
Thread Scheduling Data Structures:

An Empirical Study

Harry H. Porter III

HHPorter3@gmail.com

30 August 2021

Abstract

How much does a red-black tree cost, compared to a linked list? Where is the cross-
over point, where one is preferred over the other?

There are a number of algorithms to schedule threads in an OS kernel, using different
data structures, including these approaches:

	 •	Round-robin, using a linked list

	 •	Round-robin, using a red-black tree

	 •	Linked list, sorted by scheduling priority

	 •	Red-black tree, sorted by scheduling priority

	 •	Multiple linked lists, with one per scheduling priority

What are the relative costs associated with these different approaches?

A number of empirical tests were performed. This paper reports the results and
conclusions.

Context

This discussion focuses entirely on scheduling “threads”. We will not discuss address spaces or any
larger concepts. We will not make a distinction between kernel and user threads. We will assume a single
core.

	 Available Online: Blitz64.org/Documentation/SchedulingEval.pdf

mailto:HHPorter3@gmail.com?subject=FloatingPointNumbers%20Paper
http://Blitz64.org/Documentation/SchedulingEval.pdf

We assume the existence of a single “ready list” (equivalently called a “ready queue”). This will be some
sort of a collection, and our goal is to evaluate various implementations of this collection, such as linked
lists and red-black trees. The elements in the ready list are all thread “objects”.

We assume that each thread is given a time-slice. The thread executes for a while until a timer interrupt
occurs. The timer interrupt signals the end of the time-slice, at which time the “thread scheduler” is
invoked. The scheduler will return the previously running thread to the ready list and select another
thread from the ready list. The new thread will then begin its time-slice.

We measure the time spent in the scheduling—that is, between the time-slices—looking at the
performance of the following data structures:

(1) Round-robin, with a linked list

This is the simplest scheduling algorithm. All threads have equal priority. There is a single ready list of
thread objects, kept as a linked list. There are two operations, which we shall call “getNext” and
“insert”. The list functions as a first-in-first-out (FIFO) queue. The getNext operation removes and
returns the thread at the head of the list. The insert operation adds a thread to the tail end of the list.

Of course the size of the ready list—i.e., the number of threads waiting to be scheduled—will not impact
the time for the insert and getNext operations.

(2) Round-robin, with a red-black tree

With this approach, the threads are scheduled in the same order as with the above. The difference is that
we use a red-black tree instead of a linked list. A red-black tree must be sorted on something and, to
achieve the first-in-first-out behavior, we can use a simple counter. The counter acts as the key and, for
each insertion, the counter is incremented by 1. The getNext operation simply removes the thread with
the lowest key.

Of course it’s a terrible idea to use a red-black tree for a FIFO queue! The insertion is always on the
right side of the tree and the removal is always on the left. To keep the tree balanced, a fair amount of
shuffling is required. On top of this, the algorithm for insert and getNext for a linked list is trivial, while
the insert and getNext algorithms for red-black trees are complex, to say the least. So there is quite a bit
of overhead… but how much?

Another question is: What impact does the size of the ready queue make?

(3) Linked list, sorted by scheduling priority

You probably want a scheduler that accommodates some sort of priority scheme.

Data Structures for Scheduling / Porter	 	 Page of
2 50

When it comes time to insert a thread into the ready list, we will compute a “priority”, which is just an
integer. When it is time to select a thread for scheduling, our getNext operation will need to choose the
thread with the highest priority.

With linked lists, we will keep the list sorted on thread “priority”. The getNext operation will remove
the thread at the head of the list, which has the highest priority. The insert operation will walk the list
and insert the thread into the correct place in the list.

For this approach, we will need a doubly-linked list. The getNext operation is fast and constant-time, but
the insert operation is not. As you know, searching a linked list for the correct insertion spot is time-
consuming and gets worse as the size of the list grows. To be more precise, the getNext operation is
linear in the size of the list, since you are required to walk half the list length on average.

(4) Red-black tree, sorted by scheduling priority

In this approach, we will schedule the threads in the exact same order as (3). The difference is that we
will use a red-black tree instead of a doubly-linked list to implement our ready queue.

This is where red-black trees shine. The insert and getNext operations are more-or-less constant-time
operations.

With a small number of threads, we expect the linked list approach to be fastest. But with a large number
of threads, we expect the red-black tree approach to be faster. The big question is where does the cross-
over occur? At what number of threads is the linked list approach superior and at what number is a red-
black tree preferred?

We can’t say here how many threads a real computer might be actively scheduling, but we assume it’s
more than 10 and less than 5,000. At this moment, my MacBook Pro is running about 1,500 threads,
although some of them may be sleeping and the number of threads actively waiting on a ready list on
any given core is probably much less.

I would venture to suggest that an upper limit of 100 threads per core might be a reasonable quesstimate
for a laptop with a typical usage pattern.

(5) Multiple linked lists, with one per scheduling priority

You’ll probably want to have many different priority levels and there is another way to achieve it.

Instead of having one giant red-black tree (or one frighteningly long linked list), our next proposed
solution is to maintain a number (e.g., 10) of individual lists. For example, we might choose to limit
ourselves to 10 priority levels, with a single linked list at each priority level to contain all threads
running at that level. Each list will be a simple linked-list with FIFO scheduling. On other words, we
schedule all threads at a given priority level using round-robin, which is fast and simple.

Data Structures for Scheduling / Porter	 	 Page of
3 50

Then we must somehow decide which list to choose from. For example, we might choose the highest
priority list and run several threads from it, using the basic FIFO algorithm to perform round-robin
scheduling. Then, we may switch to the next highest-priority list and run several threads from it. And so
on.

The beauty of this is that we can use the FIFO insert and getNext operations, which are fast. But we still
have some overhead in switching from one queue to the next.

Another disadvantage is that we have a limited number (10 in our example) of priority levels, but this is
really not much of a limitation. I am unable to think of 10 different tasks, each of which truly requires a
different priority than all the others.

The question is what is the overhead for this approach?

Methodology

We are operating within the Blitz-64 system, running on a virtual machine emulator. We are using and
modifying the existing thread scheduler. The emulator makes it convenient to capture the number of
instructions executed.

We will measure time as a count of instructions executed. We ignore any differences in the speed at
which different instructions may execute, assuming that each instruction takes the same amount of time.
This seems reasonable for any RISC architecture.

Of course, a cache can speed execution, and the cache may have different effects on different pieces of
code. Perhaps all scheduler instructions are always resident in the I-Cache, in which case the cache will
be a constant-time speed-up of all instructions. If so, we can ignore the I-cache. The D-Cache may
contain some but not all thread objects. Walking a linked list may visit many more thread objects than a
red-black tree operation, but the red-black operation involves a fair amount of variable accesses. It is not
clear which data algorithm would benefit more from the D-Cache.

In any case, we will ignore the effects of any cache.

For our testing, we will be creating a number of threads and then running them for a while. To reduce
start-up effects, we will run for 5 seconds, then stop and print the instruction counts.

Each individual thread will execute an infinite loop. This loop will do nothing but a “yield” operation. In
other words, when given a time-slice, the thread will immediately sacrifice the remainder of it to other
threads. Thus, the actual time-slices will be very small and the bulk of the 5 seconds will be spent in the
scheduler itself.

Our goal is to compare different data structures used with the scheduler, in an attempt to reduce the
overhead of thread switching. But the amount of overhead imposed on computation by a thread

Data Structures for Scheduling / Porter	 	 Page of
4 50

scheduler is a different question. The overhead is dependent on the average time-slice size, and the time-
slice size can be adjusted as desired to change the percentage of computation spent scheduling. The best
choice for time-slice sizes is a question of the desired responsiveness of the computer, given a particular
workload and processor speed. We do not address those questions here.

Whenever a time-slice ends, the scheduler is invoked. Roughly speaking, the scheduler performs an
insert operation to put the previously executing thread back into the ready list. Then the scheduler
executes a getNext operation to find and remove the next thread to be scheduled. So the computer
executes a series of time-slices, each separated by an invocation of the scheduler. The scheduler is
invoked once per time-slice.

To determine how much time is spent in the scheduler itself, the code will note the instruction count at
the time the scheduler begins and again at the time the scheduler ends. In addition, we count the number
of times the scheduler is invoked which, of course, will be once per time-slice. We add all these times
together and divide by the number of time-slices to compute:

	 The average number of instructions per scheduling operation

In addition to the insert and getNext operations which we are interested in, the scheduler also has a fair
amount of overhead, which includes interrupt processing, register and state saving, misc accounting, and
loading and initiating a new time-slice. However, all this additional overhead is constant-time. In other
words, of the reported number of instructions per time-slice, a certain amount of overhead will always
be included, but the overhead is independent of the actual insert and getNext scheduling operations.

