modiWied.	So	we	start	
the	program,	but	without	the	“-g”	auto-go	option:	

Shell% blitz MyProgram.exe

We	use	the	“globals”	command	to	list	all	global	variables:	

E> globals
From package "MyProgram.c"...
 line 48 000002880: ffffffffffffffff myGlob: int = -1
From package "runtime.s"...
From package "HostInterface.c"...
 line 84 0000023c8: 00000000000023e0 stdin: ptr --> ...
 line 85 0000023d0: 00000000000023e8 stdout: ptr --> ...
 line 86 0000023d8: 00000000000023f0 stderr: ptr --> ...
 line 87 0000023e0: 0000000000000000 stdinFILE: struct
 line 88 0000023e8: 0000000000000001 stdoutFILE: struct
 line 89 0000023f0: 0000000000000002 stderrFILE: struct
 line 61 0000023f8: 0000000000018e88 print: ptr --> ...
 line 62 000002400: 0000000000018e40 readString: ptr --> ...
 line 90 000002980: 0000000000000000 errno: int = 0
From package "System.c"...
 line 40 000000008: 00 alreadyInAlloc: bool = false
 line 37 000018f48: 0000000000000000 TheHeapArray: array
...

The	highlighted	lines	show	where	variable	myGlob	is	located	in	memory.	

Next,	we	use	the	“watch”	command,	which	will	prompt	for	a	memory	address.	

E> watch
 Execution will halt whenever this address is stored into.
 Enter 0 to display the previous watch address.
 Enter -1 to cancel a previous watch address.
Enter the address in hex: 000002880
Execution will halt whenever address 0x000002880 is stored into.
E>

Next,	we	use	the	“go”	command	to	begin	execution:	

E> g
Beginning execution...

********** The value 0x000000000001e240 was stored into the 'watched'
 address (000002880) at instr time = 366 **********
Done!
E>

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	23 147

Chapter	2:	Example	Usage	

We	see	the	value,	but	it	is	in	hex.	Fortunately,	the	emulator	has	commands	“hex”,	
“dec”,	and	“ascii”	which	come	in	handy	to	convert	values.	

E> hex
Enter a value in hex: 1e240
 hex: 0x000000000001E240 >120 KiBytes
 decimal: 123456
 ascii: “.......@"
 real: 6.099536837297693335786247689e-319
E>

We	see	that	the	decimal	value	is	123456,	as	expected.	

Next,	we	use	the	“where”	command	to	see	where	execution	is	stopped.	

E> where
Enter an address in hex (or 0 for current PC): << ENTER >>
CURRENT LOCATION OF PC:
 RETURN on line 53 in function "foo4" [MyProgram.c]
 00000CD80: 04006406 movi r6,100 # synthetic for XORI r6,r0,0x64
E>

Next,	assume	that	we	want	to	stop	execution	at	a	particular	location	in	the	source	
code.	KPL	contains	a	“debug”	statement	which	we	can	use.	We	will	insert	a	debug	
statement	into	out	code,	as	shown	next.	The	debug	keyword	is	followed	by	a	string,	
which	becomes	useful	when	we	having	several	debug	statements	scattered	through	
the	program.	For	this	example,	we	just	use	the	string	“here”.	

Let’s	add	a	debug	statement	to	our	function:	

function foo4 (myArg: int) returns int
 debug "here"
 myGlob = myArg + 456
 return myGlob * 100
endFunction

We	recompile	the	program	and	re-run	it:	

Shell% make
...
Shell% blitz MyProgram.exe -g
Reading executable file...
The executable file (MyProgram.exe) was loaded. The _entry address (0x00001885C)
was loaded into the PC.
Beginning execution...

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	24 147

Chapter	2:	Example	Usage	

**** A DEBUG machine instruction was executed *****

Next instruction to execute:
 DEBUG (line 51)
 ---------- ################# here #################
 00000CD74: 00280000 debug
Done!

Entering machine-level debugger...
===
===== =====
===== The Blitz-64 Machine Emulator =====
===== by Harry H. Porter III =====
===== 6 August 2019 =====
===== =====
===

Enter a command at the prompt. Type 'quit' to exit or 'help' for info about
commands.
E>

The	program	is	now	stopped.	Let’s	look	at	the	assembly	code	for	this	function.	

First,	we	can	look	in	the	“.s”	assembly	code	Wile,	MyProgram.s.	The	Wile	might	be	
quite	large,	but	we	can	search	for	our	string	“here”	to	Wind	the	debug	statement.	

Here	are	the	relevant	lines	from	the	assembly	code	Wile:	

=============== FUNCTION foo4 ===============

.align 4
_function_6_foo4:

.function "foo4",line=50,framesize=8
store.d -8(sp),lr # Save return addr
addi sp,sp,-8 # Allocate frame (8 bytes)
stored 8(sp),r1 # myArg <-- r1

Zero out 0 bytes of frame
VARIABLE INITIALIZATION...

.stmt debug,line=51

.comment "################# here #################"
debug

ASSIGNMENT STATEMENT...
.stmt assign,line=52
loadd r7,8(sp) # myArg
addi r7,r7,456
stored _GlobalVar_myGlob,r7

RETURN STATEMENT...
.stmt return,line=53

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	25 147

Chapter	2:	Example	Usage	

movi r6,100 # 0x0000000000000064
mul r7,r7,r6
mov r1,r7
addi sp,sp,8
load.d lr,-8(sp)
ret
.local 8,"myArg",line=50,type="I"
.endfunction

As	you	can	see,	the	KPL	compiler	adds	some	commenting.	

In	reading	the	above	code,	note	that	the	.function,	.stmt,	.comment,	.local,	
and	.endfunction	directives	provide	supplemental	debugging	information.	This	
debugging	information	will	be	present	in	the	executable	Wile,	but	will	not	be	loaded	
into	memory	during	execution.	This	information	is	read	from	the	executable	Wile	by	
the	emulator	and	used	to	facilitate	debugging.	These	directives	are	how	the	compiler	
communicates	information	to	the	debugger,	so	the	debugger	can	display	data	in	
human-friendly	forms.	

The	highlighted	lines	above	correspond	to	the	following	assignment	statement.	

 myGlob = myArg + 456

Next,	in	the	debugger,	we	use	the	“Wind”	command	to	determine	at	what	address	the	
function	“foo4”	is	located.	Private	functions	have	names	beginning	with	“_function”	
so	we	enter	this	when	prompted.	

E> find
Enter the first few characters of the symbol; all matching will be printed: _func
 Symbol Value (hex) Value (decimal) Label Source line number
 / filename
 =================================== =========== =============== ===== ====================
 _function_137_printClassNameFromDPT 6AF0 27376 LABEL 8567 System.s
 _function_138_printClassNameOfObject 6A24 27172 LABEL 8448 System.s
 _function_139_invokeDebugger 69C0 27072 LABEL 8387 System.s
 _function_140_KPLDefaultFatalErrorFunction 588C 22668 LABEL 6144 System.s
 _function_141_KPLMemoryFree_Version1 33D4 13268 LABEL 1642 System.s
 _function_142_KPLMemoryAlloc_Version1 32C8 13000 LABEL 1524 System.s
 _function_143_KPLMemoryFree_Default 3298 12952 LABEL 1492 System.s
 _function_144_KPLMemoryAlloc_Default 3204 12804 LABEL 1433 System.s
 _function_19_hostDateNext BE84 48772 LABEL 2299 HostInterface.s
 _function_20_hostDateSize BE5C 48732 LABEL 2277 HostInterface.s
 _function_21_argumentNext BCE8 48360 LABEL 2106 HostInterface.s
 _function_22_argumentSize BCC4 48324 LABEL 2086 HostInterface.s
 _function_26_LocalPrintString 75D8 30168 LABEL 521 PrintPackage.s
 _function_27_LocalPrintChar 758C 30092 LABEL 475 PrintPackage.s
 _function_6_foo4 CD68 52584 LABEL 670 MyProgram.s
 _function_7_foo3 CBBC 52156 LABEL 496 MyProgram.s
 _function_8_foo2 CB90 52112 LABEL 471 MyProgram.s
 _function_9_foo1 CB6C 52076 LABEL 446 MyProgram.s
E>

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	26 147

Chapter	2:	Example	Usage	

The	highlighted	line	shows	that	the	function	foo4	is	located	at	address	
0x00000cd68.	

Next,	we	use	the	disassemble	command	“dis”	to	display	memory	at	that	location.	It	
displays	about	a	page	worth	of	data,	but	we	show	only	the	Wirst	half	of	it	here:	

E> dis
Enter the beginning address (in hex): cd68
 Function "foo4" [MyProgram.c]
 _function_6_foo4:
 00000CD68: 22FFFEF8 store.d -8(sp),lr # offset = 0xFFF8
 00000CD6C: 01FFF8FF addi sp,sp,-8
 00000CD70: 220001F8 store.d 8(sp),r1
 DEBUG (line 51)
 ---------- ################# here #################
 00000CD74: 00280000 debug
 ASSIGN (line 52)
 00000CD78: 1E0008F7 load.d r7,8(sp)
 00000CD7C: 0101C877 addi r7,r7,456 # hex = 0x1C8
 00000CD80: 22288700 store.d 10368(r0),r7 # offset = 0x2880
 RETURN (line 53)
 00000CD84: 04006406 movi r6,100 # synthetic for
 XORI r6,r0,0x64
 00000CD88: 00040677 mul r7,r7,r6
 00000CD8C: 03000071 mov r1,r7 # synthetic for ORI _,_,0
 00000CD90: 010008FF addi sp,sp,8
 00000CD94: 1EFFF8FE load.d lr,-8(sp) # offset = 0xFFF8
 00000CD98: 1A0000E0 ret # synthetic for
 JALR r0,0(lr)
...
E>

I	have	highlighted	the	statement	of	interest	so	you	can	compare	the	output	from	the	
“dis”	disassemble	command	to	the	original	assembly	code.	

We	can	display	raw	memory	as	a	sequence	of	doublewords,	using	the	“dumpmem”	
command	(which	can	be	abbreviated	to	“dm”):	

E> dm
Enter the starting address in hex: cd68
00000cd68: 00 0x22fffef801fff8ff 2522014657489664255 ".......
00000cd70: 08 0x220001f800280000 2449960361955688448 "....(..
00000cd78: 10 0x1e0008f70101c877 2161737678104676471 w
00000cd80: 18 0x2228870004006406 2461365630494860294 "(....d.
00000cd88: 20 0x0004067703000071 1133008128049265 ...w...q
00000cd90: 28 0x010008ff1efff8fe 72067485867702526
00000cd98: 30 0x1a0000e000000000 1873498407058800640
...

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	27 147

Chapter	2:	Example	Usage	

E>

We	can	also	display	the	memory	in	a	more	byte-oriented	way,	using	the	
“dumpmem2”	command	(which	can	be	abbreviated	to	“dm2”):	

E> dm2
Enter the starting (physical) memory address in hex: cd68
Enter the number of bytes in hex (or 0 to abort): 100
PRIVATE MEMORY:
00000cd68: 22FF FEF8 01FF F8FF 2200 01F8 0028 0000 "......."....(..
00000cd78: 1E00 08F7 0101 C877 2228 8700 0400 6406 w"(....d.
00000cd88: 0004 0677 0300 0071 0100 08FF 1EFF F8FE ...w...q........
00000cd98: 1A00 00E0 0000 0000 0000 0000 0000 CDB0
...
E>

Recall	that	execution	is	stopped	at	the	debug	statement,	directly	before	the	
assignment	statement.	Next	we	use	the	“step”	command	(which	can	be	abbreviated	
“s”)	to	execute	a	single	machine	instruction:	

E> s
Executing this instruction:
 00000CD78: 1E0008F7 load.d r7,8(sp) # offset = 0x8
Instr count = 365
E>

Next,	let’s	look	see	what	value	was	loaded	into	register	r7,	using	the	“regs”	
command:	

E> r
...
 r6 = 0x0000000005f77090 (decimal: 100102288)
 r7 = 0x000000000001e078 (decimal: 123000)
 r8 t = 0x0000000005f70000 (decimal: 100073472)
...
=============== NEXT INSTRUCTION TO EXECUTE ===============
 PC = 0x00000CD7C Address = 0xCD7C [PHYSICAL]
 Within ASSIGN (line 52)
 00000CD7C: 0101C877 addi r7,r7,456 # hex = 0x1C8
E>

Now	we	can	execute	another	instruction.	

E> s
Executing this instruction:
 00000CD7C: 0101C877 addi r7,r7,456 # hex = 0x1C8
Instr count = 366
E>

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	28 147

Chapter	2:	Example	Usage	

Once	again,	we	might	wish	to	examine	the	register	with	the	“regs”	command,	but	we	
don’t	need	to	illustrate	that	again.	

Next,	let’s	alter	the	value	with	the	“r7”	command.	(There	is	one	such	command	for	
each	register:	r1,	r2,	…	r15).	

E> r7
 r7 = 0x000000000001e240 (decimal: 123456)
Enter the new value (in hex): 9fbf1
 r7 = 0x000000000009fbf1 (decimal: 654321)
E>

Next,	we	execute	the	next	instruction	(stored).	

E> s
Executing this instruction:
 00000CD80: 22288700 store.d 10368(r0),r7 # offset = 0x2880
Instr count = 367
E>

Next,	we	verify	that	the	desired	value	was	stored	into	the	memory	address	for	the	
variable	myGlob,	using	both	the	“dumpmem”	and	“globals”	commands.	

E> dm
Enter the starting address in hex: 2880
000002880: 00 0x000000000009fbf1 654321 @
...
E> globals
From package "MyProgram.c"...
 line 48 000002880: 000000000009fbf1 myGlob: int = 654321
...
E>

Next,	let’s	modify	memory	directly,	using	the	“setmem”	command.	We	will	change	
variable	myGlob	to	a	new	value.	

E> setmem
Enter the (physical) memory address in hex of the doubleword to be modified:
2880
***** This address is in private RAM or shared RAM *****
The old value is:
0x000002880: 0x000000000009FBF1
Enter the new value (8 bytes in hex): 36870
0x000002880: 0x0000000000036870
E>

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	29 147

Chapter	2:	Example	Usage	

Next,	we	use	the	“globals”	command	to	verify	that	we	have	changed	the	value	
correctly.	

E> globals
From package "MyProgram.c"...
 line 48 000002880: 0000000000036870 myGlob: int = 223344
...
E>

Finally,	we	can	resume	program	execution	with	the	“go”	command	(which	can	be	
abbreviated	“g”):	

E> go
...

Or	perhaps	we	will	terminate	the	emulator	with	the	“quit”	command	(which	can	be	
abbreviated	“q”):	

E> quit
Shell%

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	30 147

Chapter	3:	Commands	

Introduction	

In	this	chapter	we	describe	each	command.	

Several	commands	require	arguments.	The	arguments	are	not	entered	on	the	same	
line.	Each	command	is	typed	separately,	followed	by	NEWLINE	/	ENTER	/	RETURN.		

When	arguments	are	required,	the	command	will	prompt	for	them.	

In	some	cases,	the	argument	must	be	a	hex	value.	A	leading	“0x”	is	optional	and	
either	upper	or	lower	can	be	used.	

Generally	speaking,	the	commands	will	do	their	best	to	verify	that	the	user	has	
entered	legal	values.	

Several	common	commands	have	an	abbreviation;	either	form	can	be	used.	

If	an	invalid	command	is	entered,	the	emulator	will	complain	and	prompt	for	the	
next	command.	

E> aBadEntryyy
Unrecognized command.
Enter a command at the prompt. Type 'quit' to exit or 'help' for info about
commands.
E>

In	a	multi-core	system,	things	can	get	confusing.	At	any	one	time,	one	of	the	cores	is	
selected	as	the	“current	core”.	This	code	is	the	focus	of	many	instructions.	For	
example,	the	“regs”	command	will	display	the	registers	of	the	current	core.	The	
“cores”	command	can	be	used	to	change	the	focus.	

The	emulator	is	designed	to	display	its	output	in	a	Wixed-width	font	and	it	assumes	
that	the	output	window	is	wide	enough	to	accommodate	long	line.	Within	this	

Emulator	Reference	Manual	/	Porter	 Page	 	of	31 147

Chapter	3:	Commands	

document,	I	have	altered	the	spacing	of	some	very	long	lines,	to	make	the	output	
more	readable.	

For	example,	the	following	lines	from	the	emulator	(which	will	be	discussed	later):	

 4 csr_status = 0x0000000000000001
 (ASID: 0x0000, FlRound: 00 Nearest, NV/OF/UF/DZ/NX:
00000, SingleStep: 0, InterruptsEnabled: 0, KernelMode: 1)

 TLB REGISTER ASID Virt Page Phys Page W X D V
C
 ================== ====== =========== =========== === === ===
=== ===

will	be	altered	to	the	following:	

 4 csr_status = 0x0000000000000001
 (ASID: 0x0000, FlRound: 00 Nearest,
 NV/OF/UF/DZ/NX: 00000, SingleStep: 0,
 InterruptsEnabled: 0, KernelMode: 1)

 TLB REGISTER ASID Virt Page Phys Page W X D V C
 ================== ====== =========== =========== === === === === ===

When	the	emulator	goes	into	command	mode,	it	will	print	a	welcome	message,	such	
as:	

Shell% blitz MyProgram.exe
Reading executable file...
The executable file (MyProgram.exe) was loaded. The _entry address (0x00001885C)
was loaded into the PC.
===
===== =====
===== The Blitz-64 Machine Emulator =====
===== by Harry H. Porter III =====
===== 6 May 2021 =====
===== =====
===

Enter a command at the prompt. Type 'quit' to exit or 'help' for info about
commands.
E>

In	Blitz,	program	version	numbers	are	not	used.	Instead,	the	author	and	date	are	
used	to	indicate	the	version.	From	the	above,	you	can	see	which	version	is	
documented	in	this	document.	

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	32 147

Chapter	3:	Commands	

The	Commands	

q quit

This	command	immediately	terminates	the	emulator.	

If	the	ROM	or	SecureStorage	has	been	updated,	this	command	will	ask	about	writing	
back	to	the	host	Wile	before	exiting.	

The	Unix/Linux	“exit”	code	will	be	0.	

h help

This	command	produces	the	following	display:	

===
This program accepts commands typed into the terminal. Each command
should be typed without any arguments; the commands will prompt for
arguments when needed. Case is not significant. Some abbreviations
are allowed, as shown. Typing control-C will halt execution.

The available commands are:
 quit - Terminate this program
 q
 help - Produce this display
 h
 info - Display the current state of the core
 i
 regs - Display a summary of the registers
 r
 r1 - Change the value of register r1

 r15 Change the value of register r15
 tlb - Change the value of TLB register
 csr - Change the value of CSR register
 pc - Set the Program Counter (PC)
 setmem - Used to alter memory contents
 ld - Load 1/2/4/8 bytes from memory or I/O device

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	33 147

Chapter	3:	Commands	

 st - Store 1/2/4/8 bytes to memory or I/O device
 dumpMem - Display the contents of memory
 dm
 dumpMem2 - Display the contents of memory (basic format)
 dm2
 dis - Disassemble several instructions
 d - Disassemble several instructions from the current location
 stack - Display stack frames
 stack2 - Display stack frames, asking for thread details
 stackmem - Display top words of stack
 sm
 globals - Display the global variables
 trans - See what the MMU would do with a virtual address
 addr - Enter an address; show it in page/offset format
 addr2 - Enter page and offset format; show as address
 read - Read a doubleword from memory-mapped I/O region
 write - Write a doubleword to memory-mapped I/O region
 cores - Display the status of all cores for this processor
 sel - Change the currently selected core
 symbols - Display all symbols
 dinfo - Display all debugging information
 find - Find a symbol by spelling
 find2 - Find a symbol by value
 where - Ask for an address and attempt to locate that in the source code
 go - Begin or resume BLITZ instruction execution
 g
 step - Single step; execute one machine-level instruction
 s
 stepn - Execute N machine-level instructions
 n
 t - Execute instructions until we encounter a CALL or RETURN
 or EXCEPTION
 watch - Stop execution when ever an address is stored into
 reset - Reset the machine state and re-read the a.out file
 rerun - Do a 'reset', followed by 'go'
 hex - Convert a user-entered hex number into decimal and ascii
 dec - Convert a user-entered decimal number into hex and ascii
 ascii - Convert a user-entered ascii char into hex and decimal
 sim - Display the current simulation constants; create "emulationParms"
 rom - Create, manipulate files "emulationROM" and "emulationSecure"
 serial - Control serial input
 sched - Modify the multicore timeslice schedule
 startall - Change all STOPPED cores to RUNNING
 start - Change selected cores to RUNNING
 stopall - Change all RUNNING cores to STOPPED
 stop - Change selected cores to STOPPED
 <nl> - Print some useful info
===

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	34 147

Chapter	3:	Commands	

i info

This	command	produces	a	display	showing	the	general	state	of	the	machine.	An	
example	is	shown	below.	

This	include:	

	 General	information	about	the	entire	system:	
	 	 •	Main	memory	details	
	 	 •	Memory-mapped	I/O	device	locations	
	 	 •	Number	of	cores	
	 Information	about	the	“current”	core:	
	 	 •	The	TLB	registers	
	 	 •	The	CSR	registers	
	 	 •	The	general	purpose	registers	
	 	 •	The	PC	

E> i
============================
 Private RAM memory: 0x000000000 ... 0x010000000 256 MiBytes
 Shared RAM memory: 0x010000000 ... 0x010010000 64 KiBytes
 Bootstrap ROM memory: 0x400000000 ... 0x400100000 1 MiByte
 Secure Storage device: 0x400100000 ... 0x400104000 16 KiBytes
 Simple serial device addr: 0x400104000 ... 0x400108000 16 KiBytes
 Multi-core array (columns: 1, rows: 1, planes: 1); total number of cores = 1
 Addressable memory per core = 0x0000000010010000 >256 MiBytes
 Total physical memory = 0x0000000010010000 >256 MiBytes
Number of Instructions Executed (so far) = 0
 TLB REGISTER ASID Virt Page Phys Page W X D V C
 ================== ====== =========== =========== === === === === ===
 TLB[0]: 0x0000000000000000 0x0000 0x800000000 0x000000000
 TLB[1]: 0x0000000000000000 0x0000 0x800000000 0x000000000
 TLB[2]: 0x0000000000000000 0x0000 0x800000000 0x000000000
 TLB[3]: 0x0000000000000000 0x0000 0x800000000 0x000000000
 TLB[4]: 0x0000000000000000 0x0000 0x800000000 0x000000000
 TLB[5]: 0x0000000000000000 0x0000 0x800000000 0x000000000
 TLB[6]: 0x0000000000000000 0x0000 0x800000000 0x000000000
 TLB[7]: 0x0000000000000000 0x0000 0x800000000 0x000000000
 TLB[8]: 0x0000000000000000 0x0000 0x800000000 0x000000000
 TLB[9]: 0x0000000000000000 0x0000 0x800000000 0x000000000
 TLB[10]: 0x0000000000000000 0x0000 0x800000000 0x000000000
 TLB[11]: 0x0000000000000000 0x0000 0x800000000 0x000000000
 TLB[12]: 0x0000000000000000 0x0000 0x800000000 0x000000000
 TLB[13]: 0x0000000000000000 0x0000 0x800000000 0x000000000
 TLB[14]: 0x0000000000000000 0x0000 0x800000000 0x000000000
 TLB[15]: 0x0000000000000000 0x0000 0x800000000 0x000000000

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	35 147

Chapter	3:	Commands	

===== CONTROL AND STATUS REGISTERS =====
 0 csr_version = 0x0123456700000001 (CyclesPerMilliSec: 0x01234567,
 Version: 0x0001)
 1 csr_instr = 0x0000000000000000
 2 csr_cycle = 0x0000000000000000
 3 csr_timer = 0x0000000000000000
 4 csr_status = 0x0000000000000001
 (ASID: 0x0000, FlRound: 00 Nearest,
 NV/OF/UF/DZ/NX: 00000, SingleStep: 0,
 InterruptsEnabled: 0, KernelMode: 1)
 5 csr_stat2 = 0x0000000000000000
 (ASID: 0x0000, FlRound: 00 Nearest,
 NV/OF/UF/DZ/NX: 00000, SingleStep: 0,
 InterruptsEnabled: 0, KernelMode: 0)
 6 csr_prevpc = 0x0000000000000000
 7 csr_cause = 0x0000000000000000
 8 csr_bad = 0x0000000000000000
 9 csr_addr = 0x0000000000000000
 10 csr_ptr = 0x0000000000000000
 11 csr_temp1 = 0x0000000000000000
 12 csr_temp2 = 0x0000000000000000
 13 csr_temp3 = 0x0000000000000000
 14 csr_extra1 = 0x0000000000000000
 15 csr_extra2 = 0x0000000000000000
===== REGISTERS =====
 r0 zero = 0x0000000000000000
 r1 = 0x636f6c64626f6f74 (decimal: 7165064710573748084)
 r2 = 0x0000000010000000 (decimal: 268435456)
 r3 = 0x0000000010000000 (decimal: 268435456)
 r4 = 0x0000000000010000 (decimal: 65536)
 r5 = 0x0000000005f77110 (decimal: 100102416)
 r6 = 0x0000000000000000
 r7 = 0x0000000000000000
 r8 t = 0x0000000000000000
 r9 s0 = 0x0000000000000000
 r10 s1 = 0x0000000000000000
 r11 s2 = 0x0000000000000000
 r12 tp = 0x0000000000000000
 r13 gp = 0x0000000000000000
 r14 lr = 0x0000000000000000
 r15 sp = 0x0000000000000000
===== PROGRAM COUNTER =====
 PC = 0x00001885C Address = 0x1885C [PHYSICAL]
 Within Function "_entry" [runtime.s]
 _entry:
 00001885C: 15800001 upper16 r1,r0,-32768 # hex = 0x8000
=============================
E>

Use	the	cores	command	to	switch	to	a	different	core.	

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	36 147

Chapter	3:	Commands	

r regs

This	command	produces	a	display	showing	the	registers	of	the	currently	selected	
core.	For	example:	

E> r
===
 csr_instr = 0x0000000000000000
 csr_cycle = 0x0000000000000000
 csr_timer = 0x0000000000000000
 csr_status = 0x0000000000000001
 (ASID: 0x0000, FlRound: 00 Nearest,
 NV/OF/UF/DZ/NX: 00000, SingleStep: 0,
 InterruptsEnabled: 0, KernelMode: 1)
 csr_stat2 = 0x0000000000000000
 csr_prevpc = 0x0000000000000000
 csr_cause = 0x0000000000000000
 csr_bad = 0x0000000000000000
 csr_addr = 0x0000000000000000
 csr_ptr = 0x0000000000000000
======================== REGISTERS ========================
 r1 = 0x636f6c64626f6f74 (decimal: 7165064710573748084)
 r2 = 0x0000000010000000 (decimal: 268435456)
 r3 = 0x0000000010000000 (decimal: 268435456)
 r4 = 0x0000000000010000 (decimal: 65536)
 r5 = 0x0000000005f77110 (decimal: 100102416)
 r6 = 0x0000000000000000
 r7 = 0x0000000000000000
 r8 t = 0x0000000000000000
 r9 s0 = 0x0000000000000000
 r10 s1 = 0x0000000000000000
 r11 s2 = 0x0000000000000000
 r12 tp = 0x0000000000000000
 r13 gp = 0x0000000000000000
 r14 lr = 0x0000000000000000
 r15 sp = 0x0000000000000000
 Instruction time (all cores) = 0
=============== NEXT INSTRUCTION TO EXECUTE ===============
 PC = 0x00001885C Address = 0x1885C [PHYSICAL]
 Within Function "_entry" [runtime.s]
 _entry:
 00001885C: 15800001 upper16 r1,r0,-32768 # hex = 0x8000
E>

This	displays	a	subset	of	what	the	info	command	displays	and	is	more	convenient.	

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	37 147

Chapter	3:	Commands	

r1, r2, … r15

The	registers	can	be	modiWied	individually	with	this	command.	

This	command	prints	the	previous	value	and	asks	for	a	new	value.	

For	example:	

E> r1
 r1 = 0x636f6c64626f6f74 (decimal: 7165064710573748084)
Enter the new value (in hex): 123456
 r1 = 0x0000000000123456 (decimal: 1193046)
E>

There	is	no	ability	to	cancel,	but	with	copy-paste	you	can	just	enter	the	previous	
value.	

This	instruction	applies	only	to	the	currently	selected	core.	

tlb

This	command	allows	you	to	change	a	particular	TLB	register	to	a	given	value.	

Each	TLB	register	is	made	of	several	bit	Wields.	This	command	Wirst	displays	the	
current	value	of	the	register	(a	64	bit	value),	together	with	a	breakout	of	the	bit	
Wields.	

Consult	the	Instruction	Set	Architecture	manual	for	details	of	the	Wields.	

This	command	Wirst	prompts	for	the	number	of	the	register	to	be	modiWied.	In	this	
example,	the	cores	are	conWigured	to	have	16	TLB	registers,	each.	

After	displaying	the	current	value,	it	prompts	for	the	Wield	individually.	Finally,	it	
packs	the	input	Wields	into	a	64	bit	value,	updates	the	register,	and	displays	the	new	
value.	

For	example:	

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	38 147

Chapter	3:	Commands	

E> tlb
Enter TLB number (0..15): 7
 TLB REGISTER ASID Virt Page Phys Page W X D V C
 ================== ====== =========== =========== === === === === ===
 TLB[7]: 0x0000000000000000 0x0000 0x800000000 0x000000000
Enter the new value...
Enter the 16 bit ASID: 1234
Enter the 21 bit Page Number: aaa
Enter the 21 bit Physical Page Number: bbb
Want to set WRITABLE bit to 1? y
Want to set EXECUTBLE bit to 1? n
Want to set DIRTY bit to 1? y
Want to set VALID bit to 1? n
Want to set COPY-ON-WRITE bit to 1? y
 TLB REGISTER ASID Virt Page Phys Page W X D V C
 ================== ====== =========== =========== === === === === ===
 TLB[7]: 0x123400555002EED5 0x1234 0x802AA8000 0x002EEC000 W D C
E>

The	“Virt	Page”	and	“Phys	Page”	columns	give	the	starting	address	of	the	page.	
Virtual	addresses	will	always	have	the	upper	bit	set	and	the	Physical	addresses	will	
never	have	the	upper	bits	set.	Both	will	always	have	the	least	signiWicant	14	bits	set	
to	0.	

