
KPL	Syntax	

Harry	H.	Porter	III	
Portland	State	University	

HHPorter3@gmail.com	

8	March	2021		

This	document	gives	syntax	of	the	KPL	programming	language.	
KPL	is	the	programming	language	of	the	Blitz-64	Computer	
System.	

	 Available	Online: Blitz64.org/Documentation/KPL-Syntax.pdf

http://Blitz64.org/Documentation/KPL-Syntax.pdf

Table	of	Contents	

Notation	Used	in	the	Grammar	 3	

A	Context	Free	Grammar	of	KPL	 5	

Expressions	 9	
Precedence	of	Operators	 10	

Lexical	Matters	 12	
Comments	and	White	Space	 12	
IdentiHiers	 12	
Integers	 13	
Floating	Point	Constants	 13	
Character	Constants	 13	
String	Constants	 14	
Escape	Sequences	 15	
Keyword	List	 16	

About	This	Document	 17	
Document	Revision	History	 17	
Permission	to	Copy	 17	

About	the	Author	 18

Blitz-64:	KPL	Syntax	/	Porter	 Page	 	of	2 18

Notation	Used	in	the	Grammar	
This	document	provides	a	Context-Free	Grammar	(CFG)	for	the	KPL	language .	This	1

grammar	is	meant	to	be	exactly	identical	to	the	grammar	the	appendix	of	the	
document	

“An	Introduction	to	KPL:	A	Kernel	Programming	Language”	

To	make	the	grammar	easier	to	read	and	understand,	we	use	an	extended	CFG	
notation,	which	is	described	here.	

Non-terminal Symbols are shown like this:
HeaderFile Type Expr Statement etc…	

Terminal Symbols:

Keywords are shown in boldface, like this:
if while int endWhile etc…	

	 The following lexical tokens appear in the grammar:
 Examples

	 	 INTEGER	 42 0x1234ABCD	
	 	 DOUBLE	 3.1415 6.022e23	
	 	 CHAR	 'a' '\n'	
	 	 STRING	 "hello" "\t\n"
	 	 ID	 myName MAX_SIZE
	 	 OPERATOR	 <= < > >= != + - * etc…

Punctuation Symbols
The following characters are particularly important in KPL’s grammar:

	 { } [] | : , . = () ;
Of these, the following punctuation symbols conflict with grammar meta-symbols:

{ } [] |
	 	 When used as grammar meta-symbols, they are shown without quotes:

{ } [] |
	 	 When used as terminals, i.e., when meant literally, they are quoted:

'{' '}' '[' ']' '|'
	 The remaining punctuation symbols are only used as terminals and are not quoted:

: , . = () ;

			Technically,	the	KPL	grammar	is	“LL(k)”	and	in	most	cases	can	be	parsed	with	only	a	single	token	look-1

ahead,	making	it	much	easier	for	the	human	than	“LR(k)”	grammars.

Blitz-64:	KPL	Syntax	/	Porter	 Page	 	of	3 18

Notation	

Comments are not included in this grammar. There are two forms of commenting:
-- through end-of-line
/* through */

Meta-Symbols, which are used in describing the grammar:

Grammar rules: -->
	 	 	 	 Example:

Type --> int

	 	 Rules with alternatives are shown like this:
	 	 	 	 Example:

Statement --> IfStmt | AssignStmt
	 	 	 	 Example:

Statement --> IfStmt
--> AssignStmt

	 	 Optional material: 	[]
	 	 	 	 Example:

VarDecl --> Decl [= Expr2]

	 	 Repetition of zero-or-more: { }
	 	 	 	 Example:

StmtList --> { Statement }

	 	 Repetition of one-or-more occurrences: { }+
	 	 	 	 Example:

VarDecls --> var { VarDecl }+

Blitz-64:	KPL	Syntax	/	Porter	 	 Page	 	of	 	4 18

A	Context	Free	Grammar	of	KPL	

HeaderFile --> header ID
 [Uses]
 { Constants |
 Errors |
 VarDecls |
 Enum |
 TypeDefs |
 FunctionProtos |
 Interface |
 Class }
 endHeader
CodeFile --> code ID
 { Constants |
 Errors |
 VarDecls |
 Enum |
 TypeDefs |
 Function |
 Interface |
 Class |
 Behavior }
 endCode
Interface --> interface ID [TypeParms]
 [extends TypeList]
 [messages { MethProto }+]
 endInterface
Class --> class ID [TypeParms]
 [implements TypeList]
 [superclass NamedType]
 [fields { Decl }+]
 [methods { MethProto }+]
 endClass
Behavior --> behavior ID
 { Method }
 endBehavior
Uses --> uses OtherPackage { , OtherPackage }
OtherPackage --> ID [renaming Rename { , Rename }]
 --> STRING [renaming Rename { , Rename }]
Rename --> ID to ID
TypeParms --> '[' ID : Type { , ID : Type } ']'
Constants --> const { ID = Expr }+
Decl --> ID { , ID } : Type
VarDecl --> Decl [= Expr2]
VarDecls --> var { VarDecl }+
Errors --> errors { ID ParmList }+
TypeDefs --> type { ID = Type }+
Enum --> enum ID [= Expr] { , ID }
IdList --> ID { , ID }
ArgList --> ()
 --> (Expr { , Expr })

Blitz-64:	KPL	Syntax	/	Porter	 Page	 	of	5 18

KPL	Syntax	and	Grammar	

ParmList --> ()
 --> (Decl { , Decl })
FunctionProtos --> functions { FunProto }+
FunProto --> [external] ID ParmList [returns Type] [StackUsage]
Function --> function ID ParmList [returns Type] [StackUsage]
 [VarDecls]
 StmtList
 endFunction
StackUsage --> '[' Max_Stack_Usage = Expr ']'
NamelessFunction --> function ParmList [returns Type]
 [VarDecls]
 StmtList
 endFunction
MethProto --> ID ParmList [returns Type] [StackUsage]
 --> infix OPERATOR (ID : Type) returns Type
 --> prefix OPERATOR () returns Type
 --> { ID : (ID : Type) }+ [returns Type]
Method --> method MethProto
 [VarDecls]
 StmtList
 endMethod
StmtList --> { Statement }
Statement --> if Expr StmtList
 { elseIf Expr StmtList }
 [else StmtList]
 endIf
 --> LValue = Expr
 --> LValue += Expr
 --> LValue -= Expr
 --> ID ArgList
 --> Expr { ID : Expr }+
 --> Expr . ID ArgList
 --> while Expr
 StmtList
 endWhile
 --> do
 StmtList
 until Expr
 --> break
 --> continue
 --> return [Expr]
 --> for LValue = Expr to Expr [by Expr]
 StmtList
 endFor
 --> for (StmtList ; [Expr] ; StmtList)
 StmtList
 endFor
 --> switch Expr
 { case Expr : StmtList }
 [default : StmtList]
 endSwitch

Blitz-64:	KPL	Syntax	/	Porter	 	 Page	 	of	 	6 18

KPL	Syntax	and	Grammar	

 --> switchOnClass Expr
 { case Expr : StmtList }
 [default : StmtList]
 endSwitchOnClass
 --> try StmtList
 { catch ID ParmList : StmtList }+
 endTry
 --> throw ID ArgList
 --> free Expr
 --> debug [STRING]
 --> printf ([ID ,] STRING { , Expr })
 --> sprintf (ID , STRING { , Expr })
 --> initializeArray (Expr)
 --> setArraySize (Expr , Expr)
Type --> byte
 --> halfword
 --> word
 --> int
 --> double
 --> bool
 --> void
 --> typeOfNull
 --> anyType
 --> ptr to Type
 --> struct { Decl }+ endStruct
 --> union { Decl }+ endUnion
 --> array ['[' Dimension { , Dimension } ']'] of Type
 --> function ([Type { , Type }])
 [returns Type] [StackUsage]
 --> NamedType
NamedType --> ID ['[' Type { , Type } ']']
TypeList --> NamedType { , NamedType }
Dimension --> * | Expr
Constructor --> Type ClassStructInit
 --> Type ArrayInit
 --> Type
ClassStructInit --> ID '{' ID = Expr { , ID = Expr } '}'
ArrayInit --> ID '{' [Expr of] Expr
 { , [Expr of] Expr } '}'
LValue --> Expr
Expr --> Expr2 { ID : Expr2 }
Expr2 --> Expr3 { OPERATOR Expr3 }
Expr3 --> Expr5 { '||' Expr5 }
Expr5 --> Expr6 { && Expr6 }
Expr6 --> Expr7 { '|' Expr7 }
Expr7 --> Expr8 { ^ Expr8 }
Expr8 --> Expr9 { & Expr9 }
Expr9 --> Expr10 { == Expr10
 | != Expr10 }
Expr10 --> Expr11 { < Expr11
 | <= Expr11
 | > Expr11
 | >= Expr11 }