The Blitz scheduler also contains a facility for real-time threads. However, in these tests, there are no
real-time threads. On each invocation, the scheduler will check about real-time scheduling but, since
there are never any such threads, the tests will always fail. The effect will be to add a few instructions to
the count but, like the other sources of overhead, this will be a constant time overhead. Therefore, we
can be ignore the overhead associated with real-time thread scheduling, just as we ignore the other
overhead.

To eliminate noise, all threads in the kernel have been disabled. Even the “idle thread” was modified so
that it will not execute during the test. The idle thread will get exactly one time-slice for initialization
and then will print an error if it should ever get a second time-slice, to verify that it is not running. All
other kernel daemon threads have been completely disabled.

A “test” will begin with a single “master” thread, which will create and initiate a number of “target”
threads. The master thread will then sleep for 5 seconds. When it wakes up, the master thread will
collect and print the instruction counts.

Interrupts are disabled during the master thread, so that it can complete all kernel initialization and can
start all the target threads without invoking the scheduler. After the target threads have been created and
added to the ready list, the master thread sleeps for 5 seconds. This “sleep” operation terminates its time-

Data Structures for Scheduling / Porter	 	 Page of
5 50

slice and allows the test to begin. When the master thread wakes up, it completes its reporting without
any further time-slicing.

Timer interrupts will not happen, since each time-slice will be terminated prematurely when the target
threads perform the “yield” operation. The computer will experience no interrupts or exceptions during
our testing runs, which might introduce noise into our timing results.

I wrote all the code involved in these tests, including the code for the red-black tree operations and the
linked-list operations which are to be compared. The compiler performs basic optimizations on the code
and the same level of optimization is used for all tests. Obviously, increasing the level of compiler
optimization will speed execution up, but I expect all additional performance improvements from
increased optimization to be constant-time. In other words, I expect optimized code to run faster, in the
same way the code would run faster on faster hardware. I would not expect compiler optimization to
favor any particular algorithm, or alter the conclusions we will draw.

It is certainly possible to hand-code the linked list operations directly in assembly code and this might
increase the performance of the linked-list insert and getNext operations, at least compared to
minimally-optimized compiler-generated code. It is not reasonable to hand-code the red-black tree
operations in assembly code, so we might be able to give the linked-list operations an increased benefit
if we were to compare hand-coded assembly for linked list operations to a compiler-generated,
minimally-optimized version of the red-black tree operations. But in the end, we expect all scheduler
code to be fully optimized compiler-generated code, so any discussion of hand-coded assembly language
is irrelevant.

All code for these tests is being emulated. The emulation is at the Instruction Set Architecture (ISA)
level. Each instruction is considered to take an identical amount of time and there is no pipelining. Real
hardware functions differently in order to obtain greater performance. But I do not expect such
differences to impact our conclusions.

When we measure time (as in “This test was run for 5 seconds”), what we actually mean was that the
test was run for 750,000,000 instructions, which takes about 5 seconds on the emulator.

Dynamic Research

I am writing this paper at the same time I am performing the experiments described herein. While I have
the testing setup more-or-less completed, as of this moment, I have not collected the numbers. So at this
point, I know as much as you about what the rest of this paper will say.

Test #1

We start with scheduling algorithm (2), which is a red-black tree being used for strict round-robin
scheduling.

Data Structures for Scheduling / Porter	 	 Page of
6 50

We start with 10 threads and vary the time of the test.

Test Length	 Number of Time-Slices	 Average # of Instructions per Time-slice

1 second	 46,751	 2740.529742679

5 seconds	 233,754	 2740.505736800

10 seconds	 467,508	 2740.502881234

15 seconds	 701,263	 2740.501922959

This gives us confidence that the test results are consistent. Under these conditions, we are observing
about 2,740 instructions spent in the scheduler code, regardless of how long we run the test.

Henceforth, we will truncate our results to whole numbers. We will also perform future tests with a run
of 5 seconds.

Henceforth, we will not report the number of time-slices either. The number of time-slices we can
perform in 5 seconds will be a large number. For example, if the scheduler takes twice as long (2740 ×

 2 = 5480), then we would only be doing about half as many time slices (233,754 ÷ 2 = 116,877). This
should still be enough to give us a good approximation to the time required for the average scheduling
operation.

As mentioned above, a “5 second” test run is actually a run for 750,000,000 instructions on the emulator.
Given that there were 233,754 time-slices in the 5 second test, we can see that the average time between
time-slices is 750,000,000 ÷ 233,754 = 3,208.5 instructions. Above we show a “time per time-slice” of
2,740. The difference (i.e., 468.5 instructions) is consumed by state saving, context switching, and the
computation actually done within the target thread. The number we report (2,740) is the number of
instructions spent in the code that performs the scheduling. We are concerned with the insert and
getNext operations, but the scheduling code does a number of additional tasks unrelated to these
operations. This additional work acts as a fixed overhead, which consumes the same number of
instructions for each time-slice. For example, there is code to give real-time threads processor time, but
since there are no real-time threads, those checks always fail. There is also code to perform accounting
and some additional activities. While these extra activities cannot be easily removed, they are a fixed
cost per time-slice, just like the 468.5 instructions.

I do not know how to accurately measure the fixed cost per time-slice, but it doesn’t matter, since it is
constant and unchanging, regardless of which algorithms we use for insert and getNext. So in the
following graphs, please remember the fixed cost is there. In other words, don’t look at the zero axis; the
actual height above the zero line is arbitrarily determined by the fixed cost.

Test #2

Sticking with algorithm (2), let’s vary the number of threads.

Data Structures for Scheduling / Porter	 	 Page of
7 50

Number of Threads	 Average # of Instructions per Time-slice

1	 1593

2	 2295

3	 2463

4	 2325

5	 2470

6	 2512

7	 2630

8	 2652

9	 2698

10	 2740

20	 3072

30	 3261

40	 3371

50	 3463

These numbers form a nice graph, with the values asymptotically approaching about 3600, although the
graph is a little chaotic and noisy with under 8 threads.

Data Structures for Scheduling / Porter	 	 Page of
8 50

0

900

1800

2700

3600

Number of Threads
0 10 20 30 40 50

Test #3

Now let’s see what happens with algorithm (4). In other words, we are continuing to use a red-black tree
but we are no longer using it in FIFO order. We will be using random numbers to determine the
priorities, which means that threads are not added to the tail end of the queue, but are inserted into
different places in the red-black tree.

We expect that the results will be about the same, or perhaps slightly smaller.

First, let’s evaluate our randomizing function with 30 threads. We’ll call our various randomizing
functions A, B, C, ...

Randomization	 Average # of Instructions per Time-slice

A: 200-200	 3261 (no randomization; strictly round-robin)

B: 200-250	 2940

C: 200-300	 2857

D: 200-400	 2795

E: 200-500	 2775

F: 200-1000	 2740

G: 200-2000	 2713

H: 1-10	 2896

I: 1-100	 2442

J: 1-200	 2231

K: 1-500	 2105

L: 1-1000	 2040

M: 1-2000	 2531 <<<

N: 1-3000	 1999

It seems that the numbers seem to get smaller with increasing randomization. This makes sense: If the
thread just finishing a time-slice is always inserted in round-robin fashion, at the very tail end of the
ready list, then the entire tree must be shifted in order to maintain balance. On the other hand, if the
thread is inserted in a random spot, it will tend to be inserted in the middle of the tree, which will only
require a rebalancing of about half of the tree.

But this priority scheme not realistic. For example, “N” assigns each thread a priority number between 1
and 3,000. A thread with priority 3,000 is run 1/3000 as often as a thread with priority level 1. But does
anyone really need such a great variation of priority levels? And with so few threads, the assignment of
random priority levels is itself introducing a large degree of randomness.

We’ll use a different approach. We will randomly assign each thread a priority between 1 and 5 and each
thread will keep its priority unchanged throughout the test. The threads with priority level 1 are the
highest and run most frequently. The threads with priority level 2 are run at half the speed of threads at
level 1. The threads at level 3 are run 1/3 as often as threads at level 1. Threads at level 5 are run 1/5 as

Data Structures for Scheduling / Porter	 	 Page of
9 50

often as threads at level 1. Thus, threads at level 5 have only 1/5 as many time-slices. Threads at level 1
tend to be inserted near the low end of the tree—that is, near the front end of the ready list—and threads
with a higher number tend to be inserted closer to the tail end of the tree.

All the threads with a given level are scheduled round-robin. For example, if you look only at the
threads at level 3, you’d see they are scheduled in a strictly round-robin order. Thus, threads at level 5
are always inserted at the tail end of the ready list.

