
Blitz-64:

Guide	to	
Adding	New	
Instructions

Harry	H.	Porter	III

HHPorter3@gmail.com

18	October	2022	

This	document	lists	the	steps	involved	in	adding	a	new	instruction	to	the	Blitz-64	
Instruction	Set	Architecture	(ISA).	It	also	discusses	the	steps	to	adding	a	new	built-in	
function	to	KPL	language	and	compiler	in	order	to	take	advantage	of	the	new	
instruction. 

	 Available	Online: Blitz64.org/Documentation/B64-AddInstr.pdf

mailto:HHPorter3@gmail.com?subject=FloatingPointNumbers%20Paper
http://Blitz64.org/Documentation/B64-AddInstr.pdf

Table	of	Contents

Chapter	1:	Checklist	
3

Chapter	2:	Add	a	New	Machine	Instruction	
4
Design	and	Specify	the	New	Instruction	
4
Update	the	ISA	document	
4
Update	the	ISA	Quick	Reference	
8
Update	the	Assembler	(C	Version)	
8
Update	the	Assembler	(KPL	Version)	
10
Update	the	Assembler	Verification	Suite	
10
Verify	the	KPL	Version	(asm2)	
12
Update	the	Emulator	
12
Verify	the	Execution	of	the	Instruction	
15

Chapter	3:	Modify	KPL	
18
Modify	KPL	
18
Adding	an	External	Function	
18
Adding	a	Built-In	KPL	Function	(C	Version)	
19
Adding	a	Built-In	KPL	Function	(KPL	Version)	
24
Add	a	Test	Program	to	the	Execution	Validation	Suite	
28
Modify	KPL	Documentation	
32

Chapter	4:	Modify	Hardware	
33
Modify	ISAValidator.s	
33
Modify	the	Hardware	Implementations	
33

Chapter	5:	Publish	Changes	
34

About	This	Document	
35
Document	Revision	History	/	Permission	to	Copy	
35
Corrections	and	Errors	
35

About	the	Author	 36

Adding	New	Instructions	/	Porter	 Page	 	of	2 36

Chapter	1:	Checklist

Here	is	a	checklist	of	the	steps	you	need	to	take	to	add	a	new	instruction	to	the	Blitz	
Instruction	Set	Architecture	(ISA).	These	are	described	in	detail	in	the	following	
chapters.

☐	 Design	and	specify	the	instruction;	select	a	format,	select	an	op-code

☐	 Update	the	ISA	document

☐	 Add	an	entry	to	“All	Instructions	-	Summary	Listing”

☐	 Add	an	entry	to	“Machine	Instructions,	Grouped	By	Format”

☐	 Add	a	description	of	the	instruction

☐	 Modify	the	text	giving	the	count	of	existing	instructions.

☐	 Add	an	entry	to	“Instruction	List”,	showing	the	op-code.

☐	 Add	an	entry	to	“Appendix:	Recent	Changes”.

☐	 Update	the	document’s	date	and	revision	history.

☐	 Update	the	assembler	(C	Version)

☐	 Update	the	assembler	(KPL	Version)

☐	 Update	the	assembler	verification	suite

☐	 Verify	the	C	Version	and	the	KPL	Version.

☐	 Update	the	virtual	machine	emulator

☐	 Verify	the	execution	of	the	instruction

☐	 Modify	KPL	(optional)

☐	 Add	an	external	function	that	uses	the	instruction

☐	 Add	an	built-in	function	that	uses	the	instruction

☐	 Add	a	test	file	to	the	KPL	execution	test	suite

☐	 Modify	ISAValidator

☐	 Update	the	any	hardware	implementations

☐	 Verify	the	execution	of	the	instruction

☐	 Publish	the	changes

☐	 Update	the	modified	documents	on	the	website.

☐	 Update	the	website	as	needed	to	indicate	updates.

☐	 Update	the	modified	code	on	the	website. 

Adding	New	Instructions	/	Porter	 Page	 	of	3 36

Chapter	2:	Add	a	New	Machine	Instruction

Design	and	Specify	the	New	Instruction

The	process	is	described	using	an	example	that	will	run	through	this	and	following	
chapters.

We	will	add	a	new	machine	instruction	called	“mulu”,	for	“multiply	unsigned”.	Here	is	
the	description,	to	describe	the	instruction:

MULU	 RegD,Reg1,Reg2	 RegD	←	Reg1	×	Reg2	(unsigned)

This	instruction	multiplies	the	contents	of	Reg1	and	Reg2	and	places	the	result	in	
RegD.	The	arguments	and	the	result	are	treated	as	64	bit	unsigned	integers.	
Overflow	is	ignored	and	no	exceptions	will	be	raised.

This	instruction	is	similar	in	format	to	“MUL”,	so	it	will	naturally	be	Format	A-3.	With	
format	A	instructions,	we	must	select	a	new	value	for	the	OP2	opcode.	The	next	
available	OP2	op-code	is	70	(i.e.,	0x46).

This	instruction	will	not	raise	any	exceptions.

Update	the	ISA	document

First,	we	will	update	the	listing	of	all	instructions,	grouped	by	functionality.	We’ll	
add	a	new	entry	just	after	the	existing	MUL	instruction:

Adding	New	Instructions	/	Porter	 Page	 	of	4 36

Chapter	2:	Add	a	New	Machine	Instruction

All	Instructions	-	Summary	Listing

Arithmetic

	 ADD		 RegD,Reg1,Reg2

	 …

	 MUL	 RegD,Reg1,Reg2

	 MULU	 RegD,Reg1,Reg2

	 …

Next,	we	add	an	entry	to	the	list	of	instructions,	grouped	by	format:

Machine	Instructions,	Grouped	By	Format

	 …

	 Format	A-3	 RegD,Reg1,Reg2

	 	 …
	 	 MUL	 r7,r1,r2
	 	 MULU	 r7,r1,r2

…

Next,	we	add	the	description	of	the	instruction	to	the	main	body	of	the	“Instructions”	
chapter.

Next,	we	modify	the	count	of	instructions.	See	highlight,	where	we	changed	70→71;	
111→112	and	69→70.