This	instruction	applies	only	to	the	currently	selected	core.	

csr

This	command	allows	the	user	to	modify	any	CSR	register.	The	old	value	is	printed	
and	the	user	is	prompted	to	enter	a	new	value.	

For	example:	

E> csr
Enter CSR number (0..15): 1
 CSR [1] = 0x000000000000016C
Enter the new value (in hex): 1234
 CSR [1] = 0x0000000000001234
E>

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	39 147

Chapter	3:	Commands	

CSR	register	1	is	CSR_INSTR,	which	is	read-only.	As	this	example	shows,	the	user	can	
modify	registers	that	the	ISA	requires	to	be	read-only,	although	it	is	unclear	why	that	
would	be	a	good	thing	to	do.	

This	instruction	applies	only	to	the	currently	selected	core.	

pc

This	command	displays	the	current	value	of	the	program	counter	(PC)	and	prompts	
the	user	to	enter	a	new	value.	

The	PC	is	updated	and	the	new	value	is	displayed.	

As	the	next	example	shows,	the	debugger	also	prints	out	useful	information	about	
where	in	the	program	this	location	is	and	disassembles	the	machine	instruction	at	
that	address.	

E> pc
 Old PC = 0x00000CD70
Please enter the new value for the program counter (PC) in hex: 00000CD3C
 New PC = 0x00000CD3C
 Within ASSIGN (line 42)
 _Label_41:
 00000CD3C: 1000103C b.eq r3,r0,0x1C # if (r3 == r0) goto _Label_39
E>

The	additional	information	may	not	be	available	for	some	addresses.	For	example:	

E> pc
 Old PC = 0x00000CD70
Please enter the new value for the program counter (PC) in hex: 120000
 New PC = 0x000120000
 000120000: 00000000
E>

At	the	prompt	for	a	new	PC,	the	user	can	hit	NEWLINE	/	ENTER	/	RETURN	to	cancel	
the	command.	

This	instruction	applies	only	to	the	currently	selected	core.	

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	40 147

Chapter	3:	Commands	

setmem

This	command	is	used	to	modify	memory.	

The	command	Wirst	prompts	for	an	address.	This	address	must	be	doubleword	
aligned.	

Then	it	prompts	for	a	doubleword	value,	which	is	written	to	memory.	For	example:	

E> setmem
Enter the (physical) memory address in hex of
 the doubleword to be modified: 120000
***** This address is in private RAM or shared RAM *****
The old value is:
0x000120000: 0x0000000000000000
Enter the new value (8 bytes in hex): 1234567890abcdef
0x000120000: 0x1234567890ABCDEF
E>

This	command	can	be	used	to	modify	either	shared	main	memory	or	the	private	
main	memory	of	the	currently	selected	core.	

This	command	can	be	used	to	write	to	the	“Boot	ROM”	area.	The	ROM	contents	are	
kept	in	a	Wile	called	“emulationROM”.	For	example:	

E> setmem
Enter the (physical) memory address in hex of
 the doubleword to be modified: 400000000
***** This address is in Boot ROM, but you can proceed to store to it *****
The old value is:
0x400000000: 0x17000E4104000E02
Enter the new value (8 bytes in hex): 1111aaaa2222bbbb
0x400000000: 0x1111AAAA2222BBBB
E>

If	it	has	been	updated,	the	emulator	will	alert	the	user	and	ask	about	updating	it	at	
the	time	the	emulator	quits.	

E> q
The ROM has been modified. Shall I write it out
 to the host file ("emulationROM")? n
Shell%

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	41 147

Chapter	3:	Commands	

This	command	can	also	be	used	to	write	to	the	“Secure	Storage	Device”	area,	which	
is	discussed	in	the	ISA	manual.	The	contents	are	kept	in	a	Wile	called	
“emulationSecure”.	For	example:	

E> setmem
Enter the (physical) memory address in hex of
 the doubleword to be modified: 0x400100000
***** This address is in Secure Storage *****
The old value is:
0x400100000: 0x8888777766665555
Enter the new value (8 bytes in hex): 1111222233334444
0x400100000: 0x1111222233334444
E>

If	it	has	been	updated,	the	emulator	will	alert	the	user	and	ask	about	updating	it	at	
the	time	the	emulator	quits.	For	example:	

E> q
The SecureStorage has been modified. Shall I write it out
 to the host file ("emulationSecure")? n
Shell%

ld

This	command	is	used	to	read	1,	2,	4,	or	8	bytes	from	the	memory	system	and	
display	it.	The	command	prompts	for	the	address	and	the	number	of	bytes	to	read.	

See	also	the	“st”	command,	which	writes	instead	of	reads.	

Address	translation	is	performed	(using	the	TLB	registers	as	described	in	the	Blitz	
Instruction	Set	Architecture).	The	command	reminds	the	user	of	details	such	as	the	
current	ASID	(Address	Space	IdentiWier)	and	Kernel	Mode	bits,	which	come	from	the	
CSR_STATUS	register.	

E> ld
 NOTE: The core is in kernel mode.
 NOTE: Interrupts are ENABLED.
 NOTE: The current ASID is 0x0000.
Enter any address in hex: cd74
Enter the size of the access (1,2,4, or 8): 4
Your Input Address = 0xCD74 [PHYSICAL]
Translated Address = 0xCD74 [PHYSICAL]
0x00000cd74: 0x00280000 (decimal: 2621440)

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	42 147

Chapter	3:	Commands	

E>

In	certain	cases,	the	address	translation	will	fail	and	would	cause	an	exception	if	
attempted	by	an	executing	program.	For	example,	an	attempt	to	access	physical	
memory	when	running	in	User	Mode	will	cause	a	TLB	PRIVILEGE	EXCEPTION.	

This	command	will	deal	with	exceptional	addresses	by	indicating	the	problem.	For	
example:	

E> ld
 NOTE: The core is in user mode.
 NOTE: Interrupts are ENABLED.
 NOTE: The current ASID is 0x0000.
Enter any address in hex: cd74
Enter the size of the access (1,2,4, or 8): 4
Your Input Address = 0xCD74 [PHYSICAL]
 ----- This will cause a TLB_PRIVILEGE EXCEPTION
E>

As	another	example,	consider	an	attempt	to	read	a	doubleword	from	an	address	that	
is	not	doubleword	aligned:	

E> ld
 NOTE: The core is in kernel mode.
 NOTE: Interrupts are ENABLED.
 NOTE: The current ASID is 0x0000.
Enter any address in hex: cd74
Enter the size of the access (1,2,4, or 8): 8
Your Input Address = 0xCD74 [PHYSICAL]
 ----- This will cause an UNALIGNED_LOAD_STORE EXCEPTION
E>

The	ld	command	can	be	used	to	read	from	a	memory-mapped	I/O	device.	In	the	next	
example,	we	read	from	the	location	(0x4_0010_4000)	used	by	the	“Simple	Serial	
Device”	to	get	a	single	character	of	input	from	the	user.	

When	the	LOAD	operation	is	performed,	the	emulator	immediately	hangs,	waiting	
for	the	user	to	enter	something.	In	this	example,	the	user	types	the	letter	“q”,	
followed	by	NEWLINE	/	RETURN	/	ENTER. 	5

E> ld
 NOTE: The core is in kernel mode.

	The	NEWLINE	is	required	because	we	are	running	in	“cooked”	mode.	Had	the	emulator	been	in	5

“raw”	mode,	pressing	the	letter	alone	would	be	sufWicient.	However,	in	“raw”	mode,	echoing	of	
characters	is	not	done,	so	we	would	not	see	the	“q”.

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	43 147

Chapter	3:	Commands	

 NOTE: Interrupts are ENABLED.
 NOTE: The current ASID is 0x0000.
Enter any address in hex: 400104000
Enter the size of the access (1,2,4, or 8): 8
Your Input Address = 0x400104000 [MEMORY-MAPPED I/O]
Translated Address = 0x400104000 [MEMORY-MAPPED I/O]
q
0x400104000: 0x0000000000000071 (decimal: 113)
E>

We	see	that	the	command	reads	the	value	of	0x71	from	the	device.	We	can	use	the	
“hex”	command	to	see	that	this	value	is	113	in	decimal	and	“q”	in	ASCII,	as	expected.	

E> hex
Enter a value in hex: 71
 hex: 0x0000000000000071
 decimal: 113
 ascii: ".......q"
 real: 5.582941798006085949195227359e-322
E>

st

This	command	is	used	to	write	1,	2,	4,	or	8	bytes	to	the	memory	system.	The	
command	prompts	for	the	address,	the	number	of	bytes	to	write,	and	the	value	to	be	
written.	

See	also	the	“ld”	command,	which	reads	instead	of	writes.	

Address	translation	is	performed	(using	the	TLB	registers	as	described	in	the	Blitz	
Instruction	Set	Architecture).	

E> st
 NOTE: The core is in kernel mode.
 NOTE: Interrupts are ENABLED.
 NOTE: The current ASID is 0x0000.
Enter any address in hex: cd74
Enter the size of the access (1,2,4, or 8): 2
 Input Address = 0xCD74 [PHYSICAL]
Translated Address = 0xCD74 [PHYSICAL]
BEFORE: 0x00000cd74: 0x0028 (decimal: 40)
Enter new value: 1234
AFTER: 0x00000cd74: 0x1234 (decimal: 4660)
E>

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	44 147

Chapter	3:	Commands	

Like	the	“ld”	command,	this	command	will	perform	address	translation	and,	if	an	
exception	would	occur,	will	abort	the	operation	and	report	the	exception.	

This	command	can	be	used	to	write	to	memory-mapped	I/O	devices.	In	the	next	
example,	we	write	to	the	location	used	by	the	“Simple	Serial	Device”	to	write	a	
single	character	to	the	output.	The	command	conWirms	that	this	is	the	user’s	intent,	
then	asks	for	the	value	to	be	written.	

E> st
 NOTE: The core is in kernel mode.
 NOTE: Interrupts are ENABLED.
 NOTE: The current ASID is 0x0000.
Enter any address in hex: 400104000
Enter the size of the access (1,2,4, or 8): 8
 Input Address = 0x400104000 [MEMORY-MAPPED I/O]
Translated Address = 0x400104000 [MEMORY-MAPPED I/O]
***** This command appears to access a memory-mapped I/O device.
Do you want to proceed? y
Enter new value: 6b
kE>

In	this	example,	we	wrote	the	value	0x6b	(decimal	107)	which	is	the	ASCII	code	for	
the	letter	“k”.	On	the	highlighted	line,	you	can	see	that	the	character	is	inserted	into	
the	output	stream	when	the	operation	is	performed.	

Note	that	when	the	address	to	be	written	is	within	a	memory-mapped	device’s	
region,	this	command	will	not	print	the	before	or	after	values.	Why?	Because	it	
would	require	LOADs	from	the	device.	For	memory-mapped	I/O	devices,	a	simple	
LOAD	may	elicit	some	complex	operation.	

dm dumpmem

This	command	asks	for	a	starting	address.		It	then	displays	30	doublewords	of	
physical	memory	starting	at	that	address.	

The	columns	of	the	output	are:	

address	 offset	 value	in	hex	 value	in	decimal	 ASCII	interpretation	

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	45 147

Chapter	3:	Commands	

For	example:	

E> dm
Enter the starting address in hex: 40
000000040: 00 0x0000000100000001 4294967297
000000048: 08 0x2000000000000000 2305843009213693952
000000050: 10 0x0000000100000001 4294967297
000000058: 18 0x3000000000000000 3458764513820540928 0.......
000000060: 20 0x0000000100000001 4294967297
000000068: 28 0x3100000000000000 3530822107858468864 1.......
000000070: 30 0x0000000600000006 25769803782
000000078: 38 0x46414c53450a0000 5062411376665427968 FALSE...
000000080: 40 0x0000000500000005 21474836485
000000088: 48 0x545255450a000000 6076012602285096960 TRUE....
000000090: 50 0x0000000500000005 21474836485
000000098: 58 0x46414c5345000000 5062411376664772608 FALSE...
0000000a0: 60 0x0000000400000004 17179869188
0000000a8: 68 0x5452554500000000 6076012602117324800 TRUE....
0000000b0: 70 0x0000000200000002 8589934594
0000000b8: 78 0x3078000000000000 3492541511025819648 0x......
0000000c0: 80 0x0000001400000014 85899345940
0000000c8: 88 0x2d39323233333732 3258690996568012594 -9223372
0000000d0: 90 0x3033363835343737 3473179352671467319 03685477
0000000d8: 98 0x3538303800000000 3834868099782279168 5808....
0000000e0: a0 0x0000000100000001 4294967297
0000000e8: a8 0x0a00000000000000 720575940379279360
0000000f0: b0 0x0000000b0000000b 47244640267
0000000f8: b8 0x2020202020206465 2314885530818471013 de
000000100: c0 0x633a200000000000 7150062542776172544 c:
000000108: c8 0x0000000200000002 8589934594
000000110: d0 0x2020000000000000 2314850208468434944
000000118: d8 0x0000001a0000001a 111669149722
000000120: e0 0x4144445245535320 4702959031022736160 ADDRESS
000000128: e8 0x2020202020202020 2314885530818453536
E>

This	command	can	print	

	 •	Private	RAM	of	the	currently	selected	core	
	 •	Shared	RAM	
	 •	Bootstrap	ROM	
	 •	Secure	Storage	

The	addresses	apply	to	the	currently	selected	core	and	address	translation	is	
performed.	If	an	exception	would	occur,	this	command	will	abort.	

In	some	cases,	the	debugger	can	identify	items	of	memory	that	appear	to	be	objects.	
When	possible,	it	identiWies	the	object’s	class,	as	in	this	example:	

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	46 147

Chapter	3:	Commands	

E> dm
Enter the starting address in hex: 0x0000000000018f50
----- This appears to be the beginning of a Person object at 0x000018f50 -----
000018f50: 00 0x000000000000ce00 52736
000018f58: 08 0x000000000000006f 111 o
000018f60: 10 0x00000000000000de 222
000018f68: 18 0x0000000000000000 0
000018f70: 20 0x0000000000000000 0
...

This	happens	when	the	Wirst	work	happens	to	be	the	address	of	a	Dispatch	Table. 	6

In	some	cases,	this	command	can	identify	a	pointer	to	an	object	and	it	adds	the	class	
name	as	demonstrated	in	the	Wirst	highlighting	below.	

In	other	cases,	the	debugger	can	identify	a	likely	pointer,	in	which	case	it	prints	out	
the	Wirst	3	doublewords	pointed	to.	

E> dm
Enter the starting address in hex: 00fffffa8
00fffffa8: 00 0x0000000000000000 0
00fffffb0: 08 0x0000000000018f50 102224 P
 ---> to a Person object at 0x000018f50
00fffffb8: 10 0x000000000000cb38 52024 8
 ---> 220011f817002c47 0300001422000740 0300001701000877 ...
00fffffc0: 18 0x0000000000000018 24
 ---> 5f00000000000000 0000000500000005 2020203078000000 ...
00fffffc8: 20 0x0000000000000004 4
00fffffd0: 28 0x0000000000000005 5
...

Actually,	the	emulator	prints	everything	on	one	line,	which	is	hard	to	read	in	this	
document,	but	looks	better	in	a	wider	window:	

E> dm
Enter the starting address in hex: 00fffffa8
00fffffa8: 00 0x0000000000000000 0
00fffffb0: 08 0x0000000000018f50 102224 P ---> to a Person object at 0x000018f50
00fffffb8: 10 0x000000000000cb38 52024 8 ---> 220011f817002c47 0300001422000740 0300001701000877 ...
00fffffc0: 18 0x0000000000000018 24 ---> 5f00000000000000 0000000500000005 2020203078000000 ...
00fffffc8: 20 0x0000000000000004 4
00fffffd0: 28 0x0000000000000005 5
...

	Of	course,	this	could	be	coincidence.	The	debugger	reads	several	words	of	memory,	looking	at	the	6

dispatch	table	and	the	class	descriptor.	It	looks	for	the	“magic	number”	that	each	class	descriptor	
begins	with	and,	it	is	matches,	then	it	retrieves	the	class	name.	

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	47 147

Chapter	3:	Commands	

In	some	cases,	the	debugger	can	identify	a	pointer	to	a	string,	in	which	case	it	prints	
out	the	string. 	For	example:	7

E> dm
Enter the starting address in hex: FFFFFE0
00fffffe0: 00 0x00000000000028b0 10416 (.
 ---> "Now is the time"
00fffffe8: 08 0x000000000000c8c4 51396
...

dm2 dumpmem2

This	command	can	be	used	to	display	the	contents	of	memory.	

This	command	prompts	for	the	starting	address	and	the	number	of	bytes.	It	prints	
the	bytes.	Each	row	prints	16	bytes	in	hex,	followed	by	an	ASCII	rendition	of	the	16	
bytes,	using	a	period	“.”	for	each	byte	that	is	not	a	printable	ASCII	character.	

For	example:	

E> dm2
Enter the starting (physical) memory address in hex: 4000
Enter the number of bytes in hex (or 0 to abort): 100
PRIVATE MEMORY:
000004000: 0100 0822 0300 0027 1E00 18F1 0300 0072 ..."...'.......r
000004010: 1E00 48F3 1914 A60E 1E00 50F1 0100 60FF ..H.......P...`.
000004020: 1EFF F8FE 1A00 00E0 22FF FEF8 01FF C8FF ".......
000004030: 2200 31F8 2200 42F0 2200 00F0 2200 00F8 ".1.".B."..."...
000004040: 2200 10F0 2200 10F8 2200 20F0 2200 20F8 "..."...". .". .
000004050: 1E00 38F7 1D00 0477 0300 0071 1E00 40F7 ..8....w...q..@.
000004060: 1D00 0477 0300 0072 1900 2D0E 2200 21F8 ...w...r..-.".!.
000004070: 0400 0007 2200 17F8 0300 0017 01FF FF77 "..........w
000004080: 2200 17F0 1E00 18F7 2200 27F0 1E00 20F7 ".......".'... .
000004090: 1E00 10F6 1200 6760 1E00 20F1 1E00 38F2 g`.. ...8.
0000040a0: 1E00 0028 0011 0088 0044 0810 0100 0811 ...(.....D......
0000040b0: 0001 0121 0300 0016 1E00 20F1 1E00 40F2 ...!...... ...@.
0000040c0: 1E00 0028 0011 0088 0044 0810 0100 0811 ...(.....D......
0000040d0: 0001 0121 0300 0017 1B00 0077 000F 0077 ...!.......w...w
0000040e0: 1F00 0760 1E00 20F7 0100 0177 2200 27F0 ...`..w".'.
0000040f0: 19FF F9C0 0100 38FF 1EFF F8FE 1A00 00E0 8.........
E>

	Recall	that	the	type	String	is	a	pointer	to	an	array	of	bytes.	The	debugger	looks	for	a	pointer	to	7

something	that	looks	like	it	could	be	an	array	of	reasonable	size	and	that,	if	so,	would	only	contain	
printable	ASCII	codes.

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	48 147

Chapter	3:	Commands	

This	command	can	print	

	 •	Private	RAM	of	the	currently	selected	core	
	 •	Shared	RAM	
	 •	Bootstrap	ROM	
	 •	Secure	Storage	

Address	translation	does	not	occur.		

dis

This	command	displays	the	contents	of	memory,	interpreting	the	bytes	as	machine	
instructions.	

This	command	prompts	for	a	starting	address	and	then	disassembles	about	a	page	
worth	(i.e.,	30)	of	instructions	at	that	address.	

For	each	32	bit	word,	it	prints	

	 •	The	address	
	 •	The	word	in	hex	
	 •	The	machine	instruction	(opcode	and	arguments)	
	 •	Additional	information	as	a	comment	

For	example:	

E> dis
Enter the beginning address (in hex): 4000
 000004000: 01000822 addi r2,r2,8
 000004004: 03000027 mov r7,r2 # synthetic for ORI _,_,0
 000004008: 1E0018F1 load.d r1,24(sp) # offset = 0x18
 00000400C: 03000072 mov r2,r7 # synthetic for ORI _,_,0
 000004010: 1E0048F3 load.d r3,72(sp) # offset = 0x48
 000004014: 1914A60E call memoryCopy # PC + 0x14A60
 RETURN (line 798)
 _Label_489:
 000004018: 1E0050F1 load.d r1,80(sp) # offset = 0x50
 00000401C: 010060FF addi sp,sp,96 # hex = 0x60
 000004020: 1EFFF8FE load.d lr,-8(sp) # offset = 0xFFF8

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	49 147

Chapter	3:	Commands	

 000004024: 1A0000E0 ret # synthetic for JALR r0,0(lr)
 Function "overwriteString" [System.c]
 _P_System_overwriteString:
 000004028: 22FFFEF8 store.d -8(sp),lr # offset = 0xFFF8
 00000402C: 01FFC8FF addi sp,sp,-56 # hex = 0xFFC8
 000004030: 220031F8 store.d 56(sp),r1 # offset = 0x38
 000004034: 220042F0 store.d 64(sp),r2 # offset = 0x40
 000004038: 220000F0 store.d 0(sp),r0
 00000403C: 220000F8 store.d 8(sp),r0
 000004040: 220010F0 store.d 16(sp),r0 # offset = 0x10
 000004044: 220010F8 store.d 24(sp),r0 # offset = 0x18
 000004048: 220020F0 store.d 32(sp),r0 # offset = 0x20
 00000404C: 220020F8 store.d 40(sp),r0 # offset = 0x28
 CALL (line 821)
 000004050: 1E0038F7 load.d r7,56(sp) # offset = 0x38
 000004054: 1D000477 load.w r7,4(r7)
 000004058: 03000071 mov r1,r7 # synthetic for ORI _,_,0
 00000405C: 1E0040F7 load.d r7,64(sp) # offset = 0x40
 000004060: 1D000477 load.w r7,4(r7)
 000004064: 03000072 mov r2,r7 # synthetic for ORI _,_,0
 000004068: 19002D0E call _P_System_min # PC + 0x2D0
 00000406C: 220021F8 store.d 40(sp),r1 # offset = 0x28
 FOR_INIT (line 822)
 000004070: 04000007 movi r7,0 # synthetic for XORI r7,r0,0x0
 000004074: 220017F8 store.d 24(sp),r7 # offset = 0x18
E>

As	this	example	shows,	the	debugger	will	add	labels,	source	code	line	numbers,	and	
statement	types	when	it	can.	

In	some	cases,	such	as	for	CALL	and	BRANCH	instructions,	the	debugger	will	display	
the	branch	target	symbolically.	This	is	occurs	in	the	highlighted	line	above.	

If	the	section	of	memory	being	displayed	does	not	contain	instructions,	then	this	
command	just	prints	out	a	series	of	32	bit	words.	Occasionally,	the	bits	may	happens	
to	constitute	a	valid	machine	instructions	and	you’ll	see	output	like	this:	

E> dis
Enter the beginning address (in hex): 0000000F0
 _StringConst_123:
 0000000F0: 0000000B # decimal = 11, ascii = "...."
 0000000F4: 0000000B # decimal = 11, ascii = "...."
 0000000F8: 20202020 store.h 8224(r2),r0 # offset = 0x2020
 0000000FC: 20206465 store.h 8293(r6),r4 # offset = 0x2065
 000000100: 633A2000 # decimal = 1664753664, ascii = "c: ."
 000000104: 00000000
 _StringConst_122:
 000000108: 00000002 # decimal = 2, ascii = "...."
 00000010C: 00000002 # decimal = 2, ascii = "...."
 000000110: 20200000 store.h 8192(r0),r0 # offset = 0x2000
...

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	50 147

Chapter	3:	Commands	

This	command	will	recognize	some	machine	instruction	patterns	and	print	them,	
not	as	the	full	machine	instruction,	but	as	a	synthetic	instruction	that	would	have	
generated	them.	

For	example:	

These	instructions…	 Will	be	printed	as…	
ori RegD,r0,immed movi RegD,immed
jalr lr,0(Reg1) callr Reg1
jalr r0,0(lr) ret
jal r0,xxxx jump xxxx
jal lr,xxxx call xxxx
ori RegD,Reg1,0 mov RegD,Reg1
xori RegD,r0,immed movi RegD,immed
sub RegD,r0,Reg2 neg RegD,Reg2
xori RegD,Reg1,-1 bitnot RegD,Reg1
testeq RegD,r0,Reg2 lognot Regd,Reg2
addi r0,r0,0 nop

d

This	command	is	just	like	the	“dis”	command	excepts	that	it	does	not	ask	for	a	
starting	address.	Instead,	this	command	just	starts	where	the	last	“dis”	or	“d”	
command	left	off.	

This	command	makes	it	easy	to	disassemble	a	lengthy	block	of	code	by	just	typing	
the	“d”	command	repeatedly.	

stack

This	command	displays	the	calling	stack,	which	shows	which	functions	are	in	
execution.	In	the	following	example,	the	program	has	been	stopped	with	a	“debug”	
statement.	

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	51 147

Chapter	3:	Commands	

E> stack
 Function/Method Execution at... File
 ========================= ==================== =======================
 foo2 ASSIGN line 40 MyProgram.c
 foo1 CALL line 31 MyProgram.c
 main CALL line 25 MyProgram.c
 _kplEntry MyProgram.c
 _entry runtime.s

-------------------- foo2 --------------------
Execution is stopped at ASSIGN on line 40 in function "foo2" [MyProgram.c]
 Code Address: 00000cc4c
 Frame: 00fffff80 - 00fffffc0, size = 0x40 (decimal 64)
 arg offset 64 0x0040... 00fffffc0: 0000000000bc6105 myArg: int = 12345605
 offset 40 0x0028... 00fffffa8: 0000000000000457 myVarA: int = 1111
 offset 48 0x0030... 00fffffb0: fffffffffffc747d myVarB: int = -232323

The	command	Wirst	shows	the	entire	stack.	The	Wirst	highlighting	shows	the	functions	
of	interest	and	we	can	immediately	see	that	execution	is	stoped	in	function	foo2.	

The	second	highlighting	shows	some	information	about	the	currently	executing	
function:	the	address	in	memory	of	the	machine	instruction	where	execution	is	
stopped	and	the	values	of	the	arguments	and	local	variables	to	this	function.	

The	command	then	prompts	for	a	number,	which	is	the	number	of	frames	the	user	
would	like	to	have	printed	in	detail.	

I can show you the frames of the callers. How many more frames would you like to
see (hit ENTER if none)?

Sometimes,	the	user	will	want	nothing	more,	and	will	hit	NEWLINE/ENTER/
RETURN:	

But	often	the	user	may	want	to	see	more	of	the	stack.	In	this	case,	the	user	might	
also	be	interested	in	functions	foo1	and	main,	so	the	user	would	ask	for	2	more	
frames.	

I can show you the frames of the callers. How many more frames would you like to
see (hit ENTER if none)? 2

-------------------- foo1 --------------------
Execution is stopped at CALL on line 31 in function "foo1" [MyProgram.c]
 Code Address: 00000cb9c
 Frame: 00fffffc0 - 00fffffd0, size = 0x10 (decimal 16)
 arg offset 16 0x0010... 00fffffd0: 0000000000bc6105 x: int = 12345605

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	52 147

Chapter	3:	Commands	

-------------------- main --------------------
Execution is stopped at CALL on line 25 in function "main" [MyProgram.c]
 Code Address: 00000cb64
 Frame: 00fffffd0 - 00ffffff0, size = 0x20 (decimal 32)
 offset 8 0x0008... 00fffffd8: 0000000000bc6100 i: int = 12345600
 offset 16 0x0010... 00fffffe0: 0000000000000005 j: int = 5
I can show you the frames of the callers. How many more frames would you like to
see (hit ENTER if none)?
E>

From	this,	we	can	see	where	the	functions	are	called	and	the	values	of	the	
parameters	and	local	variables.	

In	some	programs,	the	stack	can	be	deeper.	Rather	than	counting	how	many	frames	
to	display,	the	user	can	type	a	ridiculously	big	number	like	99	to	just	display	the	
whole	stack.	This	will	include	the	frames	for	functions	“_kplEntry”	and	“_entry”,	
which	are	called	as	part	of	the	start-up	of	any	KPL	program,	but	these	can	be	
ignored.	

This	command	works	roughly	as	follows:	

The	address	of	the	next	instruction	to	execute	is	in	PC,	the	program	counter	register.	
From	this,	the	debugging	information	which	can	be	obtained	from	the	executable	
Wile,	can	be	used	to	determine	which	function	this	address	is	within.	The	debugging	
information	will	also	contain	information	about	the	stack	frame.	The	debugger	then	
looks	at	the	stack	frame	to	Wind	the	return	address	for	this	function.	Then	the	
debugger	determines	which	function	this	new	address	is	within.	Repeating	the	
process,	the	debugger	can	then	dissect	the	each	frame	on	the	stack.	

This	system	works	well,	except	in	the	case	of	a	leaf	function.	A	leaf	function	does	not	
call	any	other	functions	and,	as	such,	does	not	need	to	save	the	Link	Register	(lr)	on	
the	stack.	This	optimization	can	save	a	few	instructions,	but	can	also	confuse	this	
command.	When	it	detects	a	leaf	function,	the	stack	command	can	use	the	lr	
register.	The	command	will	prompt	before	proceeding.	

The	other	case	when	this	system	fails	is	when	the	execution	is	not	within	a	known	
function.	This	can	occur	for	two	reasons.	

First,	the	program	has	taken	a	bad	branch	and	is	not	really	executing	any	legal	code.	

To	deal	with	this,	the	user	can	use	the	“r”	(“regs”)	command	to	get	the	current	
instruction	time.	Then,	the	user	can	restart	the	program	and	use	the	“stepn”	

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	53 147

Chapter	3:	Commands	

command	to	get	to	a	point	in	time	shortly	before	this.	Now	execution	is	stopped	
slightly	before	the	bad	jump	is	to	be	taken.	The	“stack”	command	should	work	
properly.	