Let’s vary the number of threads and see what happens with 5 priority levels. For comparison, we show
the round-robin times—that is, where there is just a single priority level. We also show how much faster
the random threads are (“difference”).

Number of Threads	 Random Priorities (5)	 Round-Robin (1)	 Difference

10	 2642	 2740	 98

20	 2850	 3072	 222

30	 3021	 3261	 240

40	 3148	 3371	 223

50	 3239	 3463	 224

That’s a pretty consistent result: Using just a red-black tree in both cases, increasing the number of
priorities tends to reduce the overhead spent by a small and roughly constant amount.

Data Structures for Scheduling / Porter	 	 Page of
10 50

0

500

1000

1500

2000

2500

3000

3500

Number of Threads

Using 5 random priorities

Round-Robin

Let’s try a larger number of priorities and see what happens. Next, we will randomly assign each thread
with a priority between 1 and 10. Threads at level 10 will be scheduled 1/10 as often as threads at level
1.

Number of Threads	 Random Priorities (10)	 Round-Robin (1)	 Difference

10	 2438	 2740	 302

20	 2728	 3072	 344

30	 2896	 3261	 365

40	 3015	 3371	 356

50	 3104	 3463	 359

Again, we get a pretty consistent result. Randomizing the threads causes the time spent scheduling to
decline, and the decline is by a roughly constant amount, independent of the number of threads being
scheduled. Of course, we always spend more time scheduling when we have more threads.

And we find that a larger number of priority levels reduces the scheduling time a little, but the amount is
modest. We can call it about 360-220 = 140, which is small when compared to the difference in times for
scheduling say 20 threads and 50 threads, which is 3104-2728 = 376.

Data Structures for Scheduling / Porter	 	 Page of
11 50

0

600

1200

1800

2400

3000

3600

Number of Threads

Using 10 random priorities

Round-Robin

The bottom line—at least with red-black trees—is that there is no penalty for having a larger number of
priority levels. Let’s test this by looking at 20 different priority levels.

Number of Threads	 Random Priorities (20)	 Round-Robin (1)	 Difference

10	 2364	 2740	 376

20	 2657	 3072	 415

30	 2806	 3261	 455

40	 2917	 3371	 454

50	 2994	 3463	 469

So the trend seems consistent.

Data Structures for Scheduling / Porter	 	 Page of
12 50

0

600

1200

1800

2400

3000

3600

Number of Threads

Using 20 random priorities

Round-Robin

Linked Lists

Next, we let’s look at scheduling times for linked lists. We begin with straight round-robin scheduling.
We compare it to the red-black implementation with only one priority level, which also implements
round-robin scheduling.

Number of Threads	 Linked List	 Red-Black Tree

10	 808	 2740

20	 807	 3072

30	 807	 3261

40	 807	 3371

50	 807	 3463

We see that the linked-list implementation is dramatically faster for round-robin scheduling. We also see
that the time spent in getNext and insert is always the same, regardless of the number of threads.

As mentioned before, we are not able to quantify the fixed, constant-time costs associated with each
scheduling event. There is some amount of constant overhead is included in these numbers, which we
have suggested with the dashed line, although we do not know exactly how much it is. Wherever the
dashed line is actually located, it forms the baseline, on top of which the getNext and insert operations
are added.

Regardless of how much overhead our measurements include, we conclude that the savings is dramatic.
But of course, we always expected linked lists to be much faster whenever the scheduling is strictly
round-robin. 

Data Structures for Scheduling / Porter	 	 Page of
13 50

0

800

1600

2400

3200

4000

Number of Threads

Linked-List

Red-Black Tree

Fixed Overhead

Sorted Linked Lists

Next, let’s look at priority scheduling with linked lists. This will require us to perform a sorted-insert
when we reschedule.

Here, we compare linked-list against linked-list. In one case, there are 5 priority levels, and in the other
there is just 1 priority.

Number of Threads	 Random Priorities (5)	 Round-Robin (1)	 Difference	 Delta

10	 1248	 808	 440

20	 1627	 807	 820	 379

30	 1955	 807	 1148	 328

40	 2313	 807	 1506	 358

50	 2679	 807	 1872	 366

Just a we expect, the time spent grows with an increasing number of threads. The “delta” column shows
the extra time that each scheduling event requires, when we add 10 more threads. For example, to
schedule 30 threads with random priorities required an average of 1955 instructions, while to schedule
40 threads with random priorities requires 2313 instructions. That’s a delta of 358.

Data Structures for Scheduling / Porter	 	 Page of
14 50

0

400

800

1200

1600

2000

2400

2800

Number of Threads

Round-Robin

Sorted List (5 Priorities)

Next, let’s look at 10 priority levels.

Number of Threads	 Random Priorities (10)	 Round-Robin (1)

10	 1177	 808

20	 1524	 807

30	 1839	 807

40	 2218	 807

50	 2492	 807

Data Structures for Scheduling / Porter	 	 Page of
15 50

0

520

1040

1560

2080

2600

Number of Threads

Round-Robin

Sorted List (10 Priorities)

Next, let’s look at 20 priority levels.

Number of Threads	 Random Priorities (20)	 Round-Robin (1)

10	 1114	 808

20	 1444	 807

30	 1646	 807

40	 1946	 807

50	 2168	 807

As before, we see that an increase in the number of priority levels seems to slightly reduce the cost of
scheduling. For example, scheduling 50 threads with 5 priority levels requires 2679 instructions, but if
we increase the number of priority levels to 20, the time goes down to 2168.

Data Structures for Scheduling / Porter	 	 Page of
16 50

0

275

550

825

1100

1375

1650

1925

2200

Number of Threads

Round-Robin

Sorted List (20 Priorities)

Combining the previous three graphs, we get this:

As expected, we see that increasing the number of threads causes the time spent in the scheduler to go
up, more or less linearly.

The Big Question

So the question in comparing the linked list implementation to the red-black tree implementation is this:

How many threads are required before the red-black approach is more efficient?

When I implemented the linked-list version, I dealt with the “idle thread” in a different way. I now
realize that the previous numbers I got for the red-black tree all included the idle-thread, which was
always in the tree, although it never came to the front of the queue. This makes the previous numbers for
red-black trees incomparable to the numbers for the linked-list. So, treating the idle thread the same way,
I have revised the timings for the red-black trees.

Also, in order to find the cross over point, we’ll need to look at more threads.

Data Structures for Scheduling / Porter	 	 Page of
17 50

0

700

1400

2100

2800

Number of Threads

Round-Robin

Sorted Lists

5

10

20

Let’s start with 5 priority levels:

Number of Threads	 Linked List	 Red-Black Tree

10	 1248	 2581

20	 1627	 2799

30	 1955	 2979

40	 2313	 3107

50	 2679	 3204

60	 3048	 3288

70	 3396	 3332 <<<

80	 3785	 3409

90	 4166	 3431

100	 4540	 3463

The log curve for the red-black tree algorithm crosses the linear curve for the linked list algorithm.
Above 60 threads, the red-black approach is faster.

Data Structures for Scheduling / Porter	 	 Page of
18 50

0

1250

2500

3750

5000

Number of Threads

Linked List

Red-Black Tree

Here is the data for 10 priority levels:

Number of Threads	 Linked List	 Red-Black Tree

10	 1177	 2427

20	 1524	 2679

30	 1839	 2875

40	 2218	 3000

50	 2492	 3086

60	 2839	 3164

70	 3102	 3220

80	 3481	 3284 <<<

90	 3802	 3337

100	 4162	 3370

The crossover point has moved to the right. Above about 70 threads, the red-black approach is superior.

Data Structures for Scheduling / Porter	 	 Page of
19 50

0

1250

2500

3750

5000

Number of Threads

Linked List

Red-Black Tree

Here is the data for 20 priority levels:

Number of Threads	 Linked List	 Red-Black Tree

10	 1114	 2339

20	 1444	 2638

30	 1646	 2783

40	 1946	 2897

50	 2168	 2982

60	 2444	 3055

70	 2712	 3110

80	 3011	 3171

90	 3325	 3215 <<<

100	 3669	 3263

As you can see, the curve for the red-black trees looks like a log plot and the curve for the linked-list
looks linear, which is exactly what we expect. We see clear cross-over points, which seem to be between
about 70 and 90 threads. The exact cross-over point is dependent on the number of priority levels we are
using.

The threads in these simulations are assigned randomly. This may not be a good model for a real mix of
threads. It may be that we have a large number of low priority threads and a small number of high
priority threads. Or perhaps it the opposite mix is more normal; I really don’t have a good intuition
about this.

