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ADD RegD,Reg1,Reg2	 	63
ADDI  RegD,Reg1,immed16	 	63
SUB  RegD,Reg1,Reg2	 	63
*MUL  RegD,Reg1,Reg2	 	63
DIV  RegD,Reg1,Reg2	 	63
REM  RegD,Reg1,Reg2	 	63
AND  RegD,Reg1,Reg2	 	63
ANDI  RegD,Reg1,immed16	 	63
OR  RegD,Reg1,Reg2	 	63
ORI  RegD,Reg1,immed16	 	63
XOR  RegD,Reg1,Reg2	 	63
XORI  RegD,Reg1,immed16	 	63
MULADD RegD,Reg1,Reg2,Reg3  RegD ← (Reg1 × Reg2) + Reg3	 	64
MULADDU RegD,Reg1,Reg2,Reg3  RegD ← (Reg1 × Reg2) + Reg3 (unsigned)	 	64
*NEG  RegD,Reg1	 	68
*BITNOT  RegD,Reg1	 	68
*NOP  <no operands>	 	68
*ABS  RegD,Reg1	 	69
*MOV  RegD,Reg1	 	69
*MOVI  RegD,immediate	 	70
SLL  RegD,Reg1,Reg2 Shift left logical	 	71
SLLI  RegD,Reg1,immed6	 	71
SLA  RegD,Reg1,Reg2 Shift left arithmetic	 	71
SLAI  RegD,Reg1,immed6	 	71
SRL  RegD,Reg1,Reg2 Shift right logical	 	71
SRLI  RegD,Reg1,immed6	 	71
SRA  RegD,Reg1,Reg2 Shift right arithmetic	 	71
SRAI  RegD,Reg1,immed6	 	71
ROTR  RegD,Reg1,Reg2  Rotate right (circular)	 	71
ROTRI  RegD,Reg1,immed6	 	71
SEXTB  RegD,Reg1 Sign extend byte to 64 bits	 	72
SEXTH  RegD,Reg1  Sign extend 16 bits to 64 bits	 	72
SEXTW  RegD,Reg1  Sign extend 32 bits to 64 bits	 	72
NULLTEST  Reg1 Trap if reg contains NULL	 	73
CHECKB  Reg1 Trap if reg not within -128 … +127	 	73
CHECKH  Reg1 Trap if reg not within -32768 … +32767	 	73
CHECKW  Reg1 Trap if reg not within 32 bit range	 	73
ENDIANH  RegD,Reg1 Reorder bytes in all 4 halfwords	 	73
ENDIANW  RegD,Reg1  Reorder bytes in both words	 	73
ENDIAND  RegD,Reg1  Reorder bytes in a doubleword	 	73
TESTEQ  RegD,Reg1,Reg2  RegD ← (Reg1 = Reg2) ? 1 : 0	 	75
TESTNE  RegD,Reg1,Reg2  RegD ← (Reg1 ≠ Reg2) ? 1 : 0	 	75

Blitz-64 Instruction Set Architecture / Porter	 Page  of 6 342



List of Instructions	

TESTLT  RegD,Reg1,Reg2  RegD ← (Reg1 < Reg2) ? 1 : 0	 	75
TESTLE  RegD,Reg1,Reg2  RegD ← (Reg1 ≤ Reg2) ? 1 : 0	 	75
TESTEQI  RegD,Reg1,immed16 RegD ← (Reg1 = immed) ? 1 : 0	 	75
TESTNEI  RegD,Reg1,immed16  RegD ← (Reg1 ≠ immed) ? 1 : 0	 	75
TESTLTI  RegD,Reg1,immed16  RegD ← (Reg1 < immed) ? 1 : 0	 	75
TESTLEI  RegD,Reg1,immed16  RegD ← (Reg1 ≤ immed) ? 1 : 0	 	75
TESTGTI  RegD,Reg1,immed16 RegD ← (Reg1 > immed) ? 1 : 0	 	75
TESTGEI  RegD,Reg1,immed16 RegD ← (Reg1 ≥ immed) ? 1 : 0	 	75
*TESTGT  RegD,Reg1,Reg2  RegD ← (Reg1 > Reg2) ? 1 : 0	 	75
*TESTGE  RegD,Reg1,Reg2  RegD ← (Reg1 ≥ Reg2) ? 1 : 0	 	75