Second,	the	program	may	be	executing	legitimate	code,	but	the	debugging	
information	is	missing.	The	KPL	compiler	is	diligent	about	including	debugging	
information	for	all	functions	and	methods.	This	debugging	information	is	
transmitted	in	the	“.s”	assembly	Wile,	using	the	following	assembler	directives:	

	 .function	
	 .endfunction	
	 .stmt	
	 .local	

However,	there	may	be	functions	coded	directly	in	assembler	for	which	these	
directives	have	not	been	added.	More	likely	the	problem	is	that	the	information	in	
the	directives	is	incorrect.	In	particular,	a	mistake	in	the	“framesize=…”	parameter	
is	easy	to	make	and	will	always	confuse	the	debugger.	

stack2

This	command	is	essentially	the	same	as	the	“stack”	command,	except	that	it	
prompts	for	the	code	address	and	the	stack	top	pointer.	

This	command	is	might	be	useful	in	a	multi-threaded	application.	

sm stackmem

This	command	prints	the	top	few	bytes	of	the	stack,	as	a	series	of	32	bit	words.	For	
example:	

E> sm
 ADDRESS OFFSET
 00ffffed0 0000: 00000000 <--- TOP
 00ffffed4 0004: 0000cc38

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	54 147

Chapter	3:	Commands	

 00ffffed8 0008: 00000000
 00ffffedc 000c: 00006a0c
 00ffffee0 0010: 00000000
 00ffffee4 0014: 00000228
 00ffffee8 0018: 00000000
 00ffffeec 001c: 000064e4
 00ffffef0 0020: 00000000
 00ffffef4 0024: 0000cc38
 00ffffef8 0028: 00000000
 00ffffefc 002c: 00050767
 00fffff00 0030: 00000000
 00fffff04 0034: 00000000
 00fffff08 0038: 00000000
 00fffff0c 003c: 00002988
E>

globals

This	command	uses	the	debugging	information	and	displays	the	values	of	all	global	
variables.	

For	example:	

E> globals
From package "MyProgram.c"...
 line 91 000002880: 000000000001e240 myGlob: int = 123456
 line 93 000002888: 48 myGlobChar: byte = 'H'
 (decimal 72)
 line 92 0000029c8: 00000000000028d0 myGlobVar2: String =
 "this is some text"
From package "runtime.s"...
From package "HostInterface.c"...
 line 84 0000023c8: 00000000000023e0 stdin: ptr —>
 00000000 00000000 00000000
 00000001 00000000 00000002...
 line 85 0000023d0: 00000000000023e8 stdout: ptr -->
 00000000 00000001 00000000
 00000002 00000000 00018e88...
 line 86 0000023d8: 00000000000023f0 stderr: ptr -->
 00000000 00000002 00000000
 00018e88 00000000 00018e40...
 line 87 0000023e0: 0000000000000000 stdinFILE: struct
 line 88 0000023e8: 0000000000000001 stdoutFILE: struct
 line 89 0000023f0: 0000000000000002 stderrFILE: struct
 line 61 0000023f8: 0000000000018e88 print: ptr -->
 1000101c 01000811 1dfffc12
 14400108 22401188 14400108...

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	55 147

Chapter	3:	Commands	

 line 62 000002400: 0000000000018e40 readString: ptr -->
 1d000012 1200020c 21000014
 1a0000e0 01000811 14400108...
 line 90 0000029c0: 0000000000000000 errno: int = 0
From package "System.c"...
 line 40 000000008: 00 alreadyInAlloc: bool = false
 line 37 000018f48: 05f5e10005f5e100 TheHeapArray: array
 (currentSize = 100000000,
 maxSize = 100000000)
 line 38 005f77050: 0000000000018f50 heapRegionStart: ptr -->
 00000000 00000000 00000000
 00000000 00000000 00000000...
 line 38 005f77058: 0000000000018f50 heapNextPtr: ptr -->
 00000000 00000000 00000000
 00000000 00000000 00000000...
 line 38 005f77060: 0000000005f77050 heapRegionBeyond: ptr -->
 00000000 00018f50 00000000
 00018f50 00000000 05f77050...
 line 39 005f77068: 0000000000000000 heapTotalBytesFreed: int = 0
 line 39 005f77070: 0000000000000000 heapTotalAllocation: int = 0
 line 49 005f77078: 0000000000007230 mainThreadData: object
 line 50 005f770b8: 0000000005f770c8 threadPrefs_0: struct
 line 51 005f770c8: 0000000000000000 printPrefs_0: struct
From package "MiscLib.c"...
 line 21 000001c10: 0000000000000000 InputBuffer: array
 (currentSize = 0,
 maxSize = 0)
From package "PrintPackage.c"...
E>

This	commands	goes	through	each	package	and	prints	the	global	variables	from	that	
package.	Recall	that	a	“global	variable”	is	one	that	occurs	outside	of	any	function	or	
method	and	thus	exists	throughout	the	execution	of	the	program.	

The	Wirst	package	(“MyProgram.c”)	is	repeated	below:	

From package "MyProgram.c"...
 line 91 000002880: 000000000001e240 myGlob: int = 123456
 line 93 000002888: 48 myGlobChar: byte = 'H'
 (decimal 72)
 line 92 0000029c8: 00000000000028d0 myGlobVar2: String =
 "this is some text"

The	command	shows	the	line	number	on	which	each	variable	was	declared,	as	well	
as	the	name,	type,	and	current	value	of	the	variable.	Other	information	includes	the	
address	at	which	the	variable	is	stored	as	well	as	the	value	in	hex.	

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	56 147

Chapter	3:	Commands	

trans

The	Blitz	core	has	a	Memory	Management	Unit	(MMU)	that	is	active	on	every	
FETCH,	LOAD,	or	STORE.	Each	access	to	main	memory	or	to	a	memory-mapped	I/O	
device	is	either	a	FETCH,	LOAD,	or	STORE	operation.	

The	MMU	takes	a	“program-generated	address”	and	maps	it	into	a	“physical	
address”.	A	program-generated	address	can	be	any	36	bit	number.	A	physical	
address	is	only	35	bits.	In	other	words,	program-generated	addresses	range	over	

	 0x0_0000_0000	…	0xF_FFFF_FFFF	 (64	GiBytes)	

while	physical	addresses	range	over	

	 0x0_0000_0000	…	0x7_FFFF_FFFF	 (32	GiBytes)	

Program-generated	addresses	in	the	range	

	 0x8_0000_0000	…	0xF_FFFF_FFFF	 (32	GiBytes)	

are	within	a	“virtual	address	space”.	Virtual	address	are	mapped	by	the	MMU	using	
the	TLB	registers	into	a	physical	address.	

The	MMU	will	also	check	for	errors.	For	example,	if	the	core	is	in	User	Mode,	only	
virtual	addresses	may	be	used.	Also	an	attempt	to	STORE	into	a	read-only	page	
would	be	illegal.	If	the	MMU	detects	any	problems,	an	exception	will	be	signaled,	
preventing	the	illegal	access	from	occurring.	

This	command	is	used	to	see	how	an	address	would	be	translated	by	the	Memory	
Management	Unit	(MMU).	

Regardless	of	the	outcome,	the	state	of	the	core	will	not	be	altered.	No	actual	access	
to	the	physical	memory	or	memory-mapped	I/O	device	will	occur.	Even	if	an	
exception	is	indicated,	no	exception	is	actually	signaled.	

In	our	Wirst	example,	the	core	is	in	Kernel	Mode	and	we	are	asking	about	fetching	an	
instruction	from	a	valid	physical	memory	address.	

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	57 147

Chapter	3:	Commands	

This	is	a	valid	request	and	would	not	result	in	any	exception.	This	result	is	
highlighted	below:	

E> trans
===== This command will translate a virtual address into a physical address.
===== It will see what the MMU will do, making use of the current values in the
===== TLB registers in the current core. The state of the core will not be
===== changed.
 NOTE: The core is in kernel mode.
 NOTE: Interrupts are ENABLED.
 NOTE: The current ASID is 0x0000.
Enter any address in hex: 2134
You entered: Address = 0x2134 [PHYSICAL]
Want to perform fetch, load, or store? f
Output from MMU...
 Status=OKAY Address = 0x2134 [PHYSICAL]
This address lies within...
 Private RAM,
 Shared RAM, or
 Boot ROM
E>

In	the	next	example,	the	core	is	in	User	Mode.	An	attempt	to	fetch	an	instruction	
from	the	same	address	would	cause	an	exception:	

E> trans
===== This command will translate a virtual address into a physical address.
===== It will see what the MMU will do, making use of the current values in the
===== TLB registers in the current core. The state of the core will not be
===== changed.
 NOTE: The core is in user mode.
 NOTE: Interrupts are ENABLED.
 NOTE: The current ASID is 0x0000.
Enter any address in hex: 2134
You entered: Address = 0x2134 [PHYSICAL]
Want to perform fetch, load, or store? f
 ----- This will cause a TLB_PRIVILEGE EXCEPTION
E>

In	the	next	example,	the	core	is	in	User	Mode	and	the	address	in	a	virtual	address.	
We	are	asking	what	would	happen	if	we	tried	to	LOAD	a	doubleword	from	memory.	

There	is	a	valid	mapping	in	one	of	the	TLB	registers,	so	this	access	would	succeed.	

E> trans
===== This command will translate a virtual address into a physical address.
===== It will see what the MMU will do, making use of the current values in the
===== TLB registers in the current core. The state of the core will not be
===== changed.

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	58 147

Chapter	3:	Commands	

 NOTE: The core is in user mode.
 NOTE: Interrupts are ENABLED.
 NOTE: The current ASID is 0x1200.
Enter any address in hex: 8000140c8
You entered: Address = 0x8000140C8 [VIRTUAL PAGE = 0x000005 OFFSET = 0x00c8]
Want to perform fetch, load, or store? l
Enter the size of the access (1,2,4, or 8): 8
Output from MMU...
 Status=OKAY Address = 0x1C0C8 [PHYSICAL]
E>

The	command	informs	us	that	we	are	asking	about	the	doubleword	at	offset	0x00c8	
within	page	number	5.	The	MMU	will	translate	this	address	into	physical	address	
0x1C0C8.	

The	MMU	will	turn	a	virtual	address	into	a	physical	address,	but	will	not	verify	that	
there	is	actually	anything	installed	at	that	address. 	However,	the	emulator	will	give	8

us	a	warning	with	any	attempt	to	access	memory	in	an	area	where	no	installed	
memory	exists.	This	is	illustrated	next:	

E> trans
===== This command will translate a virtual address into a physical address.
===== It will see what the MMU will do, making use of the current values in the
===== TLB registers in the current core. The state of the core will not be
===== changed.
 NOTE: The core is in kernel mode.
 NOTE: Interrupts are ENABLED.
 NOTE: The current ASID is 0x1200.
Enter any address in hex: 300000000
You entered: Address = 0x300000000 [PHYSICAL]
Want to perform fetch, load, or store? l
Enter the size of the access (1,2,4, or 8): 8

***** Probable Error in the Blitz Code: Within PerformVirtualMapping,
 the physical address is uninstalled/invalid *****
Output from MMU...
 Status=OKAY Address = 0x300000000 [PHYSICAL]
E>

This	same	warning	will	appear	if	an	executing	program	attempts	to	FETCH,	LOAD,	or	
STORE	using	a	address	that	is	within	the	range	of	installed	physical	memory	or	
memory-mapped	I/O	devices.	

	It	is	the	responsibility	of	the	OS	kernel	to	use	only	properly	installed	physical	memory	to	back	8

virtual	memory	pages.

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	59 147

Chapter	3:	Commands	

addr

Recall	that	a	virtual	address	is	a	35	bit	number	consisting	of	a	21	bit	virtual	page	
number	following	by	a	14	bit	byte	offset	within	the	page.	

Given	an	address,	breaking	it	into	the	21	bit	page	number	and	14	bit	offset	is	tedious	
and	error	prone.	This	command	makes	it	easy.	

This	command	asks	for	an	address	and	then	does	the	work.	For	example:	

E> addr
Enter an address in hex: 800301234
Address = 0x800301234 [VIRTUAL PAGE = 0x0000c0 OFFSET = 0x1234]
E>

Here’s	another	example,	in	which	the	address	is	not	a	virtual	address:	

E> addr
Enter an address in hex: 1234
Address = 0x1234 [PHYSICAL]
E>

addr2

Combining		a	page	number	and	offset	into	an	address	is	error	prone.	This	command	
makes	it	easy.	

This	command	asks	for	a	page	number	and	offset	and	then	combines	them.	For	
example:	

E> addr2
Enter the 21 bit PAGE NUMBER: 0x0000c0
Enter the 14 bit OFFSET: 0x1234
AS PHYSICAL:
 Address = 0x301234 [PHYSICAL]
AS VIRTUAL:
 Address = 0x800301234 [VIRTUAL PAGE = 0x0000c0 OFFSET = 0x1234]
E>

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	60 147

Chapter	3:	Commands	

read

In	Blitz,	all	I/O	devices	are	“memory-mapped”,	which	means	they	are	accessed	with	
LOAD	and	STORE	machine	instructions.	

This	command	asks	for	an	address	and	then	reads	from	that	location	as	if	a	“load.d”	
instruction	had	been	executed.	It	will	then	display	the	value	returned	by	the	I/O	
device.	

The	exact	effect	depends	on	the	I/O	device	involved.	

For	example,	with	the	Simple	Serial	Device,	a	LOAD	from	address	0x400104000	
will	cause	the	emulator	to	wait	for	the	user	to	enter	a	single	character.	In	this	
example,	the	user	enters	the	letter	“k”,	which	is	ASCII	0x6b.	

E> read
Enter the (physical) address in hex: 400104000
Reading from 0x400104000...
k
Value = 0x000000000000006B (decimal 107)
E>

write

In	Blitz,	all	I/O	devices	are	“memory-mapped”,	which	means	they	are	accessed	with	
LOAD	and	STORE	machine	instructions.	

This	command	asks	for	an	address	and	then	writes	to	that	location	as	if	a	“store.d”	
instruction	had	been	executed.	

The	exact	effect	depends	on	the	I/O	device	involved.	

For	example,	with	the	Simple	Serial	Device,	a	STORE	to	address	0x400104000	will	
cause	the	emulator	to	display	a	single	character:	

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	61 147

Chapter	3:	Commands	

E> write
Enter the (physical) address in hex: 400104000
Enter the value to write, in hex: 6a
About to write value 0x000000000000006A to address 0x400104000...
j
Done.
E>

Note	that	ASCII	code	of	0x6a	is	the	character	“j”.	The	command	ends	by	printing	
“\nDone.\n”	which	explains	why	the	“j”	is	on	a	line	by	itself.	

cores

The	emulator	is	capable	of	emulating	a	multi-core	processor.	

The	number	of	cores	is	determined	by	the	Wile	“emulationParms”	which	is	read	
when	the	Blitz	emulator	starts	up,	or	when	the	reset	command	is	used.	

In	a	multi-core	systems,	the	cores	are	arranged	in	an	array.	This	array	can	be	1-
dimensional,	in	which	case	the	cores	are	placed	next	to	each	other	in	a	row	and	
numbered	from	0	to	M-1,	where	M	is	the	number	of	cores.	

The	cores	can	also	be	arranged	in	a	2-dimensional	array.	For	example,	assume	the	
number	of	rows	is	N	and	the	number	of	columns	is	M.	Then	there	are	a	total	of	M	×	N	
cores.	

Finally,	the	cores	can	be	arranged	in	a	3-dimensional	array.	For	example,	assume	the	
number	of	rows	is	N,	the	number	of	columns	is	M,	and	the	number	of	planes	is	P.	
Then	there	are	a	total	of	M	×	N	×	P	cores.	

The	intent	of	the	array	arrangement	is	to	accommodate	and	model	the	actual	
physical	placement	on	a	silicon	chip.	While	routing	is	not	so	much	an	issue	with	a	
dozen	or	so	cores,	in	the	future	we	can	envision	100’s	or	1000’s	of	cores	on	a	single	
chip,	at	which	time	placement	becomes	important.	At	present,	most	chips	are	Wlat,	
but	we	are	beginning	to	see	the	stacking	of	circuits,	so	a	3-D	arrangement	may	be	
useful	in	the	future.	

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	62 147

Chapter	3:	Commands	

Each	core	has	a	“core	number”.	Let	R	be	the	total	number	of	cores,	i.e.,	M	×	N	×	P.	
Each	core	is	assigned	a	number	in	the	range	0	…	R-1.	Core	0	is	said	to	be	the	
“primary	core”.	

The	number	of	rows,	columns,	and	planes	is	given	in	the	Wile	emulatorParms.	For	
example,	the	Wile	might	contain	these	lines.	

 CORES_NUMBER_OF_COLS 0x0000000000000002 (decimal: 2)
 CORES_NUMBER_OF_ROWS 0x0000000000000003 (decimal: 3)
 CORES_NUMBER_OF_PLANES 0x0000000000000004 (decimal: 4)

Using	the	“sim”	command,	you	can	see	these	values.	To	alter	them,	you	must	edit	the	
emulatorParms	Wile	and	restart	the	emulator.	

In	this	example,	there	are	24	cores	(i.e.,	2	×	3	×	4),	numbered	0,	1,	2,	…	23.	At	any	one	
time	there	is	a	“currently	selected”	core.	

In	addition	to	the	core	number,	each	core	has	an	X-Y-Z	coordinate	as	well.	In	this	
example	X	ranges	over	0	…	1,	Y	ranges	over	0	…	2,	and	Z	ranges	over	0	…	3.	Cores	can	
communicate	with	their	neighbors.	We	refer	to	directions	using	this	notation :	9

	 Direction	 Neighbor’s	X-Y-Z	Coordinate	
	 west	/	left	 X-1	
	 east	/	right	 X+1	
	 north	 Y-1	
	 south	 Y+1	
	 up	 Z-1	
	 down	 Z+1	

The	“cores”	command	prints	out	a	line	for	each	core,	as	shown	next.	

E> cores
 core x,y,z status instructions cycles PC interrupts mode
 ==== ========== ======= ============ ============ =========== ========== ======
Current --> 0 [0, 0, 0] RUNNING 5887 17661 0x00000cd08 kernel <-- Current
 1 [1, 0, 0] stopped 0 0 0x400000000 disabled kernel
 2 [0, 1, 0] stopped 0 0 0x400000000 disabled kernel

	If	the	cores	are	linearly	arranged,	then	core	0	(i.e.,	the	core	with	coordinates	X=0,	Y=0,	Z=0)	is	the	9

leftmost	core	and	core	M	(i.e.,	at	X=M-1,	Y=0,	Z=0)	is	the	rightmost.	If	the	cores	are	arranged	in	a	
2D	rectangle,	then	core	0	(i.e.,	at	X=0,	Y=0,	Z=0)	is	the	most	northwestern	core	and	the	core	at	
X=M-1,	Y=N-1,	Z=0	is	the	most	southeastern	core.	We	reserve	the	use	of	“up”	and	“down”	for	3D	
arrangements,	and	avoid	these	terms	for	2D	arrangements,	since	these	terms	are	used	for	the	third	
dimension.	Using	“up”	and	“down”	for	“north”	and	“south”	in	2D	arrangements	is	unambiguous,	
but	it	could	be	confusing.

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	63 147

Chapter	3:	Commands	

 3 [1, 1, 0] stopped 0 0 0x400000000 disabled kernel
 4 [0, 2, 0] stopped 0 0 0x400000000 disabled kernel
 5 [1, 2, 0] stopped 0 0 0x400000000 disabled kernel
 6 [0, 0, 1] stopped 0 0 0x400000000 disabled kernel
 7 [1, 0, 1] stopped 0 0 0x400000000 disabled kernel
 8 [0, 1, 1] stopped 0 0 0x400000000 disabled kernel
 9 [1, 1, 1] stopped 0 0 0x400000000 disabled kernel
 10 [0, 2, 1] stopped 0 0 0x400000000 disabled kernel
 11 [1, 2, 1] stopped 0 0 0x400000000 disabled kernel
 12 [0, 0, 2] stopped 0 0 0x400000000 disabled kernel
 13 [1, 0, 2] stopped 0 0 0x400000000 disabled kernel
 14 [0, 1, 2] stopped 0 0 0x400000000 disabled kernel
 15 [1, 1, 2] stopped 0 0 0x400000000 disabled kernel
 16 [0, 2, 2] stopped 0 0 0x400000000 disabled kernel
 17 [1, 2, 2] stopped 0 0 0x400000000 disabled kernel
 18 [0, 0, 3] stopped 0 0 0x400000000 disabled kernel
 19 [1, 0, 3] stopped 0 0 0x400000000 disabled kernel
 20 [0, 1, 3] stopped 0 0 0x400000000 disabled kernel
 21 [1, 1, 3] stopped 0 0 0x400000000 disabled kernel
 22 [0, 2, 3] stopped 0 0 0x400000000 disabled kernel
 23 [1, 2, 3] stopped 0 0 0x400000000 disabled kernel
The number of runnable cores is: 1
The current core is: 0
E>

We	see	the	core	number,	followed	by	the	X-Y-Z	coordinates	of	the	core.	We	also	see	
how	many	instructions	have	executed	on	each	core.	We	also	see	the	Program	
Counter	(PC)	and	the	status	of	the	InterruptsEnabled	and	KernelMode	bits	in	the	
CSR_STATUS	register	for	each	core.	

The	column	marked	“status”	indicates	whether	the	core	is	running	or	not.	If	a	
SLEEP1	instruction	has	been	executed,	the	status	will	be	“sleep-1”	and	if	a	SLEEP2	
instruction	has	been	executed,	the	status	will	be	“sleep-2”.	Otherwise,	the	status	will	
be	“RUNNING”	or	“stopped”.	

We	also	see	which	core	is	the	currently	selected	core.	

sel

This	command	gives	the	user	the	opportunity	to	switch	to	a	different	core.	Hitting	
NEWLINE	/	ENTER	/	RETURN	is	the	usual	response,	leaving	the	currently	selected	
core	unchanged.	For	example:	

E> sel
The current core is: 0

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	64 147

Chapter	3:	Commands	

Enter the number of the core to make current (0..23) or ENTER for no change: 3
The current core is now: 3
E> cores
 core x,y,z status instructions cycles PC interrupts mode
 ==== ========== ======= ============ ============ =========== ========== ======
 0 [0, 0, 0] RUNNING 5887 17661 0x00000cd08 kernel
 1 [1, 0, 0] stopped 0 0 0x400000000 disabled kernel
 2 [0, 1, 0] stopped 0 0 0x400000000 disabled kernel
Current --> 3 [1, 1, 0] stopped 0 0 0x400000000 disabled kernel <-- Current
 4 [0, 2, 0] stopped 0 0 0x400000000 disabled kernel
 5 [1, 2, 0] stopped 0 0 0x400000000 disabled kernel
 6 [0, 0, 1] stopped 0 0 0x400000000 disabled kernel
 7 [1, 0, 1] stopped 0 0 0x400000000 disabled kernel
 8 [0, 1, 1] stopped 0 0 0x400000000 disabled kernel
 9 [1, 1, 1] stopped 0 0 0x400000000 disabled kernel
 10 [0, 2, 1] stopped 0 0 0x400000000 disabled kernel
 11 [1, 2, 1] stopped 0 0 0x400000000 disabled kernel
 12 [0, 0, 2] stopped 0 0 0x400000000 disabled kernel
 13 [1, 0, 2] stopped 0 0 0x400000000 disabled kernel
 14 [0, 1, 2] stopped 0 0 0x400000000 disabled kernel
 15 [1, 1, 2] stopped 0 0 0x400000000 disabled kernel
 16 [0, 2, 2] stopped 0 0 0x400000000 disabled kernel
 17 [1, 2, 2] stopped 0 0 0x400000000 disabled kernel
 18 [0, 0, 3] stopped 0 0 0x400000000 disabled kernel
 19 [1, 0, 3] stopped 0 0 0x400000000 disabled kernel
 20 [0, 1, 3] stopped 0 0 0x400000000 disabled kernel
 21 [1, 1, 3] stopped 0 0 0x400000000 disabled kernel
 22 [0, 2, 3] stopped 0 0 0x400000000 disabled kernel
 23 [1, 2, 3] stopped 0 0 0x400000000 disabled kernel
The number of runnable cores is: 1
The current core is: 3
E>

<\n>

A	null	command	—	that	is,	hitting	ENTER/RETURN	without	anything	else	—	will	
result	in	an	informative	display.	For	example:	

E> << ENTER >>
Number of running cores: 1
Currently selected: Core_3
Instruction executed so far: Core_3 = 0
 total = 5887
CURRENT LOCATION OF PC:
 400000000: 0300002F mov sp,r2 # synthetic for ORI _,_,0
E>

sched

When	emuatoing	a	multicore	system	with	more	than	one	runnable	core,	the	
emulator	—	which	is	single	threaded	—	will	execute	a	few	instructions	on	the	

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	65 147

Chapter	3:	Commands	

currently	selected	core.	Then	change	the	selected	core	to	the	next	core	that	is	
runnable.	The	emulator	will	then	execute	a	few	instructions	on	that	core.	This	
process	will	continue,	with	each	core	getting	a	“timeslice”,	during	which	it	executes	
“a	few”	instructions.	The	scheduling	is	strictly	round-robin	among	the	cores	with	
status	RUNNING.	Execution	will	continue	this	way	until	either	

	 The	user	hits	control-C	
	 Some	core	executes	a	DEBUG	instruction	
	 In	the	case	of	a	limit	(as	in	the	stepn	command),	then	limit	is	reached.	
	 Some	other	error	occurs	

The	question	is,	what	does	“a	few”	instructions	mean?	The	answer	is	determined	by	
the	schedule.	

This	command	allows	the	user	to	change	the	schedule.	The	command	give	the	users	
choices.	For	example:	

E> sched
 The "go" command will begin execution. The current core will execute "schedule[0]"
 instructions. Then the next core will execute "schedule[1]" instructions. This
 will continue with each core getting a timeslice. After the last entry in the
 "schedule" array is used, we loop back to "schedule[0]".
HERE IS THE CURRENT TIMESLICE SCHEDULE:
 schedule [0] = 329
 schedule [1] = 248
 schedule [2] = 149
 schedule [3] = 195
 schedule [4] = 260
 schedule [5] = 332
 schedule [6] = 147
 schedule [7] = 349
 schedule [8] = 431
 schedule [9] = 299
 schedule [10] = 469
 schedule [11] = 415
 schedule [12] = 128
 schedule [13] = 155
 schedule [14] = 50
 schedule [15] = 440
 schedule [16] = 505
Please choose by number...
 1 - Default schedule
 2 - Perfect interleaving 1-1-1-1...
 3 - Generate a new random schedule
 4 - Generate a new schedule where each timeslice is equal
Select a new schedule or ENTER for no change: 2
HERE IS THE NEW TIMESLICE SCHEDULE:
 schedule [0] = 1
 schedule [1] = 1
 schedule [2] = 1
 schedule [3] = 1

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	66 147

Chapter	3:	Commands	

 schedule [4] = 1
 schedule [5] = 1
 schedule [6] = 1
 schedule [7] = 1
 schedule [8] = 1
 schedule [9] = 1
 schedule [10] = 1
 schedule [11] = 1
 schedule [12] = 1
 schedule [13] = 1
 schedule [14] = 1
 schedule [15] = 1
 schedule [16] = 1
E>

In	the	above	example,	the	user	has	selected	option	2,	which	is	“Perfect	Interleaving”.	
This	means	that	each	core	will	execute	one	instruction.	Then	the	emulator	will	move	
to	the	next	core.	The	cores	will	effectively	operate	in	lockstep,	proceeding	at	exactly	
the	same	speed.	

The	default	time	schedule,	which	was	shown	Wirst,	gives	every	core	between	50	and	
505	instructions	for	its	timeslice.	There	are	17	slots	in	the	schedule	with	17	values. 	10

The	Wirst	core	to	run	will	get	329	instructions.	The	second	core	will	get	248	
instructions.	This	will	continue.	At	each	timeslice,	the	emulator	will	move	to	the	next	
core	and	to	the	next	slot	in	the	schedule.	When	the	end	of	the	schedule	(i.e.,	the	
seventeenth	entry)	has	been	reached,	the	emulator	will	loop	back	to	the	Wirst	entry.	
Assuming	that	the	number	of	cores	is	not	17	or	a	multiple	thereof,	this	will	
eventually	give	every	core	time	slices	of	every	one	of	the	17	sizes.	Thus,	in	the	long	
term,	all	cores	will	execute	the	same	speed,	although	there	will	be	local	variations.	

This	command	also	allows	the	user	to	change	the	timeslice,	giving	all	processor	the	
same	number	of	instructions.	For	example:	

E> sched
 The "go" command will …etc…	
HERE IS THE CURRENT TIMESLICE SCHEDULE:
 schedule [0] = 1
 schedule [1] = 1
 schedule [2] = 1
 …etc…		
 schedule [14] = 1
 schedule [15] = 1
 schedule [16] = 1
Please choose by number...
 1 - Default schedule
 2 - Perfect interleaving 1-1-1-1...

	These	17	random	values	were	pre-chosen	and	are	Wixed;	changing	them	would	require	10

recompiling	the	emulator	itself.