But one thing we can say is that the red-black curve is virtually flat at the cross over point, while the
link-list curve remains linear. This means that very quickly after the cross-over point—wherever it
occurs—the two diverge quickly and the linked-list becomes awfully slow.

Data Structures for Scheduling / Porter	 	 Page of
20 50

0

1250

2500

3750

5000

Number of Threads

Linked List

Red-Black Tree

I suppose lightly loaded systems tend to have a small number of threads and heavily loaded systems tend
to have a larger number of threads, although this is by no means obvious. In any case, we are most
concerned about efficiency in a heavily loaded system.

If the computer almost always has 50 or fewer active threads, then we conclude that the linked-list is the
winner and is an acceptable choice.

But if the computer often has more than 100 active threads, then the red-black tree is the clear winner.

Between these two numbers, it is unclear. To answer that, we would need to look at the actual priority
mix for a real system.

My guess is that my MacBook Pro, with its 1500 threads, has a lot of threads that are sleeping. I just
can’t imagine what background tasks 1500 threads might be actively engaged in computing. I’ll bet
many threads wake up periodically to check for some condition, such as incoming email. Maybe other
threads only wake up when an event occurs, such as a particular button being pressed or some other
thread requiring a service. But most of the time, my laptop is just doing nothing.

Of course, we are not concerned about efficiency when the laptop is doing nothing; we care about
efficiency when we have a bunch of things happening. For example, what if I push a button at the same
moment that the email daemon wakes up, and while a spell-checker is looking for misspellings, and
while a video player is playing in a separate window? Maybe there is a virus scanner operating in the
background and maybe the disk head algorithm is busy trying to reorder disk requests and maybe a
couple of tasks have garbage collectors running in the background. That is about 10 activities. Still, I
find it difficult to imagine as many as 20 simultaneously executing threads, each actively computing
something. And even if we happen to have 20 active threads at one moment, I cannot imagine that level
of congestion will occur often or will persist for very long.

However, in different environments, I can imagine many more active threads. Consider a robot with 50
joints. Each joint requires a thread which is reading a sensor, performing a computation, and adjusting a
signal to a servo motor. Or consider an inflight media system, where each seat in the airplane involves
an individual thread. Each thread is actively computing the data to display on the screen, showing the
location, airspeed, and so on. Or consider a factory sensor system, where each thread is reading a sensor
and computing results based on the current conditions (which are always in flux) to determine if the
sensor reading is within parameters.

We want these threads to run as fast as possible, which means we need the scheduler to have the lowest
possible overhead.

One thing to remember is that we can always cut the scheduler overhead in half by doubling the size of
each time-slice. If the time-slices are twice as long, then the scheduler will only need to select a new
thread half as often. Therefore, it will consume half as many cycles. While each thread will ultimately
get the same amount of CPU cycles per minute (not accounting for the reduced overhead), each thread

Data Structures for Scheduling / Porter	 	 Page of
21 50

will get a time-slice half as often. So the thread gets a time-slice half as often, but the time-slice is twice
as large. This means that a thread may have to wait for twice as long between time-slices.

In the case of a thread that is monitoring a sensor, the long time-slice might not be as important as
having frequent time-slices. Perhaps on each time slice, the thread takes a reading, checks it, and then
yields the remainder of its time-slice. The checking might not take much time, but the thread needs to
perform these checks at a high frequency, in order to catch and respond to a problem quickly.

Linked List Search Direction

Previously, to perform an insert with a linked list, we searched from front to back. When the list contains
a thread with the same key, we continued searching until we had searched past it, before performing the
insert. What happens if we search in the reverse direction? In other words, what happens if we walk the
list from the tail end? If there are several threads on the ready list with the same key then, by searching
in the reverse order, we can avoid walking past all the equal entries. Will this save us any time?

In the next experiment, we compare the forward search with the reverse search. For comparison, we
show the red-black tree numbers. This should make the biggest difference when we have a large number
of threads with a small number of priority levels. For example, if we have 100 threads with only 5
different priority levels then, on average, there are 10 threads at each priority level. Thus, whenever we
insert a thread into the ready queue, the queue already contains 9 threads with the same priority level.

We are curious whether the search direction makes a significant difference in the cross-over point, when
we compare it to red-black trees. So we’ll include the red-black timings for comparison. The cross-over
points, where the red-black tree performance is superior, are marked.

Data Structures for Scheduling / Porter	 	 Page of
22 50

Let’s start with 5 priority levels:

Number of Threads	 Linked List (forward)	 Linked List (reverse)	 Red-Black Tree

10	 1248	 1055	 2581

20	 1627	 1205	 2799

30	 1955	 1422	 2979

40	 2313	 1603	 3107

50	 2679	 1774	 3204

60	 3048	 1946	 3288

70	 3396 <<<	 2140	 3332

80	 3785	 2290	 3409

90	 4166	 2448	 3431

100	 4540	 2614	 3463

Wow! The linked list—when searched in reverse order—is outperforming red-black trees even with 100
threads.

Data Structures for Scheduling / Porter	 	 Page of
23 50

0

1250

2500

3750

5000

Number of Threads

Linked List (searching reversed)

Red-Black Tree

Linked List (searching forward)

Let’s keep going and test with more threads. I’ll have to go back a run some more red-black tree tests to
find the cross-over point.

Number of Threads	 Linked List (forward)	 Linked List (reverse)	 Red-Black Tree

10	 1248	 1055	 2581

20	 1627	 1205	 2799

30	 1955	 1422	 2979

40	 2313	 1603	 3107

50	 2679	 1774	 3204

60	 3048	 1946	 3288

70	 3396 <<<	 2140	 3332

80	 3785	 2290	 3409

90	 4166	 2448	 3431

100	 4540	 2614	 3463

110	 	 2801	 3510

120	 	 2992	 3524

130	 	 3131	 3546

140	 	 3388	 3583

150	 	 3528	 3607

160	 	 3684 <<<	 3639

170	 	 3844	 3657

180	 	 4059	 3676

190	 	 4224	 3696

200	 	 4399	 3713

Data Structures for Scheduling / Porter	 	 Page of
24 50

0

1250

2500

3750

5000

Number of Threads

Linked List (searching reversed)

Red-Black Tree

Linked List (searching forward)

Here is the data for 10 priority levels:

Number of Threads	 Linked List (forward)	 Linked List (reverse)	 Red-Black Tree

10	 1177	 1131	 2427

20	 1524	 1320	 2679

30	 1839	 1548	 2875

40	 2218	 1710	 3000

50	 2492	 1975	 3086

60	 2839	 2166	 3164

70	 3102	 2444	 3220

80	 3481 <<<	 2606	 3284

90	 3802	 2826	 3337

100	 4162	 3006	 3370

110	 	 3237	 3406

120	 	 3466 <<<	 3438

130	 	 3622	 3470

140	 	 3842	 3500

150	 	 4084	 3521

160	 	 4295	 3544

170	 	 4464	 3569

180	 	 4672	 3598

190	 	 4891	 3612

200	 	 5038	 3630

Data Structures for Scheduling / Porter	 	 Page of
25 50

0

1500

3000

4500

6000

Number of Threads

Linked List (searching reversed)

Red-Black Tree

Linked List (searching forward)

Here is the data for 20 priority levels:

Number of Threads	 Linked List (forward)	 Linked List (reverse)	 Red-Black Tree

10	 1114	 1198	 2339

20	 1444	 1417	 2638

30	 1646	 1755	 2783

40	 1946	 1994	 2897

50	 2168	 2311	 2982

60	 2444	 2574	 3055

70	 2712	 2846	 3110

80	 3011	 3087	 3171

90	 3325 <<<	 3313 <<<	 3215

100	 3669	 3510	 3263

110	 3960	 3758	 3299

120	 4190	 4067	 3338

130	 4490	 4307	 3369

140	 4739	 4598	 3398

150	 4964	 4913	 3434

160	 5216	 5202	 3457

170	 5565	 5392	 3479

180	 5835	 5663	 3502

190	 6058	 5981	 3522

200	 6350	 6227	 3540

Data Structures for Scheduling / Porter	 	 Page of
26 50

0

1750

3500

5250

7000

Number of Threads

Linked List (searching reversed)

Red-Black Tree

Linked List (searching forward)

So we can conclude that with a lot of priority levels, if you are using the linked-list implementation, it
doesn’t matter whether you search forward or backward. But it you have a smaller number of priority
levels, then it really pays to search from back-to-front.

With an even larger number of priority levels, I expect the search order not to matter. You can search the
linked list front-to-back or back-to-front; the problem is that you have a lot of elements of different
priorities that you have to skip over and these account for more of the time.

But just to make sure, I’ll run the linked list tests for 50 priority levels. If there is some unexpected
effect, that should reveal it.