Currently	there	are…

	 Number	of	Format-A	Instructions	 71

	 Number	of	non-Format-A	Instructions	 41

	 Total	Number	of	Machine	Instructions	 112

	 Current	range	of	OP2	values	 0	…	70

	 Current	range	of	OP1	values	 1	…	41

Adding	New	Instructions	/	Porter	 	 Page	 	of	
5 36

Chapter	2:	Add	a	New	Machine	Instruction

Next,	we	add	an	entry	in	the	list	of	opcodes:

Arithmetic

	 				OP1				 				OP2			

	 hex	dec	 hex	dec	 format

	 	 	 01	 1	 A	 ADD

	 01	 1	 	 	 B	 ADDI

	 	 	 02	 2	 A	 ADDOK

	 	 	 45	 69	 A	 ADD3	 	 (Note	that	OP2	is	out	of	order)
	 	 	 03	 3	 A	 SUB

	 	 	 04	 4	 A	 MUL

	 	 	 46	 70	 A	 MULU		 	 (Note	that	OP2	is	out	of	order)

	 …

Next,	we	add	an	entry	to	the	end	of	the	“Recent	Changes”	list:

24	May	2021

The	MULU	instruction	was	added.

Next,	you	must	update	the	title	page,	to	change	the	document’s	date	and	add	your	
name	as	an	author.	This	is	required! 

Adding	New	Instructions	/	Porter	 	 Page	 	of	
6 36

Chapter	2:	Add	a	New	Machine	Instruction

Blitz-64

Instruction	Set	Architecture

Reference	Manual

<Your	name>,	<Other	info>

Harry	H.	Porter	III,	Portland	State	University

YourEmail@…

HHPorter3@gmail.com

24	May	2020	

Finally,	you	must	update	the	document’s	revision	history.	This	is	required!

Document	Revision	History	/	Permission	to	Copy

Version	numbers	are	not	used	to	identify	revisions	to	this	document.	Instead	the	
date	and	the	author’s	name	are	used.	The	document	history	is:

Date	 Author

23	May	2018	 Harry	H.	Porter	III		<initial	version>

28	May	2019	 Harry	H.	Porter	III		<document	mostly	completed>

24	May	2021	 YOUR	NAME		<MULU	added>

24	May	2021	 YOUR	NAME		<current	version>

Adding	New	Instructions	/	Porter	 	 Page	 	of	
7 36

Chapter	2:	Add	a	New	Machine	Instruction

Update	the	ISA	Quick	Reference

Modify	the	following	document:

“Blitz-64	-	ISA	Quick	Reference”

Add	a	line	for	the	new	instruction:

Synthetic	 OP1	 OP2	 Exceptions	 Operands	 Description

…

Multiply/Divide — Optional: may cause Emulated Instruction Exception
	 MUL	 	 04	 Arithmetic	 RegD,Reg1,Reg2 	 RegD ← Reg1 × Reg2

	 MULU	 	 46	 	 RegD,Reg1,Reg2	 RegD ← Reg1 × Reg2 (unsigned)

	 DIV	 	 05	 Arithmetic	 RegD,Reg1,Reg2 	 RegD ← Reg1 ÷ Reg2

	 REM	 	 06	 Arithmetic	 RegD,Reg1,Reg2 	 RegD ← Reg1 % Reg2

Also,	you	must	update	the	author	and	date	on	the	document.

Update	the	Assembler	(C	Version)

We	need	to	edit	the	file	asm.c.

First,	update	the	header	comment.	Add	a	line	to	the	revision	history	and	update	the	
VERSION	date.

...
// Original Author:
// 19 July 2018 - Harry H. Porter III
//
// Revision History:
// …
// 16 May 2021 - Harry - Disabling of -g and -hex command
line options
// 24 May 2021 - YOUR NAME - Addition of MULU instruction
//
// Date of last modification:
//
#define VERSION "===== 24 May 2021 ====="
// "===== <spacing template> =====“
...

Adding	New	Instructions	/	Porter	 	 Page	 	of	
8 36

Chapter	2:	Add	a	New	Machine	Instruction

Next,	add	an	entry	to	the	enum	list	of	“symbols”:

enum {

// Machine instructions...

 ...
 MUL,
 MULU,
 DIV,
 ...

Next,	add	an	entry	to	StringForCode,	which	maps	from	symbol	to	spelling:

char * StringForCode (int i) {
 switch (i) {

 ...
 case MUL: return "mul";
 case MULU: return "mulu";
 case DIV: return "div";
 ...

Next,	add	an	entry	to	set	the	opcode	for	this	instruction.	In	our	example,	OP1	is	0x00	
and	OP2	is	0x46.	For	a	non-Format	A	instruction	(where	OP2	is	not	used),	we	would	
use	a	value	such	as	0x99000000.	

void InitializeOpcodeMapping () {

 ...
 opcodeMapping [MUL] = 0x00040000;
 opcodeMapping [MULU] = 0x00460000;
 opcodeMapping [DIV] = 0x00050000;
 ...

Next,	add	an	entry	to	InitKeywords,	which	will	map	from	the	opcode	spelling	to	the	
symbol:

Adding	New	Instructions	/	Porter	 	 Page	 	of	
9 36

Chapter	2:	Add	a	New	Machine	Instruction

void InitKeywords () {

 ...
 LookupAndAdd ("mul", MUL);
 LookupAndAdd ("mulu", MULU);
 LookupAndAdd ("div", DIV);
 ...

Next,	add	an	entry	to	CategoryOf,	which	maps	from	the	symbol	to	the	format	of	the	
instruction.	Our	instruction	is	a	Format	A-3,	so	we	add	our	entry	there:

int CategoryOf (int tokType) {
 switch (tokType) {
...
 // Format A-3 RegD,Reg1,Reg2
 case ADD:
 case SUB:
 case MUL:
 case MULU:
 case DIV:
...
 return FORMAT_A3;
...

Next,	compile	the	assembler,	with	make.

Update	the	Assembler	(KPL	Version)

Next,	we	must	update	the	version	of	the	assembler	written	in	KPL.	The	updates	are	
the	same.

