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Chapter 1: Floating Point Numbers	

The Basic Idea	

Integer values are represented in a computer with binary numbers. For example, in 
many programming languages a value of type “int” will be represented in exactly 32 
bits. With only a fixed number of bits, there is a limit to how many different values 
can be represented.	

For example, the range of values that can be represented with 32-bit integers is:	

	 -2,147,483,648 … +2,147,483,647	

To represent fractional values, humans often use scientific notation, such as:	

	 6.02214076 × 1023	

Floating point representation is an attempt to represent numbers like this in a fixed 
and small number of bits. Typically, each floating point number will be represented 
in 32 bits, although some programs will use 64 bits for each number.	

With integers, there is a limitation: very large and very negative values simply 
cannot be represented.	

With floating point, we have these limitations:	

• The range of the exponents is limited.	
• The amount of precision is limited.	
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For example:	

18.0 × 102	 ← can be represented	
18.00000000000000001 × 102	 ← can NOT be represented	

With scientific notation, humans often express the amount precision or accuracy of a 
value, showing the accuracy by the number of digits. Measurements that are more 
accurate have more digits, and less accurate values are rounded to values with fewer 
digits.	

For example, these two values are exactly equal, but they suggest different 
confidences in their accuracy:	

	 7.25 × 106 	
	 7.2500 × 106 	

With floating point, these two numbers are represented identically. After all, they are 
really the same number.	

•	Each floating point value is nothing more than a value. There is no information 
about the accuracy of that value.	

Since there is a finite number of bits available for each number, there are only a finite 
number of values that can be represented. As such:	

•	Many values cannot be represented.	

Instead, we must make-do with numbers that are nearby and about the same as 
desired value. The value that the bits of a floating point value represent will be the 
closest approximation to the true, correct value. At least we hope so!	

Floating point representation is fundamentally a binary representation, not a 
decimal representation. As a consequence:	

•	Many simple decimal values cannot be represented.	
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For example, the following commonly used number can be represented simply and 
exactly in decimal, but cannot be represented exactly in floating point:	

	 0.3	

The closest we can come with floating point is:	

	 0.300000011920928955078125	

Because of the limitations of floating point, almost every operation (such as +, -, ×, 
and ÷) will introduce errors. And the more operations that are performed, the 
greater the inaccuracy of the final result.	

•	Arithmetic operations are usually inexact and introduce errors.	
•	Errors tend to get larger as more operations are performed.	

Because of these factors, you must learn about floating point point if you wish to 
write reliable, correct code:	

•	If accurate numerical results are required, the programmer must understand 
floating point.	

The IEEE 754-2008 Standard 	

The IEEE 754-2008 standard describes how floating point numbers are to be 
represented and how floating point operations are to be executed by computers.	

The standard is complicated and detailed. This document is meant to be an 
introduction and is not an exhaustive description. Most modern processor 
Instruction Set Architectures (ISAs) implement the IEEE 754-2008 specification, but 
the specification has options and some parts are not fully implemented on most 
computers.	
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Single and Double Data Types 	

The specification defines two main data types:	

	 Single Precision	 32-bit “float” values	
	 Double Precision	 64-bit “double” values	

These are the important data types that you need to be aware of. You should 
probably ignore the other data types.	

These two data types are available in most common languages, such as C, C++, C#, 
Objective C, and Java :	1

	 Data Type in Programming Language	 Implementation	
	 	 “float”	 	 single precision (32 bits)	
	 	 “double”	 	 double precision (64 bits)	

Some computers implement only single precision in hardware; other computers 
implement both single and double. Some computers do not implement either.	

For simpler processors, the implementation of floating point occurs purely in 
software. That is, floating point is “emulated”. This is generally transparent and the 
programmer will not be aware of whether the processor is implementing the 
floating point operations in hardware (which is much faster) or in software (which is 
much slower).	

In both single and double representation, the idea is to represent a real rational 
number in a way similar to scientific notation. For example, the following number is 
given in scientific notation:	

6.022 × 1023    (an approximation to Avogadro’s constant)	

With only 32 bits for single (or 64 bits for double), there are limits to the amount of 
precision and the size of the exponents. The available bits are used as follows:	

 Python has a type called “float” which is implemented with IEEE double (64 bit) representation. 1

KPL has a “double” type, but not a “single” type.

Floating Point Numbers / Porter	 	 Page  of 	7 65



Chapter 1: Floating Point Numbers	

	 Number of bits used for…	
	 Single	 Double	
	 Sign	 1	 1	
	 Exponent	 8	 11	
	 Value	 23	 52	
	    Total	 32	 64	

Fixed Point Numbers 	

Furthermore, with floating point a numerical value is represented in binary (not 
decimal) and this introduces some subtleties when going back and forth between 
the internal bit patterns and decimal representations which humans can read.	

Every positive integer can be represented with a finite number of digits and a finite 
number of bits. For example, here is the same number, represented both ways. Of 
course, this number requires a few more characters in binary, but the represented 
value is equal.	

	 2,468		 	 (decimal)	
	 100110100100	 (binary)	

We commonly represent rational numbers in decimal using a “decimal point”, as in:	

	 123.456	

We can also represent rational numbers in binary using a “binary point”, as in:	

	 101.0101	

With decimal numbers, the position of each digit is important and we talk about the 
place value of the digits. The place values are all powers of 10:	

	 …	 1000	 100	 10	 1	 1/10	 1/100	1/100	1/1000	…	
	 …	 103	 102	 101	 100	 10-1	 10-2	 10-3	 10-4	 …	

Consider this number:	

	 123.456	
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We can use the place values to compute the value of a number, as you learned in 
primary school:	

	 …	 1000	 100	 10	 1	 1/10	 1/100	1/100	1/1000	…	
	 …	 	 1	 2	 3	 4	 5	 6	 	 …	

We can multiply this out to determine the value:	

	 = (1 × 102)	 + (2 × 101)	 + (3 × 100)	 + (4 × 10-1)	 + (5 × 10-2)	 + (6× 10-3)	
	 = (1×100)	 + (2×10)	 + (3×1)	 + (4×0.1)	 + (5×0.01)	 + (6×0.001)	
	 = 100  +  20  +  3  +  4/10  +  5/100  +  6/1000	
	 = 123.456	

The same system works with binary numbers. That is, the value of each bit is scaled 
according to the place value of the bit. However, with binary numbers, the place 
values are all powers of 2:	

	 …	 8	 4	 2	 1	 1/2	 1/4	 1/8	 1/16	 …	
	 …	 23	 22	 21	 20	 2-1	 2-2	 2-3	 2-4	 …	

Consider this binary number:	

	 101.0101	

Using this, we can convert binary numbers into decimal numbers:	

	 …	 8	 4	 2	 1	 1/2	 1/4	 1/8	 1/16	 …	
	 …	 	 1	 0	 1	 0	 1	 0	 1	 …	

	 = (1 × 22) 	+ (0 × 21)	 + (1 × 20)	 + (0 × 2-1)	 + (1 × 2-2)	 + (0 × 2-3)	 + (1 × 2-4)	
	 = (1 × 4)	 + (0 × 2)	 + (1 × 1)	 + (0 × 1/2)	 + (1 × 1/4)	 + (0 × 1/8)	 + (1 × 1/16)	
	 = 4  +  1  +  1/4  +  1/16	
	 = 5.3125	
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Exponents 	

With a decimal number, we can multiply by a power of 10 to shift the position of the 
decimal point.	

71.234  =  7123.4 × 10-2	

Here are some examples showing that the same sequence of digits can represent 
different numbers, when the base (10) is raised to different powers:	

	 Scientific Notation	 Equal Value	
	 7.1234 × 10-1	 .71234	
	 7.1234 × 100	 7.1234	
	 7.1234 × 101	 71.234	
	 7.1234 × 102 	 712.34	 	 	
	 7.1234 × 103 	 7123.4	
	 7.1234 × 104 	 71234.

A number is represented with two parts. The “mantissa” is the numerical portion 
and the “exponent” is the power on the base.	

For 7.1234 × 103 we have:	

	 Mantissa: 	 7.1234	
	 Exponent: 	 3	

The same thing works with binary numbers. For example:	

100.111110101  =  10011111.0101 × 2-5	
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Here are some other examples:	

	 Scientific Notation	 Equal Value	
	 1.10110 × 2-1	 .110110	
	 1.10110 × 2-0	 1.10110	
	 1.10110 × 2-2	 11.0110	
	 1.10110 × 2-3	 110.110	
	 1.10110 × 2-4	 1101.10	
	 1.10110 × 2-5	 11011.0	
	 1.10110 × 2-6	 110110.	