*TESTEQZ  RegD,Reg1  RegD ← (Reg1 = 0) ? 1 : 0, i.e., if zero	 	76
*TESTNEZ  RegD,Reg1  RegD ← (Reg1 ≠ 0) ? 1 : 0, i.e., if non-zero	 	76
*TESTLTZ  RegD,Reg1  RegD ← (Reg1 < 0) ? 1 : 0, i.e., if negative	 	76
*TESTLEZ  RegD,Reg1  RegD ← (Reg1 ≤ 0) ? 1 : 0, i.e., if non-positive	 	76
*TESTGTZ  RegD,Reg1  RegD ← (Reg1 > 0) ? 1 : 0, i.e., if positive	 	76
*TESTGEZ  RegD,Reg1  RegD ← (Reg1 ≥ 0) ? 1 : 0, i.e., if non-negative	 	76
*LOGNOT RegD,Reg1  RegD ← (Reg1 = 0) ? 1 : 0	 	76
ADDOK RegD,Reg1,Reg2  RegD ← (Reg1+Reg2 overflows) ? 0 : 1	 	77
ADD3 RegD,Reg1,Reg2,Reg3  RegD ← Reg1+Reg2+Reg3 (unsigned)	 	77
INDEX0 RegD,Reg1,Reg2,Reg3	 	78
INDEX1 RegD,Reg1,Reg2,Reg3	 	78
INDEX2 RegD,Reg1,Reg2,Reg3	 	78
INDEX4 RegD,Reg1,Reg2,Reg3	 	78
INDEX8 RegD,Reg1,Reg2,Reg3	 	78
INDEX16 RegD,Reg1,Reg2,Reg3	 	78
INDEX24 RegD,Reg1,Reg2,Reg3	 	78
INDEX32 RegD,Reg1,Reg2,Reg3	 	78
B.EQ  Reg1,Reg2,immed16 Branch if Reg1 = Reg2; Offset is PC-relative	 	81
B.NE  Reg1,Reg2,immed16  Branch if Reg1 ≠ Reg2; Offset is PC-relative	 	81
B.LT  Reg1,Reg2,immed16  Branch if Reg1 < Reg2; Offset is PC-relative	 	81
B.LE  Reg1,Reg2,immed16  Branch if Reg1 ≤ Reg2; Offset is PC-relative	 	81
*BEQ  Reg1,Reg2,address Branch if Reg1 = Reg2	 	83
*BNE  Reg1,Reg2,address  Branch if Reg1 ≠ Reg2	 	83
*BLT  Reg1,Reg2,address  Branch if Reg1 < Reg2	 	83
*BLE  Reg1,Reg2,address  Branch if Reg1 ≤ Reg2	 	83
*BGT  Reg1,Reg2,address Branch if Reg1 > Reg2	 	83
*BGE  Reg1,Reg2,address  Branch if Reg1 ≥ Reg2	 	83
*BEQI  Reg,value,address Branch if Reg = immediate value	 	88
*BNEI  Reg,value,address  Branch if Reg ≠ immediate value	 	88
*BLTI  Reg,value,address Branch if Reg < immediate value	 	88
*BLEI  Reg,value,address Branch if Reg ≤ immediate value	 	88
*BGTI  Reg,value,address Branch if Reg > immediate value	 	88
*BGEI  Reg,value,address Branch if Reg ≥ immediate value	 	88
*BEQZ  Reg,address Branch if Reg = 0	 	89
*BNEZ  Reg,address  Branch if Reg ≠ 0	 	89
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*BLTZ  Reg,address Branch if Reg < 0, i.e., if negative	 	89
*BLEZ  Reg,address Branch if Reg ≤ 0, i.e., if not positive	 	89
*BGTZ  Reg,address Branch if Reg > 0, i.e., if positive	 	89
*BGEZ  Reg,address Branch if Reg ≥ 0, i.e., if not negative	 	89
*BFALSE  Reg,address Branch if Reg = 0, i.e., if “false”	 	90