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	67 147

Chapter	3:	Commands	

 3 - Generate a new random schedule
 4 - Generate a new schedule where each timeslice is equal
Select a new schedule or ENTER for no change: 4
Enter the size of each timeslice: 800
HERE IS THE NEW TIMESLICE SCHEDULE:
 schedule [0] = 800
 schedule [1] = 800
 schedule [2] = 800
 …etc…
 schedule [14] = 800
 schedule [15] = 800
 schedule [16] = 800
E>

In	addition,	there	is	an	option	for	mixing	things	up.	For	example:	

E> sched
 The "go" command will …etc…
HERE IS THE CURRENT TIMESLICE SCHEDULE:
 schedule [0] = 800
 schedule [1] = 800
 schedule [2] = 800
 …etc…
 schedule [14] = 800
 schedule [15] = 800
 schedule [16] = 800
Please choose by number...
 1 - Default schedule
 2 - Perfect interleaving 1-1-1-1...
 3 - Generate a new random schedule
 4 - Generate a new schedule where each timeslice is equal
Select a new schedule or ENTER for no change: 3
Enter the maximum timeslice size: 100000
HERE IS THE NEW TIMESLICE SCHEDULE:
 schedule [0] = 31730
 schedule [1] = 78841
 schedule [2] = 42613
 schedule [3] = 44304
 schedule [4] = 33170
 schedule [5] = 17710
 schedule [6] = 97158
 schedule [7] = 29561
 schedule [8] = 70934
 schedule [9] = 93100
 schedule [10] = 80279
 schedule [11] = 51817
 schedule [12] = 95336
 schedule [13] = 99098
 schedule [14] = 7827
 schedule [15] = 13513
 schedule [16] = 29268
E>

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	68 147

Chapter	3:	Commands	

startall

This	command	will	make	all	cores	runnable.	In	particular,	it	will	change	the	status	of	
any	core	that	is	STOPPED	to	RUNNING.	For	example:	

E> startall
Core 1 is now RUNNING
Core 2 is now RUNNING
Core 3 is now RUNNING
Core 4 is now RUNNING
Core 5 is now RUNNING
Core 6 is now RUNNING
Core 7 is now RUNNING
Core 8 is now RUNNING
Core 9 is now RUNNING
Core 10 is now RUNNING
Core 11 is now RUNNING
Core 12 is now RUNNING
Core 13 is now RUNNING
Core 14 is now RUNNING
Core 15 is now RUNNING
Core 16 is now RUNNING
Core 17 is now RUNNING
Core 18 is now RUNNING
Core 19 is now RUNNING
Core 20 is now RUNNING
Core 21 is now RUNNING
Core 22 is now RUNNING
Core 23 is now RUNNING
E>

stopall

This	command	will	stop	all	cores.	In	particular,	it	will	change	the	status	of	any	core	
that	is	RUNNING	to	STOPPED.	For	example:	

E> stopall
Core 0 is now STOPPED
Core 1 is now STOPPED
Core 2 is now STOPPED
Core 3 is now STOPPED
Core 4 is now STOPPED
Core 5 is now STOPPED

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	69 147

Chapter	3:	Commands	

Core 6 is now STOPPED
Core 7 is now STOPPED
Core 8 is now STOPPED
Core 9 is now STOPPED
Core 10 is now STOPPED
Core 11 is now STOPPED
Core 12 is now STOPPED
Core 13 is now STOPPED
Core 14 is now STOPPED
Core 15 is now STOPPED
Core 16 is now STOPPED
Core 17 is now STOPPED
Core 18 is now STOPPED
Core 19 is now STOPPED
Core 20 is now STOPPED
Core 21 is now STOPPED
Core 22 is now STOPPED
Core 23 is now STOPPED
E>

start

This	command	can	be	used	to	change	one	or	more	cores	from	STOPPED	to	
RUNNING.	It	prompts	the	user	to	select	the	core	by	number,	as	shown	in	this	
example:	

E> start
This command allows you to resume a core's execution by changing its status to RUNNING.
Enter the number of a core (or ENTER to exit): 5
Core 5 is now RUNNING.
Enter the number of a core (or ENTER to exit): 6
Core 6 is now RUNNING.
Enter the number of a core (or ENTER to exit): 9
Core 9 is now RUNNING.
Enter the number of a core (or ENTER to exit): << ENTER >>
E>

To	verify	the	result	of	this,	we	can	use	the	cores	command	to	see	which	cores	are	
now	RUNNING.	These	are	highlighted	below.	This	command	does	not	alter	which	
core	is	“currently	selected”,	as	you	can	see.	

E> cores
 core x,y,z status instructions cycles PC interrupts mode
 ==== ========== ======= ============ ============ =========== ========== ======
 0 [0, 0, 0] stopped 5887 17661 0x00000cd08 kernel
 1 [1, 0, 0] stopped 0 0 0x400000000 disabled kernel
 2 [0, 1, 0] stopped 0 0 0x400000000 disabled kernel
Current --> 3 [1, 1, 0] stopped 0 0 0x400000000 disabled kernel <-- Current
 4 [0, 2, 0] stopped 0 0 0x400000000 disabled kernel

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	70 147

Chapter	3:	Commands	

 5 [1, 2, 0] RUNNING 0 0 0x400000000 disabled kernel
 6 [0, 0, 1] RUNNING 0 0 0x400000000 disabled kernel
 7 [1, 0, 1] stopped 0 0 0x400000000 disabled kernel
 8 [0, 1, 1] stopped 0 0 0x400000000 disabled kernel
 9 [1, 1, 1] RUNNING 0 0 0x400000000 disabled kernel
 10 [0, 2, 1] stopped 0 0 0x400000000 disabled kernel
 11 [1, 2, 1] stopped 0 0 0x400000000 disabled kernel
 12 [0, 0, 2] stopped 0 0 0x400000000 disabled kernel
 13 [1, 0, 2] stopped 0 0 0x400000000 disabled kernel
 14 [0, 1, 2] stopped 0 0 0x400000000 disabled kernel
 15 [1, 1, 2] stopped 0 0 0x400000000 disabled kernel
 16 [0, 2, 2] stopped 0 0 0x400000000 disabled kernel
 17 [1, 2, 2] stopped 0 0 0x400000000 disabled kernel
 18 [0, 0, 3] stopped 0 0 0x400000000 disabled kernel
 19 [1, 0, 3] stopped 0 0 0x400000000 disabled kernel
 20 [0, 1, 3] stopped 0 0 0x400000000 disabled kernel
 21 [1, 1, 3] stopped 0 0 0x400000000 disabled kernel
 22 [0, 2, 3] stopped 0 0 0x400000000 disabled kernel
 23 [1, 2, 3] stopped 0 0 0x400000000 disabled kernel
The number of runnable cores is: 3
The current core is: 3
E>

stop

This	command	can	be	used	to	change	one	or	more	cores	from	RUNNING	to	
STOPPED.	It	prompts	the	user	to	select	the	core	by	number,	as	shown	in	this	
example.	As	you	can	see,	an	attempt	to	stop	a	core	that	is	not	running	will	get	a	
message.	

E> stop
This command allows you to freeze a core's execution by changing its status to STOPPED.
Enter the number of a core (or ENTER to exit): 6
Core 6 is now STOPPED.
Enter the number of a core (or ENTER to exit): 8
Core 8 is already STOPPED!
Enter the number of a core (or ENTER to exit): 9
Core 9 is now STOPPED.
Enter the number of a core (or ENTER to exit): << ENTER >>
E>

symbols

Executable	(.exe)	Wiles	normally	contain	debugging	information.	This	includes	a	
number	of	symbols.	This	command	lists	all	known	symbols.	It	lists	all	symbols	twice.	
The	Wirst	list	is	sorted	by	numerical	value.	The	second	is	sorted	alphabetically.	

For	example:	

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	71 147

Chapter	3:	Commands	

E> symbols
Symbols (ordered numerically):
 Symbol Value (hex) Value (decimal) Label Source line number / filename
 ============================== ================ ==================== ===== =============================
 KPL_Compiler_Path_Testing_Symbol 0 0 114 runtime.s
 _GlobalVar_alreadyInAlloc 8 8 LABEL 175 System.s
 OFFSET_OF_memAllocFun 10 16 1784 runtime.s
 _StringConst_136 10 16 LABEL 182 System.s
 OFFSET_OF_memFreeFun 18 24 1814 runtime.s
 _StringConst_135 20 32 LABEL 187 System.s

 …etc…
 Serial_String_Addr 400104018 17180934168 2473 runtime.s
 Serial_String_In_Len 400104020 17180934176 2474 runtime.s
 Serial_String_Out_Len 400104028 17180934184 2475 runtime.s
Symbols (ordered alphabetically):
 Symbol Value (hex) Value (decimal) Label Source line number / filename
 ============================== ================ ==================== ===== =============================
 BadNumberString 18D08 101640 LABEL 1951 runtime.s
 BadNumberString_1 18D10 101648 LABEL 1954 runtime.s
 BadNumberString_x 18D48 101704 LABEL 1956 runtime.s
 BadTimerHandler 187FC 100348 LABEL 842 runtime.s

 …etc…
 stEq_loopD 18B78 101240 LABEL 1373 runtime.s
 stEq_loopD_x 18B98 101272 LABEL 1381 runtime.s
 stEq_retF 18BC8 101320 LABEL 1403 runtime.s
 stEq_retT 18BB8 101304 LABEL 1396 runtime.s
 startupMessage 18898 100504 LABEL 917 runtime.s
 strEqual 18B54 101204 LABEL 1357 runtime.s
E>

For	programs	compiled	with	the	KPL	compiler	which	include	packages	like	System	
and	PrintPackage,	there	are	a	large	number	of	symbols,	making	this	command	less	
useful.	

dinfo

This	command	displays	all	the	debugging	information	from	the	executable	Wile.	

Note:		This	command	produces	a	Wlood	of	information	and	is	not	very	useful.	

This	command	was	used	in	debugging	the	emulator.	

find

In	order	to	Wind	the	value	of	a	symbol,	this	command	can	be	used.	It	prompts	the	
user	to	enter	the	symbol,	or	at	least	the	Wirst	few	characters	of	the	symbol.	It	prints	
all	symbols	that	begin	with	the	same	characters.	For	example:	

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	72 147

Chapter	3:	Commands	

E> find
Enter the first few characters of the symbol; all matching will be printed: Pri
 Symbol Value (hex) Value (decimal) Label Source line number / filename
 ============================== ================ ==================== ===== =============================
 PrintBool 18EE8 102120 LABEL 2392 runtime.s
 PrintBoolStr 18F00 102144 LABEL 2400 runtime.s
 PrintCSRPrevPCAndHalt 18198 98712 LABEL 515 runtime.s
 PrintFalse 18EFC 102140 LABEL 2398 runtime.s
 PrintRuntimeError 18850 100432 LABEL 881 runtime.s
E>

Case	is	signiWicant.	

Helpful	Trick:		To	get	a	list	of	all	private	functions,	recall	that	the	KPL	compiler	
attaches	a	preWix	to	the	names	of	all	private	functions.	So	enter	“_fun”	as	the	search	
pattern:	

E> find
Enter the first few characters of the symbol; all matching will be printed: _fun
 Symbol Value (hex) Value (decimal) Label Source line number / filename
 ============================== ================ ==================== ===== =============================
 _function_10_RandomNumber CF14 53012 LABEL 856 MyProgram.s
 _function_11_foo4 CEE4 52964 LABEL 830 MyProgram.s
 _function_12_foo3 CD28 52520 LABEL 650 MyProgram.s
 _function_137_printClassNameFromDPT 6B68 27496 LABEL 8567 System.s
 _function_138_printClassNameOfObject 6A9C 27292 LABEL 8448 System.s
 _function_139_invokeDebugger 6A38 27192 LABEL 8387 System.s
 _function_13_foo2 CC68 52328 LABEL 549 MyProgram.s
 _function_140_KPLDefaultFatalErrorFunction 5904 22788 LABEL 6144 System.s
 _function_141_KPLMemoryFree_Version1 344C 13388 LABEL 1642 System.s
 _function_142_KPLMemoryAlloc_Version1 3340 13120 LABEL 1524 System.s
 _function_143_KPLMemoryFree_Default 3310 13072 LABEL 1492 System.s
 _function_144_KPLMemoryAlloc_Default 327C 12924 LABEL 1433 System.s
 _function_14_foo1 CC44 52292 LABEL 524 MyProgram.s
 _function_19_hostDateNext BEFC 48892 LABEL 2299 HostInterface.s
 _function_20_hostDateSize BED4 48852 LABEL 2277 HostInterface.s
 _function_21_argumentNext BD60 48480 LABEL 2106 HostInterface.s
 _function_22_argumentSize BD3C 48444 LABEL 2086 HostInterface.s
 _function_26_LocalPrintString 7650 30288 LABEL 521 PrintPackage.s
 _function_27_LocalPrintChar 7604 30212 LABEL 475 PrintPackage.s
E>

This	same	trick	can	be	used	to	Wind	where	all	the	private	globals	are	located:	

E> find
Enter the first few characters of the symbol; all matching will be printed: _Glob
 Symbol Value (hex) Value (decimal) Label Source line number / filename
 ============================== ================ ==================== ===== =============================
 _GlobalVar_TheHeapArray 18F48 102216 LABEL 867 System.s
 _GlobalVar_alreadyInAlloc 8 8 LABEL 175 System.s
 _GlobalVar_heapNextPtr 5F77058 100102232 LABEL 873 System.s
 _GlobalVar_heapRegionBeyond 5F77060 100102240 LABEL 876 System.s
 _GlobalVar_heapRegionStart 5F77050 100102224 LABEL 870 System.s
 _GlobalVar_heapTotalAllocation 5F77070 100102256 LABEL 882 System.s
 _GlobalVar_heapTotalBytesFreed 5F77068 100102248 LABEL 879 System.s
 _GlobalVar_mainThreadData 5F77078 100102264 LABEL 885 System.s
 _GlobalVar_myGlob 2880 10368 LABEL 203 MyProgram.s
 _GlobalVar_myGlobChar 2890 10384 LABEL 209 MyProgram.s
 _GlobalVar_myGlobVar2 29F8 10744 LABEL 266 MyProgram.s
 _GlobalVar_print 23F8 9208 LABEL 93 HostInterface.s
 _GlobalVar_printPrefs_0 5F770C8 100102344 LABEL 891 System.s
 _GlobalVar_randomSeed 2888 10376 LABEL 206 MyProgram.s
 _GlobalVar_readString 2400 9216 LABEL 96 HostInterface.s
 _GlobalVar_threadPrefs_0 5F770B8 100102328 LABEL 888 System.s
E>

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	73 147

Chapter	3:	Commands	

To	get	a	list	of	all	public	things 	in	a	package,	use	a	search	string	that	begins	with	11

“_P_”	followed	by	the	package	name:	

E> find
Enter the first few characters of the symbol; all matching will be printed: _P_Mis
 Symbol Value (hex) Value (decimal) Label Source line number / filename
 ============================== ================ ==================== ===== =============================
 _P_MiscLib_AppendIntToString C760 51040 LABEL 1061 MiscLib.s
 _P_MiscLib_GetInputLine C500 50432 LABEL 773 MiscLib.s
 _P_MiscLib_GetInt C474 50292 LABEL 684 MiscLib.s
 _P_MiscLib_GetOneChar C3EC 50156 LABEL 609 MiscLib.s
 _P_MiscLib_GetYesNo C2C8 49864 LABEL 438 MiscLib.s
 _P_MiscLib_Indent C7F8 51192 LABEL 1141 MiscLib.s
 _P_MiscLib_InputBuffer 1C10 7184 LABEL 311 MiscLib.s
 _P_MiscLib_PadTo C86C 51308 LABEL 1205 MiscLib.s
E>

find2

This	command	allows	you	to	look	up	a	symbol	given	its	value.	For	example:	

E> find2
Enter a value in hex: 18f00
 Symbol Value (hex) Value (decimal) Label Source line number / filename
 ============================== ================ ==================== ===== =============================
 PrintBoolStr 18F00 102144 LABEL 2400 runtime.s
E> find2
Enter a value in hex: 18f01
***** There is no symbol with that value. (The next largest value is 0x18f10 (decimal 102160). *****
 Symbol Value (hex) Value (decimal) Label Source line number / filename
 ============================== ================ ==================== ===== =============================
 _TrueMsg 18F10 102160 LABEL 2405 runtime.s
E>

This	command	was	useful	in	debugging	the	emulator.	

where

This	command	allows	you	to	see	where	the	currently	selected	core	is	stopped.	To	get	
the	current	location,	just	respond	to	the	prompt	with	ENTER.	

E> where
Enter an address in hex (or 0 for current PC): << ENTER >>
CURRENT LOCATION OF PC:
 ASSIGN on line 76 in function "foo2" [MyProgram.c]

	This	includes	public	functions,	public	global	variables,	public	classes,	etc.11

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	74 147

Chapter	3:	Commands	

 00000CD08: 1E0040F7 load.d r7,64(sp) # offset = 0x40
E>

If	the	address	is	within	a	function	coded	in	KPL,	the	debugger	will	indicate	the	type	
of	statement	(In	this	example,	it’s	an	assignment	statement)	and	function	name	
(“foo2”),	as	well	as	the	source	Wilename	and	line	number	where	that	statement	is	
located	(line	76	within	“MyProgram.c”).	

You	can	also	enter	a	speciWic	address	to	learn	in	which	function	it	resides.	For	
example:	

E> where
Enter an address in hex (or 0 for current PC): c000
 ASSIGN on line 671 in function "hostDate" [HostInterface.c]
 00000C000: 01FFFF77 addi r7,r7,-1
E>

If	the	address	is	not	in	anything	that	the	debugger	knows	about,	it	will	just	give	the	
contents	of	memory	at	that	location.	For	example:	

E> where
Enter an address in hex (or 0 for current PC): 100000
 000100000: 00000000
E>

At	other	times	you	might	ask	for	the	address	of	some	variable.	Here,	we	see	the	
name	of	the	variable	and	an	indication	of	its	value	in	hex,	decimal,	and	ASCII.	

E> where
Enter an address in hex (or 0 for current PC): 18F10
 Within Function "PrintBool" [runtime.s]
 _TrueMsg:
 000018F10: 54525545 # decimal = 1414681925, ascii = "TRUE"
E>

g go

This	command	will	start	execution.	The	emulator	will	begin	executing	machine	
instructions	and	this	will	continue	until	

	 •	Command-C	is	pressed	

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	75 147

Chapter	3:	Commands	

	 •	A	DEBUG	or	BREAKPOINT	instruction	is	executed	
	 •	A	SLEEP1	or	SLEEP2	instruction	is	executed	
	 •	An	error	occurs	or	a	warning	is	printed	
	 •	A	“watched”	location	is	stored	into	

After	one	of	these	events	occurs,	the	emulator	will	re-enter	command	mode	and	you	
can	use	the	various	commands	to	examine	the	state.	The	SLEEP2	instruction	will	
terminate	the	emulator	itself.	

If	there	are	multiple	cores,	then	time	slicing	will	occur,	and	each	core	will	have	a	turn	
executing,	until	one	of	the	above	events	happens	on	any	running	core.	After	
execution	halts,	the	core	that	was	last	running	will	become	the	“currently	selected”	
core.	

If	“auto-go”	is	enabled	(i.e.,	the	“-g”	command	line	option	was	used),	then	execution	
will	commence	immediately	upon	startup	of	the	emulator	or	execution	of	the	
“rerun”	command,	as	if	the	“go”	command	had	been	entered.	

s step

The	“step”	command	is	similar	to	the	“go”	command,	except	that	only	one	
instruction	will	be	executed.	

This	command	will	print	the	machine	instruction	before	it	is	executed.	Here	is	an	
example.	After	two	instructions	are	executed	(see	highlighting	below),	the	user	hits	
ENTER	to	see	where	in	the	program	execution	is	located	(see	highlighting	below).	

E> s
Executing this instruction:
 00000CC58: 220000F0 store.d 0(sp),r0
Instruction executed so far: Core_0 = 2812
 total = 2812
E> s
Executing this instruction:
 00000CC5C: 1E0010F1 load.d r1,16(sp) # offset = 0x10
Instruction executed so far: Core_0 = 2813
 total = 2813
E> << ENTER >>
Number of running cores: 1
Currently selected: Core_0

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	76 147

Chapter	3:	Commands	

Instruction executed so far: Core_0 = 2813
 total = 2813
CURRENT LOCATION OF PC:
 CALL on line 65 in function "foo1" [MyProgram.c]
 00000CC60: 1900010E call _function_13_foo2 # PC + 0x10
E>

n stepn

This	command	prompts	for	a	number	and	then	executes	that	number	of	statements.	
Either	“stepn”	or	the	abbreviation	“n”	can	be	used.	For	example:	

E> stepn
Enter the number of instructions to execute (in decimal): 100
Beginning execution...
Done!
E> n
Enter the number of instructions to execute (in decimal): 23
Beginning execution...
Done!
E> << ENTER >>
Number of running cores: 1
Currently selected: Core_0
Instruction executed so far: Core_0 = 123
 total = 123
CURRENT LOCATION OF PC:
 _CheckVersion_P_System_:
 000002D28: 22FFFEF8 store.d -8(sp),lr # offset = 0xFFF8
E>

		
If	multiple	cores	are	runnable	and	the	number	entered	is	large	enough,	timeslicing	
will	occur	and	all	cores	will	make	progress.	

Execution	may	halt	prematurely,	under	the	same	circumstances	that	would	halt	
execution	for	the	“go”	command.	This	includes	errors	and	instructions	like	DEBUG.	

t

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	77 147

Chapter	3:	Commands	

The	“t”	command	is	similar	to	the	“go”	command	in	that	it	begins	execution.	Here	
are	the	differences:	

	 Execution	will	halt	after…	
	 	 A	CALL	instruction	is	executed.	
	 	 A	RETURN	instruction	is	executed.	
	 	 A	SYSRET	instruction	is	executed.	
	 	 A	SYSCALL	instruction	is	executed 	12

	 	 An	exception	occurs.	
	 Only	the	currently	selected	core	will	run.	

Here	is	an	example:	

E> t
 Within Function "foo1" [MyProgram.c]
 _function_12_foo1:
 00000CC2C: 22FFFEF8 store.d -8(sp),lr # offset = 0xFFF8
Instr count = 2808
E> t
 Within Function "foo2" [MyProgram.c]
 _function_11_foo2:
 00000CC50: 22FFFEF8 store.d -8(sp),lr # offset = 0xFFF8
Instr count = 2814
E> t
 RETURN on line 65 in function "foo2" [MyProgram.c]
 00000CC78: 1A0000E0 ret # synthetic for JALR r0,0(lr)
Instr count = 2825
E> t
 RETURN on line 47 in function "foo1" [MyProgram.c]
 00000CC4C: 1A0000E0 ret # synthetic for JALR r0,0(lr)
Instr count = 2828
E> t

This	instruction	allows	the	programmer	to	jump	through	the	execution	of	the	
program	at	a	much	faster	rate	than	with	the	“step”	command.	

	The	SYSCALL	instruction	causes	an	exception,	and	exceptions	cause	a	halt.	12

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	78 147

Chapter	3:	Commands	

Debugging	Trick:	How	to	Back	Up	Execution	

Assume	you	want	to	back	up	the	program’s	execution.	That	is,	you	want	to	execute	in	
reverse,	undoing	the	execution	of	one	or	more	instructions,	until	you	get	to	some	
particular	point	in	the	past.	How	can	this	be	done?	

The	trick	is	to	restart	the	program	from	the	beginning	and	execute	instructions	up	to	
the	point	in	time	you	want.	

It	is	helpful	that	commands	like	“t"	displays	the	instruction	count.	The	instruction	
count	is	the	number	of	machine	instructions	that	have	been	executed	so	far	and	we	
can	use	this	number	to	identify	when	in	the	past	we	want	to	reach.	

To	get	to	a	point	in	the	past,	we	can	simply	issue	a	“reset”	command	and	then	use	
the	“stepn”	command	to	get	to	the	desired	point. 	13

For	example,	looking	back	at	the	previous	example,	let’s	assume	we	have	gone	a	little	
too	far.	We	wish	we	had	stopped	right	before	the	return	from	“foo2”	and	so	we	could	
have	looked	at	the	local	variables	of	“foo2”	directly	before	the	return.	We	see	that	
the	return	from	“foo2”	happened	at	2825;	this	is	our	target. 	14

KPL	always	ends	a	function	with	3	instructions	(restore	the	stack,	restore	register	lr,	
and	the	RET	instruction).	

So	compute	2825	-	3	to	get	2822.	

First	we	issue	the	“reset”	command,	which	restarts	the	emulator.	

E> reset
Resetting all processor state and re-reading file "MyProgram.exe"...
Reading executable file...
The executable file (MyProgram.exe) was loaded. The _entry address (0x00001885C)
was loaded into register r6.
E>

	This	assumes	that	only	one	core	is	running.	If	you	are	emulating	a	multicore	system	and	13

timeslicing	is	occurring,	this	must	be	taken	into	account.	The	“t”	command	disables	timeslicing	
while	the	“stepn”	command	does	not,	so	the	instruction	counts	may	be	different.

	The	“t”	command	stops	after	the	CALL	or	RET	instruction	is	executed.	So	2825	is	the	count	after	14

the	RET.

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	79 147

Chapter	3:	Commands	

Then	we	issue	an	“stepn”	command	(abbreviation:	“n”),	with	the	computed	count.	

E> stepn
Enter the number of instructions to execute (in decimal): 2822
Beginning execution...
MyProgram running...
Done!
E>

Then	we	hit	ENTER	to	see	where	we	are:	the	return	within	“foo2”.	We	see	the	ADDI	
instruction,	which	adjusts	to	the	stack	pointer,	is	next	so	this	conWirms	that	we	are	
were	we	want	to	be.	

E> << ENTER >>
Number of running cores: 1
Currently selected: Core_0
Instruction executed so far: Core_0 = 2822
 total = 2822
CURRENT LOCATION OF PC:
 RETURN on line 65 in function "foo2" [MyProgram.c]
 00000CC70: 010008FF addi sp,sp,8
E>

Then	the	“stack”	command	can	be	used	to	view	the	local	variables	in	“foo2.”	In	this	
function,	there	is	only	one,	named	“myArg”.	

E> stack
 Function/Method Execution at... File
 ============================== ==================== ==============================
 foo2 RETURN line 65 MyProgram.c
 foo1 CALL line 46 MyProgram.c
 main CALL line 37 MyProgram.c
 _kplEntry MyProgram.c
 _entry runtime.s

-------------------- foo2 --------------------
Execution is stopped at RETURN on line 65 in function "foo2" [MyProgram.c]
 Code Address: 00000cc6c
 Frame: 00fffff98 - 00fffffa0, size = 0x8 (decimal 8)
 arg offset 8 0x0008... 00fffffa0: 0000000000000000 myArg: int = 0
I can show you the frames of the callers. How many more frames would you like to
see (hit ENTER if none)? << ENTER >>
E>

Finally	we	might	use	the	“step”	command	to	execute	the	Winal	3	instructions	of	the	
function:	

E> s
Executing this instruction:

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	80 147

Chapter	3:	Commands	

 00000CC70: 010008FF addi sp,sp,8
Instruction executed so far: Core_0 = 2823
 total = 2823
E> s
Executing this instruction:
 00000CC74: 1EFFF8FE load.d lr,-8(sp) # offset = 0xFFF8
Instruction executed so far: Core_0 = 2824
 total = 2824
E> s
Executing this instruction:
 00000CC78: 1A0000E0 ret # synthetic for JALR r0,0(lr)
Instruction executed so far: Core_0 = 2825
 total = 2825
E>

watch

The	“watch”	command	is	used	to	stop	execution	whenever	a	particular	address	in	
memory	is	stored	into.	

In	this	example,	we	Wirst	use	the	“globals”	command	to	learn	the	address	of	a	
variable	called	“myGlob”.	The	address	is	highlighted	below:	

E> globals
From package "MyProgram.c"...
 line 100 000002880: ffffffffffffffff myGlob: int = -1
 line 115 000002888: 1234567890abcdef randomSeed: int = 1311768467294899695
 line 102 000002890: 48 myGlobChar: byte = 'H' (decimal 72)
 line 5 0000029d0: 0000000000000000 MyGlobal: int = 0
 line 101 0000029d8: 0000000000000000 myGlobVar2: String = null
From package "runtime.s"...
From package "HostInterface.c"...
 line 84 0000023c8: 00000000000023e0 stdin: ptr --> 00000000 00000000 00000000
 00000001 00000000 00000002...
 line 85 0000023d0: 00000000000023e8 stdout: ptr --> 00000000 00000001 00000000
 00000002 00000000 00018e88...

 	…	etc	…
E>

Next,	we	use	the	“watch”	command	and	provide	this	address:	

E> watch

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	81 147

Chapter	3:	Commands	

 Execution will halt whenever this address is stored into.
 Enter 0 to display the previous watch address.
 Enter -1 to cancel a previous watch address.
Enter the address in hex: 000002880
Execution will halt whenever address 0x000002880 is stored into.
E>

Then	we	issue	the	“go”	command	to	begin	execution.	The	2796-th	instruction	to	be	
executed	was	a	STORE	into	this	location.	We	also	see	the	value	that	was	stored.	

E> g
Beginning execution...
MyProgram running...

********** The value 0x000000000001e240 was stored into the 'watched'
 address (000002880) at instr time = 2796 **********
Done!
E>

We	can	then	use	the	“hex”	command	to	interpret	this	value	as	a	decimal	number,	a	
series	of	ASCII	codes,	and	as	a	double	precision	Wloating	point	number.	The	variable	
“myGlob”	had	type	int	as	we	saw	earlier,	so	we	can	focus	on	the	decimal	value.	

E> hex
Enter a value in hex: 0x000000000001e240
 hex: 0x000000000001E240 >120 KiBytes
 decimal: 123456
 ascii: ".......@"
 real: 6.099536837297693335786247689e-319
E>

To	determine	were	in	the	source	code	this	occurred,	we	just	hit	ENTER.	Since	
execution	is	stopped,	about	to	execute	the	instruction	following	the	STORE,	we	are	
likely	stopped	on	the	line	just	after	the	update	to	the	variable:	

E> << ENTER >>
Number of running cores: 1
Currently selected: Core_0
Instruction executed so far: Core_0 = 2796
 total = 2796
CURRENT LOCATION OF PC:
 RETURN on line 108 in function "foo4" [MyProgram.c]
 00000CE54: 04006406 movi r6,100 # synthetic for XORI r6,r0,0x64
E>

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	82 147

Chapter	3:	Commands	

This	command	will	allow	only	one	“watched”	location	at	a	time. 	The	watch	remains	15

in	effect	until	cancelled.	

The	user	can	hit	ENTER	to	see	which	address	is	being	watched	and	-1	to	cancel	a	
watch.	