For 1.10110 × 2-5 we have:	

	 Mantissa: 	 1.10110	
	 Exponent: 	 -5	

In specifying a decimal number such as:	

	 7.1234 × 103	

we naturally show the mantissa, the exponent, and the base (10) in decimal.	

In specifying a binary number such as:	

	 1.10110 × 25	

we show the mantissa in binary. But we show the exponent (5) and the base (2) in 
decimal. Note that 2, when written in binary, is “10”. Showing the base is binary 
would be especially confusing! Consider how ambiguous this would be:	

	 1.10110 × 10101	 ← Avoid specifying base and exponent in binary!!!	

The basic ideas with floating point representation are…	
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We break the number into mantissa and exponent, such that	

	 • The binary point is at a fixed, unchanging position.	
	 • We represent the mantissa as a binary value.	
	 • We represent the exponent as a binary value.	
	 • We pack the mantissa bits and the exponent bits and a sign bit all together.	

A single precision floating point number is represented with 32 bits. We will we use 
23 bits for the mantissa and 8 bits for the exponent. This leaves 1 bit for the sign.	

For double precision floating point, we will use 52 bits for the mantissa and 11 bits 
for the exponent.	

Differences Between Decimal and Binary 	

Some rational numbers require an infinite number of digits in their decimal 
representation. For example:	

	 1/3  =  0.33333…	

There are a couple of different notations that mathematicians use to represent 
repeating decimals:	

	 0.3(3)*	
	 0.3̅	

Likewise, some rational numbers may require an infinite number of bits in their 
binary representation.	

But regardless of whether we represent a rational number in decimal or binary, the 
infinite strings of digits/bits will settle into a simple repeating pattern. This is true 
of all rational numbers, but irrational numbers (e.g., 𝜋, √2) do not have such simple 
decimal or binary representations. Neither their decimal nor their binary 
expansions will ever exhibit a repeating pattern.	
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Some numbers many have a finite representation in decimal but require an infinite 
sequence in binary. For example, the following number:	

	 4.3	

requires an infinite binary expansion to represent it, namely:	

	 100.01001100110011…  =  100.01(0011)*	

It turns out that every binary number without a repeating part can be represented 
with a finite number of decimal digits. Furthermore, the number of digits to the right 
of the decimal point will never exceed the number of places to the right of the binary 
point. For example:	

101.1101 (binary)  =  5.8125 (decimal)	

Turning to floating point representation, we have limited number of bits available, 
which means we cannot accommodate arbitrary precision. Not every number is 
representable, so we must round numbers to a nearby number that is representable.	

For example, the number 6.022  × 1023 can only be represented approximately, even 
though it appears not to have a great amount of precision. Here is the closest 
number that can be represented using a single precision floating point:	

	 6.02200013124147498450944  × 1023	

On the other hand, it turns out that this number:	

	 2.383496609792  × 1012	

can be represented exactly using only 32 bit single precision. The next largest value 
that can be represented exactly happens to be:	

	 2.383496871936  × 1012	

The underlining shows the commonality in these numbers. This example 
demonstrates that we can represent numbers accurately up to about 7 decimal 
digits with single precision floating point.	
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No number between these two values can be represented exactly with a single 
precision floating point number. For such values, we’ll have to choose one of these 
two nearby numbers.	

The ideal thing to do is “round” our desired value to the nearest number that can be 
represented, and then use that. Of course, any computation will be off by a little, due 
to this rounding.	

Working with floating point involves dealing with inaccuracy and this is very tricky. 
To predict the expected accuracy of a computation is not at all trivial, yet may be 
crucial.	

Floating Point Truths 	

We can make the following statements about IEEE 754-2008 floating point number 
representation:	

•	 Every floating point numbers has a sign. Every number is either positive or 
negative.	

•	 There are two representations for zero: positive zero (i.e., +0.0) and negative 
zero (i.e., -0.0).	

•	 There are two representations of infinity: positive infinity (+∞ or +inf) and 
negative infinity  (-∞ or -inf)	

•	 The exponent may be positive or negative, allowing both very large numbers 
and very small numbers.	

•	 There is a special representation called “not a number” (“NaN”). This value can 
represent a missing value or the result of a undefined operation, such as divide 
by zero. In some implementations there are two variations, called “quiet NaN” 
and “signaling NaN”.	

•	 Every 32-bit integer (i.e., every integer in the range -2,147,483,648 to 
+2,147,483,647) can be represented exactly with a 64 bit double precision 
floating point number, but not with a single precision float. In fact, the integer 
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range is a little greater: every 54-bit integer can be represented exactly in 
double precision floating point. Almost all larger integers will get rounded.	

•	 Every 25-bit integer (i.e., every integer in the range -16,777,216 to 
+16,777,215) can be represented exactly with a 32 bit single precision floating 
point number. Almost all integers outside of this range will get rounded.	

As mentioned earlier, not every value in the above ranges can be represented. 	2

Floating point arithmetic is meant to mimic mathematical arithmetic, but it must be 
remembered that they are only approximately the same:	

•	 The exact value or result of an operation is not always representable, so the 
computed answer is often not mathematically correct.	

•	 Floating point addition is not always associative, due to rounding errors. That 
is, (x + y) + z is not always equal to x + (y + z).	

•	 Floating point multiplication is not always associative. That is,	
(x * y) * z is not always equal to x * (y * z).	

•	 Floating point multiplication does not always distribute over addition with the 
exact same results. That is, x * (y + z) is not always equal to (x * y) + (x * z).	

However, we can say this:	

•	 Floating point addition and multiplication are commutative, like math. For 
example, x+y = y+x, so you don’t have to worry about the order of operands for 
a single operation.	

 Recall there is a countable infinity of rational numbers between any two numbers, yet with only 2

32 or 64 bits, we only have a small number of unique representations.
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A Nasty Example	

As an example of the dangers of not understanding floating point, consider this “C” 
code	

d1 = 123.0 + 1.0e+57 - 1.0e+57;
printf ("d1 = %g\n", d1);

It prints “0”, while the mathematically correct value is “123.0”.	

Why? The computer performs the addition first and is forced to round the value to 
1.0e+57 because the exact answer cannot be represented as a double precision 
floating point number.	

By simply inserting parentheses to force the subtraction to be done first, the 
following results in the mathematically correct answer.	

d1 = 123.0 + (1.0e+57 - 1.0e+57);

Range of Values 	

Here is the range of values that can be represented. (We use decimal notation here 
and approximate the exact values.)  	

Single Precision	
	 Largest value:	 ~3.40282347 × 10+38	
	 Smallest normalized value above 0:	 ~1.17549440 × 10-38	
	Smallest denormalized value above 0:	 ~1.40129846432 × 10-45	
	 Digits of accuracy:	 about 7	

Double Precision	
	 Largest value:	 ~1.7976931348623157 × 10+308	
	 Smallest normalized value above 0:	 ~2.2250738585072014 × 10-308	
	Smallest denormalized value above 0:	 ~5 × 10-324	
	 Digits of accuracy:	 about 16	
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Special Values 	

Here are the different types of things that can be represented in a floating point bit 
pattern:	

• Positive zero (+0.0)	
	 • Negative zero (-0.0)	
	 • Positive infinity (+∞ or +inf)	
	 • Negative infinity (-∞ or -inf)	
	 • Not-a-number (NaN)	
	 	 Quiet Nan (qNaN)	
	 	 Signaling Nan (sNaN)	

• Normal numbers (or “normalized numbers”)	
• Denormalized numbers (or “denormals”)	

Zero – Positive and Negative	

There are exactly two ways to represent zero, one is positive and the other is 
negative. This is unlike math, where there is only a single number called zero and it 
is unsigned.	

Here are some interesting behaviors:	

	 1/+0 yields +∞	
	 1/-0 yields –∞	
	 +0 will normally compare as equal to -0 (e.g., the == in the “C” language)	
	 Some languages provide a way to distinguish +0 and -0.	

There are additional behaviors, such as:	

	 -0/-∞  yields +0	

Although +0 and -0 may compare as equal, they may also result in different 
outcomes in some computations. This challenges our understanding of the meaning 
of “equal”, to say the least.	
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The bit pattern representation of zero is:	

	 	 single	 double	
	 +0.0	 0x00000000 0x0000000000000000	
	 -0.0	 0x80000000 0x8000000000000000	

Note that the floating point representation for +0.0 is bit-for-bit identical to the 
representation for 0 in binary integer representation (both signed and unsigned).	

It happens to be true that -0.0 is represented identically to the most negative signed 
integer, but this is less useful.	