Data Structures for Scheduling / Porter	 	 Page of
27 50

Here is the data for 50 priority levels:

Number of Threads	 Linked List (forward)	 Linked List (reverse)

10	 997	 1270

20	 1252	 1575

30	 1414	 1994

40	 1667	 2278

50	 1786	 2700

60	 2008	 3018

70	 2151	 3414

80	 2368	 3737

90	 2575	 4071

100	 2850	 4335

110	 3104	 4621

120	 3355	 4909

130	 3577	 5227

140	 3857	 5487

150	 3948	 5936

160	 4171	 6252

170	 4398	 6565

180	 4535	 6967

190	 4797	 7246

200	 5060	 7521

OK, that’s not what I expected. But that’s why we collect data!

Data Structures for Scheduling / Porter	 	 Page of
28 50

0

2000

4000

6000

8000

 Number of Threads

Linked List (searching reversed)

Linked List (searching forward)

With a large number of priority levels, searching from front-to-back is clearly preferable to searching
from back-to-front.

I assume the reason is that the threads that have high priority run a lot and require a lot of insertions. But
since they are high-priority threads, they will tend to be inserted near the front of the ready queue, so it
makes sense to search the linked list from front-to-back.

Keep in mind that our priority model is that a thread with a priority level of 50 is very low priority and
runs at 1/50 the speed of a thread at level 1. With a large number of priorities, we will have a lot of
threads that are running very rarely, like 1/50-th of the time, or 1/47-th of the time. So with 200 threads,
we’ve got a lot of threads that are sitting on the ready queue that get selected almost never. Every time
we search from back-to-front, we have to skip past all these more-or-less dead threads. So this explains
why searching from back-to-front is a bad idea with this many priority levels.

The Initial Priority System

In the previous experiments, we were using a number of different priority levels. We asked about threads
distributed over 5, 10, 20, and even 50 different priority levels.

Up to now, our priority scheme has worked as shown below.

Imagine that we have one thread running at each priority level. In this diagram, there are threads named
A, B, C, …, each running at a different priority level. Each letter indicates a single time-slice for that
thread.

Time moves left-to-right. For example, thread C runs 1/3 as often as thread A. Likewise, thread H runs
at 1/8 the speed of thread A.

1 AAA...

2 B

3 C C C C C C C C C C C C C C C C C

4 D D D D D D D D D D D D

5 E E E E E E E E E E

6 F F F F F F F F

7 G G G G G G G

8 H H H H H H

Time slices are executed one-after-the other, so the actual, linearized order of scheduling is:

A AB AC ABD AE ABCF AG ABDH AC ABE A ABCDF A ABG ACE ABDH ABCF ...

You can see that between each C there are 3 As. Likewise, between each H there are 8 As.

Data Structures for Scheduling / Porter	 	 Page of
29 50

Of course we may have several threads at one priority level. For example, we may have 2 threads at
priority 2, which we can call B1 and B2. Then our scheduling order is:

A AB1B2 AC AB1B2D AE AB1B2CF AG AB1B2DH AC AB1B2E A AB1B2CDF A ...

A Better Priority System

I feel this approach used so far gives the scheduler a much finer granularity of priority than we actually
require: there are too many priority levels.

Clearly, there is a big difference between thread A and thread B which runs at 1/2 the speed of A, and
this is useful. But it is unclear why you would need one thread to run at 1/21 the speed of thread A and
another thread running at 1/22 the speed of A. Do we really need two distinct priority levels for these
two threads? I think it is quite reasonable to simply group them into the same priority level.

So next we describe a different priority scheme.

Now we will have different priority levels, where a thread at one level will run at half the speed of a
thread at the level above it. And let’s start our level numbers at 0 instead of 1.

0 AA...

1 B

2 C C C C C C C C C C C C

3 D D D D D D

4 E E E

When linearized, we get this order:

A AB A ABC A AB A ABCD A AB A ABC A AB A ABCDE ...

Here, thread B runs at half the speed of A. Thread C runs at half the speed of B and 1/4 the speed of A.
Thread D runs at half the speed of C, 1/4 the speed of B, and 1/8 the speed of A. And so on.

(Of course our previous scheduling algorithm is more general and this new algorithm is a subset of it. To
see this, just imagine the old scheduling algorithm, but restrict yourself to only using levels 1, 2, 4, 8, 16,
...)

With 10 levels (i.e., 0...9), we go from high-speed threads at level 0 like A, to threads at level 9 which
are running at 1/512 the speed of A (since 29 = 512).

Data Structures for Scheduling / Porter	 	 Page of
30 50

Multiple Ready Lists

In the above discussion, we were assuming only a single thread at each priority level, but of course we
must accommodate many threads at each level. So within each level, there may be many threads. We can
give the threads at level 0 the following names:

a1, a2, a3, a4, ...

We can give the threads at level 1 the following names:

b1, b2, b3, b4, ...

And so on.

For each level, we will have a simple FIFO list, which we implement with a linked-list. When it is time
to schedule a thread from some level, we select the thread at the front of the ready list for that level and
give it a time-slice.

Repeating from above, here again is the scheduling order:

A AB A ABC A AB A ABCD A AB A ABC A AB A ABCDE…

which is:

AABAABCAABAABCDAABAABCAABAABCDE…

So we see that the number of time-slices we give to A threads is twice the number of time-slices we give
to B threads. This means that A threads are run at twice the speed of threads at level B if and only if
there are an equal number of threads at the A level and the B level. But there may not be.

For example, if there are 4 times as many threads at level A as are at level B, then the threads at level A
will run twice as slow as the threads at level B.

a1 a2 b1 a3 a4 b1 c1 a1 a2 b1 a3 a4 b1 c1 d1 a1 a2 b1 a3 a4 b1 …

In this example, you can see that thread b1 is running twice as often as thread a1. This is not what we
want.

To remedy this, we will make the following modification. When it is time to run the A threads, we will
give every thread on the A ready list a time-slice. In other words, we will go through the entire FIFO
queue, running all threads exactly once. And since A runs twice before B runs (according to the schedule
shown above), we will run through the FIFO queue for A twice before moving to the FIFO queue for B.

Data Structures for Scheduling / Porter	 	 Page of
31 50

a1 a2 a3 a4 a1 a2 a3 a4 b1 a1 a2 a3 a4 a1 a2 a3 a4 b1 c1…

Now you can see that thread b1 is running half as often as thread a1, which is what we want.

Notice that our schedule is repetitive. If we look at only 5 levels (0…4 or equivalently A…E), we can
see that it repeats after 31 (i.e., 25-1). If we look at 10 levels (0…9 or A…J), we can see that it repeats
after 1023 (i.e., 210-1).

We can express the schedule as follows. We can show which list is selected and how many times we
have to go through it:

A-2 B-1 A-2 B-1 C-1 A-2 B-1 A-2 B-1 C-1 D-1 A-2 B-1 A-2 B-1 C-1 A-2
B-1 A-2 B-1 C-1 D-1 E-1 …

Also, to reduce the size of our schedule, we will consolidate. In the above schedule, list A is selected 16
times, B is selected 8 times, C is selected 4 times, D is selected 2 times, and E is selected 1 time.

We could rewrite the schedule as follows. Notice, that these numbers are preserved.

A-8 B-4 C-2 D-1 A-8 B-4 C-2 D-1 E-1 …

To execute this schedule, we begin by selecting the A ready FIFO list. We will give each thread on this
list a time-slice and then we will repeat 7 additional times. Thus, every thread on the A list will get 8
time slices. Then we move to the next item in the schedule and give each thread in the B list 4 time-
slices. If, when we come to a list, the list is empty, we immediately move to the next item in the
schedule. For example, if there are not threads on the C list, we move on to the next entry, which is D-1.

The following schedule would also satisfy the overall numerical requirement for 5 priority levels:

A-16 B-8 C-4 D-2 E-1 …

 
but this runs A threads for a long time, somewhat starving the other threads. With 10 priority levels, the
following is the shortest possible schedule:

A-512 B-256 C-128 D-64 E-32 F-16 G-8 H-4 I-2 J-1…

Assuming each time slice is 2 milliseconds, it means that a single thread on the A list will monopolize
the CPU for 512 × 2 ms = 1.024 seconds, and all other threads will be completely locked out for that
time. This is unacceptable for any interactive application. And it would be even worse if there were
several threads on the A list. For this reason, we want a schedule that will execute the A threads at most
16 at once. A delay of 16 × 2 ms = 32 ms seems acceptable.