E> watch
 Execution will halt whenever this address is stored into.
 Enter 0 to display the previous watch address.
 Enter -1 to cancel a previous watch address.
Enter the address in hex: << ENTER >>
Execution will halt whenever address 0x000002880 is stored into.
E> watch
 Execution will halt whenever this address is stored into.
 Enter 0 to display the previous watch address.
 Enter -1 to cancel a previous watch address.
Enter the address in hex: -1
From now on, no address is being watched.
E> watch
 Execution will halt whenever this address is stored into.
 Enter 0 to display the previous watch address.
 Enter -1 to cancel a previous watch address.
Enter the address in hex: << ENTER >>
There is no current watch address.
E>

The	watched	address	is	the	address	of	a	byte	and	need	not	be	aligned.	Any	STORE	—	
whether	byte,	halfword,	word,	or	doubleword	—	that	includes	the	watched	byte	will	
trigger	a	halt.	

reset

This	command	will	reset	the	emulator	as	if	the	user	had	executed	a	“quit”	command	
and	then	restarted	the	emulator.	

The	“reset”	command	will:	

	 •	If	the	BootROM	has	been	updated,		

	We	can	certainly	imagine	a	debugger	that	allows	multiple	locations	to	be	watched	15

simultaneously,	but	in	practice,	one	at	a	time	is	adequate.	In	fact,	the	“watch”	command	is	used	
quite	rarely.

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	83 147

Chapter	3:	Commands	

	 	 ask	about	updating	the	“emulationROM”	Wile	
	 •	If	the	SecureStorage	has	been	updated,		
	 	 ask	about	updating	the	“emulationSecure”	Wile	
	 •	Re-read	the	“emulationParms”	Wile	
	 •	Reset	the	ROM	from	the	“emulationROM”	Wile	
	 •	Reset	the	SecureStorage	from	the	“emulationSecure”	Wile	
	 •	Reset	all	processors	the	their	initial	state	
	 	 Clear	all	registers,	clear	private	and	shared	memory	
	 •	Reset	the	instruction	counters	and	cycle	clocks	
	 •	Reset	I/O	devices	
	 •	Re-read	the	executable	Wile	and	the	debugging	information	
	 •	Reset	the	multicore	timeslice	scheduling	

This	command	will	always	leave	the	emulator	in	“command	mode”.	It	will	not	start	
execution.	

rerun

The	“rerun”	command	is	equivalent	to	executing	a	“reset”	command	to	completely	
reset	the	processor	state,	followed	by	the	“go”	command	to	start	execution	from	
beginning.	

In	the	following	example,	we	load	and	begin	execution	of	a	program.	The	program	
prints	a	message	(see	highlighting)	and	then	stops	after	encountering	a	DEBUG	
instruction.	

Shell% blitz MyProgram.exe -g -nowarn
MyProgram running...

**** A DEBUG machine instruction was executed *****

Next instruction to execute:
 DEBUG (line 38)
 ---------- ################# here #################
 00000CBDC: 00280000 debug

Entering machine-level debugger...
===
===== =====
===== The Blitz-64 Machine Emulator =====
===== by Harry H. Porter III =====

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	84 147

Chapter	3:	Commands	

===== 6 May 2021 =====
===== =====
===

Enter a command at the prompt. Type 'quit' to exit or 'help' for info about
commands.
E>

In	a	separate	window	(not	shown)	we	edit	and	recompile	our	program.	We	changed	
the	message.	Then	we	use	the	“rerun”	command	to	reset	the	processor	state	and	re-
run	the	program.	We	can	see	that	the	modiWied	program	is	now	executed	and	the	
message	is	now	different:	

E> rerun
MyProgram running... HELLO WORLD!

**** A DEBUG machine instruction was executed *****

Next instruction to execute:
 DEBUG (line 38)
 ---------- ################# here #################
 00000CBEC: 00280000 debug
E>

The	above	example	illustrates	the	use	of	this	command	in	a	common	approach	to	
debugging:	

	 Write	and	run	a	new	program.	
	 REPEAT	
	 	 See	a	problem.	
	 	 	 [Use	debugging	commands	to	explore	the	state	after	an	error	is	reported.]	
	 	 Edit	the	program.	
	 	 Recompile	the	program.	
	 	 Re-run	the	program	(use	the	“rerun”	command).	
	 UNTIL	program	works 	16

	The	actual	expression	is	(programWorks	|	sleepy	|	hungry).	A	REPEAT-UNTIL	is	more	16

appropriate	than	a	WHILE,	since	the	loop	will	always	iterate	at	least	once.

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	85 147

Chapter	3:	Commands	

hex
dec
ascii

These	three	commands	exist	for	convenience	and	have	nothing	to	do	with	debugging	
or	emulation.	It	is	just	handy	to	be	able	to	convert	from	hex	into	other	forms.	

The	“hex”	command	asks	for	a	value	to	be	entered	in	hex.	The	“dec”	command	asks	
for	a	value	to	be	entered	in	decimal.	The	“ASCII”	command	asks	for	a	single	
character	to	be	entered.	

All	commands	do	the	same	thing.	The	input	is	converted	to	a	64	bit	value,	which	is	
then	displayed	in	hex,	decimal,	ascii,	and	as	a	double	precision	value.	

A	hex	value	can	be	entered	in	upper	or	lowercase	and	the	“0x”	preWix	is	optional.	
Also,	a	negative	sign	is	allowed,	as	in	the	highlighted	line:	

E> hex
Enter a value in hex: 1e240
 hex: 0x000000000001E240 >120 KiBytes
 decimal: 123456
 ascii: ".......@"
 real: 6.099536837297693335786247689e-319
E> hex
Enter a value in hex: 0x000000000001E240
 hex: 0x000000000001E240 >120 KiBytes
 decimal: 123456
 ascii: ".......@"
 real: 6.099536837297693335786247689e-319
E> hex
Enter a value in hex: -abc
 hex: 0xFFFFFFFFFFFFF544 (-0xabc)
 decimal: -2748
 ascii: ".......D"
 real: nan
E>

The	“dec”	command	is	mostly	useful	for	converting	decimal	into	hex.	The	decimal	
value	can	be	entered	in	upper	or	lowercase	and	the	“0x”	preWix	is	optional.	Also,	a	
negative	sign	is	allowed:	

E> dec
Enter a value in decimal: -1234
 hex: 0xFFFFFFFFFFFFFB2E (-0x4d2)
 decimal: -1234

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	86 147

Chapter	3:	Commands	

 ascii: "........"
 real: nan
E> dec
Enter a value in decimal: 123456789
 hex: 0x00000000075BCD15 >117 MiBytes
 decimal: 123456789
 ascii: ".....[.."
 real: 6.099575819077150210138583221e-316
E>

The	“ascii”	command	is	mostly	useful	for	determining	the	ASCII	code	for	a	given	
character.	You	must	enter	a	line	containing	a	exactly	one	character	from	the	ASCII	
character	set.	

E> ascii
Enter a single character followed by a newline/return: k
 hex: 0x000000000000006B
 decimal: 107
 ascii: ".......k"
 real: 5.286502410501338022689286084e-322
E>

parms

In	order	to	startup,	the	emulator	needs	some	basic	information	about	the	Blitz-64	
processor	to	be	emulated.	For	example,	it	needs	to	know	how	much	memory	the	
system	will	have,	how	many	cores,	and	so	on.	

This	information	is	normally	kept	in	a	Wile	named	“emulationParms”.	If	this	Wile	
exists	upon	startup	(or	at	a	“reset”	or	“rerun”	command),	it	will	be	read	and	the	
values	of	the	parameters	will	be	gotten	from	the	Wile.	If	the	Wile	does	not	exist,	then	
default	values	will	be	used.	

The	“parms”	command	is	used	to	

	 •	Display	the	current	values	of	the	“emulation	parameters”,	and	
	 •	Create	a	new	“emulationParms”	Wile.	

The	command	begins	by	displaying	the	current	values.	In	the	following	example,	
there	was	no	“emulationParms”	Wile	upon	start	up	and	these	are	the	default	values.	

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	87 147

Chapter	3:	Commands	

The	command	asks	whether	a	Wile	containing	the	defaults	should	be	created	(see	
highlighted):	

E> parms
========================= Emulation Parameters ==============================
 PRIVATE_MEMORY_SIZE 0x0000000040000000 (decimal: 1073741824)
 SHARED_MEMORY_SIZE 0x0000000040000000 (decimal: 1073741824)
 NUMBER_OF_TLB_REGS 0x0000000000000010 (decimal: 16)
 VALUE_OF_CSR_VERSION 0x000249F000000001 (decimal: 644245094400001)
 INITIAL_VALUE_OF_PC 0x0000000400000000 (decimal: 17179869184)
 CORES_NUMBER_OF_COLS 0x0000000000000001 (decimal: 1)
 CORES_NUMBER_OF_ROWS 0x0000000000000001 (decimal: 1)
 CORES_NUMBER_OF_PLANES 0x0000000000000001 (decimal: 1)
 BOOT_ROM_START_ADDR 0x0000000400000000 (decimal: 17179869184)
 BOOT_ROM_NUMBER_OF_PAGES 0x0000000000000040 (decimal: 64)
 SECURE_STORAGE_START_ADDR 0x0000000400100000 (decimal: 17180917760)
 SECURE_STORAGE_NUMBER_OF_PAGES 0x0000000000000001 (decimal: 1)
 SIMPLE_SERIAL_START_ADDR 0x0000000400104000 (decimal: 17180934144)
 HOST_DEVICE_START_ADDR 0x0000000400108000 (decimal: 17180950528)
 DEBUG_INVOKES_EMULATOR 0x0000000000000001 (decimal: 1)
 START_ALL_CORES 0x0000000000000000 (decimal: 0)
 IN_RAW_IGNORE_CONTROL_C 0x0000000000000000 (decimal: 0)
 TRANSLATE_INPUT_CR_TO_NL 0x0000000000000001 (decimal: 1)
===

=== ABOUT THE EMULATION PARAMETERS...
===
=== The emulation parameters are read in from the file "emulationParms", if it exists
=== when the emulator starts up. If the file does not exist at startup, defaults
=== are assumed. You may edit the "emulationParms" file to change the values. To re-read
=== an updated "emulationParms" file, either restart the emulator or use the “reset"
=== command.

The file "emulationParms" does not seem to exist and the above values are the defaults.

Would you like me to write these values out, creating a new file? y
The "emulationParms" file has been written out.
E>

In	this	case,	the	user	answered	“yes”	and	a	text	Wile	named	“emulationParms”	was	
created.	Here	are	the	contents	of	this	Wile:	

Blitz-64 Emulation Parameters
#
This file is read by the Blitz-64 emulator when it starts up and after a
"reset" command. This file is used to initialize various values that
will be used by the emulator.
#
This file was produced by the emulator with the "parms" command. It may
be edited to change any or all values.
#
Each line has variable name followed by an integer value. A value may
be specified in either decimal (e.g., "1234") or hex (e.g., "0x1234abcd56780000").
Values may be left out if desired, in which case a default will be used.
#
#

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	88 147

Chapter	3:	Commands	

PRIVATE_MEMORY_SIZE 0x0000000040000000
SHARED_MEMORY_SIZE 0x0000000040000000
NUMBER_OF_TLB_REGS 0x0000000000000010
VALUE_OF_CSR_VERSION 0x000249F000000001
INITIAL_VALUE_OF_PC 0x0000000400000000
CORES_NUMBER_OF_COLS 0x0000000000000001
CORES_NUMBER_OF_ROWS 0x0000000000000001
CORES_NUMBER_OF_PLANES 0x0000000000000001
BOOT_ROM_START_ADDR 0x0000000400000000
BOOT_ROM_NUMBER_OF_PAGES 0x0000000000000040
SECURE_STORAGE_START_ADDR 0x0000000400100000
SECURE_STORAGE_NUMBER_OF_PAGES 0x0000000000000001
SIMPLE_SERIAL_START_ADDR 0x0000000400104000
HOST_DEVICE_START_ADDR 0x0000000400108000
DEBUG_INVOKES_EMULATOR 0x0000000000000001
START_ALL_CORES 0x0000000000000000
IN_RAW_IGNORE_CONTROL_C 0x0000000000000000
TRANSLATE_INPUT_CR_TO_NL 0x0000000000000001

To	modify	the	parameters,	the	user	can	edit	this	Wile	with	some	text	editor	and	
modify	the	hex	values	directly.	Upon	restarting	the	emulator,	the	“parms”	command	
can	be	used	to	verify	the	new	values.	The	highlighted	area	show	some	changes	that	
have	been	made.	

E> parms
========================= Emulation Parameters ==============================
 PRIVATE_MEMORY_SIZE 0x0000000080000000 (decimal: 2147483648)
 SHARED_MEMORY_SIZE 0x0000000004000000 (decimal: 67108864)
 NUMBER_OF_TLB_REGS 0x0000000000000010 (decimal: 16)
 VALUE_OF_CSR_VERSION 0x000249F000000001 (decimal: 644245094400001)
 INITIAL_VALUE_OF_PC 0x0000000400000000 (decimal: 17179869184)
 CORES_NUMBER_OF_COLS 0x0000000000000002 (decimal: 2)
 CORES_NUMBER_OF_ROWS 0x0000000000000003 (decimal: 3)
 CORES_NUMBER_OF_PLANES 0x0000000000000004 (decimal: 4)
 BOOT_ROM_START_ADDR 0x0000000400000000 (decimal: 17179869184)
 BOOT_ROM_NUMBER_OF_PAGES 0x0000000000000040 (decimal: 64)
 SECURE_STORAGE_START_ADDR 0x0000000400100000 (decimal: 17180917760)
 SECURE_STORAGE_NUMBER_OF_PAGES 0x0000000000000001 (decimal: 1)
 SIMPLE_SERIAL_START_ADDR 0x0000000400104000 (decimal: 17180934144)
 HOST_DEVICE_START_ADDR 0x0000000400108000 (decimal: 17180950528)
 DEBUG_INVOKES_EMULATOR 0x0000000000000001 (decimal: 1)
 START_ALL_CORES 0x0000000000000000 (decimal: 0)
 IN_RAW_IGNORE_CONTROL_C 0x0000000000000000 (decimal: 0)
 TRANSLATE_INPUT_CR_TO_NL 0x0000000000000001 (decimal: 1)
===

=== ABOUT THE EMULATION PARAMETERS...
===
=== The emulation parameters are read in from the file "emulationParms", if it exists
=== when the emulator starts up. If the file does not exist at startup, defaults
=== are assumed. You may edit the "emulationParms" file to change the values. To re-read
=== an updated "emulationParms" file, either restart the emulator or use the "reset"
=== command.

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	89 147

Chapter	3:	Commands	

The file "emulationParms" already exists.

Would you like me to write these values out, overwriting the existing file? n
E>

If	the	“emulationParms”	Wile	contains	errors	when	it	is	read	in,	the	emulator	will	
complain	with	an	error	message	and	ignore	all	the	parameters.	

E> reset
Resetting all processor state and re-reading file "MyProgram.exe"...

***** ERROR in "emulationParms" file: CORES_NUMBER_OF_COLS is not 0..1023!
***** ERROR in "emulationParms" file: An attempt to set non-existent
 value "BOOT_ROM_START_ADDRxx"!
***** ERROR in "emulationParms" file: The line beginning
 "SECURE_STORAGE_NUMBER_OF_PAGES" has no value!
***** ERROR in "emulationParms" file: All values in the file
 have been ignored. Use the "parms" command.
E>

rom

Upon	power-up	every	Blitz	core	begins	by	executing	a	boot	program	which	is	located	
in	read-only	memory	(ROM).	This	area	of	memory	is	called	the	“BootROM”.	The	
Program	Counter	(PC)	is	initialized	to	the	Wirst	address	in	the	BootROM	and	
execution	begins	with	the	Wirst	instruction	being	fetched	from	the	Wirst	bytes	of	the	
BootROM	area.	This	program	is	called	the	“BootROM	program”.	

The	BootROM	code	is	a	short	program	that	is	responsible	for	getting	the	processor	
going.	Tasks	might	include	running	a	Power-On-Test	(POST)	to	determine	if	the	core	
is	functional	and	determining	how	much	memory	is	installed	and	resetting	the	I/O	
devices.	The	main	task	is	often	to	read	in	something	(such	as	a	kernel)	from	storage	
(i.e.,	or	disk	or	Wlash	memory)	and	end	execution	by	transferring	to	the	storage-
based	program	it	read	in.	The	BootROM	code	might	also	provide	a	few	critical	
functions	that	can	be	used	later.	Examples	include	some	form	of	very	basic	
character-based	output	which	can	be	used	for	error	messages	when	all	else	fails.	The	
BootROM	might	use	these	functions	itself	to	print	out	diagnostic	messages	during	
the	boot	process.	

Historical	Comments	

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	90 147

Chapter	3:	Commands	

In	non-Blitz	computers,	the	program	equivalent	to	our	BootROM	code	is	called	
“BIOS”,	but	we	don’t	use	this	term	for	Blitz.	The	term	“BIOS”	implies	a	set	of	concrete	
speciWications	and	behavior	that	applies	primarily	to	Windows/PC	machines.	

BIOS	ends	its	execution	by	reading	a	single	512	byte	block,	called	the	“Master	Boot	
Record”	(MBR),	from	disk/Wlash	storage	and	jumping	to	that.	512	is	not	a	lot	of	
space	for	a	program,	so	a	multi-step	boot	process	was	required.	It	works	like	this:	
BIOS	reads	in	a	512	byte	block	of	memory	and	jumps	to	it.	The	code	in	the	512	byte	
block	is	called	the	“Boot	Loader-First	Stage”.	This	program	then	reads	in	a	larger	
program	called	the	“Boot	Loader-Second	Stage”.	

The	Wirst	stage	was	necessarily	a	very	small	program,	limited	to	512	bytes,	so	it	is	not	
able	to	parse	and	understand	disk	partitions	or	a	complex	Wile	system.	Therefore,	the	
Wirst	stage	simply	reads	a	Wixed,	predetermined	area	of	disk/Wlash	storage.	For	
example,	if	the	MBR	(master	boot	record)	is	block	0,	the	Wirst	stage	code	might	read	
blocks	1-31	from	storage	and	jump	to	them.	The	second	stage	is	then	capable	of	
looking	at	the	Wile	system	and	understanding	directories	and	so	on.	If	the	storage	
device	is	partitioned,	it	will	need	to	understand	that	as	well.	So	the	second	stage	is	a	
more	sophisticated	program	capable	of	searching	the	Wile	system	and	locating	the	Wile	
containing	the	desired	OS	kernel.	The	second	stage	loads	the	kernel	and	jumps	to	it.	
It	is	the	second	stage	that	determines	which	kernel	(of	there	are	several	available)	
will	be	chosen	to	execute.	

Since	the	blocks	containing	the	second	stage	must	be	at	Wixed	locations	(such	as	
contiguous	blocks	1-31	in	our	example),	the	second	stage	essentially	lives	outside	
any	partitions	of	Wile	systems.	The	boot	process	also	lives	outside	of	any	security	
protection	provided	by	the	OS	kernel,	so	it	is	a	point	of	vulnerability.	The	boot	
process	must	be	absolutely	secure,	protected,	reliable,	and	impenetrable	to	malware,	
or	else	the	kernel	it	loads	can	be	compromised. 	17

Over	time,	we’ve	seen…	

	 •	An	increase	in	the	number	of	Wile	systems	
	 •	An	increase	in	the	number	of	OS	kernels	
	 •	An	increase	in	the	variety	of	hardware		
	 •	An	increase	in	the	security	threats	and	malware	attacks		

	In	2021,	we	really	ought	to	say	“will	be	compromised”	instead	of	“can	be	compromised”.17

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	91 147

Chapter	3:	Commands	

In	order	to	accommodate	the	choices,	there	has	been	an	increase	in	the	complexity	
of	the	boot	process,	leading	to	boot	processes	with	names	like	GNU	Gand	UniWied	
Bootloader	(GRUB),	OpenFirmware,	Firmware	Interface	(EFI),	UniWied	Extensible	
Firmware	Interface	(UEFI).	

The	complexity	increase	has	lead	to	a	modern	boot	loader	that	requires	drivers	and	
has	a	shell	with	multiple	commands.	This	is	beginning	to	look	like	a	single-user	OS.	
With	this	level	of	complexity,	comes	the	need	for	new	version,	software	patches,	
Wixes.	To	hide	all	this	from	the	typical	user,	the	updating	process	may	be	automated.	

A	Blitz	implementation	contains	a	section	of	memory	called	the	BootROM.	The	
starting	address	and	size	of	this	region	is	Wixed	and	unchangeable.	It	is	speciWied	by	
the	following	emulation	parameters,	so	it	can	be	changed	by	updating	the	
“emulationParms”	Wile:	

	 Parameter	Name	 Typical	Value	
BOOT_ROM_START_ADDR 0x4_0000_0000
BOOT_ROM_NUMBER_OF_PAGES 64 pages (1 MiByte)

The	Wile	“emulationROM”	contains	bytes.	In	this	example,	the	Wile	size	would	be	
exactly	1	MiByte.	Upon	startup	or	the	“reset”	command,	the	bytes	are	loaded	into	
the	processor	ROM.	

When	emulating	a	multi-core	processor,	all	cores	share	the	same	ROM.	Whether	
there	is	a	separate	copy	of	the	ROM	for	each	core	or	whether	there	is	only	one	ROM	
is	invisible	to	the	code.	

The	ROM	cannot	be	altered	by	the	Blitz	machine	instructions	since	the	ROM	is	read-
only.	

However,	the	user	of	the	emulator	can	modify	the	ROM.	In	the	following	example,	the	
“dumpMem2”	command	is	used	to	examine	the	Wirst	few	bytes	of	the	ROM	area.	The	
Wirst	8	bytes	are	highlighted.	

E> dm2
Enter the starting (physical) memory address in hex: 400000000
Enter the number of bytes in hex (or 0 to abort): 30
BOOTSTRAP ROM MEMORY:
400000000: 0300 002F 1400 010D 0400 00DD 1A00 0060 .../...........`
400000010: 002B 00F7 0500 3077 0700 3077 1100 0078 .+....0w..0w...x
400000020: 1A00 0060 1700 0241 0400 1D02 1900 074E ...`...A.......N

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	92 147

Chapter	3:	Commands	

We	can	also	disassemble	the	bytes	in	the	ROM	area	with	the	“dis”	command:	

E> dis
Enter the beginning address (in hex): 400000000
 400000000: 0300002F mov sp,r2 # synthetic for ORI _,_,0
 400000004: 1400010D upper20 gp,0x10 # decimal = 16
 400000008: 040000DD xori gp,gp,0
 40000000C: 1A000060 jalr r0,0(r6)

 	…	etc	…

Then,	we	can	use	the	“setmem”	command	to	alter	memory.	Here,	we	modify	the	Wirst	
8	bytes:	

E> setmem
Enter the (physical) memory address in hex of the doubleword to be modified: 400000000
***** This address is in Boot ROM, but you can proceed to store to it *****
The old value is:
0x400000000: 0x0300002F1400010D
Enter the new value (8 bytes in hex): 1111222233334444
0x400000000: 0x1111222233334444
E>

We	can	use	the	“dumpMem2”	command	again	to	see	the	change:	

E> dm2
Enter the starting (physical) memory address in hex: 400000000
Enter the number of bytes in hex (or 0 to abort): 30
BOOTSTRAP ROM MEMORY:
400000000: 1111 2222 3333 4444 0400 00DD 1A00 0060 ..""33DD.......`
400000010: 002B 00F7 0500 3077 0700 3077 1100 0078 .+....0w..0w...x
400000020: 1A00 0060 1700 0241 0400 1D02 1900 074E ...`...A.......N
E>

At	some	later	time,	we	will	terminate	the	emulator	with	the	“quit”command.	If	the	
ROM	has	been	changed,	the	emulator	will	ask	whether	the	new	ROM	contents	
should	be	made	permanent	by	writing	it	to	the	“emulationROM”	Wile.	

E> q
The ROM has been modified. Shall I write it out to the host file ("emulationROM")? y
The "emulationROM" file has been updated.
Shell>

There	is	also	a	“rom”	command	which	gives	the	user	a	chance	to	write	out	the	ROM	
contents	immediately.	

E> rom

=== ABOUT THE READ-ONLY MEMORY (ROM)...
===
=== This emulator supports only a single ROM memory; All cores shared this ROM.
=== The data for the ROM comes from a file called "emulationROM", if it exists

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	93 147

Chapter	3:	Commands	

=== when the emulator starts up. If this file does not exist at startup, the ROM
=== is initialized to zeros. To re-read the contents of an updated "emulationROM"
=== file, either restart the emulator or use the "reset" command.

The file "emulationROM" already exists.

Would you like me to write out the current ROM contents, overwriting the existing file? y

This	command	continues	with	a	similar	question	about	the	Secure	Storage	Device:	

=== ABOUT THE SECURE STORAGE DEVICE...
===
=== This emulator supports only a single Secure Storage device; it is shared by all cores.
=== The data for the the Secure Storage device comes from a file called "emulationSecure",
=== if it exists when the emulator starts up. If this file does not exist at startup, the
=== Secure Storage device is initialized to zeros. To re-read the contents of an updated
=== "emulationSecure" file, either restart the emulator or use the "reset" command.

The file "emulationSecure" already exists.

Would you like me to write out the current Secure Storage contents, overwriting the existing file? n
E>

The	“Secure	Storage	Device”	is	very	much	like	a	ROM	except	that	it	can	be	updated.	

The	data	for	the	Secure	Storage	Device	is	kept	in	a	Wile	called	“emulationSecure”	
From	the	point	of	view	of	the	emulator,	it	functions	very	much	like	the	ROM.	

The	Secure	Storage	Device	is	described	in:	

	 “Blitz-64:	Instruction	Set	Architecture	Reference	Manual”	

If	an	attempt	is	made	to	store	into	the	Secure	Storage	Device	after	it	is	locked,	the	
emulator	will	print	an	error	message	and	halt	execution:	

***** Probable Error in the Blitz Code: Attempt to STORE to
 Secure Storage, but it is locked! (The STORE was ignored.) *****

Entering machine-level debugger...
===
===== =====
===== The Blitz-64 Machine Emulator =====
===== by Harry H. Porter III =====
===== 6 May 2021 =====
===== =====
===

Enter a command at the prompt. Type 'quit' to exit or 'help' for info about
commands.
E>

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	94 147

Chapter	3:	Commands	

How	To	Update	BootROM	

Here	is	how	to	store	a	“BootLoader”	program	into	the	BootROM:	

	 •	Write	the	program.	
	 	 (either	hand-coded	assembler	or	large	KPL	program)	
	 •	Compile,	Assemble,	and	Link	to	produce	a	.exe	executable	Wile.	
	 •	Run	the	emulator,	without	“auto-go”	(without	“-g”	on	command	line).	
	 	 (This	will	load	the	program	into	the	ROM	area.)	
	 •	Use	the	“rom”	command	to	write	to	the	“emulationROM”	Wile.	
	 •	Quit	the	emulator.	

A	Blitz	BootLoader	will	serve	roughly	the	same	function	as	a	Wirmware	program	like	
BIOS	in	traditional	computers.	It	can	be	either	a	small,	hand-coded		
assembly	language	program	or	a	larger	KPL	program. 	18

The	assembly	program	should	start	with	a	line	such	as: 	19

.begin kernel,startaddr=0x400000000,gp=undefined

The	next	step	is	to	assemble	and	link	it:	

Shell% asm myBoot.s -o myBoot.o
Shell% link myBoot.o -o myBoot.exe -k

Then,	the	emulator	is	started	with	this	executable:	

Shell% blitz myBoot.exe
Reading executable file...
The executable file (myBoot.exe) was loaded. The _entry address (0x400000000)
was loaded into register r6.
===
===== =====
===== The Blitz-64 Machine Emulator =====
===== by Harry H. Porter III =====

	At	this	time,	all	BootLoader	programs	are	stand-alone,	hand-coded	assembly	programs.18

	The	“gp=undeZined”	might	left	off,	or	replaced	with	something	speciWic	like	19

“gp=0x400008000”.	If	left	off,	then	the	default	value	of	0x000010000	is	assumed	since	“kernel”	
is	present.	If	not	undeWined,	then	the	code	had	better	initialize	the	gp	register	as	the	Wirst	
statement.

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	95 147

Chapter	3:	Commands	

===== 6 May 2021 =====
===== =====
===

Enter a command at the prompt. Type 'quit' to exit or 'help' for info about
commands.
E>

This	will	load	the	executable	into	the	ROM	area.	Next	we	use	the	“rom”	command	to	
write	ROM	data	to	the	“emulationROM”	Wile.	

We	answer	the	question	about	writing	the	ROM	with	“yes”	and	the	question	about	
writing	the	SecureStorage	with	“no”. 	20

E> rom

=== ABOUT THE READ-ONLY MEMORY (ROM)...
===
=== This emulator supports only a single ROM memory; All cores shared this ROM.
=== The data for the ROM comes from a file called "emulationROM", if it exists
=== when the emulator starts up. If this file does not exist at startup, the ROM
=== is initialized to zeros. To re-read the contents of an updated "emulationROM"
=== file, either restart the emulator or use the "reset" command.

The file "emulationROM" already exists.

Would you like me to write out the current ROM contents, overwriting the existing file? y
The "emulationROM" file has been updated.

=== ABOUT THE SECURE STORAGE DEVICE...
===
=== This emulator supports only a single Secure Storage device; it is shared by all cores.
=== The data for the the Secure Storage device comes from a file called "emulationSecure",
=== if it exists when the emulator starts up. If this file does not exist at startup, the
=== Secure Storage device is initialized to zeros. To re-read the contents of an updated
=== "emulationSecure" file, either restart the emulator or use the "reset" command.

The file "emulationSecure" already exists.

Would you like me to write out the current Secure Storage contents, overwriting the existing file? n
E> q
Shell%

Finally,	we	issue	the	“quit”	command.	

The	next	time	the	emulator	is	started	up,	the	new	contents	of	the	ROM	will	be	
present.	