Infinity	

There are two infinities which are represented as follows:	

	 	 single	 double	
	 +infinity	 0x7F800000 0x7FF0000000000000	
	 -infinity	 0xFF800000 0xFFF0000000000000	

Not-a-Number (NaN) 	

There is a special value called “not-a-number”, which is often abbreviated “NaN”. 
Some arithmetic operations are considered to be “undefined” and, when attempted, 
will result in a NaN result, to indicate that the result is undefined. Here are some 
examples of operations that with yield “not-a-number”.	

	 0/0	
	 ∞ / ∞	
	 0 * ∞ 	

Other operations are mathematically defined but give a complex result. Complex 
numbers are not handled by floating point, so operations such as the following will 
return NaN.	

	 Square root of a negative number	
	 Log of a negative number	
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Another use of NaN is to represent an uninitialized or missing value. If a variable is 
used before it is initialized, spurious incorrect results might occur, but this can be 
avoided if the variable contains NaN.	

The IEEE spec actually mentions two kinds of NaN: “signaling NaN” and “quiet NaN”. 
But usually, we just talk about NaN without making any distinction about whether it 
is signaling or quiet.	

A “signaling NaN” is supposed to cause a break in the flow of execution when it is 
encountered in a computation. That is, a trap or exception of some sort will occur, 
and the normal instruction sequence will be interrupted immediately. Signaling 
NaNs might reasonably used for uninitialized values: their use may represent a 
program bug which needs attention. In theory, signaling NaNs might also be used as 
placeholders for values (such as complex numbers) which require special handling.	

The idea with a “quiet NaN”, is that it can be used as an operand in arithmetic 
operations . Furthermore, a quiet NaN will be propagated. That is, if one of the 
operands to some operation is a quiet NaN, the result will also be a quiet NaN. This 
allows a lengthy sequence of operations to be performed quickly with no special 
testing for problems. Once a NaN appears, as a result of some error, it will persist in 
the chain of computations. Each subsequent operation will complete normally, 
without causing an exception or trap even though some sort of error occurred 
earlier in the sequence.  If any problems occur at any step of the computation, the 
final result will be a quiet NaN. Therefore, it is sufficient to perform only a single test 
for NaN after the entire computation to see if any errors arose at any stage of the 
computation.	

The spec does not require signaling NaNs; they are optional. One implementation 
approach is for the hardware to interpret all NaN values identically, basically as quiet 
NaNs.	

What generally happens with C is that the “Invalid” flag will be  set if either operand 
is “signaling NaN”. However, if the operands are only “quiet NaNs”, the result will be a 
NaN but the “Invalid” flag will not be modified.	

There are several bit patterns that can be used to represent NaNs, so there is not a 
single bit pattern for NaN.	
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A value is defined to represent NaN if (1) the exponent field is all 1’s, and (2) the bits 
of the fraction field are not all zero. (If the fraction bits are all zero, then the value is 
either +∞ or –∞.) The sign bit of a NaN value is ignored.	

If a distinction between quiet and signaling NaN is implemented, then one of the bits 
in the fraction field will be used to distinguish between quiet and signaling. 	

The exact bit patterns for NaN are not fully specified and can vary between 
implementations.	

We can say that a value with all bits set to one (i.e., the representation for the signed 
integer -1 which is 0xFFFF FFFF or 0xFFFF FFFF FFFF FFFF) will definitely 
represent a NaN and will almost certainly represent a quiet NaN. For example, the 
all-ones pattern will be a quiet NaN for Intel, AMD, SPARC, ARM, RISC-V, etc.	

Mixing Single and Double Precision Using NaN	

There are many bits in the fraction field, and the only requirement for NaN is that 
they cannot all be zero. Thus, there is room to store some additional data within 
the NaN. So a NaN can carry a sort of “payload” value in the fraction bits. This 
capability may or may not be used in a particular implementation of IEEE 
754-2008.	

For example, the fraction field in a double is 52 bits. Assume that one bit is 
reserved to be always set to indicate that this is a NaN, and assume that a second 
bit is reserved and used to distinguish between a quiet NaN and a signaling NaN. 
This leaves 50 bits that can be used to store a arbitrary value. Notice that this is 
enough room to store an entire single precision floating point number.	

Imagine a machine that implements double precision arithmetic and uses 64-bit 
registers to store floating point values. How might this machine store 32-bit single 
precision values in these same registers?	

Any 64-bit value in which the high order 32 bits are set, will be always recognized 
as a NaN. One approach to storing a single precision value in a 64 bit register is to 
store the single precision value in the least significant bits 32 bits and all 1s in the 
most significant 32 bits.	

All single precision operations will only look at the least significant 32-bits of the 
operands and, for the result value, will always set the most-significant 32 bits to 1s.	
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Any accidental attempt to perform a double precision operation on a register 
containing a single precision value, will interpret that operand as a NaN.	

Normalized and Denormalized Numbers	

Not every number is representable and the representable numbers are spaced out 
on the number line. So each possible floating point value is separated by a numerical 
distance from the next smallest number and from the next largest number. As the 
numbers get smaller and closer to zero, the spacing gets smaller and the numbers 
are closer together. As the numbers get larger, the spacing is farther apart.	

For example, the following numbers differ by a very small amount:	

	 4.567 × 10-25	
	 4.568 × 10-25	

On the other hand, these two numbers differ by a very large amount:	

	 4.567 × 10+25	
	 4.568 × 10+25	

However in both examples above, the accuracy is the same: 4 digits of precision.	

However, there is only a limited number of bits available to represent the exponents. 
Exponents cannot continue to get more negative and we cannot represent smaller 
and smaller numbers, ever more close to zero. Therefore, this pattern of the floating 
point numbers becoming spaced ever more closely as they get closer and closer to 
zero cannot continue. Something has to change as the numbers get smaller and 
approach zero.	

What happens is that below some size, the representable values are simply spaced 
uniformly all the way down to zero. This is the role of denormalized numbers.	

Most floating point numbers are “normal” numbers. Normal numbers have about 7 
digits of accuracy (for single precision) and 16 digits of accuracy (for double 
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precision). In other words, we can approximate any desired value with about 7 (or 
16) digits of accuracy.	

Another way to look at denormalized numbers is this: For very small values, we 
cannot approximate the value with full accuracy. As we get closer and closer to zero, 
we can approximate the true value with fewer and fewer places of accuracy. For 
really tiny values, we may even be forced to use 0.0 to represent the value, 
essentially losing all accuracy.	

We can make the following statements about denormalized numbers:	

•	 All denormalized numbers are very close to zero.	
•	 Denormalized numbers extend on both the positive and negative sides of 
zero.	

•	 +0.0 and -0.0 are themselves represented as denormalized numbers.	
•	 All denormalized numbers are regularly and evenly spaced. (Exception: +0.0 
and -0.0 have an infinitesimal difference and are considered equal.)	

•	 The largest denormalized number is just less than the smallest positive 
normal number.	

•	 Likewise, the most negative denormalized number is just greater than the 
least negative normal number.	

•	 It is generally safe to ignore the distinction between normalized and 
denormalized numbers when using floating point in your applications.	

There are rules for determining the precision of the results of an arithmetic 
calculation involving scientific notation. But if very small values (i.e., denormalized 
numbers) arise during a computation, then your assumptions about precision will 
be violated and the final results will have reduced precision. In some cases, the final 
result will be a meaningless, incorrect value.	

Warning: Always remember that numbers as represented in computers are NOT 
true mathematical numbers. Computer arithmetic is NOT mathematical arithmetic. 
Remember: “int”s are not integers and “floats” are not real or rational numbers.	

Computer values and computation are mere approximations of mathematically 
pure ideals. A good programmer knows how important it is to understand and 
remember their differences in creating reliable software.	
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Representation in 32 Bits	

A single precision floating point number is represented with a 32-bit word as shown 
here:	

	

How can we interpret the 32 bits representing a floating point number in single 
precision?	

Let “sign” be the most significant bit. Let “exponent” be the bit pattern in bits 30:23. 
Let “fraction” be the bit pattern in bits 22:0.	

The number represented is:	

	 (-1)sign  ×  1.fraction  ×  2exponent	

The first term simply gives the sign of the number: 0=positive and 1=negative. Note 
that the most significant bit holds the sign bit for both floating point numbers and 
signed integers. 	3

 If you are considering using a two’s complement instruction to check the sign bit, that will work as long as 3

the value is not the special “not-a-number” NaN value.