Blitz-64:	KPL	Syntax	/	Porter	 	 Page	 	of	 	7 18

KPL	Syntax	and	Grammar	

Expr11 --> Expr12 { << Expr12
 | >> Expr12
 | <<< Expr12
 | >>> Expr12 }
Expr12 --> Expr13 { + Expr13
 | - Expr13 }
Expr13 --> Expr15 { * Expr15
 | / Expr15
 | % Expr15 }
Expr15 --> OPERATOR Expr15
 --> Expr16
Expr16 --> Expr17 { . ID ArgList
 | . ID
 | '[' Expr { , Expr } ']' }
Expr17 --> (Expr)
 --> null
 --> true
 --> false
 --> self
 --> super
 --> INTEGER
 --> DOUBLE
 --> CHAR
 --> STRING
 --> NamelessFunction
 --> ID
 --> ID ArgList
 --> new Constructor
 --> alloc Constructor
 --> sizeOf (Type)
 --> asPtrTo (Expr , Type)
 --> asInteger (Expr)
 --> arraySize (Expr)
 --> arrayMaxSize (Expr)
 --> isInstanceOf (Expr , Type)
 --> isKindOf (Expr , Type)

Blitz-64:	KPL	Syntax	/	Porter	 	 Page	 	of	 	8 18

Expressions	
Here	is	simpliHied	grammar	for	expressions.	This	rule	ignores:	

	 •	Precedence	
	 •	Associativity	

Expr --> Expr BinaryOperator Expr
 --> UnaryOperator Expr
 --> Expr . ID (…Arguments…)
 --> Expr . ID
 --> Expr '[' Expr { , Expr } ‘]'
 --> * Expr
 --> & Expr
 --> null | true | false | nan | inf | self | super
 --> ID
 --> INTEGER
 --> DOUBLE
 --> CHAR
 --> STRING
 --> function (…Arguments…) ... endFunction
 --> new Type ['{' …Initialization… ‘}']
 --> alloc Type [‘{' …Initialization… '}']
 --> sizeOf (Type)
 --> asPtrTo (Expr , Type)
 --> asInteger (Expr)
 --> arraySize (Expr)
 --> arrayMaxSize (Expr)
 --> isInstanceOf (Expr , Type)
 --> isKindOf (Expr , Type)
 --> ID (ArgList)
 --> (Expr)

BinaryOperator --> + | - | * | / | % | >> | << | >>> | <<< |
 < | > | <= | >= | == | != | & | '|' | ^ |
 && | '||' | …user	deEined	inEix	operators…

UnaryOperator --> ! | + | - | …user	deEined	preEix	operators…	

Blitz-64:	KPL	Syntax	/	Porter	 Page	 	of	9 18

Precedence	of	Operators	

The	formal	syntax	of	KPL	imposes	the	following	precedences	on	these	expression	
operators.	Each	operator	within	a	group	is	at	the	same	precedence	level	and	is	
parsed	with	left	associativity.	

This	is	the	same	as	in	C,	C++,	and	Java.	

Lowest	Precedence	

 All keyword messages, e.g., x at:y put:z

 All infix operators not mentioned below

 || Short-circuit for bool operands

 && Short-circuit for bool operands

 | Bitwise OR for int operands

 ^ Bitwise XOR for int operands

 & Bitwise AND for int operands

 == Can compare basic types, pointers, and
 != objects, but not structs, unions or arrays

 < Can compare byte, halfword, word, int,
 <= double, and ptr operands
 >
 >=

 << Shift int operand left logical
 >> Shift int operand right logical
 <<< Shift int operand left arithmetic
 >>> Shift int operand right arithmetic

 + Can also add ptr+int
 - Can also subtract ptr-int and ptr-ptr

 *
 /
 % Modulo operator for ints

 Prefix - For int and double operands
 Prefix + For int and double operands (nop)
 Prefix ! For int and bool operands
 Prefix * Pointer dereference
 Prefix & Address-of
 All other prefix methods  

Blitz-64:	KPL	Syntax	/	Porter	 Page	 	of	10 18

Operator	Precedences	(continued)	