Update	the	Assembler	Verification	Suite

Begin	by	running	this	script	to	verify	that	there	are	no	other	errors.	

Shell% runAll | more

Adding	New	Instructions	/	Porter	 	 Page	 	of	
10 36

Chapter	2:	Add	a	New	Machine	Instruction

The	following	program	contains	every	instruction:

	 AsmTestFiles/pgm2.s

Add	a	line	to	this	file	for	the	new	instruction:

...
Format A-3: RegD,Reg1,Reg2

add r7,r1,r2
addok r7,r1,r2
sub r7,r1,r2
mul r7,r1,r2
mulu r7,r1,r2
div r7,r1,r2
...

Next,	run	the	script:

Shell% runAll | more

Scan	for	this	line	in	the	“listing”	output	and	verify	that	the	instruction	is	assembled	
correctly.	Also,	make	sure	there	are	no	errors.

...
> 000000080 00460217 | 131: mulu r7,r1,r2
> 000000084 00050217 | 132: div r7,r1,r2
...

Next,	update	the	files	with:

Shell% updateAll

Then,	a	final	run	should	show	no	problems:

Shell% runAll | more

Adding	New	Instructions	/	Porter	 	 Page	 	of	
11 36

Chapter	2:	Add	a	New	Machine	Instruction

Verify	the	KPL	Version	(asm2)

Next,	verify	the	KPL	version	has	no	problems	and	produces	the	same	output	as	the	C	
version:

Shell% cd KPL-Code/asm2
Shell% ./runTest pgm2
=========== Running asm2 test: pgm2
Shell%

You	can	also	run	all	the	tests	and	check	for	discrepancies

Shell% runAll
...

There	is	a	discrepancy	in	pgm5,	which	can	be	ignored :
1

=========== Running asm2 test: pgm5
376c376
< 524 FLOAT FLOAT 543 8 0 00000000 r0,r0,r0,r0 -1.23456e+80

> 524 FLOAT FLOAT 543 8 0 00000000 r0,r0,r0,r0 -1.2345600000000003e+80
1035c1035
< 000ee0547 4f16c2a7 |

> 000ee0547 4f16c2a8 |
====================== pgm5: Known difference 4f16c2a7 vs. 4f16c2a8; KPL
assembler .double is not perfect...

Update	the	Emulator

We	need	to	edit	the	file	blitz.c.

First,	update	the	header	comment.	Add	a	line	to	the	revision	history	and	update	the	
VERSION	date.

	The	problem	is	that	the	assembler	(KPL	version)	is	using	an	outdated	lexical	analyzer.	It	does	not	1

perform	the	conversion	from	decimal	to	floating	point	correctly.	The	lexer	should	be	replaced	with	
something	like	the	version	in	the	KPL	compiler,	which	can	handle	separators	(“_”)	and	will	convert	
from	decimal	to	floating	point	correctly.	Note	that	the	KPL	compiler	will	NEVER	generate	the	
“.float”	pseudo-op,	so	this	WILL	NOT	AFFECT	KPL	PROGRAMS.

Adding	New	Instructions	/	Porter	 	 Page	 	of	
12 36

Chapter	2:	Add	a	New	Machine	Instruction

...
// Original Author:
// 9 July 2018 - Harry H. Porter III
//
// Revision History:
// …
// 6 May 2021 - Harry - Current version
// 24 May 2021 - YOUR NAME - Addition of MULU instruction
//
// Date of last modification:
//
#define VERSION "===== 24 May 2021 ====="
// "===== ...xx...xx...xx... ====="
// "===== <spacing template> ====="
...

Next,	add	a	new	#define	constant	with	the	new	op-code.	Our	example	instruction	is	
has	an	OP2,	but	there	is	a	similar	section	for	OP1	instructions.

...
#define OP2_CHECKA 68
#define OP2_ADD3 69
#define OP2_MULU 70
...

Next,	update	the	data	used	for	disassembling,	which	is	located	in	the	function	
initDisassemblerData().

First,	add	an	element	to	either	op1codes	to	op2codes.	Since	our	instruction	is	
format	A,	we	add	an	element	to	op2codes:

 op2codes [OP2_MULU] = "mulu";

Determine	which	format	the	instruction	should	be	displayed	in.	We	see	that	our	new	
instruction	will	use	FORMAT_A3.

Adding	New	Instructions	/	Porter	 	 Page	 	of	
13 36

Chapter	2:	Add	a	New	Machine	Instruction

// For disassembly, these codes tell how to print the operands:
// Format A-0 <no operands>
// Format A-1 Reg1
// Format A-2 RegD,Reg1
// Format A-3 RegD,Reg1,Reg2
// Format A-4 RegD,Reg1,Reg2,Reg3
// Format A-5 Reg1,Reg2
// Format A-6 Reg2
// Format A-7 RegD,CSRReg1,Reg2
// Format A-8 RegD,CSRReg1
// Format A-9 RegD
// Format B-1 RegD,Reg1,immed-16
// Format B-2 RegD,immed-16(Reg1)
// Format B-3 RegD,Reg1,immed-3
// Format B-4 immed-10
// Format B-5 RegD,Reg1,immed-6
// Format B-6 CSRReg1,immed-16
// Format C-1 immed-16(Reg1),Reg2
// Format C-2 Reg1,Reg2,immed-16
// Format D-1 RegD,immed-20

Add	an	element	to	either	op1category	to	op2category.	Since	our	instruction	is	
format	A,	we	add	a	line	to	op2Category:

 op2category [OP2_ADD] = FORMAT_A3;

Next,	we	must	add	some	code	to	execute	the	instruction.	Each	instruction	has	a	
“case”	within	this	code:

Adding	New	Instructions	/	Porter	 	 Page	 	of	
14 36

Chapter	2:	Add	a	New	Machine	Instruction

 op1 = ...
 switch (op1) {
 case 0:
 op2 = ...
 switch (op2) {
 // HERE ARE THE FORMAT-A INSTRUCTIONS
 case OP2_ADD:
 ...
 case OP2_ADDOK:
 ...
 }
 ...
 // HERE ARE THE INSTRUCTIONS WHICH ARE NOT FORMAT-A
 case OP1_ADDI:
 ...
 case OP1_ANDI:
 ...
 }

Here	is	the	code	we	will	add	for	our	new	instruction:

 // MULU RegD,Reg1,Reg2
 case OP2_MULU:
 x = getReg1 (instr);
 y = getReg2 (instr);
 z = ((uint64_t) x) * ((uint64_t) y);
 putRegD (instr, z);
 return;

If	some	synthetic	instruction	will	be	implemented	using	our	new	instruction,	we	
may	wish	to	modify	the	disassemble	function	to	special	case	on	our	instruction	to	
print	it	in	the	synthetic	form.