Here is the schedule we will use:

Data Structures for Scheduling / Porter	 	 Page of
32 50

A-16 B-8 C-4

A-16 B-8 C-4 D-4

A-16 B-8 C-4

A-16 B-8 C-4 D-4 E-4

A-16 B-8 C-4

A-16 B-8 C-4 D-4

A-16 B-8 C-4

A-16 B-8 C-4 D-4 E-4

F-4 G-2 H-1

A-16 B-8 C-4

A-16 B-8 C-4 D-4

A-16 B-8 C-4

A-16 B-8 C-4 D-4 E-4

A-16 B-8 C-4

A-16 B-8 C-4 D-4

A-16 B-8 C-4

A-16 B-8 C-4 D-4 E-4

F-4 G-2 H-1 I-1

A-16 B-8 C-4

A-16 B-8 C-4 D-4

A-16 B-8 C-4

A-16 B-8 C-4 D-4 E-4

A-16 B-8 C-4

A-16 B-8 C-4 D-4

A-16 B-8 C-4

A-16 B-8 C-4 D-4 E-4

F-4 G-2 H-1

A-16 B-8 C-4

A-16 B-8 C-4 D-4

A-16 B-8 C-4

A-16 B-8 C-4 D-4 E-4

A-16 B-8 C-4

A-16 B-8 C-4 D-4

A-16 B-8 C-4

A-16 B-8 C-4 D-4 E-4

F-4 G-2 H-1 I-1 J-1

When we reach the end, we repeat from the beginning.

Data Structures for Scheduling / Porter	 	 Page of
33 50

Although this schedule doesn’t exactly replicate the pattern originally given, it respects it, in the sense
that each thread is executed the same number of times as above.

Implementation This schedule will be preset and hardcoded into the algorithm. There are two arrays
(scheduleList and scheduleCount) which will be initialized at compile-time. The scheduleList is an
array where each element is a pointer to one of the 10 ready lists. The scheduleCount is an array where
each element is an integer giving the number of times that the ready list is to be gone through. For
example:

scheduleList [0] = ptr to readyListA	 scheduleCount [0] = 16

scheduleList [1] = ptr to readyListB	 scheduleCount [1] = 8

scheduleList [2] = ptr to readyListC	 scheduleCount [2] = 4

scheduleList [3] = ptr to readyListA	 scheduleCount [3] = 16

…	 …

Below is the pseudo-code for the scheduling algorithm. The following variables are used to keep track of
where we are:

schedIndex = index of element in scheduleList / scheduleCount currently being used.

thisList = ptr to the ready list being used

remainingCount = number of times left to go through the list

listLast = ptr to the thread at the tail end of the readyList we are running through, so we can

detect how many times we’ve gone through the FIFO list.

INITIALIZATION...

 schedIndex = SCHEDULE_SIZE - 1

 thisList = readyList for "initThread"

 remainingCount = 0

 listLast = ptr to "initThread"

AT END OF “thr”s TIME-SLICE...

 thisList.AddLast (thr)

 if (thr == listLast)

 remainingCount = remainingCount - 1

 if (remainingCount <= 0)

 repeat

 schedIndex = (schedIndex + 1) % SCHEDULE_SIZE

 thisList = scheduleList [schedIndex]

 until (thisList is not empty)

 remainingCount = scheduleCount [schedIndex]

 listLast = thisList.last

 endIf

 endIf

Data Structures for Scheduling / Porter	 	 Page of
34 50

TO SELECT A NEW THREAD AND START THE NEXT TIME-SLICE...

 thr = thisList.RemoveFirst ()

 START TIME-SLICE...

This algorithm should execute very quickly to select a new thread for scheduling. In most cases, one of
the first two “if” tests is bound to fail, so the amount of work is only slightly more than pure round-robin
with a single linked list. Occasionally, both tests will succeed and the “repeat” loop will be executed. In
heavily loaded systems where there are threads at every priority level, the body of the repeat loop will be
executed only once. Even if the body is executed a couple of times, the body is quite short.

To evaluate this algorithm, I will take a number of threads (e.g., 50 threads) and randomly assign them
priorities in the range 0…9 (i.e., A…J). Then, I will run this algorithm and see how long is spent in the
scheduler.

For comparison, I will take the same number of threads (50 in this example) and assign each thread the
same priority (i.e., 0…9). Then, to run the threads at the same rate, I will convert a priority of N into 2N
(i.e., into 1, 2, 4, 8, 16, …, 512) and use the red-black scheduling algorithm.

For example, a thread assigned priority 0 will be run most frequently. In this new algorithm, such a
thread will be placed in ready list A. On the other hand, a thread assigned a priority of 3 will be placed in
ready list D and will be run at 1/8 the frequency of a thread in ready list A. For comparison, this same
thread will be assigned priority 23 and (i.e., 8) for the red-black algorithm and will therefore be run at
1/8 the speed of threads in the fastest priority.

Given a thread assigned some priority N, the thread should be run at the exactly the same rate in the two
different algorithms. However we should note that, although the threads are run at the same overall rate,
the exact ordering of individual time-slices will be quite different. For example, consider two threads A
and B, where B runs at half the speed of A. In the red-black algorithm, the time-slices will be ordered
like this:

AABAABAABAABAAB …

In the modified, multi-list algorithm, the time-slice ordering will be:

AAAAAAAAAAAAAAAA BBBBBBBB AAAAAAAAAAAAAAAA BBBBBBBB …

The difference is that a thread like B will have to wait 8 times longer before it gets a change to run, but
when it does run, it will get 8 times as many time-slices. So the modified, multi-list algorithm introduces
some lack of responsiveness to threads like B. In the schedule given above, B has to wait 8 times as long
but it gets 8 time-slices when it is scheduled. Similarly, threads C, D, E, and F have to wait 4 times as
long before they are scheduled, but they get 4 time-slices when they run. Thread G has to wait twice as
long, but gets 2 time-slices when scheduled. There is no effect on threads H, I, and J, which are given a

Data Structures for Scheduling / Porter	 	 Page of
35 50

single time-slice when they run and are only made to wait as long as necessary to achieve their desired
frequency.

I hope to learn whether the modified, multi-list algorithm or the red-black algorithm performs better, and
under what conditions. I fully expect the modified, multi-list algorithm to perform much better, but by
how much? Is it significant?

It would also be possible to have a different schedule that eliminates the delays imposed on threads like
B, C, D, E, F, and G, but this schedule would be longer:

A-2 B-1 A-2 B-1 C-1 A-2 B-1 A-2 B-1 C-1 D-1 …

We could also streamline the schedule an eliminate the array scheduleCount altogether, since only A
ever runs through its FIFO list more that once. This would give a schedule like this:

A A B A A B C A A B A A B C D …

This schedule would be longer. In our example with 10 priority levels, it is a difference between 135
entries in arrays scheduleList and scheduleCount (as shown above) versus 1023 entries (= 512 + 256 +
128 + 64 + 32 + 16 + 8 + 4 + 2 + 1) in array scheduleList. Perhaps a scheme with only 8 priority levels
(and 255 entries in its scheduleList array) would be a good compromise.

So another question is which approach to the schedule arrays is best: either bunched (A-16, B-8, C-4,
…) or not bunched (A A B A A B C …)? I will address the un-bunched schedule proposal after
experimenting with the bunched schedule.

This is a “dynamic paper”. At this point, I must pause the writing to implement the algorithm I have just
described before I can collect any performance numbers. My plan is to implement the scheduling
algorithms described above…

There are some subtle points concerning the algorithm above. From time to time threads may become
blocked or otherwise made un-runnable. In other words, a thread that is on a ready list might get
removed. For example, when a task is killed, it forcies the termination of all its threads.

The algorithm as presented above saves a pointer to the last thread on the ready list, in variable listLast.
In particular, listLast always points to a thread from thisList. We are using this pointer to check to see
when we have just completed running though the entire ready list. We have several cases that must be
handled.

First, the currently running thread may become blocked, in which case it will not be added back to the
ready list (i.e., to thisList). This could leave the current ready list empty. When the algorithm is ready to
select the next thread to run, blindly grabbing the first element of thisList will fail.

Data Structures for Scheduling / Porter	 	 Page of
36 50

Second, the thread that is pointed to by listLast may be removed. Perhaps this is the currently running
thread and it blocks itself. Or perhaps the thread is not running, but is removed from the ready list by
some other thread, for example when a thread is “killed”. Without fixing the code, the algorithm above
will continue to cycle through thisList forever, never reaching a thread that satisfies the test

if (thr == listLast)

We can solve the first problem by inserting a check whenever we remove the next element from
thisList. If there is none, then we will need to move on to the next schedule entry:

TO SELECT A NEW THREAD AND START THE NEXT TIME-SLICE...

 thr = thisList.RemoveFirst ()

 if (thr == null)

 repeat

 schedIndex = (schedIndex + 1) % SCHEDULE_SIZE

 thisList = scheduleList [schedIndex]

 until (thisList is not empty)

 remainingCount = scheduleCount [schedIndex]

 listLast = thisList.last

 thr = thisList.RemoveFirst ()

 endIf

 START TIME-SLICE...