 . Message Sending: x.foo(y,z)
 . Field Accessing: x.name
 [] Array Accessing: a[i,j]

 () Parenthesized expressions: x*(y+z)
 constants e.g., 123, "hello", 34.998e-23
 keywords e.g., true, false, null, self, super
 nameless funct e.g., function (...) ... endFunction
 variables e.g., x
 function call e.g., foo(4)
 built-ins e.g., forceToDouble (4)
 function e.g., function (...) ... endFunction
 new e.g., new Person { name="smith" }
 alloc e.g., alloc Person { name="smith" }
 sizeOf e.g., sizeOf (Person) ... in bytes
 asPtrTo e.g., asPtrTo (i, double)
 asInteger e.g., asInteger (ptr)
 arraySize e.g., arraySize (array/arrayPtr)
 arrayMaxSize e.g., arrayMaxSize (array/arrayPtr)
 isInstanceOf e.g., isInstanceOf (p,ClassName)
 isKindOf e.g., isKindOf (p,ClassOrInterfaceName)

Highest	Precedence	

Blitz-64:	KPL	Syntax	/	Porter	 	 Page	 	of	 	11 18

Lexical	Matters	

Greater	detail	about	the	lexical	tokens	is	given	in	the	KPL	Reference	Manual.	Here	is	
a	summary.	

Comments	and	White	Space	

KPL	supports	two	comments	styles.	

First,	a	comment	may	begin	with	/*	and	end	with	*/.	

Second,	everything	after	two	hyphens	through	end-of-line	is	a	comment.	

 x = y + 2 -- Adjust y a little

Both	styles	may	be	nested.	

 /* Disable this code...
 x = y + 2 /* Adjust y a little */
 */

 -- Disable this code...
 -- x = y + 2 -- Adjust y a little

White	space	is	deHined	as	a	sequence	of	one	or	more	of:	

Space
Tab
Newline

IdentiYiers	

An	ID	is	a	sequence	of	letters,	digits,	and	underscores.	It	must	begin	with	a	letter.	
Only	ASCII	characters	are	allowed.	Case	is	signiHicant.	

Blitz-64:	KPL	Syntax	/	Porter	 Page	 	of	12 18

Lexical	Matters	

Integers	

An	INTEGER	can	be	expressed	either	in	decimal	or	in	hex:	

 12345
 0x01b5f3b

The	underscore	can	be	used	as	a	separator	to	increase	readability.	It	is	ignored:	

 12_345
 0x01b_5f3b

Floating	Point	Constants	

A	DOUBLE	number	must	contain	either	a	decimal	point	or	the	“e”	for	the	exponent.	

 123.0
 123e-45

For	both	INTEGERs	and	DOUBLEs,	a	leading	minus/negative	sign	“-“	will	be	parsed	
as	a	separate	token	and	used	to	form	an	expression,	such	as	-(1).	The	compiler	will	
evaluate	such	expressions	at	compile-time,	so	effectively	any	INTEGER	or	DOUBLE	
may	be	negated.	

 -1 -- Preferred
 -(1) -- Equivalent

The	underscore	can	be	used	as	a	separator	to	increase	readability.	It	is	ignored:	

 1.000_000_007

Character	Constants	

A	CHAR	constant	is	enclosed	in	single	quotes.	Any	Unicode	character	may	be	
included	or	an	escape	sequence	may	be	used.	

Blitz-64:	KPL	Syntax	/	Porter	 	 Page	 	of	 	13 18

Lexical	Matters	

'A'
'∉' -- Unicode
'\n' -- Escape sequence

String	Constants	

A	string	constant	consists	of	a	sequence	of	zero	of	more	characters	enclosed	in	
double	quotes:	

 "Hello, world\n"

A	string	constant	is	represented	as	an	array	of	bytes.	The	UTF-8	encoding	scheme	is	
used	to	represent	the	string,	which	may	contain	arbitrary	Unicode	characters.	

 "𝜋 ≈ 3.14"
 "\U0001d70b \u2248 3.14" -- Equivalent, with codepoints in hex
 "\xf0\x9d\x9c\x8b \xe2\x89\x88 3.14" -- Equivalent, in UTF-8

Blitz-64:	KPL	Syntax	/	Porter	 	 Page	 	of	 	14 18

Lexical	Matters	

Escape	Sequences	

Here	are	the	escape	sequences	that	may	be	used	in	character	and	string	constants.	