Verify	the	Execution	of	the	Instruction

We	must	verify	that	the	new	instruction	is	executed	properly	and	that	our	changes	
to	the	emulator	work	correctly.	How	we	accomplish	this	will	depend	on	the	nature	of	
the	new	instruction.

Adding	New	Instructions	/	Porter	 	 Page	 	of	
15 36

Chapter	2:	Add	a	New	Machine	Instruction

For	MULU,	we	will	write	a	simple	assembly	program	called	testmulu.s.

 .begin kernel,startaddr=0x8,gp=undefined
_entry:
 .export _entry
 mulu r5,r3,r4
 debug
 jump _entry

We	can	assemble,	link,	and	execute	with:

Shell% asm testmulu.s
Shell% link testmulu.o -k -o testmulu.exe
Shell% blitz testmulu.exe

Let’s	start	by	verifying	that	the	instruction	is	loaded	and	disassembles	correctly,	
using	the	“dis”	command:

Enter a command at the prompt. Type 'quit' to exit or 'help' for info about
commands.
E> dis
Enter the beginning address (in hex): << ENTER >>
 000000000: 00000000 <inaccessible>
 000000004: 00000000 <inaccessible>
 _entry:
 000000008: 00460435 mulu r5,r3,r4
 00000000C: 00280000 debug
 000000010: 19FFFF80 jump _entry # PC - 0x8 (PC + 0xFFFFFFFF8)
 000000014: 00000000
 ...
E>

Next,	we	will	load	some	test	values	into	registers	using	the	“r3”	and	“r4”	commands.

E> r3
 r3 = 0x0000000010000000 (decimal: 268435456)
Enter the new value (in hex): 12345
 r3 = 0x0000000000012345 (decimal: 74565)
E> r4
 r4 = 0x0000000000010000 (decimal: 65536)
Enter the new value (in hex): 22222
 r4 = 0x0000000000022222 (decimal: 139810)
E>

Adding	New	Instructions	/	Porter	 	 Page	 	of	
16 36

Chapter	2:	Add	a	New	Machine	Instruction

Next,		we	use	the	“go”	command	to	begin	execution.	After	executing	the	MULU	
instruction,	our	little	program	immediately	executes	a	DEBUG	instruction,	so	we	can	
check	the	results.

E> g
Beginning execution...
**** A DEBUG machine instruction was executed *****
...
Done!
E>

We	will	use	the	“regs”	command	to	examine	the	contents	of	the	registers.

E> r
...
======================== REGISTERS ========================
 ...
 r3 = 0x0000000000012345 (decimal: 74565)
 r4 = 0x0000000000022222 (decimal: 139810)
 r5 = 0x000000026d5fd92a (decimal: 10424932650)
 r6 = 0x0000000000000008 (decimal: 8)
 ...
E>

We	see	that	register	r5	contains	the	correct	result.	Looking	at	the	values	in	decimal,	
note	that:

74,565	×	139,810	=	10,424,932,650

Next,	using	this	same	procedure,	we’ll	try	more	values	to	test	the	extremal	cases.	For	
example,	the	following	computations	would	result	in	an	overflow	if	performed	with	
signed	addition:

0x7fff_ffff_ffff_ffff × 2 = 0xffff_ffff_ffff_fffe
0x00ff_ffff_ffff_ffff × 0x40_0000 = 0xffff_ffff_ffc0_0000
0x1_0000_0000 × 0x0123_4567_89ab_cdef = 0x89ab_cdef_0000_0000

It	is	always	necessary	to	test	extremal,	“edge	cases”	to	make	sure	the	instruction	
works	100%	as	it	is	supposed	to.

Later,	when	we	add	KPL	code	to	exercise	this	instruction,	we	want	to	perform	a	
thorough	testing,	including	all	edge	cases,	since	the	KPL	code	will	go	into	the	
validation	suite,	to	be	checked	whenever	future	changes	are	made.

Adding	New	Instructions	/	Porter	 	 Page	 	of	
17 36

Chapter	3:	Modify	KPL

Modify	KPL

It	may	be	desirable	to	somehow	allow	the	KPL	programmer	to	take	advantage	of	this	
new	instruction.	There	are	two	possible	approaches:

•	Add	an	external	function	that	uses	the	new	instruction

•	Add	a	built-in	function	to	the	language

In	either	case,	you’ll	need	to	add	a	function	to	the	KPL	test	suite	to	verify	that	the	
new	function	works	properly.

Adding	an	External	Function

In	our	example,	we	first	create	a	hand-coded	assembly	function	that	uses	the	MULU	
instruction.	We	begin	by	adding	this	to	System.h,	which	makes	this	function	
accessible	to	all	KPL	programs.

external UnsignedMult (x, y: int) returns int

Next,	we	modify	runtime.s	to	add	this	line,	to	export	the	function’s	name:

.export UnsignedMult

Next,	we	add	a	function,	such	as:

Adding	New	Instructions	/	Porter	 Page	 	of	18 36

Chapter	3:	Modify	KPL

===================== UnsignedMult =====================

external UnsignedMult (x, y: int) returns int
#
This function return x*y. All values are treated as 64 bit unsigned integers.
Overflow is not detected and no error can arise.
#
Stack usage: not used
Arguments: r1 = x; r2 = y
Returned value: r1
Interrupts: Don't care
Max Stack Usage: 0 bytes (leaf function)

UnsignedMult:

.function "UnsignedMult",line=0,framesize=0
mulu r1,r1,r2
ret
.endfunction

Recall	that	KPL	passes	arguments	in	r1,	r2,	r3,	…,	so	this	function	will	expect	x	and	y	
to	be	in	r1	and	r2	on	entry.	Functions	return	their	results	in	r1.