We can solve the second problem by inserting a check every time a thread becomes blocked or is
otherwise removed from the ready list and made un-runnable. We must find a new thread to use to detect
the end of thisList. In other words, we must set listLast to some other thread.

AFTER “thr” IS MADE UN-RUNNABLE...

 if (thr == listLast)

 if (thisList.last != null)

 listLast = thisList.last

 elseIf (currentThread came from thisList)

 listLast = currentThread

 else

 repeat

 schedIndex = (schedIndex + 1) % SCHEDULE_SIZE

 thisList = scheduleList [schedIndex]

 until (thisList is not empty)

 remainingCount = scheduleCount [schedIndex]

 listLast = thisList.last

 endIf

 endIf

Data Structures for Scheduling / Porter	 	 Page of
37 50

We need the test to see if currentThread came from thisList because the scheduler also supports real-
time threads (whose scheduling is not discussed here) and the thread performing the “kill” action may
actually be a real-time thread, so we cannot blindly use it.

Evalution of the Multi-List Algorithm

Okay, I’m back and ready to present some numbers. We will compare the the multi-list algorithm (as
described above) to the red-black tree algorithms.

Since the multi-list algorithm accommodates 10 priority levels, we will randomly assign each thread a
priority in the range (0…9). A thread at one level (e.g., 7) will run at half the speed of a thread at the
next greater level (e.g., 8). The red-black algorithm sort the tree on a key based on “frequency”, where
frequency determines how often the thread runs. To compare “apples to apples”, we will only use
frequencies of 2N (i.e., 1, 2, 4, 8, … 512) for the red-black algorithm.

We will use the same randomization for both the multi-list and the red-black algorithm. For example, if
thread 17 happens to be assigned a priority level of 3, it will be at priority level 3 in both the multi-list
and the red-black. In the multi-level algorithm, level 3 means it is placed in ready list D (since the
priorities are 0=A, 1=B, 2=C, 3=D, … 9=J). In the red-black algorithm, level 3 means that it has a
frequency value of 2N = 8 (since the priorities are 1, 2, 4, 8, 16, … 512). Thus, we are running the same
mix of jobs against both algorithms.

Data Structures for Scheduling / Porter	 	 Page of
38 50

Here is the result, using 10 priority levels:

Number of Threads	 Red-Black Tree	 Multi-List

10	 2273	 840

20	 2577	 839

30	 2742	 838

40	 2901	 836

50	 2986	 833

60	 3064	 832

70	 3124	 831

80	 3213	 830

90	 3274	 829

100	 3332	 829

110	 3344	 828

120	 3374	 828

130	 3408	 828

140	 3439	 828

150	 3454	 827

160	 3492	 827

170	 3516	 827

180	 3492	 827

190	 3555	 827

200	 3569	 827

This data indicates that the multi-list algorithm is vastly superior to the red-black tree algorithm. The
multi-list algorithm is—in practice—a constant-time algorithm, and with a small constant.

Data Structures for Scheduling / Porter	 	 Page of
39 50

0

1000

2000

3000

4000

Number of Threads

Red-Black Tree

Multi-List

Keep in mind that the numbers presented here include additional unrelated overhead, so the actual cost
of the algorithms is even less than the numbers we collected. The gap between these two curves—when
viewed as a percentage improvement—is bigger than it looks. We measured about 830 instructions for
the multi-list algorithm, but the actual cost is a smaller number. (Perhaps 200…??? I really don’t know.)
In any case, the performance improvement of multi-list over red-black is greater than this graph
suggests.

The take-away here seems unambiguous:

If you can live with a small, fixed number of priority levels (e.g., 10 different priority
levels) where all threads within one level are scheduled in a round-robin fashion, then the
multi-level algorithm blows the red-black algorithm out of the water.

As a comparison, recall that straight round-robin (which doesn’t accommodate any priority levels) was
taking about 807 instructions. The multi-list algorithm is taking about 830 instructions, so it is almost as
efficient as straight round-robin.

Note that the times for the multi-list algorithm actually decline a slight bit as we increase the number of
threads, going from 840 down to 827. Imagine a job mix with 10 threads; since there are 10 different
priority levels, each ready list has an average of 1 element. Thus, we spend a larger percentage of time
switching from one ready list to the next. Now imagine a job mix of 150 threads; each ready list will
have an average of 15 elements. For this job mix, we spend a larger percentage of the time just going
through the ready-list in FIFO order, which is fast. I think this explains why the times actually fall a little
bit with a larger number of threads.

Next, let’s try a different job mix, to see if this has a significant effect on the performance of the
algorithms.

Next, we compare the multi-list algorithm to itself under two different conditions. In the first, the job
mix is distributed randomly over all 10 priority levels (0…9). This is just the same as the previous test.
In the second, we still have 10 levels, but all threads are randomly assigned to one of the lowest 3
priority levels (i.e., 7…9). The algorithm spends a lot of time with the high-priority ready lists (ready list
A, ready list B, etc.), but in this job mix, those lists are empty. This is expected to degrade performance,
but the question is: How much?

Data Structures for Scheduling / Porter	 	 Page of
40 50

For comparison, we will also run the red-black algorithm. To make the comparison fair, we’ll restrict the
job mix for the red-black algorithm to the lowest 3 priority levels.

Number of Threads	 Multi-List (7…9)	 Multi-List (0…9) 	 Red-Black (7…9)

10	 1324	 840	 2416

20	 1028	 839 	 2754

30	 954	 838 	 2993

40	 922	 836 	 3117

50	 899	 833 	 3242

60	 888	 832 	 3276

70	 878	 831 	 3343

80	 872	 830 	 3403

90	 866	 829 	 3461

100	 862	 829 	 3491

110	 858	 828 	 3538

120	 856	 828 	 3550

130	 853	 828 	 3573

140	 851	 828 	 3600

150	 849	 827 	 3639

160	 848	 827 	 3667

170	 846	 827 	 3680

180	 845	 827 	 3695

190	 844	 827 	 3730

200	 843	 827 	 3737

Data Structures for Scheduling / Porter	 	 Page of
41 50

0

1000

2000

3000

4000

Number of Threads

Red-Black Tree

Multi-List (0…9)

Multi-List (7…9)

We see that with a small number of low-priority threads, the multi-list algorithm suffers from the
increased overhead of having to constantly bypass the high-priority ready lists, which are all empty. And
it cannot “get up to speed” because the ready lists that do have elements are not lengthy. However, with
a larger number of threads, the ready lists are longer, and the round-robin approach within each priority
level pays off, improving the performance. Above around 40 or 50 threads, it doesn’t really matter how
the threads are distributed between priority levels.

Whether you have 10 or 200 threads, and regardless of how those threads are distributed over the
different priority levels, the multi-list algorithm is still clearly superior to the red-black algorithm.

It seems possible that with a very small number of threads, the red-black algorithm might be able to out-
perform the multi-list algorithm. Let’s look at job mixes with a very small number of threads. We are
essentially asking what happens to these lines as we move further to the left.

Number of Threads	 Multi-List (7…9)	 Multi-List (0…9) 	 Red-Black (7…9)

1	 4928	 4928	 1290

2	 3573	 1301	 1633

3	 2481	 1278	 2135

4	 2008	 874	 2273

5	 1594	 843	 2144

6	 1532	 843	 2218

7	 1477	 843	 2279

8	 1431	 843	 2320

9	 1355	 840	 2427

10	 1324	 840	 2416

Data Structures for Scheduling / Porter	 	 Page of
42 50

0

1250

2500

3750

5000

Number of Threads

Red-Black Tree

Multi-List (0…9)

Multi-List (7…9)

Perhaps we can make it clearer by rescaling and redrawing the above two graphs:

From this, we conclude that with 3 or fewer threads, the red-black algorithm might actually perform
better. So if you are building a kernel in which you can be certain the maximum number of threads will
always be small—say below 5—then there is no clear advantage to the multi-list algorithm. But with
such a draconian limit on your job mix, you might as well go with straight round-robin, or do something
more specific to your application area. In a typical kernel, you’ll really need to be able to accommodate
more than 10 threads, in which case, the multi-list approach seems to be overwhelmingly superior.

Increasing the Responsiveness

In the multi-list algorithm described above, we used a schedule that would run A threads for 16 times,
before running the B threads. But when the B threads were run, they ran 8 times.