	The	second	answer	doesn’t	matter.	Since	the	Secure	Storage	has	not	been	modiWied,	writing	it	20

won’t	hurt.

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	96 147

Chapter	3:	Commands	

Upon	startup,	the	emulator	will	Wirst	load	register	r6	with	the	“EntryPoint”	from	the	
executable	.exe	Wile.	Then	it	will	load	the	PC	with	the	Wirst	address	of	the	BootRom	
(i.e.,	0x4_0000_0000)	and	begin	executing	instructions.	

For	most	KPL	programs,	we	can	use	a	very	simple	BootLoader	program	that	simply	
jumps	to	the	value	in	register	r6.	Here	is	such	a	program:	

.begin kernel,startaddr=0x400000000,gp=undefined
_entry:

.export _entry
jr r6 # Jump to address in r6 (i.e., to “_entry")

Upon	startup	or	“reset”,	the	emulator	will	read	an	executable	.exe	Wile	into	memory	
and	load	the	registers	as	follows:	

	 r1	 0x636F6C64626F6F74		(This	is	ASCII	for	“coldboot”)	
	 r2	 The	size	of	the	private	memory	in	bytes	
	 r3	 The	starting	address	of	shared	memory	
	 r4	 The	size	of	shared	memory	in	bytes	
	 r5	 The	highest	address	loaded	
	 r6	 The	value	of	“EntryPoint”	(from	the	.exe	Wile)	

The	emulator	will	then	set	PC	to	the	Wirst	address	of	the	BootROM	and	begin	
executing	the	BootLoader	program,	which	will	immediately	jump	to	the	“_entry”	
label	in	the	program.	

serial

The	“serial”	command	can	be	used	to	switch	between	“cooked”	and	“raw”	mode.	The	
command	starts	by	printing	an	explanation,	then	ends	by	asking	if	the	user	wishes	to	
switch	mode.	

E> serial
==
From time to time a running Blitz program may read characters from the "Serial
I/O" device, which is intended to model a "terminal" interface. The character
data to be supplied to the running Blitz program will come from either a file
(which is specified using the "-i filename" command line option when the

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	97 147

Chapter	3:	Commands	

emulator is started) or from the interactive user-interface which you are
apparently using now.

With this second option, you may enter characters on "stdin" at any time during
the emulation of a running Blitz program. These characters will be supplied to
the running Blitz program (via the emulated Serial I/O device). If the emulator
seems to hang, it may be because the emulator is waiting for you to type
additional characters to supply to the running Blitz code. (It may also be
because the Blitz program has gotten into an infinite loop.)

At any time you may always hit control-C to suspend instruction execution and
re-enter the emulator command interface.

Normally an operating system will process user input by echoing characters on
the screen, buffering entire lines, and processing special characters like
backspaces, etc. The OS then delivers input, one full line at a time, to
running programs. This is called "cooked" input. But for some programs cooked
input is inadequate so these program use "raw mode". In raw mode, each character
is delivered as-is immediately after the key is pressed, with no buffering and
without the normal echoing and processing of special characters.

The Blitz emulator runs in either "raw mode" or "cooked mode". Simple Blitz
applications are usually designed to be run in cooked mode, while more complex
programs (e.g., OS kernels, editors, and anything that handles control-C or
arrow keys) may be designed to operate in raw mode.

In cooked mode, the host OS will suspend the emulator until you enter a complete
line of data and hit ENTER. This allows you to use the Backspace/DELETE key,
without requiring the Blitz program to deal with corrections.

In raw mode, the normal echoing of keystrokes by the host OS is turned off. A
good Blitz program should echo all characters, so you *should* see each
keystroke echoed properly. But of course your Blitz program may not be working
properly. It may fail to echo characters because it has a bug. Also, the
running Blitz program may not handle backspaces, newlines, CRs, etc., exactly as
you and your terminal expect. It may be helpful to recall \n=Control-J,
\r=Control-M, and Backspace=Control-H. On some terminals, the ENTER key is \r,
while many programs expect to use \n for END-OF-LINE.

Note that if a Blitz program expects to run in raw mode, but is run in cooked
mode, you will see all the characters echoed, resulting in a second, identical
line. A Blitz program meant to run on hardware will probably want to echo all
character data, so a duplication of input will occur if the program is emulated
in cooked mode.

The mode only affects typed input to be delivered to the running Blitz program;
typed input to the emulator itself is always in cooked mode.

For the Simple Serial device, the raw/cooked distinction applies only to single
character and string input. The device also supports the input of integers in
decimal and hex, but this always occurs in cooked mode.

The default is cooked mode; raw mode is selected with the "-raw" command line
option. The mode may also be changed with this command.

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	98 147

Chapter	3:	Commands	

Input for the Serial I/O device will come from...... "stdin"
The current input mode is........................... "cooked"
==
Do you want to change to "raw" mode? y
The terminal is in "raw" mode.
E>  

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	99 147

Chapter	4:	Errors	and	Warnings	

Problems	During	Emulation	

Things	could	go	wrong	during	emulation.	Here	we	discuss	different	kinds	of	errors.	

Fatal	Error	

Some	error	conditions	are	considered	“fatal”	and	cause	an	error	message	to	be	
displayed,	followed	by	an	immediate	termination	of	the	emulator.	If	this	happens,	
you	might	see	a	message:	

***** Blitz Emulator Error: <details> *****

The	host	Wile	system	could	return	an	error	or	an	attempt	to	allocate	memory	might	
fail.	Here	are	two	examples:	

***** Blitz Emulator Error: Error from fseek for executable file *****

***** Blitz Emulator Error: Calloc failed - insufficient memory
 available - Shared RAM *****

Fatal	error	messages	are	sent	to	stderr,	not	stdout.	After	this,	the	emulator	will	try	
to	clean	up	and	exit	gracefully,	with	a	Unix/Linux/POSIX	exit	code	of	1.	

In	some	cases,	the	error	message	will	be	preceded	by	additional	messages	giving	
more	information	about	the	problem.	

Command	Line	Errors	

Emulator	Reference	Manual	/	Porter	 Page	 	of	100 147

Chapter	4:	Errors	and	Warnings	

Any	error	on	the	command	line	will	result	in	a	message	and	immediate	termination.	
For	example:	

***** Blitz Emulator Error: Options -raw and -i are incompatible;
 Use -h for help display. *****

The	“-nowarn”	Command	Line	Option	

If	the	emulator	is	run	with	the	“-nowarn”	option,	certain	warning	and	informational	
messages	will	be	suppressed.	

Here	we	see	a	typical	run	of	the	emulator.	The	highlighted	material	is	displayed	by	
the	emulator	during	startup,	before	execution	begins.	

Shell% blitz -g MyProgram.exe
***** WARNING: The file "emulationParms" was not found. *****
Reading executable file...
The executable file (MyProgram.exe) was loaded. The _entry address (0x00001885C)
was loaded into register r6.
Beginning execution...

😀😀😀😀😀 MyProgram running... HELLO WORLD! 😀😀😀😀😀
Shell%

With	the	use	of	“-nowarn”,	the	highlighted	material	is	suppressed:	

Shell% blitz -g MyProgram.exe -nowarn

😀😀😀😀😀 MyProgram running... HELLO WORLD! 😀😀😀😀😀
Shell%

The	“-nowarn”	option	will	suppress	some	informational	messages	and	some	
execution	warnings,	but	the	handling	of	“fatal”	errors	is	not	changed.	

Execution	Errors	

During	execution	of	Blitz	code,	certain	conditions	are	considered	errors	or	at	least	
probable	errors.	These	will	result	in	a	message	and	an	immediate	halt	to	execution.	
The	message	will	have	this	format:	

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	101 147

Chapter	4:	Errors	and	Warnings	

***** Probable Error in the Blitz Code: <details> *****

An	example	follows.	There	may	be	additional	information	displayed	(see	highlighted	
material):	

Shell% blitz -g -nowarn MyProgram.exe

***** Probable Error in the Blitz Code: Within PerformVirtualMapping,
 the physical address is uninstalled/invalid *****
Address = 0x300000000 [PHYSICAL]

***** Probable Error in the Blitz Code: Attempt to read from uninstalled address; zero returned *****
Done!

Entering machine-level debugger...
===
===== =====
===== The Blitz-64 Machine Emulator =====
===== by Harry H. Porter III =====
===== 6 May 2021 =====
===== =====
===

Enter a command at the prompt. Type 'quit' to exit or 'help' for info about commands.
E> g

In	general,	the	user	can	resume	execution	after	such	a	message	with	the	“go”	
command.	But	the	user	really	ought	to	use	other	debugging	commands	to	
understand	and	Wix	the	problem.	

Some	execution	errors	will	be	ignored	if	the	“-nowarn”	command	line	option	is	
present.	An	example	is	an	attempt	to	execute	an	illegal	instruction.	Without	“-
nowarn”,	this	will	suspend	execution,	as	shown	here:	

Shell% blitz -g MyProgram.exe
Reading executable file...
The executable file (MyProgram.exe) was loaded. The _entry address (0x00001885C) was loaded into
register r6.
Beginning execution...

***** Probable Error in the Blitz Code: Illegal instruction - Suspending execution;
 'g' will allow exception to proceed *****
***** PROBLEM INSTRUCTION: Within Function "main" [MyProgram.c]
 00000C4B0: FFFFFFFF # decimal = -1, ascii = "...."
Done!

Entering machine-level debugger...
===
===== =====
===== The Blitz-64 Machine Emulator =====
===== by Harry H. Porter III =====
===== 6 May 2021 =====
===== =====
===

Enter a command at the prompt. Type 'quit' to exit or 'help' for info about commands.

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	102 147

Chapter	4:	Errors	and	Warnings	

E>

However,	with	the	“-nowarn”	option,	emulation	will	not	halt.	

According	to	the	Blitz	ISA,	iIllegal	instructions	cause	an	“Illegal	Instruction	
Exception”	and	cause	exception	processing	to	begin.	The	kernel	executes	in	Kernel	
Mode;	an	illegal	instruction	in	the	kernel	represents	a	real	problem	and	the	
emulator’s	debugger	functionality	may	come	in	handy.	However,	User	Mode	
programs	can	be	expected	to	occasionally	execute	illegal	instructions	from	time-to-
time.	The	Blitz	OS	kernel	code	should	handle	all	User	Mode	exceptions	so—
assuming	the	kernel	can	handle	exceptions	correctly—there	is	no	reason	to	halt	
emulation.	

Other	errors	will	cause	a	message	and	halt	execution	regardless	of	the	“-nowarn”	
option.	

For	example,	any	attempt	to	read	from	uninstalled	memory	represents	a	kernel	
error	and	will	halt	execution.	This	error	should	never	happen	in	User	Mode	code,	
since	the	kernel	will	presumably	map	all	virtual	pages	into	valid	physical	memory	
pages	frames.	

Execution	error	messages	are	sent	to	stderr,	not	stdout,	in	case	stdout	is	being	
redirected	to	a	Wile.	

Program	Logic	Errors	

The	emulator	contains		number	of	internal	consistency	checks.	If	the	emulator	
detects	a	problem,	you	might	see	this	message:	

***** PROGRAM LOGIC ERROR IN BLITZ EMULATOR: <details> *****

For	example:	

***** PROGRAM LOGIC ERROR IN BLITZ EMULATOR: mod->moduleNumber != modNum *****

Such	messages	are	sent	to	stderr,	not	stdout.	After	this,	the	emulator	will	exit	
immediately,	with	Unix/Linux/POSIX	exit	code	of	1,	without	attempting	to	update	or	
close	Wiles.	

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	103 147

Chapter	4:	Errors	and	Warnings	

DIV	/	REM	Implementation	Dependencies	

When	the	DIV	and	REM	instructions	involve	a	negative	operands,	there	can	be	a	
different	result,	depending	on	what	sort	of	division	is	implemented.	For	example:	

	 		x			 		y			 		DIV			 		REM			 		(y	*	DIV)	+	REM	==	x			
Euclidean:	 -7	 -3	 3	 2	 -3	*	3	+	2	=	-7	
Truncated:	 -7	 -3	 2	 -1	 -3	*	2	+	-1	=	-7	

The	Blitz	ISA	speciWication	leaves	the	choice	open,	as	an	“implementation	
dependency”.	

If	an	attempt	is	made	to	execute	a	DIV	or	REM	instruction	where	the	outcome	is	
“implementation	dependent”,	the	emulator	will	print	a	message	and	execution	will	
halt.	For	example:	

***** Probable Error in the Blitz Code: During a REM instruction, an implementation
 dependency was encountered. The result depends on whether "truncated division" or
 "Euclidean division" is implemented. Truncated assumed. Okay to proceed with 'g'. *****

If	the	“-nowarn”	option	is	present,	the	message	will	not	be	printed	and	execution	
will	not	halt.	

Floating	Point	Dependencies	

According	to	the	Blitz	ISA,	Wloating	point	instructions	(such	as	FADD,	FMUL,	…)	can	
either	be	implemented	or	cause	an	“Emulated	Instruction	Exception”.	This	is	
conWigurable	with	the	“-fp”	command	line	option.	

If	“-fp”	is	absent,	then	every	Wloating	point	instruction	will	cause	an	Emulated	
Instruction	Exception.	

If		“-fp”	is	present,	then	the	emulator	will	execute	the	instruction.	

The	FMADD,	FNMADD,	FMSUB,	and	FNMSUB	instructions	impose	some	tricky	issues	
regarding	the	proper	setting	of	the	overZlow,	underZlow,	inexact,	and	invalid	Wlags.	
As	of	this	date,	I	have	not	implemented	this.	Any	attempt	to	executed	on	of	these	

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	104 147

Chapter	4:	Errors	and	Warnings	

instructions	will	issue	an	“unimplemented	code”	message	and	halt	execution,	unless	
“-nowarn”	is	present.	If	“-nowarn”	is	present,	execution	will	continue	without	
interruption	or	a	message.	

Tight	InZinite	Loops	

The	following	is	an	example	of	a	tight	inWinite	loop:	

LoopLabel:
jump LoopLabel

The	emulator	will	detect	such	an	instruction	and	immediately	halt	with	a	message	
like	this:	

***** Probable Error in the Blitz Code: A TIGHT INFINITE LOOP WAS DETECTED! *****
***** The jump-to-self instruction:
 LoopLabel:
 00000A248: 19000000 jump LoopLabel # PC + 0x0

If	(for	some	reason)	you	really	want	an	inWinite	loop	to	be	executed,	you	can	code	this	
instead:	

LoopLabel:
nop
jump LoopLabel

The	emulator	will	not	recognize	this	as	special	and	will	merrily	spin.	In	that	case,	
you	can	use	control-C	to	halt	emulation	and	regain	control.	

To	debug	code	using	the	emulator,	it	is	common	to	place	DEBUG	instructions	within	
your	code.	Whenever	a	DEBUG	instruction	is	encountered,	the	emulator	goes	into	
command	mode	and	you	can	begin	debugging.	

However,	when	running	kernel	code,	you	may	want	DEBUG	and	BREAKPOINT	
instructions	to	function	normally	and	cause	exceptions	(per	the	Blitz-64	ISA)	and	
not	halt	emulation.	To	do	this,	you	would	run	the	emulator	with	the	-nodebug	
option	or	set	the	DEBUG_INVOKES_EMULATOR	parameter	to	false.	

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	105 147

Chapter	4:	Errors	and	Warnings	

In	such	situations,	you	can	use	a	tight	inWinite	loop	check	described	here	to	suspend	
emulation	and	regain	control.	

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	106 147

Chapter	5:	Miscellaneous	Instructions	

The	SLEEP1	Instruction	

According	to	the	Blitz	Instruction	Set	Architecture	(ISA),	the	SLEEP1	instruction	will	
place	the	core	in	a	“sleep	state”	and	suspend	instruction	execution	until	an	interrupt	
is	received.	

At	this	time,	the	emulator	does	not	implement	any	sources	of	external	interrupts.	At	
some	future	time,	we	expect	inter-core	interrupts	at	a	min	

With	the	emulator,	the	execution	of	a	SLEEP1	instruction	will	cause	execution	of	that	
core	to	halt	and	the	status	to	be	changed	from	RUNNING	to	SLEEP-1.	

If	the	emulator	is	conWigured	with	only	one	core	or	there	are	no	other	RUNNING	
cores,	all	execution	will	halt	and	debugging	commands	will	be	accepted.	If	there	are	
other	RUNNING	cores,	execution	will	continue	with	other	cores.	

The	following	message	will	be	printed,	unless	option	“-nowarn”	was	present	on	the	
command	line:	

***** Core N executed a SLEEP1 instruction and has been halted! *****

The	SLEEP2	Instruction	

Like	SLEEP1,	the	SLEEP2	instruction	will	place	a	core	in	a	“sleep	state”	and	suspend	
instruction	execution	until	an	interrupt	is	received.	In	a	hardware	implementation,	
the	power	consumption	in	the	two	sleep	states	may	be	different,	with	SLEEP2	being	
a	deeper,	lower	power	version.	

With	the	emulator,	the	SLEEP2	instruction	will	terminate	the	execution	of	the	
current	core	and	change	its	status	from	RUNNING	to	SLEEP-2.	

Emulator	Reference	Manual	/	Porter	 Page	 	of	107 147

Chapter	5:	Miscellaneous	Instructions	

But	there	is	more.	SLEEP2	is	used	to	implement	the	“EmulatorShutdown”	function.	
If	the	emulator	is	running	with	“auto-go”,	then	the	emulator	itself	will	terminate.	It	
will	return	a	Unix/Linux/POSIX	return	code	using	the	value	in	register	r1.	

For	example:	

Shell% blitz MyProgram.exe -g -nowarn

😀😀😀😀😀 MyProgram running... HELLO WORLD! 😀😀😀😀😀
Shell% echo $?
123
Shell%

If	the	emulator	is	not	running	with	“auto-go”,	then	a	message	will	be	printed	and	the	
execution	of	all	cores	will	be	halted.	Other	cores	will	keep	their	status	of	RUNNING,	
but	the	emulator	will	begin	accept	debugging	commands.	For	example:	

Shell% blitz MyProgram.exe
 	…	startup	messages	…
E> g
Beginning execution...

😀😀😀😀😀 MyProgram running... HELLO WORLD! 😀😀😀😀😀
Emulation stopped by SLEEP2 instruction; EXIT CODE: r1 = 123!
***** Core 0 executed a SLEEP2 instruction and has been halted! *****
Done!
E>

The	DEBUG	Instruction	

According	to	the	Blitz-64	Instruction	Set	Architecture	(ISA),	the	DEBUG	instruction	
shall	cause	a	“Debug	Exception”.	

The	emulator	will	either	process	the	DEBUG	instruction	according	to	the	ISA	or	will	
halt	execution	and	enter	the	emulator’s	debugging	command	mode.	This	is	
controlled	by	a	parameter	in	the	“emulationParms”	Wile:	

DEBUG_INVOKES_EMULATOR 0x0000000000000001

If	the	value	is	1	(i.e.,	true),	the	emulator	will	halt	and	enter	debugging	mode.	If	0	(i.e.,	
false)	the	emulator	will	execute	the	DEBUG	instruction	according	to	the	ISA	and	
execution	will	not	be	halted.	

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	108 147

Chapter	5:	Miscellaneous	Instructions	

The	default	value	is	1:	the	DEBUG	instruction	will	halt	execution.	

The	DEBUG	instruction	is	conveniently	inserted	at	any	point	in	a	KPL	program	with	
the	debug	statement.	The	debug	statement	can	optionally	be	followed	by	a	string:	

 function main ()

 …	etc…
 debug

 …	etc…
 debug "This is a message"

When	the	emulator	hits	the	Wirst	DEBUG	instruction	it	displays	the	source	line	
number	where	the	debug	statement	occurred,	the	address	in	memory,	and	a	
message	designed	to	catch	the	eye.	See	highlighting:	

Shell% blitz MyProgram.exe -nowarn

 …	etc…
**** A DEBUG machine instruction was executed *****

Next instruction to execute:
 DEBUG (line 21)
 ---------- ################# DEBUG #################
 00000C510: 00280000 debug
E>

Next,	we	will	continue	execution	with	the	“go”	command.	When	the	emulator	hits	
the	second	DEBUG	instruction,	it	displays	the	informative	message	as	well:	

E> g

 …	etc…
**** A DEBUG machine instruction was executed *****

Next instruction to execute:
 DEBUG (line 34)
 ---------- ################# This is a message #################
 _Label_44:
 00000C5FC: 00280000 debug
E>

Imagine	that	you	wish	to	look	at	the	assembly	code	produced	by	the	KPL	compiler	
for	a	particular	KPL	statement.	You	will	need	to	take	a	look	at	the	Wile	produced	by	
the	KPL	compiler,	which	is	called	“MyProgram.s”	in	the	case.	

Such	a	Wile	is	typically	very	long.	It	can	be	difWicult	to	locate	the	lines	of	interest.	

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	109 147

Chapter	5:	Miscellaneous	Instructions	

However,	KPL’s	debug	statement	makes	this	fairly	easy.	

Here	is	a	section	of	MyProgram.s	produced	by	the	KPL	compiler.	The	highlighted	
lines	came	from	the	Wirst	debug	statement.	

Argument fileID <-- _P_HostInterface_stdout (8 bytes)
loadd r1,_P_HostInterface_stdout

Call function 'f_print_end'
call _P_PrintPackage_f_print_end
.stmt debug,line=21
.comment "################# DEBUG #################"
debug

FOR STATEMENT...
.stmt for_init,line=22

Calculate and save the FOR-LOOP starting value
.stmt for_init,line=22
movi r7,0
stored 64(sp),r7 # _temp_45

Here	is	the	code	for	the	second	debug	statement.	

i = i + 1
loadd r7,72(sp) # i
addi r7,r7,1
stored 72(sp),r7 # i
jump _Label_41

END FOR
_Label_44:

.stmt debug,line=34

.comment "################# This is a message #################"
debug

CALL STATEMENT...
.stmt call,line=37

Argument exitCode <-- 123 (8 bytes)
movi r1,123 # 0x000000000000007b

In	each	case,	you	see	the	DEBUG	instruction,	which	causes	the	emulator	to	halt	
execution.	You	also	see	two	debugging	statements	(.stmt	and	.comment).	The	
debugging	information	goes	into	the	executable	.exe	Wile	and	not	into	memory	at	
runtime.	The	emulator	will	use	that	debugging	information	at	the	time	the	DEBUG	
instruction	is	encountered.	

All	the	“###”s	are	added	for	the	purpose	of	making	the	line	stand	out	to	the	human	
eye	when	scanning	a	long	Wile	or	when	executing	a	program	containing	a	lot	of	
DEBUG	instructions.	

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	110 147

Chapter	5:	Miscellaneous	Instructions	

There	is	also	another	aspect	to	the	handling	of	the	DEBUG	instruction.	Often,	the	
running	Blitz	code	will	detect	an	error	or	exception.	Generally	speaking,	the	KPL	
error	handling	will	throw	an	“error”n,	allowing	the	running	KPL	application	to	catch	
the	error	and	deal	with	it.	However,	if	the	error	is	not	caught,	the	debugger	must	be	
invoked.	In	this	case,	code	in	the	System	package	will	execute	a	DEBUG	statement.	
However,	the	location	of	the	error	is	not	within	the	System	package.	In	this	case	
there	is	a	bit	of	coordination	between	the	code	in	System	and	the	emulator.	

When	encountering	a	DEBUG	statement,	the	emulator	checks	to	see	if	a	particular	
DEBUG	instruction	was	executed.	In	particular,	a	function	called	
EmulatorDebuggingRequested	(a	hand-coded	assembly	function	within	
runtime.s)	is	looked	for.	This	function	will	leave	the	address	where	the	error	
occurred	in	register	r1.	The	emulator	will	retrieve	this	value	and	display	a	message,	
as	if	the	error	had	occurred	at	given	location.	This	will	give	the	user	more	
appropriate	error	reporting.	

This	is	illustrated	in	the	next	example.	

Here,	an	Arithmetic	Exception	occurs	in	a	running	KPL	program.	From	the	
highlighted	material,	we	can	see	what	happened	and	where	in	the	source	code	this	
happened.	Also,	noticing	that	it	was	a	DIV	(divide)	instruction,	we	can	guess	that	the	
problem	was	divide-by-zero,	although	it	could	be	overWlow. 	21

E> g
====================
==================== "System: ERROR_ArithmeticException" was thrown but not
==================== caught within thread "Main Thread"
====================

The CATCH STACK is empty

********** RUNTIME ERROR: An "ARITHMETIC EXCEPTION" has occurred! **********

 Offending Instruction = 0x0000000000050767

***** Native debugger is not implemented - EXECUTION TERMINATING *****

********** EMULATOR DEBUGGING: Type 'stack' for more info. **********

Execution is stopped at ASSIGN on line 29 in function "main" [MyProgram.c]
 00000C560: 00050767 div r7,r6,r7
E>

	Dividing	the	most	negative	64	bit	integer	by	-1	results	in	a	positive	integer	that	cannot	be	21

represented	as	a	64-bit	signed	int.

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	111 147

Chapter	5:	Miscellaneous	Instructions	

While	this	gives	the	programmer	a	good	error	message,	we	can	see	that	execution	is	
really	stopped	within	the	EmulatorDebuggingRequested	function:	

E> where
Enter an address in hex (or 0 for current PC):
CURRENT LOCATION OF PC:
 Within Function "EmulatorDebuggingRequested" [runtime.s]
 000018958: 010010FF addi sp,sp,16 # hex = 0x10
E>

By	executing	the	stack	command,	we	see	that	there	was	some	error	handling	done	
before	the	DEBUG	instruction	caused	execution	to	halt	and	the	emulator’s	debugging	
functions	to	be	invoked.	The	error	actually	occurred	in	the	function	which	is	located	
just	below	the	top	four	error	handling	functions.	

E> stack
 Function/Method Execution at... File
 ============================== ==================== ==============================
 EmulatorDebuggingRequested runtime.s
 invokeDebugger CALL line 2312 System.c
 RuntimeErrorArithmeticExceptio CALL line 2190 System.c
 _runtimeErrorArithmeticExcepti runtime.s
 main ASSIGN line 29 MyProgram.c
 _kplEntry MyProgram.c
 _entry runtime.s

 …	etc…

Attempting	to	resume	execution	at	this	point	is	fruitless:	

E> g

==================== KPL PROGRAM TERMINATION ====================
E> g

==================== The KPL program has terminated; you may not continue. ====================
E> where
Enter an address in hex (or 0 for current PC):
CURRENT LOCATION OF PC:
 Within Function "TerminateRuntime" [runtime.s]
 000018978: 19FFFF40 jump TerminateRuntime # PC - 0xC (PC + 0xFFFFFFFF4)
E>

		
In	the	future,	we	anticipate	that	a	native	debugger	(i.e.,	a	debugger	written	in	KPL	
and	executing	Blitz	code)	will	be	invoked	instead	of	relying	on	the	emulator’s	
debugging	functionality.	

The	BREAKPOINT	Instruction	

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	112 147

Chapter	5:	Miscellaneous	Instructions	

Like	the	DEBUG	instruction,	the	operation	of	the	BREAKPOINT	instruction	is	
controlled	by	the	“DEBUG_INVOKES_EMULATOR”	parameter	from	the	
“emulationParms”	Wile.	

DEBUG_INVOKES_EMULATOR 0x0000000000000001

The	default	value	is	1=true.	

If	the	value	is	1=true,	execution	will	halt.	There	is	no	special	processing	or	handling	
of	BREAKPOINT	and	there	is	no	message.	This	behavior	is	used	by	the	KPL	runtime	
system	to	simply	stop	execution.	

If	the	value	is	0=false,	execution	will	continue,	and	a	Breakpoint	Exception,	as	
speciWied	by	the	Blitz	ISA.	

The	CONTROL	and	CONTROLU	Instructions	

For	a	description	of		the	CONTROL	and	CONTROLU	instructions,	consult:	

	 “Blitz-64:	Instruction	Set	Architecture	Reference	Manual”	

The	deWinition,	operation,	and	functionality	of	these	instructions	is	“implementation	
dependent”.	The	instruction	essentially	allows	the	code	to	provide	a	64	bit	value	and,	
after	something	happens,	to	receive	a	64	bit	result.	A	speciWic	implementation	of	the	
Blitz	architecture	can	use	these	instructions	to	perform	operations	not	covered	by	
the	ISA,	or	these	instructions	can	simply	be	considered	invalid,	illegal	operations.	

The	KPL	language	provides	a	way	to	execute	these	instructions	with	two	built-in,	
predeWined	functions:	

CPUControl (arg: int, opcode) returns int
CPUControlUserMode (arg: int, opcode) returns int

The	“opcode”	must	be	a	value	within	0	…	65,535.	The	CONTROL	instruction	is	
privileged	so	it	can	only	be	executed	by	kernel	code,	while	the	CONTROLU	
instruction	can	be	executed	by	User	Mode	code	as	well	as	code	running	in	Kernel	
Mode.	

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	113 147

Chapter	5:	Miscellaneous	Instructions	

These	instructions	are	unimplemented	by	the	emulator.	If	the	emulator	encounters	
one	of	these	instructions	during	execution,	it	will	halt	and	alert	the	user.	For	
example,	this	KPL	statement	

i = CPUControl (1234, 57)

will	result	in	this	during	execution:	

Shell% blitz MyProgram.exe -g -nowarn

				…	etc	…	
**** A CONTROL (KernelMode) machine instruction was executed *****

 Immed-16 control code: 0x0039 (decimal 57)
 Value in source register: 0x00000000000004D2 (decimal 1234)
 Enter a value in hex: 0x11223344
 Do you want this instruction to cause an Illegal Instruction Exception? n

				…	etc	…	

Execution	will	resume.	

In	the	future,	to	model	speciWic	hardware,	it	is	reasonable	to	imagine	that	the	
emulator	will	be	modiWied	and	that	these	instructions	will	perform	some	hitherto	
unknown	operations.	

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	114 147

Chapter	6:	Memory-Mapped	I/O	Devices	

Introduction	

A	Blitz	computer	will	have	several	I/O	devices	and	different	implementations	of	the	
Blitz	architecture	may	have	difference	devices.	