This	function	has	no	need	for	a	stack	frame	since	it	calls	no	other	functions.	
Therefore,	this	is	a	leaf	function.	This	is	indicated	by	the	debugging	
information	.function	statement,	with	“framesize=0”.

The	overhead	involved	in	using	the	MULU	instruction	in	KPL	is	therefore	2	
additional	instructions:	the	CALL	and	the	RET.
2

Adding	a	Built-In	KPL	Function	(C	Version)

Some	instructions	may	be	performance-critical	and	we	may	not	want	the	overhead	
that	a	call	to	an	externally	defined	function	requires.	Also,	by	creating	a	built-in	
function,	the	optimizer	may	be	able	to	improve	the	code	by	using	registers	more	
effectively.

However,	creating	and	adding	a	built-on	function	is	a	more	complicated	approach.

	There	may	be	additional	overhead,	if	the	values	must	be	moved	from	some	other	registers	into	r1	2

and	r2,	since	the	compiler	is	restricted	to	using	the	registers	in	only	this	one	way.	In	other	words,	
placing	the	MULU	in	separate	function	ties	the	hands	of	the	optimizer.

Adding	New	Instructions	/	Porter	 	 Page	 	of	
19 36

Chapter	3:	Modify	KPL

First,	modify	main.h	to	add	a	new	string:

extern String * stringUnsignedMult;

Next,	add	a	new	symbol	to	main.h	to	represent	this	operation:

// Symbols used to identify build-in function ids, and message selectors

UPCAST_TO_HALFWORD, UPCAST_TO_WORD, UPCAST_TO_INT,
UPCAST_TO_DOUBLE, FORCE_TO_BYTE, FORCE_TO_HALFWORD,
FORCE_TO_WORD, FORCE_TO_DOUBLE, FORCE_TO_INT, ADD_OK, UNSIGNED_MULT,

Next,	add	these	line	to	main.cc	for	this	string.

String * stringUnsignedMult;
stringUnsignedMult = lookupAndAdd ("unsignedMult", ID);

Next,	add	the	following	to	main.cc	to	associate	this	symbol	with	this	string:	

stringUnsignedMult -> primitiveSymbol = UNSIGNED_MULT;

Also	modify	main.cc	to	add	your	name	and	date	of	modification:

#define YOUR_NAME "Harry Porter"
#define DATE_OF_LAST_MOD "24 May 2021" // Today's date in format "DD Month YYYY"
...
// Revision History:
// ...
// August 2020 - Harry Porter - Additional testing and cleanup
// 24 May 2021 - Harry Porter - Add "unsignedMult" built-in function

Next,	modify	lexer.cc	to	print	this	symbol	out:

 case MUL_U: return "MUL_U";

Next,	modify	check.cc	by	adding	a	case	to	the	function	evalExprsIn:

Adding	New	Instructions	/	Porter	 	 Page	 	of	
20 36

Chapter	3:	Modify	KPL

 case UNSIGNED_MULT: // in evalExprsIn - CALL_EXPR
 if ((argCount (callExpr->argList) == 2) &&
 (isAnyIntegerConst (callExpr->argList->expr)) &&
 (isAnyIntegerConst (callExpr->argList->next->expr))) {
 arg1 = getAnyIntegerConstValue (callExpr->argList->expr);
 arg2 = getAnyIntegerConstValue (callExpr->argList->next->expr);
 arg2 = arg1 * arg2; // C++ will ignore overflow here
 return convertValueToSmallestIntegerConst (arg2, callExpr);
 }

 return node;

This	code	will	try	to	compute	the	function	at	compile	time,	if	it	meets	these	
conditions:

•	The	are	exactly	2	arguments

•	Both	arguments	are	integer	constants,	known	at	compile-time

	

If	so,	this	code	performs	the	operation	and	returns	the	result.	Otherwise,	it	ignores	
the	call.

Next,	modify	the	checkTypes	function	in	check.cc	to	add	the	following	code:

 case UNSIGNED_MULT: // in checkTypes for CALL_EXPR...
 if (argCount (callExpr->argList) == 2) {
 if ((callExpr->destSize != -1) || (callExpr->srcSize != -1)) {
 return basicIntType;
 }
 callExpr->knownOpSymbol = UNSIGNED_MULT;
 callExpr->destSize = 8;

 callExpr->argList->expr = checkAssignment (
 callExpr->argList->expr,
 basicIntType,
 "Built-in function 'unsignedMult' expects both arguments to be type "
 "INT but the first is not",
 NULL);
 callExpr->argList->next->expr = checkAssignment (
 callExpr->argList->next->expr,
 basicIntType,
 "Built-in function 'unsignedMult' expects both arguments to be type "
 "INT but the second is not",
 NULL);
 } else {
 error (callExpr, "Built-in function 'unsignedMult' expects "
 "exactly two arguments");
 }
 return basicIntType;

Adding	New	Instructions	/	Porter	 	 Page	 	of	
21 36

Chapter	3:	Modify	KPL

This	code	first	checks	to	see	if	it	has	already	visited	this	node	and	done	the	work.	If	
this	node	has	not	yet	been	dealt	with,	it	sets	a	couple	of	variables	in	the	node	that	
will	be	used	during	code	generation.	Then	it	checks	that	there	are	exactly	two	
arguments,	printing	an	error	if	not.	It	then	checks	that,	whatever	expressions	are	
present,	they	can	be	assigned	to	a	variable	of	type	int,	printing	an	error	if	not.	The	
result	of	invoking	mulu	will	be	of	type	int,	and	this	is	indicated	by	returning	
basicIntType.

Next,	modify	ir.h	and	ir.cc	to	add	a	new	IR	instruction	to	represent	the	MULU	
machine	instruction.