 Hex Decimal ASCII Code Name
 ===== ======= ========================
 \0 00 0 NUL null
 \a 07 7 control-G BEL alert
 \b 08 8 control-H BS backspace
 \t 09 9 control-I HT tab
 \n 0A 10 control-J NL/LF newline/linefeed
 \v 0B 11 control-K VT vertical tab
 \f 0C 12 control-L FF form feed
 \r 0D 13 control-M CR return
 \e 1B 27 control-[ESC escape
 \d 7f 127 DEL delete
 \" 22 34 " double quote
 \' 27 39 ' single quote
 \\ 5C 92 \ backslash
 \xHH HH < any hex value >

Blitz-64:	KPL	Syntax	/	Porter	 	 Page	 	of	 	15 18

Lexical	Matters	

Keyword	List	

Here	are	the	keywords	used	in	the	KPL	grammar.	The	built-in	function	names	are	
not	included.	

alloc
anyType
array
arrayMaxSize
arraySize
asInteger
asPtrTo
behavior
bool
break
by
byte
case
catch
class
code
const
continue
debug
default
do
double
else
elseIf
endBehavior
endClass
endCode
endFor
endFunction
endHeader
endIf
endInterface

endMethod
endStruct
endSwitch
endSwitchOnClass
endTry
endUnion
endWhile
enum
errors
extends
external
false
fields
for
free
function
functions
halfword
header
if
implements
inf
infix
initializeArray
int
interface
isInstanceOf
isKindOf
Max_Stack_Usage
messages
method
methods

nan
new
null
of
prefix
printf
ptr
renaming
return
returns
self
setArraySize
sizeOf
sprintf
struct
super
superclass
switch
switchOnClass
throw
to
true
try
type
typeOfNull
union
until
uses
var
void
while
word  

Blitz-64:	KPL	Syntax	/	Porter	 	 Page	 	of	 	16 18

About	This	Document	

Document	Revision	History	

Version	numbers	are	not	used	to	identify	revisions	to	this	document.	Instead	the	
date	and	the	author’s	name	are	used.	The	document	history	is:	

Date	 Author	
21	October	2019	 Harry	H.	Porter	III		<document	created>	
18	February	2020	 Harry	H.	Porter	III		<initial	version	completed>	
8	March	2021	 Harry	H.	Porter	III		<current	version>	

Permission	to	Copy	
	 	
In	the	spirit	of	the	open-source	and	free	software	movements,	the	author	grants	
permission	to	freely	copy	and/or	modify	this	document,	with	the	following	
requirement:	

You	must	not	alter	this	section,	except	to	add	to	the	revision	history.	You	
must	append	your	date/name	to	the	revision	history.	

Any	material	lifted	should	be	referenced.	

Blitz-64:	KPL	Syntax	/	Porter	 Page	 	of	17 18

About	the	Author		
PProfessor	Harry	H.	Porter	III	teaches	in	the	Department	of	Computer	Science	at	
Portland	State	University.	He	has	produced	several	video	courses,	notably	on	the	
Theory	of	Computation.	Recently	he	built	a	complete	computer	using	the	relay	
technology	of	the	1940s,	which	has	eight	general	purpose	8	bit	registers,	a	16	bit	
program	counter,	and	a	complete	instruction	set,	all	housed	in	mahogany	cabinets	as	
shown.	His	technical	focus	and	research	interests	have	included	AI	and	neural	
networks;	parsing	and	natural	language	processing;	logic,	object-oriented,	and	
functional	programming;	compilers,	operating	systems,	interpreters,	and	system	
software;	and	discrete	math	and	computational	theory.	He	has	programmed	in	many	
high-level	languages	and	written	assembly	code	for	a	variety	of	machines,	dating	
back	to	the	IBM	360/67	and	Intel	8080.	

Porter	lives	in	Portland,	Oregon.	When	not	trying	to	Higure	out	how	his	computer	
actually	works,	he	skis,	hikes,	travels,	and	spends	time	with	his	children	building	
things.	

Porter	holds	an	Sc.B.	from	Brown	University	and	a	Ph.D.	from	the	Oregon	Graduate	
Center.	

Blitz-64:	KPL	Syntax	/	Porter	 Page	 	of	 	18 18