The	emulator	provides	the	following;	others	may	be	added	in	the	future.	

	 BootROM	
	 SecureStorage	
	 SimpleSerial	
	 HostInterface	

These	are	discussed	below.	

The	BootROM	Area	

The	emulator	provides	an	area	of	memory	that	is	read-only.	The	location	and	size	of	
the	ROM	is	typically:	

Starting	Address	 0x4_0000_0000	
Size	in	Bytes	 0x10_0000	(1	MiByte)	
Size	in	16	KiByte	Pages	 0x40	(decimal	64)	

However,	this	can	be	be	adjusted	with	the	following	parameters	by	updating	the	
“emulationParms”	Wile,	shown	here	with	their	default	values:	

 BOOT_ROM_START_ADDR 0x0000000400000000
 BOOT_ROM_NUMBER_OF_PAGES 0x0000000000000040

Emulator	Reference	Manual	/	Porter	 Page	 	of	115 147

Chapter	6:	Memory-Mapped	I/O	Devices	

Upon	startup	or	a	“reset”	command,	the	emulator	will	initialize	the	ROM	area	with	
bytes	it	reads	from	the	Wile	named:	“emulationROM”,	or	zeros	if	the	Wile	does	not	
exist.	

Presumably,	programs	will	never	attempt	to	STORE	to	the	ROM	area.	If	an	emulated	
program	tries	to	STORE	into	the	ROM	area,	the	emulator	will	print	a	message	and	
suspend	instruction	execution.	The	STORE	will	not	occur.	

Real	Blitz	hardware	would	probably	just	ignore	any	STORE	attempts	into	this	
address	range.	

The	user	may	update	the	ROM.	The	executable	.exe	program	loaded	upon	startup	
may	include	addresses	within	the	ROM.	It	is	not	an	error	and	the	bytes	will	
overwrite	the	initial	contents.	The	user	may	also	use	commands	such	as	“setmem”	
to	update	bytes	within	the	ROM	area.	

Upon	exiting	the	emulator,	if	the	ROM	area	has	been	altered	from	the	initial	contents	
(either	by	user	commands	or	executed	instructions),	the	emulator	will	ask	whether	
the	user	wants	to	write	the	new	ROM	contents	to	the	Wile	“emulationROM”.	

E> q
The ROM has been modified. Shall I write it out to the host file ("emulationROM")? y
The "emulationROM" file has been updated.
Shell%

The	SecureStorage	Area	

The	Secure	Storage	area	functions	much	like	the	BootROM	area,	with	the	following	
exceptions.	

The	data	is	kept	in	a	Wile	called	“emulationSecure”.	

The	location	of	the	Secure	Storage	is	typically:	

Starting	Address	 0x4_0010_0000	
Size	in	Bytes	 0x4000	(16	KiBytes)	
Size	in	16	KiByte	Pages	 1	

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	116 147

Chapter	6:	Memory-Mapped	I/O	Devices	

The	location	of	the	Secure	Storage	can	be	changed	by	modifying	the	following	
emulation	parameters,	shown	here	with	their	default	values:	

SECURE_STORAGE_START_ADDR 0x0000000400100000
SECURE_STORAGE_NUMBER_OF_PAGES 0x0000000000000001

Upon	startup	or	a	“reset”	command,	the	emulator	will	initialize	the	Secure	Storage	
area	with	bytes	it	reads	from	the	Wile	named:	“emulationSecure”,	or	zeros	if	the	Wile	
does	not	exist.	

The	Secure	Storage	area	is	either	“locked”	or	“unlocked”,	as	described	in	the	Blitz	
ISA.	While	unlocked,	data	can	be	stored	and	the	new	values	will	be	retained,	just	as	
in	normal	memory.	

Storing	into	byte	0	of	the	region	will	cause	the	Secure	Storage	to	become	locked.	
After	that,	it	functions	like	ROM.	Any	attempt	to	STORE	into	the	area	is	ignored.	
Normal	programs	would	be	unlikely	to	do	this	and	the	emulator	will	catch	such	
errors	and	halt	execution.	

Like	the	BootROM,	the	user	can	update	the	area	using	the	“setmem”	command.	
However,	the	executable	.exe	Wile	cannot	store	into	the	Secure	Storage	area.	

Like	the	BootROM,	if	there	have	been	changes	to	the	Secure	Storage	area,	either	from	
user	commands	or	executed	code,	the	emulator	will	ask	whether	the	user	wants	to	
write	the	new	ROM	contents	to	the	Wile	“emulationSecure”.	

E> q
The SecureStorage has been modified. Shall I write it out to
 the host file ("emulationSecure")? y
The "emulationSecure" file has been updated.
Shell%

The	SimpleSerial	Device	

The	“Simple	Serial”	device	is	intended	to	provide	a	simple	way	for	Blitz	program	to	
communicate	with	the	user.	It	is	not	intended	to	model	real	hardware.	

The	location	and	size	of	the	Simple	Serial	device	is:	

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	117 147

Chapter	6:	Memory-Mapped	I/O	Devices	

Starting	Address	 0x4_0010_4000	
Size	in	Bytes	 0x4000	(16	KiBytes)	
Size	in	16	KiByte	Pages	 1	

This	size	is	always	16	KiBytes	but,	the	location	can	be	be	adjusted	with	the	following	
parameter	by	updating	the	“emulationParms”	Wile,	shown	here	with	the	default	
value:	

 SIMPLE_SERIAL_START_ADDR 0x0000000400104000

The	Simple	Serial	device	is	documented	in:	

“Blitz-64:	Instruction	Set	Architecture	Reference	Manual”	

The	following	two	parameters	in	“emulationParms”	apply	to	the	Simple	Serial	
device.	Here	they	are	with	their	default	values:	

IN_RAW_IGNORE_CONTROL_C 0x0000000000000000 (decimal: 0)
TRANSLATE_INPUT_CR_TO_NL 0x0000000000000001 (decimal: 1)

The	“IN_RAW_IGNORE_CONTROL_C”	parameter	must	be	0	(i.e.,	false)	or	1	(i.e.,	
true).	This	parameter	is	only	used	for	input	that	is	coming	from	stdin	when	the	
emulator	is	in	“raw”	mode.	(The	“serial”	command	prints	out	a	description	of	these	
modes.)	

Normally,	whenever	control-C	is	hit,	it	will	interrupt	program	execution.	Execution	
will	halt	and	the	user	will	be	able	to	enter	debugging	commands.	However,	some	
Blitz	programs	(e.g.,	the	Blitz	OS)	may	wish	to	see	the	control-C	directly	and,	for	
example,	allow	a	Blitz	shell	to	interpret	it	in	the	same	way	Linux/Unix	shells	do.	So	
the	emulator	must	not	stop	execution.	

By	setting	the	“IN_RAW_IGNORE_CONTROL_C”	parameter	to	1	(true),	any	control-C	
being	pressed	by	the	user	will	be	forwarded	to	the	running	Blitz	core.	The	Blitz	
program	will	not	be	interrupted.	

The	“TRANSLATE_INPUT_CR_TO_NL”	parameter	must	be	0	(i.e.,	false)	or	1	(i.e.,	
true).	This	parameter	is	only	used	for	when	the	emulator	is	in	“raw”	mode;	it	has	no	
effect	when	running	in	“cooked”	mode.	

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	118 147

Chapter	6:	Memory-Mapped	I/O	Devices	

Some	host	systems	(like	Apple	macOS)	will	treat	the	ENTER	key	as	\r,	and	not	\n. 	22

So,	in	raw	mode,	macOS	delivers	the	‘\r’	character	(ASCII	0x0d)	and	not	‘\n’	(ASCII	
0x0a),	which	will	confuse	a	Blitz	program	using	the	Unix/Linux/POSIX	convention.	
When	this	parameter	is	set	to	true,	the	emulator	will	translate	every	‘\r’	it	sees	into	
‘\n’.	

The	HostInterface	Device	

The	location	and	size	of	the	HostInterface	device	is:	

Starting	Address	 0x4_0010_8000	
Size	in	Bytes	 0x4000	(16	KiBytes)	
Size	in	16	KiByte	Pages	 1	

This	size	is	always	16	KiBytes	but,	the	location	can	be	be	adjusted	with	the	following	
parameter	by	updating	the	“emulationParms”	Wile,	shown	here	with	the	default	
value:	

 HOST_DEVICE_START_ADDR 0x0000000400108000

This	is	a	memory-mapped	I/O	device	that	facilitates	communication	with	the	host	
OS	running	this	emulator.	

In	particular,	this	“device”	allows	a	running	Blitz	program	to:	

	 •	Perform	Wile	operations	(fopen,	fgetc,	…)		
	 •	Retrieve	the	command	line	arguments	
	 •	Determine	the	date	and	time	

Consult	the	HostInterface	package.	The	functionality	of	the	HostInterface	device	is	
encapsulated	in	a	number	of	useful	functions,	such	as:	

hostArgs () returns String
hostDate () returns String
fopen (filename: String, mode: String) returns ptr to FILE
fclose (fileID: ptr to FILE)
remove (filename: String) returns int
feof (fileID: ptr to FILE) returns bool

	On	my	Mac,	the	key	is	actually	labeled	RETURN,	not	ENTER.22

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	119 147

Chapter	6:	Memory-Mapped	I/O	Devices	

fgetc (fileID: ptr to FILE) returns int
fputc (ch: int, fileID: ptr to FILE) returns int
ungetc (ch: int, fileID: ptr to FILE)
perror (str: String)
fread1 (buffPtr: ptr to void, byteCount: int, fileID: ptr to FILE) returns int
fwrite1 (buffPtr: ptr to void, byteCount: int, fileID: ptr to FILE) returns int
fseek (fileID: ptr to FILE, offset: int, whence: int)
ftell (fileID: ptr to FILE) returns int
fputs (src: String, fileID: ptr to FILE) returns bool

Commentary		This	device	is	obviously	not	intended	to	model	any	real	I/O	device.	
Instead,	it	is	used	to	allow	KPL	application	code	to	be	developed.	In	particular,	the	
Blitz	assembler	and	KPL	compiler	were	re-coded	in	KPL	in	anticipation	of	there	
existing	a	Blitz	OS	in	the	future.	This	was	done	to	verify	that	the	Blitz	toolchain	
was	robust	and	up	to	the	task	of	developing	the	Blitz	OS.	In	order	to	verify	that	
these	KPL	programs	were	working	exactly	identically	to	the	host	C/C++	versions,	
it	was	necessary	to	run	the	full	veriWication	suites	against	them.	The	functionality	
provided	by	the	HostInterface	device	is	essentially	the	minimum	required	to	
enable	the	KPL	versions	of	the	assembler	and	compiler	to	function.	

Using	the	HostInterface	device,	Blitz	code	running	within	this	emulator	can	
communicate	with	the	underlying	host	operating	system	(e.g.,	Unix).	This	allows	
Blitz	code	to	do	things	like	read	Wiles	and	perform	system	calls	(e.g.,	to	get	the	time	of	
day).	

This	is	done	by	creating	a	phony	device	called	the	“HostInterface	Device”	which	is	
memory-mapped	like	all	Blitz	I/O	devices.	LOADs	and	STOREs	to	this	device	will	
cause	the	emulator	to	communicate	with	the	hist	OS.	Arguments	to	a	host	system	
call	can	be	transferred	by	the	Blitz	code	by	STOREing	to	this	“device”.	Results	from	
the	host	OS	can	be	retrieved	by	the	Blitz	code	by	LOADing	from	this	“device”.	

Here	are	the	key	addresses	within	the	HostInterface	device.	Although	these	are	often	
called	“I/O	registers”	they	are	locations	in	the	Memory-Mapped	I/O	region	and	not	
the	sort	of	registers	found	in	a	CPU	core.	

Register	name	 offset	 size	(bytes)	 	
ARG_SIZE	 0	 8	 read	only	
ARG_CHAR	 8	 8	 read	only	
DATE_SIZE	 16	 8	 read	only	
DATE_CHAR	 24	 8	 read	only	
FUN_CODE	 32	 8	 write	only	
ARG_1	 40	 8	 write	only	

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	120 147

Chapter	6:	Memory-Mapped	I/O	Devices	

ARG_2	 48	 8	 write	only	
ARG_3	 56	 8	 write	only	
ARG_4	 64	 8	 write	only	
Ret_Val	 72	 8	 read	only	
DO_IT	 80	 8	 read	only	
LONG_STR	 80	 1024	 write	only	

Here	is	how	they	are	used:	

ARG_SIZE	
Command	line	arguments	to	the	emulator	are	given	on	the	emulator	command	
line	with	the	“-args”	option.	The	-args	is	followed	by	a	argumentString.	For	
example:	

Shell% blitz MyProgram.exe -g -args "-aaa -bbb -ccc"

Read	this	register	to	Wind	the	length	in	bytes	of	argumentString.	In	this	
example,	the	length	of	the	string	“-aaa -bbb -ccc”	is	14	bytes.	Reading	
this	register	also	resets	the	current	position	for	ARG_CHAR	to	the	beginning	of	
the	string.	

ARG_CHAR	
Read	this	register	to	fetch	the	next	byte	in	argumentString.	Each	byte	is	
returned	as	an	int	(0..255)	since	this	register	is	8	bytes.	In	our	example,	to	
obtain	all	the	bytes	of	the	argumentsString,	we	would	read	this	register	14	
times.	For	any	read	beyond	the	end	of	the	string,	zeros	will	be	returned.	

DATE_SIZE	
DATE_CHAR	
Reading	the	DATE_SIZE	register	will	cause	the	time	and	date	to	be	obtained	
from	the	host	and	stored	for	subsequent	retrieval	by	the	Blitz	code.	The	time	
and	date	will	be	in	the	form	shown	by	this	example:	

"Sat May 22 09:44:18 2021\n"

A	read	to	the	DATE_SIZE	register	will	(1)	obtain	and	store	the	time	and	date	
from	the	host,	(2)	reset	the	current	position	to	the	beginning	of	the	string,	and	
(3)	return	the	number	of	characters	in	the	string.	

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	121 147

Chapter	6:	Memory-Mapped	I/O	Devices	

To	retrieve	the	characters,	the	Blitz	code	can	read	the	DATE_CHAR	register	
repeatedly,	once	for	each	character	in	the	string.	Each	successive	read	will	
return	each	successive	character.	After	each	read,	the	current	position	is	
advanced.	For	any	read	beyond	the	end	of	the	string,	zeros	will	be	returned.	

FUN_CODE	
In	order	to	make	a	function	call	to	the	host	operating	system—that	is,	to	
perform	a	host	operation—write	to	this	register,	storing	a	functionCode	in	it.	
This	functionCode	is	a	small	integer	that	will	identify	which	host	operation	is	
to	be	performed.	Then	write	to	the	ARG_N	registers	to	store	arguments	to	the	
call.	Finally,	to	actually	make	the	call,	read	from	register	DO_IT.	

ARG_1	
ARG_2	
ARG_3	
ARG_4	
These	registers	are	used	to	pass	argument	values	to	a	host	system	call.	Store	
the	argument	value	in	them	before	making	the	call	with	DO_IT.	There	is	
accommodation	for	up	to	4	arguments.	

The	LONG_STR	register	also	functions	as	an	argument	register	in	the	same	
way	and	should	be	written	before	an	fopen	operation.	

Ret_Val	
If	the	host	operation	returns	a	value,	it	will	be	placed	in	this	register.	Read	this	
register	to	retrieve	it.	Here	are	the	operations	that	return	a	value:	

operation	 returned	value	
fopen	 WileNumber	
feof	 boolean	
fgetc	 character	
fread1	 count	read	
fwrite1	 count	written	

DO_IT	
This	register	is	used	to	perform	the	host	operation.	The	act	of	reading	this	
register	will	cause	a	host	OS	operation	to	occur.	The	operation	will	be	
determined	by	FUN_CODE,	ARG_1	...	ARG_4.	Any	retuned	value	will	be	placed	
in	Ret_Val.	

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	122 147

Chapter	6:	Memory-Mapped	I/O	Devices	

The	value	returned	from	reading	this	register	will	be	an	error	code	with	the	
standard	Unix/Linux/POSIX	meanings,	i.e.,	that	value	of	“errno”	from	the	host.	
Here	are	the	most	common	codes:	

Value	 Name	 Meaning	
0	 OK	 No	error	
1	 EPERM	 Operation	not	permitted	
2	 ENOENT	 No	such	Wile	or	directory	
5	 EIO	 Input/output	error	
9	 EBADF	 Bad	Wile	descriptor	
12	 ENOMEM	 Cannot	allocate	memory	
13	 EACCES	 Permission	denied	
14	 EFAULT	 Bad	address	(invalid	address	in	attempting	

to	use	an	argument	of	a	call)	
17	 EEXIST	 File	already	exists	
22	 EINVAL	 Invalid	argument	
24	 EMFILE	 Too	many	open	Wiles	
63	 ENAMETOOLONG	 File	name	too	long.		A	component	of	a	path	

name	exceeded	255	characters.	

Note:		DO_IT	always	returns	a	value,	and	it	is	often	“0=OK”.	In	Unix/Linux/
POSIX,	the	errno	value	is	often	unchanged	if	there	is	no	error.	This	requires	the	
programmer	to	set	it	to	zero	ahead	of	time,	but	this	is	not	required	here.	

Notes: 	23

EINVAL	 Includes	“bad	whence”	(fseek),	“bad	mode”	(fopen)	
EBADF	 Not	an	open	Wile,	or	not	open	for	writing	
EACCES	 The	requested	access	to	the	Wile	is	not	allowed,	or	

search	permission	is	denied	for	one	of	the	directories	
in	the	path	preWix	of	pathname,	or	the	Wile	did	not	exist	
yet	and	write	access	to	the	parent	directory	is	not	
allowed.	

ENAMETOOLONG	 A	component	of	a	path	name	exceeded	255	characters.	

Note:		The	HostInterface	package	provides	a	function	“perror”	which	prints	
the	typical	Unix/Linux/POSIX	messages,	at	least	for	the	error	codes	listed	
above.	

	From	the	Linux/POSIX	online	documentation.23

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	123 147

Chapter	6:	Memory-Mapped	I/O	Devices	

LONG_STR		
This	“register”	consists	of	a	sequence	of	1,024	bytes. 	A	Wilename	can	be	24

stored	into	these	bytes.	The	fopen	operation	will	use	this	name.	

Here	are	the	host	operation	that	can	be	performed.	For	more	info,	consult	the	Unix/
Linux/POSIX	documentation.	

FUN_CODE	 Operation	 Arguments	
1	 fopen	 arg1:	ptr	to	KPL	array	of	byte	
	 	 arg2:	mode	(see	below)	
	 	 returns:	WileNumber	
2	 fclose		 arg1:	WileNumber	
3	 feof	 arg1:	WileNumber	
	 	 returns:	bool	1=true=EOF	
4	 fgetc	 arg1:	WileNumber	
	 	 returns:	char	(0	…	255,	-1	=	EOF)	
5	 ungetc	 arg1:	int	
	 	 arg2:	WileNumber	
6	 fgets	 arg1:	address	
	 	 arg2:	WileNumber	
7	 fread1	 arg1:	address	
	 	 arg2:	byteCount	
	 	 arg3:	WileNumber	
	 	 returns:	bytecount	successfully	read	
8	 fwrite1	 arg1:	address	
	 	 arg2:	byteCount	
	 	 arg3:	WileNumber	
	 	 returns:	bytecount	successfully	written	
9	 fseek	 arg1:	WileNumber	
	 	 arg2:	offset	
	 	 arg3:	whence	
																																 1=SEEK_SET,	2=SEEK_CUR,	3=SEEK_END	

10	 fgetc	 arg1:	WileNumber	
	 	 returns:	int	

Note:		For	the	mode	argument	to	fopen:	
“r”	 File	must	exist;	position	at	beginning;	Reading	only.	
“r+”	 File	must	exist;	position	at	beginning;	Both	reading	&	writing	allowed.	

	See	the	emulator	constant	“HOST_DEVICE_BUFFER_SIZE”.24

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	124 147

Chapter	6:	Memory-Mapped	I/O	Devices	

“w”	 Create	Wile	or	truncate	to	zero	length;	Writing	only.	
“w+”	 Create	Wile	or	truncate	to	zero	length;	Both	reading	&	writing	allowed.	
“a”	 Create	Wile	if	necessary,	otherwise	position	at	Wile	end;	Writing	only.	
“a+”	 Create	Wile	if	necessary,	otherwise	position	at	Wile	end;	Both	reading	&	

writing.	(Note	with	"a+":	Check	host	differences	on	initial	position	for	
reading.)	

Note:		The	fread1	and	fwrite1	operations	access	a	range	of	bytes	in	memory.	This	is	
the	buffer	that	holds	data	that	is	read	or	written.	This	buffer	may	be	in	virtual	
memory	and	will	undergo	the	usual	TLB	memory	mapping.	However,	accessing	the	
buffer	could	cause	an	exception.	These	operations	will	perform	TLB	mapping,	but	if	
a	TLB	exception	occurs,	the	data	transfer	will	be	cut	short.	These	operations	are	
named	fread1	and	fwrite1	(instead	of	fread	and	fwrite)	to	emphasize	this	
difference	from	the	host	operations.	

Other	Devices	

At	this	date,	these	are	the	only	memory-mapped	I/O	devices	implemented	by	the	
emulator.	

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	125 147

Chapter	7:	Porting	and	Host	Issues	

Command	Line	Options	

The	Blitz	emulator	is	a	Unix/Linux/POSIX	tool	run	from	the	command	line.	Here	are	
the	command	line	options:	

Zilename	
The	input	executable	Wile,	which	will	be	loaded	into	memory.	This	is	optional;	if	
missing,	nothing	will	be	loaded	and	main	memory	will	contain	zeros.	

-h	
Print	help	info	about	the	command	line	options.		Ignore	other	options	and	exit.	

-g	
This	is	the	“auto-go”	option.	Automatically	begin	emulation	of	the	executable	
program	immediately,	bypassing	the	command	line	interface.	

-i	Zilename	
File	to	get	serial	input	from.		If	missing,	stdin	will	be	used.	

-o	Zilename	
File	to	send	serial	output	to.		If	missing,	stdout	will	be	used.	

-raw	
Places	the	serial	input	device	in	“raw”	mode;	the	default	is	“cooked”	mode.	In	
cooked	mode,	keystrokes	are	echoed,	backspaces	are	processed,	etc.	by	the	
host,	relieving	the	Blitz	code	is	relieved	from	this	task.	In	raw	mode,	the	
running	BLITZ	code	must	echo	keystrokes,	process	backspaces,	etc.	

-nowarn	
By	default,	some	potential	program	execution	problems	will	be	Wlagged	and	
instruction	execution	will	be	suspended.	This	option	suppresses	this,	as	well	
as	several	informational	messages	the	emulator	would	otherwise	display.	

Emulator	Reference	Manual	/	Porter	 Page	 	of	126 147

Chapter	7:	Porting	and	Host	Issues	

-fp	
By	default,	all	Wloating	point	instructions	will	cause	an	Emulation	Exception.	
This	option	(fp	=	“Wloating	present”)	will	cause	these	instructions	to	be	
executed.	

-nodebug	
Normally	the	DEBUG	instruction	will	cause	a	halt	to	emulation	and	the	
emulation	debugger	will	be	invoked.	With	this	option,	the	instruction	will	
cause	a	Debug	Exception	and	emulation	will	not	be	suspended.	(This	can	also	
be	accomplished	with	the	DEBUG_INVOKES_EMULATOR=0	emulation	
parameter.	If	both	“-nodebug”	and	DEBUG_INVOKES_EMULATOR=1	are	
present,	the	command	option	prevails:	the	instruction	will	cause	an	Exception	
and	emulation	will	continue.)	The	BREAKPOINT	instruction	is	treated	the	
same	way.	

-startall	
By	default	in	a	multicore	Blitz	system,	only	core	0	will	run.	The	remaining	
cores	will	be	stopped.	This	option	causes	all	cores	to	be	placed	in	RUNNING	
mode.	The	default	is	determined	by	the	setting	of	the	START_ALL_CORES	
emulation	parameter.	If	both	“-startall”	and	START_ALL_CORES=0	are	present,	
the	command	line	option	prevails:	All	cores	will	be	RUNNING.	

-args	string	
This	is	used	to	pass	command	line	arguments	to	the	running	program.	For	
example:	

blitz MyProgram.exe -g —args "-stack -xxx -o myFile.o"

Development	on	Apple	macOS	

The	Blitz	emulator	was	developed	and	runs	under	Apple	macOS,	which	is	a	POSIX-
compliant	implementation	of	Unix.	The	following	well-known	tools	were	used:	

gcc	
make	
shells:	csh,	sh	
TextEdit	
Terminal	

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	127 147

Chapter	7:	Porting	and	Host	Issues	

All	editing	was	done	with	Apple’s	TextEdit,	which	is	quite	simple	and	well-designed.	
Apple’s	Terminal	app	is	used	to	run	the	shell .	I	happen	to	use	the	csh	shell,	but	the	25

testing	suite	use	scripts	that	begin	with:	

#!/bin/sh

In	addition,	the	following	Blitz	tools	are	used:	

asm	
link	
kpl	

A	few	other	Blitz	tools	are	occasionally	helpful:	hexdump,	dumpobj,	and	hexify.	

The	emulator	is	compiled	with	these	options:	

gcc -g -std=c99 -Wall -O2 …

This	invokes	the	clang	compiler .	The	Xcode	IDE	(integrated	development	26

environment)	was	not	used. 	27

The	emulator	consists	of	the	following	Wiles:	

File	 Lines	of	code	
CheckHostCompatibility.c 937
BlitzSupport.c 1,023
BlitzSupport2.c 508
blitz.c 14,676

Total 17,144

The	following	#include	Wiles	are	used:	

	Here	are	some	of	the	Terminal	settings	I	use:	ProWiles>>Advanced>>Declare	terminal	as	25

xterm-256color,Delete	sends	Control-H,;	Text	encoding	UTF-8;	ProWiles>>Text>>Menlo	Regular14.

	More	precisely	clang	version	12.0.0	(clang-1200.0.32.29)	with	target	x86_64-apple-26

darwin20.4.0,	as	of	this	date.

	I	believe	the	clang/gcc	toolchain	is	distributed	as	part	of	Xcode,	but	may	also	be	downloaded	27

separately.	

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	128 147

Chapter	7:	Porting	and	Host	Issues	

#include <stdint.h>
#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>
#include <string.h>
#include <errno.h>
#include <math.h>
#include <signal.h>
#include <time.h>
#include <fenv.h>

The	makeZile	will	execute	the	following	commands:	

gcc -g -std=c99 -Wall -DBLITZ_HOST_IS_LITTLE_ENDIAN \
 -DWithoutOpt CheckHostCompatibility.c -S \
 -o CheckHostCompatibility1.s
gcc -g -std=c99 -Wall -O2 -DBLITZ_HOST_IS_LITTLE_ENDIAN \
 -DWithOpt CheckHostCompatibility.c -S \
 -o CheckHostCompatibility2.s
gcc -g -std=c99 -Wall -O2 -DBLITZ_HOST_IS_LITTLE_ENDIAN blitz.c -S
gcc blitz.s CheckHostCompatibility1.s CheckHostCompatibility2.s \
 -lm -o blitz

CheckHostCompatibility.c	contains	a	function	that	is	called	upon	startup	to	verify	
the	host	computer	will	perform	as	expected.	The	emulator	is	compiled	with	“-O2”	
optimization,	which	will,	at	compile-time,	modify	or	eliminate	many	of	the	
operations	performed	in	CheckHostCompatibility.	Therefore,	
CheckHostCompatibility.c	is	compiled	both	with	and	without	-O2	optimization	and	
invoked	both	ways,	in	order	to	catch	any	problems.	

The	Wiles	BlitzSupport.c	and	BlitzSupport2.c	are	incorporated	with	#include .	28

These	Wiles	are	used	in	other	Blitz	tools,	including	the	KPL	compiler.	The	Wile	
BlitzSupport.c	contains	material	that	is	only	for	C	programs	while	BlitzSupport2.c	
contains	material	that	is	used	in	both	C	and	C++	programs.	

Host	Compatibility:	Porting	to	Windows,	Linux	

	Convention	is	Wlouted	by	using	“.c”	instead	of	“.h”	as	an	extension.28

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	129 147

Chapter	7:	Porting	and	Host	Issues	

The	Blitz-64	tools	have	not	(yet!)	been	ported	to	Windows	or	Linux,	but	I	think	this	
should	be	reasonably	straightforward.	

Here	are	the	areas	of	concern:	

BigEndian	/	LittleEndian	

Blitz	is	“Big	Endian”,	and	the	tools	run	on	the	Mac,	which	is	a	x86-64	“Little	Endian"	
architecture.	Linux	often	runs	on	ARM,	which	is	also	Little	Endian,	so	ARM-based	
hosts	should	not	present	a	problem,	but	see	the	section	on	“Floating	Point	
Endianness	on	ARM”.	

Porting	to	a	Big	Endian	host,	may	require	changes.	The	code	contains	macros	to	
swap	bytes,	so	in	theory	no	changes	will	be	required.	In	any	case,	the	test	suites	
should	uncover	any	and	all	problems.	

Floating	Point	Endianness	on	ARM	

The	ARM	processor	stores	double	precision	Wloating	point	numbers	differently	than	
X86-64.	The	two	32-bit	words	are	stored	in	Little	Endian	order,	but	in	ARM,	the	most	
signiWicant	word	is	Wirst,	while	in	x86-64,	the	least	signiWicant	word	is	Wirst.	

This	will	require	changes	in	porting	the	Blitz	tools	to	an	ARM-based	computer.	The	
test	suites	should	uncover	any	and	all	problems.	

Apparently	Apple	is	planning	to	use	ARM	cores	in	its	laptops,	which	will	necessitate	
dealing	with	this.	

C	/	C++	Compiler	

The	emulator	was	compiled	with	C99	using	clang.	The	-Wall	option	was	used	and	no	
issues	are	Wlagged.	The	emulator	should	compile	using	a	different	compiler,	without	
too	much	difWiculty.	