Floating Point Numbers / Porter	 Page  of 24 65



Chapter 2: Single Precision	

There are 8 bits in the exponent field. The interpretation of the “exponent” bit 
patterns is:	

	 Bit Pattern	 Meaning of Exponent Field	
	 0000 0000	 -126 — Denormalized Numbers, including zero 	
	 0000 0001	 -126	
	   ...	 ...	
	 0111 1110	 -1 	
	 0111 1111	 0 	
	 1000 0000	 +1 	
	   ...	 ...	
	 1111 1110	 +127 	
	 1111 1111	 Infinity, Not-a-Number	

Example  Let’s convert 1010.111 into floating point format.	

First, we shift the binary point to just after the leftmost 1 bit:	
 	
	 1.010111 × 23	

Every number (except zero) will always contain at least a single 1 bit. Thus, the most 
significant bit must be a 1 and representing it is redundant. This explains why we 
prefix the fractional part with “1.”. (This trick of making one bit implicit doesn’t work 
with decimal numbers: the leading digit can be anything except 0, so we cannot 
make it implicit.)	

This gives a mantissa, which we extend to 23 bits by adding zeros on the right:	

0 1 0 1 1 1 1    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Next, we convert the exponent using the above chart	

	 23	 →	 1000 0010	

Putting sign, exponent, and fraction together:	

0   1 0 0 0 0 0 0 0   0 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Regrouping and converting to hex:	

0100 0000 0010 1111 0000 0000 0000 0000
0x402F0000

For normalized numbers, the exponent has an effective range of -126 .. +127.	

The smallest positive normalized number is:	

In binary:	
	 	 1.00000000000000000000000 × 2-126	 (There are 23 zeros)	

In bits:	
	 	 0x00800000  =  0 00000001 00000000000000000000000	

Decimal approximation:	
	 	 1.17549435 × 10-38	

Exact value:	
	 	 0.000000000000000000000000000000000000011754943508	
	 	 2228750796873653722224567781866555677208752150875	
	 	 17062784172594547271728515625	

The largest normalized number is:	

In binary:	
	 	 1.11111111111111111111111 × 2+127	 (There are 1+23 ones)	

In bits:	
	 	 0x7F7FFFFF  =  0 11111110 11111111111111111111111	

Decimal approximation:	
	 	 3.4028235 × 10+38	

If the exponent is all ones (i.e., 11111111), then the value of the fraction matters. If 
the fraction is all zeros, then the value is +∞ or –∞ depending on the sign bit.	

+∞:	
	 	 0x7F800000  =  0 11111111 00000000000000000000000	

-∞:	
	 	 0xFF800000  =  1 11111111 00000000000000000000000	

If the exponent is all ones (i.e., 11111111) and the value of the fraction is not all 
zeros, then NaN is represented. There are multiple representations that are to be 
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interpreted as NaN values. The canonical, preferred representation of NaN is often 
this:	

NaN (typical):	
	 	 0xFFFFFFFF  =  1 11111111 11111111111111111111111	

If the exponent field is all zeros (i.e., 00000000), then the value is a denormalized 
number. The value of the number is:	

	 N  =  (-1)sign  ×  0.fraction  ×  2-126	

Notice that the leading implicit “1” bit is no longer assumed; it is now “0”. Also the 
exponent is always -126, which happens to be the smallest exponent for normalized 
numbers.	

Here are some sample numbers that may help explain denormalized numbers:	

	 Smallest normalized number:	
	 	 1.00000000000000000000000  ×  2-126	 (24 bits of precision)	
	 Largest  denormalized number:	
	 	 0.11111111111111111111111  ×  2-126	 (23 bits of precision)	
	      …	
	 Random  denormalized number:	
	 	 0.00000000001100101110101  ×  2-126	 (13 bits of precision)	
	     …	
	 Smallest  denormalized number:	
	 	 0.00000000000000000000001  ×  2-126	 (1 bit of precision)	
	 +0.0:	
	 	 0.00000000000000000000000  ×  2-126	 (0 bits of precision)	

The word “precision” above may be misleading. Each floating point value is an exact 
value. Precision and accuracy are more meaningful when talking about 
measurements. In that case, we have the true value and we use the terms “precision” 
and “accuracy” to describe the relationship between the number we obtained and 
the unknown true value.	
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Exponent Bias	

Notice that the exponent is not represented in standard “two’s complement” fashion. 
Normally, the integer 3 is represented as 0000 0011. For single precision, an 
exponent of 3 is represented as 1000 0010, which would be 130 if interpreted using 
two’s complement.	

Sometimes we speak of a “bias” being added to the exponent. For single precision, 
this “bias” value is 127. We can use this number to quickly convert the exponent to/
from two’s complement.	

	 Actual exponent	 	 As represented in a single precision value	
	 -126	 +127 =	 1	 0000 0001	
	 …	
	 0	 +127 =	 127	 0111 1111	
	 …	
	 3	 +127 =	 130	 1000 0010	
	 …	
	 +127	 +127 =	 254	 1111 1110	

When implementing the floating point operations using more primitive bit-based 
operations, it is important to remember that we cannot simply add exponents. For 
example	

	 23  +  24  =  27	
	 3 + 4 = 7	

The correct bit pattern of the result is:	

	 7 + 127 = 134 (binary: 10000110)	

But if we simply added the exponent bits as we find them, we get the wrong result. 
In fact, the value overflows our 8 bit limit:	

	 1000,0010  +  1000,0011 = 1,0000,0101 (= 261)	
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Notice that by subtracting the bias (and using enough bits to avoid overflow issues), 
we get the correct result:	

	 261 - 127 = 134	
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Representation in 64 Bits	

Double precision floating point numbers are represented using an analogous 
scheme to single precision. The only difference is the number of bits in the 
“exponent” and “fraction” fields.	

Here is the representation of a 64-bit double precision floating point value:	

	

There are 11 bits in the exponent field, instead of 8 as in single precision. The 
interpretation of the “exponent” bit patterns is:	

	 Bit Pattern	 Meaning of Exponent Field	
	 000 0000 0000	 -1022 — Denormalized Numbers, including zero 	
	 000 0000 0001	 -1022	
	   ...	 ...	
	 011 1111 1110	 -1 	
	 011 1111 1111	 0 	
	 100 0000 0000	 +1 	
	   ...	 ...	
	 111 1111 1110	 +1023 	
	 111 1111 1111	 Infinity, Not-a-Number	
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If the exponent is all ones (i.e., 11111111111), then the value of the fraction matters. 
If the fraction is all zeros, then the value is +∞ or –∞ depending on the sign bit.	

	 +∞:	
0x7FF0000000000000 =

  0 11111111111 0000000000000000000000000000000000000000000000000000

	 -∞:	
0xFFF0000000000000 =

  1 11111111111 0000000000000000000000000000000000000000000000000000

If the exponent is all ones (i.e., 111_1111_1111) and the value of the fraction is not 
all zeros, then NaN is represented. There are multiple representations that are to be 
interpreted as NaN values. Here are two common representations for NaN:	

	 NaN:	
0xFFFFFFFFFFFFFFFF =

  1 11111111111 1111111111111111111111111111111111111111111111111111

0x7FF8000000000000 =
  0 11111111111 1000000000000000000000000000000000000000000000000000

If the exponent field is all zeros (i.e., 00000000000), then the value is a 
denormalized number. The value of the number is:	

	 N  =  (-1)sign  ×  0.fraction  ×  2-1022	

Notice that the leading implicit “1” bit is no longer assumed; it is now “0”. Also the 
exponent is always -1022, which happens to be the smallest exponent for 
normalized numbers.	

For normalized numbers, the exponent has an effective range of -1022 … +1023. 	4

The “bias” is +1023.	

The largest normalized number is:	

In binary:	
	 	 1.111111111...11111111111 × 2+1023	 (There are 1+52 ones)	

Representation:	

 The following names are used: emin =-1022, emax = +10234
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	 	 0x7FEF FFFF FFFF FFFF	
Decimal approximation:	

	 	 1.7976931348623157 × 10+308	

The smallest positive normalized number is:	

In binary:	
	 	 1.000000000...00000000000 × 2-1022	 (There are 52 zeros)	

Representation:	
	 	 0x0010 0000 0000 0000	

Decimal approximation:	
	 	 2.2250738585072014 × 10-308	

The largest denormalized number is:	

In binary:	
	 	 0.111111111...11111111111 × 2-1022	

Representation:	
	 	 0x000F FFFF FFFF FFFF	

Decimal approximation:	
	 	 2.2250738585072009 × 10-308	

The smallest positive denormalized number is:	

In binary:	
	 	 0.000000000...00000000001 × 2-1022	

Representation:	
	 	 0x0000 0000 0000 0001	

Decimal approximation:	
	 	 4.9406564584124654 × 10-324	

Other Sizes Beyond Single and Double 	

In addition to the well known single precision (32-bit) and double precision (64-bit) 
sizes, the IEEE 754-2008 standard also describes these floating point sizes. They are 
much less common.	
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	 16 bits (half precision)	
	 128 bits (quadruple precision)	
	 256 bits (octuple precision)	

There is also mention of decimal-based representations.	
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Introduction 	

Rounding is necessary when an exact value requires too many bits and we need to 
alter the representation (and value) of the number to fit into some desired format 
with fewer bits.	