First	modify	ir.h	to	give	this	instruction	a	code.	(This	has	nothing	to	do	with	the	OP1	
or	OP2	opcodes;	it	is	an	opcode	internal	to	the	compiler.)	We	find	an	unused	number	
(108)	and	add	this	line:

#define OP_Mulu 108

Next,	we	add	this	code	to	ir.h	to	define	this	IR	instruction:

//---------- Mulu ----------

void IR_Mulu (const char * destReg, const char * regA, const char * regB);

class IRMulu : public IR {
 public:
 const char * destReg;
 const char * regA;
 const char * regB;

 IRMulu (const char * d, const char * a, const char * b) : IR (OP_Mulu) {
 destReg = d;
 regA = a;
 regB = b;
 }
 ~ IRMulu () {}
 virtual void Print();
 virtual void PrintCode ();
 virtual bool WritesReg (const char * r);
 virtual bool ReadsReg (const char * r);
};

Adding	New	Instructions	/	Porter	 	 Page	 	of	
22 36

Chapter	3:	Modify	KPL

Next,	we	modify	ir.cc	to	add	the	code	for	this	IR:

//---------- Mulu ----------

void IR_Mulu (const char * destReg, const char * regA, const char * regB) {
 linkIR (new IRMulu (destReg, regA, regB));
}

void IRMulu::Print () {
 printf (" MULU %s, %s, %s\n", destReg, regA, regB);
}

bool IRMulu::WritesReg (const char * r) {
 return r == destReg;
}

bool IRMulu::ReadsReg (const char * r) {
 return (r == regA) || (r == regB);
}

void IRMulu::PrintCode () {
 // fprintf (outputFile, "========== TEST-Mulu\n");
 fprintf (outputFile, "\tmulu\t\t%s,%s,%s\n", destReg, regA, regB);
}

This	Print	method	might	be	used	in	debugging	the	compiler	or	optimizer	to	see	this	
IR	instruction.	The	PrintCode	method	will	be	used	to	create	the	actual	assembly	
code.

The	ReadsReg	function	is	passed	a	register	and	must	respond	with	true	if	this	IR	
may	read	that	register.	The	WritesReg	function	is	passed	a	register	and	must	return	
true	if	the	instruction	might	modify	that	register.	These	functions	will	be	used	by	the	
optimizer.

Next,	in	gen.cc,	we	add	the	code	that	will	go	from	a	use	of	the	built-in	“mulu”	
function	to	the	IR_MULU	instruction.	We	add	this	code:

Adding	New	Instructions	/	Porter	 	 Page	 	of	
23 36

Chapter	3:	Modify	KPL

 case MUL_U: // in genCallExpr

 arg1 = callExpr->argList->expr;
 arg2 = callExpr->argList->next->expr;
 x = genExpr (arg1, 8);
 y = genExpr (arg2, 8);
 if (trueLabel) {
 programLogicError ("In genCallExpr, MUL_U");
 }
 GenIR_GetIntoReg (Reg6, x, 8);
 GenIR_GetIntoReg (Reg7, y, 8);
 IR_Mulu (Reg7, Reg6, Reg7);
 IR_Stored (target, Reg7, false);
 return;

Adding	a	Built-In	KPL	Function	(KPL	Version)

If	we	are	defining	a	new	built-in	functions,	we	must	do	the	same	steps	to	the	KPL	
version	of	the	compiler.

Add	this	to	KPLBasic.h:

stringUnsignedMult: ptr to KPLString

and	this:

-- Symbols used to identify build-in function ids, and message selectors

UPCAST_TO_HALFWORD, UPCAST_TO_WORD, UPCAST_TO_INT,
UPCAST_TO_DOUBLE, FORCE_TO_BYTE, FORCE_TO_HALFWORD,
FORCE_TO_WORD, FORCE_TO_DOUBLE, FORCE_TO_INT, ADD_OK, UNSIGNED_MULT,

Add	this	to	KPLMain.c:

stringUnsignedMult.primitiveSymbol = UNSIGNED_MULT

and	this:

stringUnsignedMult = lookupAndAdd ("unsignedMult", ID)

Adding	New	Instructions	/	Porter	 	 Page	 	of	
24 36

Chapter	3:	Modify	KPL

Also	modify	KPLMain.c	to	add	your	name	and	date	of	modification:

const YOUR_NAME = "Harry Porter"
const DATE_OF_LAST_MOD = "24 May 2021" -- Today's date in format "DD Month YYYY"
...
-- Revision History:
-- ...
-- 21 September 2020 - Harry Porter - Conversion into KPL begins
-- 24 May 2021 - Harry Porter - Add "unsignedMult" built-in function

Add	this	to	KPLLexer.c:

case UNSIGNED_MULT: return “UNSIGNED_MULT"

In	KPLCheck.c,	add	a	case	to	the	function	evalExprsIn:

 case UNSIGNED_MULT: -- in evalExprsIn - CALL_EXPR
 if ((argCount (callExpr.argList) == 2) &&
 (isAnyIntegerConst (callExpr.argList.expr)) &&
 (isAnyIntegerConst (callExpr.argList.next.expr)))
 arg1 = getAnyIntegerConstValue (callExpr.argList.expr)
 arg2 = getAnyIntegerConstValue (callExpr.argList.next.expr)
 arg2 = unsignedMult (arg1, arg2)
 return convertValueToSmallestIntegerConst (arg2, callExpr)
 endIf
 return node

Note	that	we	are	actually	using	the	“mulu”	function.	Gotta	love	bootstrapping.	This	
works	because	this	code	will	be	compiled	with	the	C	version	of	the	KPL	compiler.	
But	if	we	no	longer	have	that	version,	i.e.,	we	do	not	have	a	version	of	the	compiler	
that	already	handles	“mulu”,	we	would	have	to	leave	this	case	out	for	now.	After	we	
get	the	compiler	functioning	with	“mulu”	without	static	expression	evaluation,	we	
can	go	back	and	add	this	code	in	and	recompile.