POSIX	on	Linux	

The	emulator	was	developed	on	Apple	macOS,	which	is	POSIX-compliant	and	thus	
can	correctly	be	called	a	“Unix”	system.	

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	130 147

Chapter	7:	Porting	and	Host	Issues	

When	porting	the	Blitz	tools	to	Linux,	I	don’t	foresee	a	lot	of	problems	since	most	
Linux	systems	are	either	POSIX-certiWied,	or	at	least	POSIX-compliant.	There	is	no	
use	of	threads	and	most	of	the	interface	to	the	host	OS	is	pretty	standard.	

The	big	issue	with	Linux	is	likely	to	be	that	many	Linux	machines	use	ARM	
processors.	See	the	section	above	on	“Floating	Point	Endianness	on	ARM”.	

POSIX	on	Windows	

There	are	POSIX	packages	for	Windows,	such	as	Cygwin	and	Windows	Subsystem	
for	Linux	(WSL).	To	port	BLITZ-64	to	Windows,	one	of	these	will	be	needed.	This	
should	be	workable,	but	porting	may	present	some	surprises.	

Host	Interface	

The	interface	with	the	host	OS	can	be	broken	into	these	areas:	

Argument	processing	(argc,	argv)	
Memory	allocation	(calloc)	
Termination	(exit)	
File	services	(fopen,	fgetc,	fZlush,	perror,	…)	
Time	services	(ctime)	
Double	precision	(feclearexcept,	fetestexcept)	
Control-C	handling	(signal,	SIGINT)		
Raw/Cooked	input	(system,	stty)	

The	last	items	are	most	likely	to	cause	porting	issues.	

Integer	Division	

The	CheckHostCompatibility	function	will	verify	that	the	host	integer	division	
operation	implements	“truncated	division”.	For	a	host	processor	where	this	is	not	
the	case,	changes	will	be	needed.	

Floating	Point	Rounding	

Presumably	the	host	implements	the	IEEE-754	standard,	with	the	default	rounding	
mode	being	“round-to-nearest-with-ties-to-even”.	

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	131 147

Chapter	7:	Porting	and	Host	Issues	

However,	if	the	host	processor	performs	rounding	or	sets	the	Wloating	point	
exception	Wlags	(NV-invalid,	NX-inexact,	OF-overWlow,	UF-underWlow,	DZ-divide-by-
zero)	in	an	unexpected	way,	this	should	be	detected	when	running	the	KPL	
“execution”	test	suite	or	the	“NumberTest”	KPL	program.	

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	132 147

Chapter	8:	BlitzHEX1,	BlitzHEX2,	and	
Hexify	

Quick	Summary	

•	Two	Wile	formats	are	described:	BlitzHEX1	and	BlitzHEX2.	
•	The	content	of	these	Wile	types	is	simple:	
	 —	Load	address	
	 —	Entry	point	
	 —	Bytecount	
	 —	The	bytes	to	be	loaded	
•	The	information	content	of	the	two	formats	is	identical.	
	 —	A	BlitzHEX2	(.bhex2)	Wile	is	ASCII	and	human-readable.	
	 —	A	BlitzHEX1	(.bhex1)	Wile	is	binary	and	about	half	the	size.	
•	The	Wile	can	be	loaded	and	executed	as-is.	
•	This	format	can	be	used	for	memory	dumps	(image	Wiles).	
•	The	hexify	tool	is	described.	
	 —	Input:	An	object	(.o)	or	executable	(.exe)	Wile.	
	 —	Output:	Either	format	can	be	produced.	
•	These	Wile	formats	are	intended	to	support	hardware	development.	
•	The	emulator	recognizes	these	Wile	formats.	

Introduction	

Normally,	a	program	will	be	assembled	to	produce	an	object	(.o)	Wile.	Then,	one	or	
more	object	Wiles	will	be	linked	to	produce	an	executable	(.exe)	Wile.	The	executable	
Wile	can	be	loaded	in	to	memory	and	executed,	either	by	the	emulator	or	a	running	
Blitz	OS.	

If	this	is	what	you	are	doing,	then	you	can	skip	this	chapter.	However,	if	you	are	
developing	hardware,	it	may	be	necessary	to	work	directly	with	the	data	bytes.	The	

Emulator	Reference	Manual	/	Porter	 Page	 	of	133 147

Chapter	8:	BlitzHEX1,	BlitzHEX2,	and	Hexify	

formats	of	object	(.o)	and	executable	(.exe)	Wiles	are	complex.	The	formats	present	
here	are	much	simpler	and	the	hexify	tool	is	designed	to	simplify	your	life.	

To	capture	a	memory	image,	a	simple	Wile	format	is	introduced	here.	In	general,	
memory	image	Wiles	are	called	“BlitzHEX”	Wiles,	but	there	are	two	speciWic	Wile	formats	
introduced	here,	called	“BlitzHEX1”	and	“BlitzHEX2”.	Both	Wile	formats	carry	exactly	
the	same	information	and	you	can	use	whichever	format	is	most	convenient.	

Files	in	the	BlitzHEX1	format	are	given	an	extension	of	.bhex1	and	Wiles	in	the	
BlitzHEX2	format	are	given	an	extension	of	.bhex2.	

In	a	BlitzHEX1	Wile,	all	values	are	in	binary.	Thus,	a	64	bit	doubleword	requires	8	
bytes	in	the	Wile.	

In	a	BlitzHEX2	Wile,	all	values	are	expressed	in	hex	with	ASCII	characters	and	each	is	
placed	on	a	separate	line.	Thus,	a	64	bit	doubleword	requires	17	bytes	in	the	Wile	(16	
hex	characters,	plus	a	\n	NEWLINE	character).	

A	BlitzHEX2	Wile	is	human	readable,	while	a	BlitzHEX1	is	not	so	easily	read.	
Although	a	BlitzHEX2	Wile	is	a	text	Wile	that	can	be	easily	viewed,	it	contains	nothing	
but	hex	values,	so	it	may	not	be	easily	understood.	

	 BlitzHEX1	—	BeneWit:	The	Wile	size	is	smaller,	about	half	the	size.	
	 BlitzHEX2	—	BeneWit:	The	Wile	is	a	human-readable	text	Wile.	

Each	Wile	contains	the	following	information:	

	 •	Load	address	
	 •	Entry	point	
	 •	Byte	count	
	 •	Data	Checksum	
	 •	Header	Checksum	
	 •	Data	bytes	

Both	a	BlitzHEX1	and	BlitzHEX2	Wile	begin	with	a	“magic	number”.	

The	Wirst	8	bytes	of	a	BlitzHEX1	Wile	will	be:	

	 In	Binary	 In	ASCII	
426c747a48455831 BltzHEX1

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	134 147

Chapter	8:	BlitzHEX1,	BlitzHEX2,	and	Hexify	

	The	Wirst	8	bytes	of	a	BlitzHEX2	Wile	will	be:	

	 In	Binary	 In	ASCII	
426c747a48455832 BltzHEX2

Any	program	accepting	a	BlitzHEX	Wile	will	Wirst	read	the	Wirst	8	bytes	to	determine	
which	format	the	remainder	of	the	Wile	is	in.	

A	BlitzHEX	Wile	can	be	viewed	as	a	program	that	is	to	be	executed.	The	idea	is	that	the	
data	bytes	should	be	loaded	into	memory	at	the	load	address.	The	byte	count	tells	
how	many	data	bytes	are	present	in	the	Wile.	The	program	can	be	executed	by	
jumping	to	the	entry	address.	The	checksums	can	be	used	(if	desired)	to	make	
sure	that	no	data	corruption	has	occurred.	

The	Wile	can	also	be	viewed	as	a	memory	dump	(or	“image”)	of	memory,	possible	
captured	after	some	program	crashed.	The	load	address	and	the	byte	count	
describe	which	region	of	memory	has	been	captured.	The	data	bytes	contain	the	
data	copied	from	memory.	The	entry	address	is	not	needed	and	a	value	of	-1	
indicates	that	the	entry	address	is	missing.	

There	are	two	ways	to	create	a	BlitzHEX	Wile.	

In	the	Wirst	approach,	the	user	will	create	a	simple	assembly	program.	This	program	
must	be	stand-alone,	in	the	sense	that	it	does	not	need	to	be	linked.	Then,	the	hexify	
tool	is	used.	The	assembler	produces	an	object	(.o)	Wile	and	the	hexify	tool	can	read	
such	a	Wile.	The	tool	will	then	produce	the	BlitzHEX	Wile	as	its	output.	Of	course	the	
hexify	tool	will	verify	that	the	object	(.o)	Wile	meets	certain	requirements	and	does	
not	need	to	be	linked.	

The	second	approach	accommodates	larger	and	more	complex	programs.	The	
program	may	consist	of	a	number	of	modules	—	both	compiled	KPL	packages	and	
hand-coded	assembly	Wiles	—	which	are	assembled	and	then	linked	to	produce	an	
executable.	After	linking,	the	hexify	tool	is	used.	The	linker	produces	an	executable	
(.exe)	Wile	and	the	hexify	tool	can	read	such	a	Wile.	The	hexify	tool	will	then	produce	
the	BlitzHEX	Wile	as	its	output.	

Normally,	the	emulator	will	be	used	with	the	name	of	an	executable	(.exe)	Wile	on	the	
command	line,	but	the	emulator	will	accept	Wiles	in	the	BlitzHEX1	and	BlitzHEX2	
format	as	well.	For	example:	

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	135 147

Chapter	8:	BlitzHEX1,	BlitzHEX2,	and	Hexify	

Shell% blitz MyExamplePgm.bhex1 -g
Reading executable file...
Executable file is a "BlitzHEX1" format file...
 Load Address: 0x000001208
 Entry Point: 0x000001210
 Byte Count: 0x000000220
Beginning execution...

The	emulator	will	load	the	data	bytes	into	memory.	If	the	region	of	memory	is	
private	memory	and	there	are	multiple	cores,	then	a	copy	of	the	data	will	be	loaded	
into	the	private	memory	of	each	core.	If	the	region	of	memory	is	shared	memory,	
then	the	data	bytes	will	of	course	be	available	to	all	cores.	If	the	region	is	in	the	ROM	
Memory-Mapped	I/O	pages,	then	the	data	bytes	will	be	loaded	in	to	the	ROM.	All	
cores	share	the	same	ROM	data.	The	EntryPoint	will	be	stored	in	the	Program	
Counter	(PC)	of	each	core.	

In	this	chapter,	we	specify	the	Wile	formats	more	precisely	and	discuss	the	hexify	
tool.	

BlitzHEX1	File	Format	

This	is	a	binary	Wile	with	an	extension	of	“.bhex1”.	

The	Wile	consists	of	a	sequence	of	doublewords,	where	each	doubleword	is	given	in	
binary,	with	8	bytes.	The	Wile	contains:	

bytes	 value																								 description	

8	 426c747a48455831	 “BltzHEX1”		in	ASCII	
8	 2a2a2a2a2a2a2a2a	 “********”		in	ASCII	
8	 LoadAddress	 where	in	memory	to	place	data	(multiple	of	8)	
8	 EntryPoint	 where	to	begin	execution	(multiple	of	8)	
	 	 	 -1	if	EntryPoint	is	missing	
8	 ByteCount	 N	=	number	of	data	bytes	(multiple	of	8)	
8	 DataChecksum	 Logical	XOR	of	all	data	doublewords	
8	 HeaderChecksum	 Logical	XOR	of	LoadAddress,	EntryPoint,	
	 	 	 ByteCount,	and	DataChecksum	
8	 2a2a2a2a2a2a2a2a	 “********”		in	ASCII	
N	 Data	 N	bytes;	N	will	be	a	multiple	of	8	

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	136 147

Chapter	8:	BlitzHEX1,	BlitzHEX2,	and	Hexify	

8	 2a2a2a2a2a2a2a2a	 “********”		in	ASCII	

A	separator	consists	of	8	bytes	giving	the	ASCII	codes	for	“********”,	that	is,	the	
value	0x2a2a2a2a2a2a2a2a.	The	Wile	contains	three	separators	which	serve	to	make	
sure	there	are	no	errors	in	the	interpretation	of	the	Wile.		

The	LoadAddress	and	the	EntryPoint	must	be	valid	Blitz	addresses,	which	means	a	
36-bit	value,	i.e.,	within	

	 0x0000_0000_0000_0000	…	0x0000_000F_FFFF_FFFF	

Furthermore,	they	must	be	doubleword	aligned	and	must	not	be	zero,	since	any	
attempt	to	access	memory	bytes	below	0x0_0000_0008	will	cause	a	Null	Address	
Exception.	

The	ByteCount	must	be	a	number	evenly	divisible	by	8. 	It	is	considered	an	error	if	29

LoadAddress	+	ByteCount	exceeds	the	maximum	address. 	30

The	EntryPoint	must	line	within	the	memory	region	described	by	LoadAddress	
and	ByteCount.	

An	EntryPoint	value	of	-1	is	also	allowed.	This	value	means	default/missing/not-
applicable.	

The	DataChecksum	is	a	64	bit	value	that	is	produced	by	Exclusive-ORing	(XOR)	all	
of	the	data	doublewords	together.	

The	HeaderChecksum	is	a	64	bit	value	that	is	produced	by	Exclusive-ORing	(XOR)	
the	following	doublewords	together:	

	 LoadAddress	
	 EntryPOint	
	 ByteCount	
	 DataChecksum	

	If	the	desired	number	of	bytes	is	not	an	even	multiple	of	8,	the	ByteCount	must	be	rounded	up	29

to	the	next	multiple	and	zeros	must	be	added	to	the	data	bytes	to	bring	the	data	up	to	an	integral	
number	of	doublewords.	Likewise,	if	the	desired	starting	address	is	not	doubleword	aligned,	
LoadAddress	must	be	adjusted	accordingly.	In	practice,	these	exceptions	do	not	arise.

	More	precisely,	LoadAddress	+	ByteCount	must	be	0x0000_0010_0000_0000	or	less.	30

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	137 147

Chapter	8:	BlitzHEX1,	BlitzHEX2,	and	Hexify	

The	Data	region	of	the	Wile	consists	of	an	integral	number	of	doublewords,	of	the	size	
indicated	by	ByteCount.	

Here	is	an	example	of	a	Wile	in	BlitzHEX1	format:	

Shell% hexdump example.bhex1
000000000: 426C 747A 4845 5831 2A2A 2A2A 2A2A 2A2A BltzHEX1********
000000010: 0000 0000 0000 0008 0000 0000 0000 0010
000000020: 0000 0000 0000 0020 9A70 214B 2266 11DD p!K"f..
000000030: 9A70 214B 2266 11E5 2A2A 2A2A 2A2A 2A2A .p!K"f..********
000000040: 1122 3344 5566 7788 8877 6655 4433 2211 ."3DUfw..wfUD3".
000000050: 1111 2222 3333 4444 1234 5678 0000 0000 ..""33DD.4Vx....
000000060: 2A2A 2A2A 2A2A 2A2A ********
Shell%

BlitzHEX2	File	Format	

A	Wile	in	the	BlitzHEX2	format	is	an	ASCII	text	Wile	with	an	extension	of	“.bhex2”.	

The	Wile	consists	of	a	sequence	of	lines,	where	each	line	contains	ASCII	characters	
followed	by	a	NEWLINE.	Like	any	text	Wile,	the	Wile	can	be	printed.	

Here	is	an	example	of	a	BlitzHEX2	Wile,	originating	from	the	same	source	as	the	
BlitzHEX1	example	above	and	containing	the	same	information:	

BltzHEX2

0000000000000008
0000000000000010
0000000000000020
9a70214b226611dd
9a70214b226611e5

1122334455667788
8877665544332211
1111222233334444
1234567800000000

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	138 147

Chapter	8:	BlitzHEX1,	BlitzHEX2,	and	Hexify	

In	a	BlitzHEX2	Wile,	each	line	contains	only	ASCII	characters.	Each	line	is	terminated	
with	a	NEWLINE .	Each	line	—	other	that	the	Wirst	line	and	the	three	“********”	31

separators	—	contains	exactly	16	hex	characters	and	speciWies	a	64-bit	doubleword	
value.	The	Wile	must	contain	no	spaces	or	tabs.	

Regardless	of	whether	the	Wile	is	in	BlitzHEX1	or	BlitzHEX2	format,	the	exact	same	
information	is	conveyed.	Files	in	BlitzHEX1	format	are	smaller	—	about	half	the	size	
—	and	Wiles	in	BlitzHEX2	format	are	easier	for	the	human	to	read.	

Below	we	show	this	Wile	in	another	way	to	see	the	actual	bytes,	but	you	can	see	that	
printing	it	as	a	text	Wile	(as	above)	is	clearly	preferable.	

Shell% hexdump example.bhex2
000000000: 426C 747A 4845 5832 0A2A 2A2A 2A2A 2A2A BltzHEX2.*******
000000010: 2A0A 3030 3030 3030 3030 3030 3030 3030 *.00000000000000
000000020: 3038 0A30 3030 3030 3030 3030 3030 3030 08.0000000000000
000000030: 3031 300A 3030 3030 3030 3030 3030 3030 010.000000000000
000000040: 3030 3230 0A39 6137 3032 3134 6232 3236 0020.9a70214b226
000000050: 3631 3164 640A 3961 3730 3231 3462 3232 611dd.9a70214b22
000000060: 3636 3131 6535 0A2A 2A2A 2A2A 2A2A 2A0A 6611e5.********.
000000070: 3131 3232 3333 3434 3535 3636 3737 3838 1122334455667788
000000080: 0A38 3837 3736 3635 3534 3433 3332 3231 .887766554433221
000000090: 310A 3131 3131 3232 3232 3333 3333 3434 1.11112222333344
0000000a0: 3434 0A31 3233 3435 3637 3830 3030 3030 44.1234567800000
0000000b0: 3030 300A 2A2A 2A2A 2A2A 2A2A 0A 000.********.
Shell%

To	be	more	precise,	every	BlitzHEX2	Wile	has	the	following	format:	

	 •	“BltzHEX2”	 —	8	characters	(ASCII:	42_6c_74_7a_48_45_58_32)	
	 •	“********”	 —	Separator	
	 •	LoadAddress	 —	16	characters,	0	…	0000000FFFFFFFFF	(multiple	of	8)	
	 •	Entrypoint	 —	16	characters,	0	…	0000000FFFFFFFFF	(multiple	of	8)	
	 	 	 FFFFFFFFFFFFFFFF	if	EntryPoint	is	missing	
	 •	ByteCount	 —	16	chars,	N	=	number	of	data	bytes	(multiple	of	8)	
	 •	DataChecksum	 —	16	chars,	Logical	XOR	of	all	data	doublewords	
	 •	HeaderChecksum	 —	16	chars,	Logical	XOR	of	LoadAddress,	EntryPoint,	

	 	 ByteCount,	and	DataChecksum	
	 •	“********”	 —	Separator	
	 •	Data	 —	Each	line	contains	16	hex	chars,	i.e.,	a	doubleword	

	Normally,	the	END-OF-LINE	will	be	\n,	but	the	hexify	tool	allows	the	END-OF-LINE	to	be	\r,	\n\r,	31

or	\r\n	instead.

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	139 147

Chapter	8:	BlitzHEX1,	BlitzHEX2,	and	Hexify	

	 •	“********”	 —	Separator	

The	Wields	are	discussed	in	the	section	describing	the	BlitzHEX1	format.	The	same	
comments	apply	to	Wiles	in	the	BlitzHEX2	format.	

The	hex	characters	may	be	lower	or	upper	case.	

Hexify	

The	tool	hexify	is	a	simple	program	that	can	be	used	to	convert	the	format	of	a	Wile.	
The	input	Wile	can	be	in	either	of	these	formats:	

	 •	Object	Wile	(.o)	
	 •	Executable	Wile	(.exe)	

The	output	from	the	tool	will	be	in	one	of	these	formats:	

	 •	BlitzHEX1	format	
	 •	BlitzHEX2	format	
	 •	“Hex”	format	
	 •	System	Verilog	statements	

The	hexify	tool	determines	the	format	of	the	input	Wile	by	Wirst	reading	its	“magic	
number”.	The	format	of	the	output	Wile	is	determined	by	a	command	line	option.	

The	input	comes	either	from	stdin	or	from	a	Wile	which	is	named	on	the	command	
line.	

Exactly	one	of	the	following	command	line	options	must	appear:	

	 option	 output	Iile	format	
	 -bhex1	 BlitzHEX1	format	
	 -bhex2	 BlitzHEX2	format	
	 -hex	 “Hex”	format	
	 -sv	 System	Verilog	statements	

The	output	will	go	to	stdout.	

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	140 147

Chapter	8:	BlitzHEX1,	BlitzHEX2,	and	Hexify	

The	hexify	program	performs	error	checking	on	the	input	and	will	print	warnings	or	
error	messages.	It	will	also	print	general	information	about	the	Wile	

Here	is	an	example	usage:	

Shell% hexify baby.o -bhex2 > example.bhex2
The input is a ".o" file...
 ISA Version: 1
 .o Version: 1
 Number of Segments: 1
 Number of Symbols: 3
 Source Filename: baby.s
 Line number: 7
 Initial Length: 0x00000001c
 Status: Kernel Mode, executable, writable, not zero-filled
 Reg gp value: <undefined>
 Lowest Address: 0x000000008
 Highest Address: 0x000000027
 Size in bytes: 0x000000020 (decimal 32)
 Entrypoint: 0x000000010
Computing checksums...
 Checksum 8 = 0x08
 Checksum 64 = 0x9a70214b226611dd
Producing BlitzHEX output...
Shell%

Here	is	a	summary	of	the	command	line	options:	

filename
The	input	will	come	from	the	named	Wile.		If	a	Wile	is	not	given	on	the	command	
line,	the	input	will	come	from	stdin.		Only	one	input	Wile	is	allowed	and	it	
should	be	in	“.o”	or	“.exe”	format.	

-hex
Produce	output	Wile	in	“HEX”	Wile	format.	

-bhex1
Produce	output	Wile	in	BlitzHEX1	format	(Binary).	

-bhex2
Produce	output	Wile	in	BlitzHEX2	format	(ASCII).	

-sv
Produce	output	Wile	as	System	Verilog	statements.	

-silent
Suppress	informational	output.	

-nowarn
Suppress	warning	output.	

-bigok

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	141 147

Chapter	8:	BlitzHEX1,	BlitzHEX2,	and	Hexify	

For	really	large	Wiles,	keep	going	and	do	not	abort.	
-r
End	each	output	line	with	\r.	The	default	is	\n.	

-nr
End	each	output	line	with	\n\r.	The	default	is	\n.	

-rn
End	each	output	line	with	\r\n.	The	default	is	\n.	

-h
Print	help	info,	ignore	other	options,	and	terminate.	

All	warnings,	errors,	and	informational	output	are	directed	to	stderr.	If	there	is	an	
error,	the	program	will	terminate	with	an	exit	code	of	1.	

The	-silent	option	causes	the	tool	to	suppress	all	informational	output.	For	example:	

Shell% hexify baby.o -bhex2 -silent > example.bhex2
Shell%

The	-nowarn	option	causes	the	tool	to	suppress	all	warnings.	

If	the	ByteCount	is	really	large,	then	hexify	will	abort	with	an	error.	The	-bigok	
option	will	suppress	this	check.	(The	limit	is	set	at	10,000,000	bytes.)	

Blitz	follows	the	Unix/Linux/POSIX	conventions	and	lines	in	a	text	Wile	end	with	the	
\n	character	(0x0a).	However,	for	FPGA	development,	it	may	be	necessary	to	an	OS	
with	a	different	convention.	By	default,	hexify	uses	a	“\n”	for	END-OF-LINE.	This	can	
be	switched	by	specifying	-r,	-rn,	or	-nr	on	the	command	line.	

The	-h	option	is	provided	for	forgetful	users 	and	will	print	out	a	short	summary	of	32

which	options	do	what.		

Input	Requirements	

Object	(.o)	and	executable	(.exe)	Wiles	normally	contain	debugging	information.	The	
hexify	tool	ignores	this	information.	

	Me.32

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	142 147

Chapter	8:	BlitzHEX1,	BlitzHEX2,	and	Hexify	

If	the	input	is	an	object	(.o)	Wile,	then	hexify	checks	to	make	sure	the	Wile	contains	a	
single	segment,	i.e.,	that	the	source	Wile	contained	only	one	.begin	statement.	It	also	
makes	sure	it	contains	no	relocatable	data,	which	would	require	the	linker’s	
involvement.	

Output	Form:	System	Verilog	

The	-sv	command	line	option	can	be	used	to	create	output	that	can	be	included	in	a	
System	Verilog	program.	

For	example,	consider	the	following	Wile:	

.begin kernel, startaddr=0x000001200, gp=undefined
_entry:

.export _entry
add r1,r2,r3
jump _entry
.doubleword 0x0011223344556677
.doubleword 0x8899aabbccddeeff
.doubleword 0x1111222233334444
.string "hello world"

We	can	convert	it	into	System	Verilog	statements	as	follows:	

Shell% asm romExample.s
Shell% hexify romExample.o -silent -sv
 // The following statements were generated by the "hexify" tool
 // from "romExample.o" on Mon May 17 18:26:03 2021

 36'h000001200: data_val = 64'h00010321_19ffffc0;
 36'h000001208: data_val = 64'h00112233_44556677;
 36'h000001210: data_val = 64'h8899aabb_ccddeeff;
 36'h000001218: data_val = 64'h11112222_33334444;
 36'h000001220: data_val = 64'h68656c6c_6f20776f;
 36'h000001228: data_val = 64'h726c6400_00000000;
Shell%

Output	Form:	HEX	File	Format	

The	hexify	tool	can	also	produce	its	output	is	a	format	we	shall	call	“HEX	format”,	
using	the	-hex	command	line	option.	

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	143 147

Chapter	8:	BlitzHEX1,	BlitzHEX2,	and	Hexify	

Using	the	same	Wile	as	above,	here	is	an	example:	

Shell% hexify romExample.o -silent -hex
00000000
00000030

00000000
00001200

00010321
19ffffc0
00112233
44556677
8899aabb
ccddeeff
11112222
33334444
68656c6c
6f20776f
726c6400
00000000

da
Shell%

Note:		This	format	is	not	the	"Intel	HEX"	format.	

Note:	The	emulator	cannot	read	data	in	this	format.	

Note:	This	format	will	be	discontinued	and	removed.	At	this	time,	it	is	only	used	by	
the	boot	loader	MBBooter.s	running	on	my	FPGA.	

This	Wile	is	ASCII	and	contains	only	hex	digits	and	NEWLINE	characters.	Each	
doubleword	is	expressed	as	two	32	bit	words	on	separate	lines.	

The	Wirst	doubleword	is	the	ByteCount.	The	second	doubleword	is	the	
LoadAddress.	There	is	no	EntryPoint;	execution	is	assumed	to	begin	with	the	Wirst	
byte,	so	EntryPoint	and	LoadAddress	are	equal.	

The	Winal	line	contains	a	single	byte,	which	is	the	Checksum	of	all	the	data	bytes.	The	
Checksum	is	used	to	make	sure	the	transfer	completes	correctly	and	MBBooter	will	
complain	if	there	is	a	mismatch	with	the	value	it	computes	from	the	data	bytes.	

Emulator	Reference	Manual	/	Porter	 	 Page	 	of	 	144 147

About	This	Document	

Document	Revision	History	/	Permission	to	Copy	

Version	numbers	are	not	used	to	identify	revisions	to	this	document.	Instead	the	
date	and	the	author’s	name	is	used.	The	document	history	is:	

Date	 Author	
3	May	2021	 Harry	H.	Porter	III		<document	created>	
17	June	2021	 Harry	H.	Porter	III	
18	October	2022	 Harry	H.	Porter	III		<current	version>	

	 	
In	the	spirit	of	the	open-source	and	free	software	movements,	the	author	grants	
permission	to	freely	copy	and/or	modify	this	document,	with	the	following	
requirement:	

You	must	not	alter	this	section,	except	to	add	to	the	revision	history.	You	
must	append	your	date/name	to	the	revision	history.	

Any	material	lifted	should	be	referenced.	

Corrections	and	Errors	

Please	contact	the	author	if	you	Wind…	

	 •	Inaccurate	information	that	you	can	correct	
	 •	Incomplete	information	that	you	can	Will	in	
	 •	Confusing	text	that	needs	to	be	reworded	

Thanks!	

Emulator	Reference	Manual	/	Porter	 Page	 	of	145 147

Recent	Changes	

This	appendix	documents	recent	changes	to	the	Blitz-64	emulator	and	this	
document.	

3-23	May	2021	

This	document	was	created.	

Emulator	Reference	Manual	/	Porter	 Page	 	of	146 147

About	the	Author		
Professor	Harry	H.	Porter	III	teaches	in	the	Department	of	Computer	Science	at	
Portland	State	University.	He	has	produced	several	video	courses,	notably	on	the	
Theory	of	Computation.	Recently	he	built	a	complete	computer	using	the	relay	
technology	of	the	1940s.	The	computer	has	eight	general	purpose	8	bit	registers,	a	
16	bit	program	counter,	and	a	complete	instruction	set,	all	housed	in	mahogany	
cabinets	as	shown.	Porter	also	designed	and	constructed	the	Blitz	System,	a	
collection	of	software	designed	to	support	a	university-level	course	on	Operating	
Systems.	Using	the	software,	students	implement	a	small,	but	complete,	time-sliced,	
VM-based	operating	system	kernel.	Porter	has	habit	of	designing	and	implementing	
programming	languages,	the	most	recent	being	a	language	speciWically	targeted	at	
kernel	implementation.	

Porter	holds	an	Sc.B.	from	Brown	University	and	a	Ph.D.	from	the	Oregon	Graduate	
Center.	

Porter	lives	in	Portland,	Oregon.	When	not	trying	to	Wigure	out	how	his	computer	
works,	he	skis,	hikes,	travels,	and	spends	time	with	his	children	building	things.	

Professor	Porter’s	website: www.cecs.pdx.edu/~harry	

Emulator	Reference	Manual	/	Porter	 Page	 	of	 	147 147

http://www.cecs.pdx.edu/~harry