Rounding is necessary after floating point operations such as addition and 
multiplication. The exact answer almost always requires more bits than the 
operands required. The result of a computation will almost always be a number that 
is not precisely representable.	

For example, the addition of two double numbers may not be exactly representable 
as a double.	

To see why this can happen, look at the following simple addition. We’ll use decimal 
numbers, but the same effect happens with binary numbers.	

Here are two numbers with 5 digits of precision. Their sum requires 8 digits to 
represent.	

	   12.345	 = 1.2345 × 101	
	 +   .067891	 = 6.7891 × 10-2	
	   12.412891	 = 1.2412891 × 101	

The IEEE spec says that the exact result should be “rounded” to a number that can 
be represented. For example, when two doubles are added, their result will be some 
double value.	
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In the above example, to bring the result back down to 5 digits of precision, some 
accuracy must be sacrificed.	

Just as in this example, when floating point operations are performed, there may be 
a loss of accuracy as a result of rounding.	

The IEEE spec lists several ways that a value can be rounded to something that can 
be represented:	

	 • Round to the nearest number	
	 	 (For a tie, the value with a zero in the least significant bit is chosen.)	
	 • Round toward zero (i.e., truncate)	
	 • Round toward positive infinity (i.e., round up)	
	 • Round toward negative infinity (i.e., round down)	

In order to perform rounding correctly, a computer may need to perform 
calculations (e.g., multiplication) with greater precision to first compute the correct 
value. Then, as the final step in the calculation, the value must be properly rounded 
to fit into the available floating point bits.	

Here is another example, showing that the entire effect of an operation can be lost as 
the result of rounding.	
 	
	   12.345	 = 1.2345 × 101	
	 +   .00000067891	 = 6.7891 × 10-7	
	   12.34500067891	 = 1.234500067891 × 101	

Rounding to a value with the same precision (either rounding down, rounding 
toward zero, or rounding to the nearest) gives the initial operand, unchanged. Here 
is the rounded result:	

	   12.345	 = 1.2345 × 101	

Rounding up or rounding away from zero would give a different result:	

	   12.346	
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By the way, in common speaking, the term “rounding” usually means “round-to-the-
nearest”. In the floating point world, “rounding” is a more general term that also 
includes “round-toward-zero”, “round-up”, and “round-down”.	

Rounding Toward Zero (Truncation)	

With signed integers (that is, “two’s complement” representation), truncation will 
round the value down, toward -infinity. In this example, we’ll round down the last 3 
bits, effectively going to the nearest multiple of 23 = 8. The bits being eliminated are 
underlined:	

	 Binary	 Decimal	 	 Rounded	 Decimal	
	 00001001 +9 → 00001000 +8	
	 11101001 -23 → 11101000 -24	

The implementation is simple: we just clear the underlined bits.	

With regards to sign, truncation works differently with floating point numbers. 
Floats are represented as a magnitude and a sign bit. Truncation affects the 
magnitude only. For example +7.125 and -7.125  have the same magnitude. 
Truncation works only on the magnitude. So truncation takes the magnitude from 
7.125 to 7.000, regardless of sign.	

So for floating point, “truncation" and “rounding toward zero” mean the same 
thing.	

This form of rounding is the easiest to implement, since all we do is change the 
unwanted bits to zero.	

Truncation can never result in overflow.	

Rounding Away from Zero	

Rounding away from zero is more complicated to implement.	
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As an example, imagine that we want to round off the last 3 bits, that is, round to a 
multiple of 8. For integers that are already a multiple of 8, this is easy; there is no 
change:	

	 Binary	 Decimal	 	 Rounded	 Decimal	
	 00001000 +8 → 00001000 +8	
	 00101000 +40 → 00101000 +40	

But for numbers that have “1”s in the underlined area, we need to clear the last three 
bits and then add “1000”:	

	 Binary	 Decimal	 	 Rounded	 Decimal	
	 00001001 +9 → 00010000 +16	
	 00101011 +43 → 00110000 +48	

Rounding away from zero can result in overflow.	

For example, consider rounding the following value to 5 bits and adjusting the 
exponent to account for the lost bits.	

	 Binary	 Decimal	 	 Rounded	 Decimal	
	 11111001 +249 → 100000000 +256	

The resulting rounded value now contains 6 bits, which will now be larger than 5 
bits. To get the value to fit into 5 bits, we need to round again and adjust the 
exponent by 1. Fortunately, the bit we must remove (shown in red) will always be 
zero.	

Thus, whenever we have an overflow like this, we simply the rounded value right by 
1 bit and adjust the exponent. Of course, the adjustment to the exponent can also 
overflow, in which case we have an overflow situation.	

Rounding Up and Rounding Down	

By “rounding up”, we mean rounding numbers in the direction of +infinity. By 
“rounding down”, we mean in the direction of -infinity.	
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Assuming we can round a number towards zero or away from zero, we can 
implement “rounding up” and “rounding down” simply. But we have to look at the 
sign to know what to do.	

We implement “rounding up” as follows:	

	 If the number is > 0	
	 	 Round  the number away from zero	
	 If the number is < 0	
	 	 Round  the number toward zero	

We implement “rounding down” as follows:	

	 If the number is > 0	
	 	 Round  the number toward zero	
	 If the number is < 0	
	 	 Round  the number away from zero	

Round-to-Nearest	

Next, look at how we round a number “to the nearest”. With decimal, there are three 
cases:	

If the dropped digit is < 5	
	 83.2 → 83.	 Drop the digit	

If the dropped digit is = 5	
	 83.5 → 83. / 84.	 Exactly in the middle; could go either way.	

If the dropped digit is > 5	
	 83.9 → 84.	 Drop the digit and add 1 in the next place	

Let’s ignore the location of the decimal point and just talk about rounding to a given 
place. We show the digits we want to eliminate with underlining, as in:	

	 83284 → 83	
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In the case of “5”, we need to look at the digits to the right of the “5”.	

Here are the cases: 	

If the first dropped digit is < 5	
	 Drop the digits	
	 	 83284 → 83
Otherwise, if the dropped digits are “500000…”	

	 Exactly in the middle; could go either way.	
	 	 83500 → 83 / 84
Otherwise	

	 Drop the digits and add 1	
	 	 83501 → 84
	 	 83989 → 84

With binary, we only have two bits, “0” and “1”. The “1” bit functions like decimal “5”. 
Note that:	

110.0 = 6.0
110.1 = 6.5

Each successive bit divides by 1/2:	

110.00 = 6.00
110.01 = 6.25

110.000 = 6.000
110.001 = 6.125

110.0000 = 6.0000
110.0001 = 6.0625

So if the number ends with “1” it is exactly halfway between the next shorter 
numbers:	

110.00 = 110.000 = 6.0
         110.001 = 6.125	 ← Halfway between 6.0 and 6.25
110.01 = 110.010 = 6.25
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Here are the cases for binary: 	

If the first dropped bit is = 0	
	 Drop the bits	
	 	 1100110101 → 110	
Otherwise, if the dropped bits are “100000…”	

	 Exactly in the middle; it could go either way.	
	 	 1101000000 → 110/111	
Otherwise	

	 Drop the bits and add 1	
	 	 1101000010 → 111

Example  Let’s look at this number and round it to 6 bits. The first dropped bit is 
shown in red.	

1.000110011

Since it is zero in this example, we round down. We drop bits, giving:	

1.00011

Example  Here the key bit is “1” and there are other dropped bits that are “1”.	

1.000111011

In this case, we must round up. This means we add 1 to the least significant position:	

  1.00011
+       1
  1.00100

Example  Here the key bit is “1” but all the other dropped bits are “0”.	

1.000111000

We could either round up or truncate the bits.	

Rounding Ties	
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In the case where we are right in the middle, which way do we go? We can refer to 
this as “the problem of rounding .5” or “rounding ties”:	

Decimal:	
	 83.50000 → 83 or 84?	
Binary:	
	 11010000 → 110 or 111?	