To	KPLCheck.c	add	this	case	to	function	checkTypes:

Adding	New	Instructions	/	Porter	 	 Page	 	of	
25 36

Chapter	3:	Modify	KPL

 case UNSIGNED_MULT: -- in checkTypes for CALL_EXPR...
 if (argCount (callExpr.argList) == 2)
 if ((callExpr.destSize != -1) || (callExpr.srcSize != -1))
 return basicIntType
 endIf
 callExpr.knownOpSymbol = UNSIGNED_MULT
 callExpr.destSize = 8

 callExpr.argList.expr = checkAssignment (
 callExpr.argList.expr,
 basicIntType,
 "Built-in function 'unsignedMult' expects both arguments to be"
 "type INT but the first is not",
 null)
 callExpr.argList.next.expr = checkAssignment (
 callExpr.argList.next.expr,
 basicIntType,
 "Built-in function 'unsignedMult' expects both arguments to be"
 "type INT but the second is not",
 null)
 else
 error (callExpr, "Built-in function 'unsignedMult' expects exactly "
 "two arguments")
 endIf
 return basicIntType

To	KPLAst.h	add	this	code:

 ------------ Mulu ----------

 functions IR_Mulu (destReg_: String, regA_: String, regB_: String)

 class IRMulu
 superclass IR
 fields
 destReg: String
 regA: String
 regB: String
 methods
 WritesReg (r: String) returns bool
 ReadsReg (r: String) returns bool
 Print()
 PrintCode ()
 endClass

Adding	New	Instructions	/	Porter	 	 Page	 	of	
26 36

Chapter	3:	Modify	KPL

To	KPLAst.c	add	this:

 ------------ Mulu ----------

 function IR_Mulu (destReg_: String, regA_: String, regB_: String)
 linkIR (alloc IRMul { destReg = destReg_,
 regA = regA_,
 regB = regB_,
 next = null,
 prev = null })
 endFunction

 behavior IRMulu

 method Print ()
 printf ("\tMULU\t\t\t%s, %s, %s\n", destReg, regA, regB)
 endMethod

 method PrintCode ()
 -- printf (outputFile, "========== TEST-Mulu\n")
 printf (outputFile, "\tmulu\t\t%s,%s,%s\n", destReg, regA, regB)
 endMethod

 method ReadsReg (r: String) returns bool
 return (r == regA) || (r == regB)
 endMethod

 method WritesReg (r: String) returns bool
 return r == destReg
 endMethod

 endBehavior

Adding	New	Instructions	/	Porter	 	 Page	 	of	
27 36

Chapter	3:	Modify	KPL

In	KPLGen.c,	add	this:

case UNSIGNED_MULT: -- in genCallExpr

 arg1 = callExpr.argList.expr
 arg2 = callExpr.argList.next.expr
 x = genExpr (arg1, 8)
 y = genExpr (arg2, 8)
 if (trueLabel)
 programLogicError ("In genCallExpr, UNSIGNED_MULT”)
 endIf
 GenIR_GetIntoReg (Reg6, x, 8)
 GenIR_GetIntoReg (Reg7, y, 8)
 IR_Mulu (Reg7, Reg6, Reg7)
 IR_Stored (target, Reg7, false)
 return

Add	a	Test	Program	to	the	Execution	Validation	Suite

In	order	to	test	any	changes	to	the	emulator,	a	test	program	must	be	created,	or	an	
existing	test	program	must	be	modified.

For	our	example,	we	will	create	a	new	program	called	TestEmulator.	Add	files:

Testing/ExecutionTests/TestEmulator.h
Testing/ExecutionTests/TestEmulator.c

Here	is	TestEmulator.h:

header TestEmulator
 uses System, PrintPackage
 functions
 main ()
endHeader

Adding	New	Instructions	/	Porter	 	 Page	 	of	
28 36

Chapter	3:	Modify	KPL

Here	is	TestEmulator.c:

code TestEmulator

 function main ()
 testUnsignedMult (3, 4, 12)
 testUnsignedMult (0x7fffffffffffffff, 0x100000, 0xfffffffffff00000)
 testUnsignedMult (0x8000000000000000, 0x1, 0x8000000000000000)
 testUnsignedMult (0x1234567890abcdef, 0x1234567890abcdef, 0xa6475f09a2f2a521)

							…

 EmulatorShutdown (0)
 endFunction

 function testUnsignedMult (x, y, expectedAns: int)
 var ans: int
 printf ("%#016.16x × %#016.16x = ", x, y)
 ans = unsignedMult (x, y)
 if ans == expectedAns
 printf ("%#016.16x\n", ans)
 else
 printf ("%#016.16x ***** ERROR: EXPECTED %#016.16x *****\n", ans, expectedAns)
 EmulatorShutdown (1)
 endIf
 endFunction

endCode

This	program	will:

Print	a	line	for	each	test.

Compare	the	result	to	an	expected	result.

If	there	is	a	mismatch…

It	prints	an	error	message.

It	invokes	EmulatorShutdown	(1).

If	all	tests	pass	okay…

It	invokes	EmulatorShutdown	(0).

This	test	program	follows	a	general	pattern	which	makes	it	convenient	to	test	our	
new	function	on	a	large	a	number	of	test	cases. 

First,	we	must	make	sure	the	program	compiles	correctly.

To	this	file:

Testing/runCompAll

Adding	New	Instructions	/	Porter	 	 Page	 	of	
29 36

Chapter	3:	Modify	KPL

add	this	line:

./runOneComp 0 ExecutableTests/TestEmulator -unsafe -s -testNoHash $1

To	file

Testing/updateCompAll

add

./updateOneComp ExecutableTests/TestEmulator -unsafe -s -testNoHash $1 $2

To	file

Testing/runExecAll

add

./runOneExec 0 TestEmulator -unsafe -testNoHash $1

To	file

Testing/updateExecAll

add

./updateOneExec TestEmulator -unsafe -testNoHash

The	-unsafe	option	is	only	needed	if	the	test	program	will	perform	unsafe	
operations.	Normally,	the	KPL	compiler	adds	the	date	and	time	to	its	output	files.	
This	causes	many	minor,	irrelevant	differences	with	the	expected	output.	The	
-testNoHash	option	is	used	to	suppress	the	data	and	time,	suppressing	a	lot	of	
useless	messages.	The	-s	option	causes	the	compiler	to	print	a	bunch	of	symbol	table	
information,	which	serves	as	an	extra	check	against	unexpected	behavior	of	the	
compiler.