AAAAAAAAAAAAAAAA BBBBBBBB CCCC AAAAAAAAAAAAAAAA BBBBBBBB CCCC DDDD…

We would really like a schedule with more responsiveness, like the following:

AAB AAB C AAB AAB CD AAB AAB C AAB AAB CDE …

Next, we present an algorithm which we will call “Multi-List-2”, to differentiate it from the previous
algorithm, which we will now call “Multi-List-1”.

We will make the following modifications:

We will eliminate the remainingCount variable. In other words, when we run through a ready list in the
schedule we will run through it exactly one time.

Data Structures for Scheduling / Porter	 	 Page of
43 50

0

1250

2500

3750

5000

0

1000

2000

3000

4000

Number of Threads

Red-Black Tree

Multi-List (0…9)

Multi-List (7…9)

The schedule for Multi-List-1 was:

A-16 B-8 C-4

A-16 B-8 C-4 D-4

…

which we represented as:

scheduleList [0] = ptr to readyListA	 scheduleCount [0] = 16

scheduleList [1] = ptr to readyListB	 scheduleCount [1] = 8

scheduleList [2] = ptr to readyListC	 scheduleCount [2] = 4

scheduleList [3] = ptr to readyListA	 scheduleCount [3] = 16

…	 …

The schedule for Multi-List-2 will be:

A-2 B-1 A-2 B-1 C-1

A-2 B-1 A-2 B-1 C-1 D-1

A-2 B-1 A-2 B-1 C-1

A-2 B-1 A-2 B-1 C-1 D-1 E-1

…

or (equivalently):

A A B A A B C

A A B A A B C D

A A B A A B C

A A B A A B C D E

…

or (equivalently):

A

A B

A

A B C

A

A B

A

A B C D

A

A B

A

A B C

A

Data Structures for Scheduling / Porter	 	 Page of
44 50

A B

A

A B C D E

…

which we will represent as:

scheduleList [0] = ptr to readyListA

scheduleList [1] = ptr to readyListA

scheduleList [2] = ptr to readyListB

scheduleList [3] = ptr to readyListA

scheduleList [4] = ptr to readyListA

scheduleList [5] = ptr to readyListB

scheduleList [6] = ptr to readyListC

…

The scheduleList array will get pretty long, so we will reduce the number of priority levels from 10 to 8
(i.e., from 0…9 to 0…7). The length of the array will be 255 (i.e., 2N-1, where N is the number of
levels).

Here is the comparison of the performance between the Multi-List-1 and Multi-List-2 algorithms:

Number of Threads	 Multi-List-1 (0…7)	 Multi-List-2 (0…7)

10	 843	 882

20	 841	 860

30	 837	 851

40	 834	 844

50	 831	 838

60	 830	 836

70	 829	 835

80	 829	 834

90	 829	 833

100	 828	 833

110	 828	 832

120	 828	 831

130	 827	 831

140	 827	 830

150	 827	 830

160	 827	 829

170	 826	 829

180	 826	 828

190	 826	 828

200	 826	 828

Data Structures for Scheduling / Porter	 	 Page of
45 50

First, we show this data using a scale similar to the previous graphs. This demonstrates that the
difference is insignificant when compared to the red-black algorithm.

Next, we show the same data using a different scale, so we can see what is happening with a small
number of threads.

When we have more than about 50 threads, the difference between the two algorithms is 6 instructions,
going down to 2 instructions when we have 200 threads. This is essentially nothing. Even when we have
only 10 threads, the Multi-List-2 algorithm only adds an overhead of about 40 instructions. This seems
a small price to pay for the increased responsiveness. In other words, for a small penalty, we make sure

Data Structures for Scheduling / Porter	 	 Page of
46 50

0

1000

2000

3000

4000

Number of Threads

800

825

850

875

900

Number of Threads

 Multi-List-2

 Multi-List-1

 Multi-List-2

 Multi-List-1

that higher priority threads get time-slices much more regularly and are do not get “locked out” while
threads in other priority levels get a huge amount of run-time.

Next, let’s look at job mixes where all threads are at the same priority level. We want to evaluate the
Multi-List-2 algorithm when all threads are at the same priority level. Does having to skip over a lot
entries in the schedule that point to empty run lists degrade performance significantly?

We’ll look at 5 different job mixes:

(1) All threads are at the highest priority 0=A

(2) All threads are at priority 2=C

(3) All threads are at priority 5=F

(4) All threads are at priority 6=G

(5) All threads are at the lowest priority 7=H

We will compare it to the red-black algorithm where all the jobs are at the same priority. With the red-
black algorithm, it doesn’t matter whether all jobs are at level 1 or at level 128; the performance is
identical as long as all jobs have the exact same frequency.

Data Structures for Scheduling / Porter	 	 Page of
47 50

We expect Multi-List-2 to perform especially poorly when all threads are at the lowest priority, since
the algorithm must spend a lot of time looking through the schedule array, only to find that most priority
levels must be skipped. The question is whether the Red-Black algorithm will outperform it in this worst
case scenario.

	 Multi-List-2

Threads 	 A 	 C 	 F 	 G 	 H	 Red-Black

10	 838	 875	 1210	 1592	 2357	 2585

20	 831	 850	 1017 	 1208	 1591	 2950

30	 829	 841	 953 	 1080	 1335	 3140

40	 828	 837	 921 	 1016	 1208	 3256

50	 827	 835	 902 	 978	 1131	 3344

We see that—at least with 10 or more threads, the Multi-List-2 algorithm is superior to the Red-Black
algorithm even in the worst case, i.e., with all threads at the lowest priority.

Perhaps a wise approach in OS design is to use a default the thread priority somewhere in the middle
(e.g., 5=E) and only use the lower and higher priorities when there is good reason. This way we can
avoid the worst case performance for Multi-List-2.

Data Structures for Scheduling / Porter	 	 Page of
48 50

0

1000

2000

3000

4000

Number of Threads

 Multi-List-2 (F)
 Multi-List-2 (C)

 Red-Black Tree

 Multi-List-2 (A)

 Multi-List-2 (G)
 Multi-List-2 (H)

Conclusion

In summary, this experimentation suggests to me:

The Multi-Level-2 algorithm is clearly the superior approach to thread scheduling

for a kernel in which there can be expected to be several (e.g., 10+) threads, running at different priority
levels. We have only looked at non-real-time threads. (Scheduling real-time threads—which is also done
in the Blitz kernel—is a completely different beast.)

To summarize the Multi-Level-2 algorithm, there are 8 priority levels which are numbered 0…7 (or
equivalently, A…H), where 0=A is the highest priority level and 7=H is the lowest priority. For each
priority level, there is a single run queue, implemented as a doubly-linked list which is processed in
FIFO order. When a given priority is scheduled, each thread in the corresponding run list gets a single
time-slice. The threads in the FIFO list are scheduled in order, removing them from the front of the list
and returning them to the tail of the list. After each thread in the list has been given a single time slice,
the scheduling algorithm moves on to the next priority level.

There is a separate “schedule array", which determines which priority is serviced when. This array is
fairly large (255 entries) and the scheduler cycles through the array repeatedly. The array is initialized
and never changes. It is initialized so that each priority level is given the appropriate number of turns.
That is, priority level A appears a lot of times, giving each high-priority thread a lot of time-slices, while
the lower priorities like F, G, and H appear only a few times.

The scheduling order (i.e., the array initialization) is:

AABAABCAABAABCDAABAABCAABAABCDE …

Adding spaces may make this order clearer:

AAB AAB C AAB AAB CD AAB AAB C AAB AAB CDE …

where A represents the FIFO run queue for the highest priority threads, B represents the FIFO run queue
for the second highest priority threads, and so on.

The threads at level N run at half the speed—i.e., get time-slices at half the frequency—of threads at
level N-1. For example, a thread at level D will run at half the speed of a thread at level C, 1/4 the speed
of a thread at level B, but twice as fast as a thread at level E, and 4 times as fast as level F. A thread at
the highest priority level (0=A) will be given a time-slice 128 times as often as a thread at the lowest
priority level (7=H) is given a time-slice.

Data Structures for Scheduling / Porter	 	 Page of
49 50

Moral

Some algorithms (such as red-black trees) are extremely clever and have superior asymptotic
performance. But that doesn’t always make them the best choice in a specific environment.

The red-black tree algorithm was a super-big pain to program, debug, and test. Initially, I considered
avoiding any algorithm based on red-black trees, but I knew I would be plagued by the suspicion that I
was just too lazy to use the best algorithm. By going through the hard work of implementation and then
performing the above empirical testing, I am now able to discard the red-black algorithm, knowing that a
much simpler algorithm is truly the better choice for the Blitz kernel’s thread scheduler.

Data Structures for Scheduling / Porter	 	 Page of
50 50