Here are the choices:	

	 • Always round up.	
	 • Always round down.	
	 • Sometimes up, sometimes down.	

“Rounding ties up” is the easiest. We always add 1 in the next place.	

	 83.50000 → 84.	

Note that this option allows us to avoid looking at all other digits. We simply look at 
the key digit and ignore everything to the right of it.	

	 83.50000 → 84.	
	 83.50073 → 84.	

Here it is in binary. We can ignore all bits to the right of the key bit.	

	 11010000 → 111	
	 11010001 → 111	

“Rounding ties down” is next the easiest. We still need to examine all bits to right of 
the key bit to determine whether we round down or up.	

	 11010000 → 110 If all zeros, round down	
	 11010001 → 111 Otherwise, round up	

Rounding Ties to Even (or Odd)	

The final implementation is to determine whether to round up or down based on the 
previous digit position.	
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Decimal digits are either odd or even. Likewise, bits are either odd or even. By 
looking at the next digit or bit, we are essentially doing a “coin toss” and using that 
digit/bit to determine which way to round. Assuming that digits/bits are randomly 
distributed, we’ll round ties up half the time and down the other half of the time.	

Let’s look at “round to even” with decimal. Here, we’ll look at the digit in blue to 
decide the tie. If odd, we round up. If even, we round down. This results in the blue 
digit always becoming even.	

	 83.5000 → 84. Odd → round up	
	 86.5000 → 86. Even → round down	

With binary, “round to even” always results in a value where the last bit is zero. 
Whenever there is a tie, we get a number with a “0” in the least significant bit.	

	 10000.1000 → 10000. Even → round down	
	 10001.1000 → 10010. Odd → round up	
	 10010.1000 → 10010. Even → round down	
	 10011.1000 → 10100. Odd → round up	
	 10100.1000 → 10100. Even → round down	
	 10101.1000 → 10110. Odd → round up	

With binary, there is also a “round to odd”, which is similar. Whenever there is a tie, 
we get a number with a “1” in the least significant bit.	

	 10000.1000 → 10001. Even → round up	
	 10001.1000 → 10001. Odd → round down	
	 10010.1000 → 10011. Even → round up	
	 10011.1000 → 10011. Odd → round down	
	 10100.1000 → 10101. Even → round up	
	 10101.1000 → 10101. Odd → round down	
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Not-A-Number	

If there is a problem with some floating point operation, the result will be not-a-
number (NaN).	

There are three general reasons for such an error:	

• One of the operands was non-a-number to start with.	
• The result is mathematically undefined. For example, 0/0.	
• The result is a complex number. For example, “square root of a negative”.	

Whenever a NaN is is first encountered — that is, when a result is NaN although the 
arguments were themselves okay — the IEEE spec requires that the “invalid 
operation” flag be set.	

However, when one argument is already NaN, we need to determine whether the 
NaN is a “signaling NaN” or “quiet NaN”. If signaling, then the “invalid operation” 
flag will be set. If quiet, then the “invalid operation” flag will not be set.	

 Much of the information in this document comes from Wikipedia.5
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When the Result is Undefined	

The following operations will result in NaN and the “invalid operation” flag will be 
set.	

•	 +∞  +  −∞	
•	 −∞  +  +∞	
•	 +∞  −  +∞	
•	 −∞  −  −∞	
•	 ±0  ×  ±∞	
•	 ±∞  ×  ±0	
•	 ±0  /  ±0	
•	 ±∞  /  ±∞	
•	 ±∞  %  y (remainder function)	
•	 x  %  ±0	
•	 The standard has alternative requirements for the “power” function:	

• The standard pow function and the integer exponent pown function define 
00,  1∞,  and  ∞0  as 1.	

• The powr function defines  00,  1∞,  and  ∞0  as NaN.	

When the Result is a Complex Number	

Here are some operations that result in a complex number. The IEEE spec says that 
these operations will raise an error. That is, the result will be NaN and the “invalid 
operation” flag will be set.	

• The square root of a negative number	
• The logarithm of a negative number	
• The inverse sine or cosine of a number that is less than −1 or greater than 1	

Some hardware ISAs may implement SQUARE ROOT in hardware, but it is probable 
that some or all of these operations will be implemented in software, not hardware.	
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Conversion Between Integers and Floating Point	

Floating Point → Integer	

Any computer architecture that supports floating point generally includes an 
instruction to convert from floating point to integer. For example, the Blitz-64 
machine instruction converts from double precision to a 64-bit integer:	

fcvtif   r4,r5     # Floating ConVerT to Integer from Floating

What if the argument is NaN? The general rule that “NaNs are always propagated” 
cannot be followed since the result — a 64-bit signed, twos complement integer — 
cannot represent a NaN value.	

Typically, the machine architecture will set the “invalid operation” flag. The integer 
result might be specified as “0” or left “undefined”.	

There is also the question of what happens when the floating point number exceeds 
the range of the integers: Is this an error, or overflow, or treated by just setting the 
result integer to the maximal value.	

Note that the integer 9,223,372,036,854,775,808 is representable exactly as a 
double precision float since it is 1.0 ×  263. This integer can be expressed as the 
unsigned number 0x8000,0000,0000,0000, which is one greater than we can 
represent as a signed 64 bit integer. (Of course, we can represented its negation 
-9,223,372,036,854,775,808 exactly as a signed integer as 0x8000,0000,0000,0000.)	

Using double precision floats, the adjacent values to this large number differ by a 
substantial amount, due to the loss of precision at this magnitude. The integer 
representation has 63 zero bits while the double precision representation has only 
52 zero bits. We lost 11 bits. Note that 211 = 2,048 and binary 1000_0000_0000 is 
decimal 2,048. Thus, going to the next greatest number, will add 2,048 to the value. 
Going down instead, we must decrement the exponent and go to:	

	 1.1111111111111111111111111111111111111111111111111111 × 262	

which is 1,024 less.	
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Here are the values around the largest signed integer ( 0x7FFF,FFFF,FFFF,FFFF = 
9,223,372,036,854,775,807) that we can represent exactly with double precision 
floats:	

	 +9,223,372,036,854,774,784.0	
	 +9,223,372,036,854,775,808.0	
	 +9,223,372,036,854,777,856.0	

For Blitz-64, the exact test for overflow for FCVTIF is this: 	

If the floating value is greater than +9,223,372,036,854,775,808.0 then the 
“overflow flag” (OV) will be set and +9,223,372,036,854,775,807 (i.e., 
0x7FFF,FFFF,FFFF,FFFF) will be placed in RegD. We intentionally use > and not ≥ 
because it is reasonable to round +9,223,372,036,854,775,808.0 to 
+9,223,372,036,854,775,807 (i.e., to 0x7FFF,FFFF,FFFF,FFFF).	

Integer → Floating Point	

The computer will also have an instruction for converting in the other direction, i.e., 
from integer to floating point.	

For example, the following Blitz-64 machine instruction converts from 64-bit signed 
integer to double precision floating point:	

fcvtfi   r4,r5     # Floating ConVerT to Floating from Integer

With this conversion, the range of floating point numbers is much greater than 
integers, so there is no possibility of overflow. However, not all integers can be 
represented exactly. In some cases, the value must be rounded to the nearest floating 
point value.	

All integers in this range can be represented exactly as floating point numbers:	

Decimal                                  	 64-bit Integer            	 Double Precision     	
-253	 -9,007,199,254,740,992	 0xFFE0,0000,0000,0000	 0xC340,0000,0000,0000	
	             …	
+253	 +9,007,199,254,740,992	 0x0020,0000,0000,0000	 0x4340,0000,0000,0000	

Most integers outside this range must be rounded, and the rounding rules will be 
used.	
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( Note that 253 is represented as a binary integer as a “1” followed by 53 “0”s. In 
other words, it requires 54 bits to represent. Recall that double precision floating 
point accommodates only 52 bits after the leading “1”; how can we accommodate 54 
bit numbers? But notice This: 253 can be represented exactly, since it is an even 
power of 2. Although we can represent this number exactly, we cannot represent all 
54 bit numbers exactly. And all numbers smaller than 253 can be represented with 
only 53 bits. In a double precision number , the leading “1” bit is implicit and there is 
enough room for up to 52 additional bits. )	

For other conversions, we have:	

	 From	 To	
	 32 bit integer	 Single Precision	 May round	
	 32 bit integer	 Double Precision	 Always exact	
	 64 bit integer	 Single Precision	 May round	
	 64 bit integer	 Double Precision	 May round	

When converting from a 32 bit integer to a double precision floating point, there will 
never be any rounding. The 52 bits of mantissa are more than enough to represent 
all possible 32 bit integers with perfect accuracy.	