From	here	on,	we	assume	we	are	in	directory	Testing:

Shell% cd Testing

Adding	New	Instructions	/	Porter	 	 Page	 	of	
30 36

Chapter	3:	Modify	KPL

After	the	TestEmulator.h	and	TestEmulator.c	files	are	created,	run	this	

Shell% runOneComp 1 ExecutableTests/TestEmulator -unsafe -s -testNoHash

Make	sure	there	are	no	errors	and	that	you	see:

 KPL OK
 Assembly OK
 Link OK

Then	run	this:

Shell% updateOneComp ExecutableTests/TestEmulator -unsafe -s -testNoHash

to	create	the	“BAK”	files,	which	are	used	for	comparison.	After	that,	you	can	run	the	
following	command	to	see	any	differences	in	the	.s	file	produced	by	the	compiler.

Shell% runOneComp 0 ExecutableTests/TestEmulator -unsafe -s -testNoHash
======================== RUNNING TEST: ExecutableTests/TestEmulator
Shell%

To	execute	the	program,	run	this:

Shell% runOneExec 1 TestEmulator -unsafe -testNoHash

Make	sure	there	are	no	errors	and	that	you	see:

 KPL OK
 Assembly OK
 Link OK

This	will	suggest	a	line	you	execute	to	run	the	program.	In	this	case,	we	see:

 CONSIDER EXECUTING:
 ...
 blitz ExecutableTests/ExpectedResults/TestEmulator.exe \
 -g -fp -nowarn -args "..."

So	we	can	type	this	to	run	our	test	program:

Shell% blitz ExecutableTests/ExpectedResults/TestEmulator.exe -g -fp -nowarn

Adding	New	Instructions	/	Porter	 	 Page	 	of	
31 36

Chapter	3:	Modify	KPL

To	create	the	BAK	files,	run	this:

Shell% updateOneExec TestEmulator -unsafe -testNoHash

After	that,	you	can	run	the	following	line	to	see	what	changes	in	the	output:

Shell% runOneExec 0 TestEmulator -unsafe -testNoHash
====================== RUNNING TEST: TestEmulator
Shell%

Since	we	have	added	a	new	string	(stringUnsignedMult),	the	parser	tests	must	be	
updated	since	all	the	numbers	have	shifted.	Run	this	and	look	for	any	problems:

Shell% runParserAll

If	there	are	no	errors	reported,	run	this:

Shell% updateParserAll

When	you	are	all	done,	you	should	be	able	to	run	the	following	with	no	surprises:

Shell% runCompAll
Shell% runExecAll

Modify	KPL	Documentation

Alter	the	document(s)	to	describe	any	new	built-in	functions.

Adding	New	Instructions	/	Porter	 	 Page	 	of	
32 36

Chapter	4:	Modify	Hardware

Modify	ISAValidator.s

This	is	an	assembly	language	program	which	is	used	to	check	and	verify	that	a	
Blitz-64	core	implementation	executes	all	instructions	correctly.

Add	a	new	test	to	execute	the	MULU	instruction	in	ways	that	test	all	boundary	cases.

Modify	the	Hardware	Implementations

It	impossible	to	describe	this	step.

Adding	New	Instructions	/	Porter	 Page	 	of	33 36

Chapter	5:	Publish	Changes

Push	all	changes	to	software	and	documentation	to	the	Internet. 

Adding	New	Instructions	/	Porter	 Page	 	of	34 36

About	This	Document

Document	Revision	History	/	Permission	to	Copy

Version	numbers	are	not	used	to	identify	revisions	to	this	document.	Instead	the	
date	and	the	author’s	name	is	used.	The	document	history	is:

Date	 Author

24	May	2021	 Harry	H.	Porter	III		<document	created>

17	June	2021	 Harry	H.	Porter	III

18	October	2022	 Harry	H.	Porter	III		<current	version>

	

In	the	spirit	of	the	open-source	and	free	software	movements,	the	author	grants	
permission	to	freely	copy	and/or	modify	this	document,	with	the	following	
requirement:

You	must	not	alter	this	section,	except	to	add	to	the	revision	history.	You	
must	append	your	date/name	to	the	revision	history.

Any	material	lifted	should	be	referenced.

Corrections	and	Errors

Please	contact	the	author	if	you	find…

	 •	Inaccurate	information	that	you	can	correct

	 •	Incomplete	information	that	you	can	fill	in

	 •	Confusing	text	that	needs	to	be	reworded

Thanks! 

Adding	New	Instructions	/	Porter	 Page	 	of	35 36

About	the	Author	

Professor	Harry	H.	Porter	III	teaches	in	the	Department	of	Computer	Science	at	
Portland	State	University.	He	has	produced	several	video	courses,	notably	on	the	
Theory	of	Computation.	Recently	he	built	a	complete	computer	using	the	relay	
technology	of	the	1940s.	The	computer	has	eight	general	purpose	8	bit	registers,	a	
16	bit	program	counter,	and	a	complete	instruction	set,	all	housed	in	mahogany	
cabinets	as	shown.	Porter	also	designed	and	constructed	the	Blitz	System,	a	
collection	of	software	designed	to	support	a	university-level	course	on	Operating	
Systems.	Using	the	software,	students	implement	a	small,	but	complete,	time-sliced,	
VM-based	operating	system	kernel.	Porter	has	habit	of	designing	and	implementing	
programming	languages,	the	most	recent	being	a	language	specifically	targeted	at	
kernel	implementation.

Porter	holds	an	Sc.B.	from	Brown	University	and	a	Ph.D.	from	the	Oregon	Graduate	
Center.

Porter	lives	in	Portland,	Oregon.	When	not	trying	to	figure	out	how	his	computer	
works,	he	skis,	hikes,	travels,	and	spends	time	with	his	children	building	things.

Professor	Porter’s	website: www.cecs.pdx.edu/~harry

Adding	New	Instructions	/	Porter	 Page	 	of	
36 36

http://www.cecs.pdx.edu/~harry