Relational Operations with NaN	

There are some strange and unexpected behaviors when one of the operands to a 
relational comparison is NaN.	

Normally, an operation in which one operand is NaN is required to yield NaN as a 
result. For relational operations, the result is normally a “boolean” or a branch, so it 
is not possible to yield a NaN.	

So what happens? Here is the rule:	

Every NaN shall compare unordered with everything, including itself.	
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In particular, we have:	

	    Operation    	    Result     	   Invalid Operation	
	 NaN	 <	 x	 false	 yes	
	 NaN	 <= 	 x	 false 	 yes	
	 NaN	 >	 x	 false 	 yes	
	 NaN	 >=	 x	 false 	 yes	
	 NaN	 ==	 x	 false 	 no	
	 NaN	 !=	 x	 true 	 no	

Note that this implies the following very unexpected results:	

	    Operation    	    Result     	   Invalid Operation	
	 NaN	 ==	 NaN	 false 	 no	
	 NaN	 !=	 NaN	 true 	 no	

Normally, we accept these equivalences:	

	 This:		 is the same as:	
	 x < y	 NOT (x >= y)	
	 x <= y	 NOT (x > y)	
	 x > y	 NOT (x <= y)	
	 x >= y	 NOT (x < y)	

However, these are not true when one of the operands is NaN!	
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How to Add Floating Point Numbers	

Let’s make the assumption that the two numbers we want to add are positive. If we 
have two numbers of different signs, we will actually use a subtraction algorithm. If 
we have two numbers that are negative, then we’ll add and then mark the result 
negative.	

It may be that one of the numbers we are adding is one of the following values. We 
will assume these special cases are dealt with separately.	

	 +0.0	
	 -0.0	
	 NaN	
	 +infinity	
	 -infinity	

In particular, we assume that neither “x” nor “y” is zero, which means that they will 
have at least one “1” bit.	

The answer will need to be rounded and we have these possible ways to round:	

	 round-down	
	 round-up	
	 rounding-towards-nearest	

If we require “round toward +infinity” or “round toward -infinity”, we’ll have to look 
at the signs of the numbers we are adding:	
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	 round toward +infinity	 round toward -infinity	
x, y are positive	 use “round-up”	 use “round-down”	
x, y are negative	 use “round-down”	 use “round-up”	

Let’s assume we are implementing single precision and are given two non-zero 
numbers “x” and “y”. Singe precision has 1 implicit bit and 23 bits of fractional 
mantissa.	

To shorten our examples, we’ll use 1 implicit bit and 23 bits of fractional mantissa.	

Here is an example. We make the implicit 1 bit explicit:	

	 x:	  1.10110  × 217	
	 y:	  1.00111  × 214	

If we happen to have a denormalized number, we’ll make the implicit 0 bit explicit:	

	 denorm example:	  0.00010  × 2-126	

First, we can shift the second number left or right to make the exponents equal:	

	 y:	  1.00111  × 214	
	 y (shifted):	  0.00100111  × 217	

Now we can add them:	

	 x:	  1.10110  × 217	
	 y (shifted):	  0.00100111  × 217	
	 sum:	 01.11010111  × 217	

Whenever we add two binary numbers, the result may require a single additional bit 
for a carry.	

In this example, there was no carry. If we are truncating (rounding positives toward 
zero), then there is nothing more to do. We just grab the bits relevant bits:	

	 sum:	 01.11010111  × 217	
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If there had been a carry, then we just shift the bits right one bit and increase the 
exponent. For example:	

	 x:	  1.10001  × 217	
	 y:	  1.01011  × 217	
	 sum:	 10.11100  × 217	
	 sum (shifted):	  1.011100  × 218	

If the exponent was +127 and is incremented to +128, then we have to signal 
overflow.	

In previous examples, the numbers had similar exponents, but consider this 
example:	

	 x:	   1.10110  × 217	
	 y:	   1.00111  × 26	

Shifting “y”, we get:	

	 x:	   1.10110  × 217	
	 y( shifted):	   0.0000000000100111  × 217	
	 sum:	  01.1011000000100111  × 217	
	 sum (rounded):	  01.10110  × 217	

After rounding (either down or to nearest), we see that the sum is just “x” itself. In 
other words, when the exponents are very different, the answer is simply the largest 
of the two values.	

How different must the exponents be for us to ignore the smaller number? It 
depends on how we will be rounding.	
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Here is the limiting case for rounding down.	

	 x:	  1.10110  × 217	
	 y:	  1.00111  × 211	
	 y( shifted):	  0.00000100111  × 217	
	 sum:	  1.10110100111  × 217	
	 sum (rounded):	  1.10110  × 217	

The difference in exponents is just 6 bits, i.e., 5+1. With single precision, the required 
difference is 1+23 = 24. If the difference in exponents is equal or greater than this, 
the answer is just the largest number.	

If the difference in exponents is less than this, then the numbers will overlap.	

In this next example, the bits will overlap. We will shift the smaller number to the 
right until the exponents are the same.	

If we are rounding down toward zero, we do not need to keep the bits we are 
shifting out.	

	 x:	  1.10110  × 217	
	 y:	  1.00111  × 214	
	 	  0.100111  × 215	
	 	  0.0100111  × 216	
	 	  0.00100111  × 217	

	 x:	  1.10110  × 217	
	 y:	  0.00100  × 217	
	 sum:	  1.11010  × 217	

If we are rounding up, the case is similar. If the exponents differ by 24 (for single 
precision), then the answer is just the largest, EXCEPT… We must add 1 in the least 
significant place to the larger number. Since we have assumed that both numbers 
are non-zero, we must round the result up.	

This rounding up may cause a bit of a problem, and may result in a carry. So, perhaps 
it is simplest if — when rounding up — we substitute a fixed value for the smaller 
number. So we replace the smaller number “y” by “0.00001”:	
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	 y:	  1.00111  × 211	
	 y (shifted):	  0.00000100111  × 217	
	 substituted incr:	  0.00001

	 x:	  1.10110  × 217	
	 substituted incr:	  0.00001
	 sum:	  1.10111  × 217	
	 sum (rounded):	  1.10111  × 217	

Another way we can think of this is that we are shifting “y” to the right, but we 
summarize all the bits shifted to the right. We show in red the bits shifted out. We 
can lose them altogether; the summary bit is all we will need. The summary bit is a 
sticky bit, initialized to the rightmost bit of “y”.	

	 y:	  1.00100  × 211	
	 	  0.100100  × 212	
	 	  0.0100100  × 213	
	 	  0.00101100  × 214	
	 	  0.000110100  × 215	
	 	  0.0000100100 × 216	
	 	  0.00001100100  × 217	

Here is an example in which the exponent is not so extreme. We will just shift until 
the exponents are equal. In this example, we only lose part of the number:	

	 y:	  1.00100  × 214	
	 	  0.100100  × 215	
	 	  0.0100100  × 216	
	 	  0.00101100  × 217	

With “round-to-nearest”, things are trickier. We need to remember whether any of 
the bits shifted out to the right were non-zero.	
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Addition, Subtraction, and Signs	

Addition and subtraction are closely related when the values can be either positive 
or negative. For example, we can use addition when we are subtracting a negative 
number. Likewise, the operation of subtraction can be used when we are adding a 
positive number to a negative number.	

	 x   -   -y   =   x   +   y	
	 x   +   -y   =   x   -   y	

Here are the cases. (In this table, “+x” and “-x” represent positive and negative 
numbers, respectively.)	

	      Input       	 Sign of Result	 Operation to Perform	
	 +x	 +	 +y	 +	 addition	
	 +x	 +	 -y	 + or -	 subtraction	
	 -x	 +	 +y	 + or -	 subtraction	
	 -x	 +	 -y	 -	 addition	

	 +x	 -	 +y	 + or -	 subtraction	
	 +x	 -	 -y	 +	 addition	
	 -x	 -	 +y	 -	 addition	
	 -x	 -	 -y	 + or -	 subtraction	

The first step is obviously to sort out which case we have and determine whether we 
will use the addition or subtraction operation 	6

 In hardware, to speed things up, we might perform both the addition and subtraction operations 6

in parallel. While these operations are being performed, other circuitry can determine which of 
these cases applies and then select which answer to return.
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With subtraction, we must look at the magnitudes of “x” and “y” to determine the 
sign of the result.	

With signed integers represented in two’s complement, the subtraction operation is 
simple and the sign of the result does not require special-casing. With floating point 
representation, we must evaluate the magnitude to determine which way to 
subtract. 	

In other words, the subtraction operation must compute the difference. With the 
mantissas, we are not working with two’s complement representations. This means 
we must determine which number is larger and either compute “x-y” or “y-x”.	

	      Input       	 Sign of Result	 Order of Subtraction	
	 5	 -	 2	 +	 x   -   y	
	 2	 -	 5	 -	 y   -   x	

Our approach will be to determine which value is larger. First, we compare the 
exponents. If one exponent is larger than the other, then that floating point value is 
larger. But if the exponents happen to be equal, we must look at the mantissas.	

To compare two integers “a” and “b", we can compute “a-b” and use the sign of the 
result to tell us which was larger. If we want the difference between two numbers 
without knowing which is larger, then we can compute both “a-b” and “b-a” in 
parallel, and then use the sign bit to select which result to deliver.	

Other than the above comments above, subtracting floating point numbers is similar 
to adding them. The binary points must be shifted, the exponents must be adjusted, 
and the result must be rounded.	

To subtract one positive binary number from another, addition can be used. To 
compute	

	 x - y	

we negate “y” and perform addition. To negate “y”, we flip the bits at add 1. We can 
flip the bits of a binary number easily and quickly. We can add 1 at the same time we 
perform the main add by asserting a “carry-in” to the least significant bit.	
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Overview	

Multiplication of two floating point numbers is fairly straightforward.	

First, we can deal with special cases separately. These include all cases when an 
argument is:	

	 NaN	
	 ± 0.0	
	 ± infinity	

Next, we can compute the sign of the result:	

	 signOfResult   ←   signOfX    XOR    signOfY	

We will also consider the rounding mode. We will need to know how to round the 
result:	

	 round to nearest	
	 round toward negative infinity	
	 round toward positive infinity	
	 round up	
	 round down	

At this stage we can choose one of the following rounding modes, which will be 
applied to the final result.	

	 round to nearest	
	 round up	
	 round down	
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For the cases of rounding-toward-infinity, we can choose either round-up or round-
down based on the sign of the result.	

Recall that when you multiply two N bit numbers, the result will have at most 2N 
bits:	

	 x:	        000011	
	 y:	 ×      000010	
	 product:	  000000000110	

	 x:	        111111	
	 y:	 ×      111111	
	 product:	  111110000001	

With floating point, we have the exponents, which will be added.	

We will first move the arguments and shift them so that all have the binary point to 
the right of the first “1” bit.	

For normalized numbers, there will be no change. But we will make the missing “1” 
explicit. In our examples, we’ll show the binary point, although a hardware 
implementation would obviously not represent it.	

	 input:	    01011  × 257	
	 adjusted:	  1.01011  × 257	

For denormalized numbers, we’ll add in zeros on the right. As we shift the point, 
we’ll increment the exponent, causing the exponent to go below the -126 limit.	

	 input:	  0.00001  × 2-126	 smallest denormalized	
	 adjusted:	  1.00000  × 2-131	

	 input:	  0.00101  × 2-126	 typical	
	 adjusted:	  1.01000  × 2-129	

	 input:	  0.11111  × 2-126	 largest denormalized	
	 adjusted:	  1.11110  × 2-127	
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Now consider we can perform the multiplication:	

	 x:	  1.00111  × 2-11	
	 y:	  1.01001  × 2+37	
	 product:	 01.1000111111  × 2+26	

After computing the product, we need to possibly shift the binary point (adjusting 
the exponent), round the value, deal with denormalized results, and detect overflow 
and underflow.	

Examples	

Let’s look at some different examples. We’ll use “round-down”.	

Case 1:	
	 x:	  1.00111        × 2-11	
	 y:	  1.01001        × 2+37	
	 product:	 01.1000111111   × 2+26	
	 rounding:	  1.10001        × 2+26	

Case 2:	
	 x:	  1.11111        × 212	
	 y:	  1.11111        × 234	
	 product:	 11.1110000001   × 246	
	 shifting right:	  1.11110000001  × 247	
	 rounding:	  1.11110        × 247	

Case 3:	
	 x:	  1.11111        × 2127	
	 y:	  1.11111        × 2127	
	 product:	 11.1110000001   × 2254	
	 shifting right:	  1.11110000001  × 2255	
	 result:	 …overflow…	
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Case 4:	
	 x:	  0.00001        × 2-126	 smallest denormalized	
	 y:	  1.00000        × 2-126	 smallest normalized	
	 product:	 00.0000100000   × 2-252	
	 shifting left:	  1.00000000000  × 2-252	
	 result:	  …underflow…	

Case 5:	
	 x:	  0.00001        × 2-126	
	 y:	  0.00001        × 2-126	
	 product:	 00.0000000001   × 2-252	
	 shifting left:	  1.00000000000  × 2-262	
	 result:	 …underflow…	

Case 6:	
	 x:	  1.11111        × 2127	
	 y:	  0.00001        × 2-126	
	 product:	 00.0000111111   × 21	
	 shifting left:	 01.1111100000   × 2-4	
	 rounding:	  1.11111        × 2-4	

Detecting Denormalized Results	

In all cases, we need to normalize the result, which means:	

•	Shift the binary point to just to the right of the leftmost 1 bit, adjusting the 
exponent.	
• Detect overflow / underflow	

After shifting the binary point, we must detect when the result must be turned into a 
denormalized number. We can do this by looking at the exponent. If it is less than 
-126 (but -131 or more), then we shift right, incrementing the exponent, until it is 
-126.	

Floating Point Numbers / Porter	 	 Page  of 	59 65



Chapter 8: Implementing Multiplication	

After shifting the binary point, we must round the number appropriately as required 
by the current rounding mode, e.g., round-to-nearest, round-up, round-down, to 
eliminate the bits on the right end.	

In this example, the result is the largest denormalized number.	

	 x: x.xxxxx  × 2-xx	
	 y: y.yyyyy  × 2-yy	
	 product: 0.00011111zz  × 2-131	
	 shifting left: 1.1111zz0000  × 2-127	 	
	 as a denormal: 0.11111zz0000  × 2-126	 	
	 after rounding: 0.11111  × 2-126	

In this example, the result is the smallest denormalized number.	

	 x: x.xxxxx  × 2-xx	
	 y: y.yyyyy  × 2-yy	
	 product: 0.100000zzzz  × 2-130	
	 shifting left: 1.00000zzzz0  × 2-131	 	
	 as a denormal: 0.0000100000  × 2-126	 	
	 after rounding: 0.00001  × 2-126	

In the last case, note that we shifted several bits out during the denormalizing 
process. These bits are underlined and represented as zzzz. If the rounding mode is 
round-to-nearest or round-up, these bits can affect the rounding result, so they must 
not be ignored.	
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Named Values	

The standard specifies several predefined names:	

The “machine epsilon” (eps) is the distance from 1.0 to the next larger floating 
point number.	

The smallest positive normalized floating point number is called “realmin”.	

The largest floating point number is called “realmax”. 	

For double precision:	

	 Name	 Value	 Approx value    	
	 eps	 2-52	 2.2204 × 10-16	
	 realmin	 2-1022	 2.2251 × 10-308	
	 realmax	 (2-eps)1023	 1.7977 × 10+308	
	 emin	 -1022	 	
	 emax	 1023	 	
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Exceptions	

The five possible exceptions are :	7

Invalid operation	
The result is mathematically undefined, e.g., the square root of a negative 
number. By default, returns qNaN.	

Division by zero	
An operation on finite operands gives an exact infinite result, e.g., 1/0 or 
log(0). By default, returns ±infinity.	

Overflow	
A result is too large to be represented correctly (i.e., its exponent with an 
unbounded exponent range would be larger than emax). By default, returns 
±infinity for the round-to-nearest mode (and follows the rounding rules for 
the directed rounding modes).	

Underflow	
A result is very small (outside the normal range) and is inexact. By default, 
returns a subnormal or zero (following the rounding rules).	

Inexact	
The exact (i.e., unrounded) result is not representable exactly. By default, 
returns the correctly rounded result.	

Conversion to Decimal 	8

Conversions to and from a decimal character format are required for all formats.	

Conversion to an external character sequence must be such that conversion back 
using round to even will recover the original number. There is no requirement to 
preserve the payload of a NaN or signaling NaN, and conversion from the external 
character sequence may turn a signaling NaN into a quiet NaN.	

 Source: Wikipedia7

 Source: Wikipedia8
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The original binary value will be preserved by converting to decimal and back again 
using:	

5 decimal digits for half precision (16 bits)	
9 decimal digits for single precision	
17 decimal digits for double precision	
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