*BTRUE Reg,address Branch if Reg ≠ 0, i.e., if “true”	 	90
UPPER20  RegD,immed20 RegD ← (immed<<16)	 	90
UPPER16  RegD,Reg1,immed16 RegD ← (immed<<16) + Reg1	 	90
SHIFT16  RegD,Reg1,immed16 RegD ← (Reg1 + immed16) << 16	 	91
ADDPC  RegD,immed20 RegD ← PC+immed	 	92
AUIPC  RegD,immed20 RegD ← (immed<<16) + PC	 	92
JAL  RegD,immed20 RegD ← return addr; Target ← PC+offset	 	93
JALR  RegD,immed16(Reg1) RegD ← return addr; Target ← offset+Reg1	 	94
*CALL  address Jump to address; save return addr in “lr”	 	94
*CALLR  Reg1 Jump to address; save return addr in “lr”	 	94
*JUMP  address Jump to address	 	96
*JR  Reg1 Indirect jump, via register	 	97
*RET  <no operands> Return value is in link reg “lr”	 	97
ENTERFUN  RegD,Reg1,immed16  Save lr, push frame onto stack	 	98
EXITFUN RegD,Reg1,immed16   Retrieve lr, pop frame, and return	 	98
LOAD.B  RegD,immed16(Reg1)	 	102
LOAD.H  RegD,immed16(Reg1)	 	102
LOAD.W  RegD,immed16(Reg1)	 	102
LOAD.D  RegD,immed16(Reg1)	 	102
STORE.B  immed16(Reg1),Reg2	 	102
STORE.H  immed16(Reg1),Reg2	 	102
STORE.W  immed16(Reg1),Reg2	 	102
STORE.D  immed16(Reg1),Reg2	 	102
*LOADB  RegD,address Where address is any value	 	105
*LOADH  RegD,address	 	105
*LOADW  RegD,address	 	105
*LOADD  RegD,address	 	105
*LOADB  RegD,offset(Reg1)  Where offset is any value	 	105
*LOADH  RegD,offset(Reg1)	 	105
*LOADW  RegD,offset(Reg1)	 	105
*LOADD  RegD,offset(Reg1)	 	105
*STOREB  address,Reg2  Where address is any value	 	107
*STOREH  address,Reg2	 	107
*STOREW  address,Reg2	 	107
*STORED  address,Reg2	 	107
*STOREB  offset(Reg1),Reg2  Where offset is any value	 	107
*STOREH  offset(Reg1),Reg2	 	107
*STOREW  offset(Reg1),Reg2	 	107
*STORED  offset(Reg1),Reg2	 	107
CAS  RegD,Reg1,Reg2,Reg3   Compare and Set	 	109
FENCE  <no operands>	 	111
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ALIGNH  RegD,Reg1,Reg2,Reg3 Reg3 (unaligned addr) gives shift amount	 	113
ALIGNW  RegD,Reg1,Reg2,Reg3 Reg3 (unaligned addr) gives shift amount	 	113
ALIGND  RegD,Reg1,Reg2,Reg3 Reg3 (unaligned addr) gives shift amount	 	113
INJECT1H  RegD,Reg1,Reg2,Reg3 RegD ← Reg1; inject Reg2 per addr in Reg3	 	118
INJECT2H  RegD,Reg1,Reg2,Reg3 RegD ← Reg1; inject Reg2 per addr in Reg3	 	118
INJECT1W  RegD,Reg1,Reg2,Reg3 RegD ← Reg1; inject Reg2 per addr in Reg3	 	118
INJECT2W  RegD,Reg1,Reg2,Reg3 RegD ← Reg1; inject Reg2 per addr in Reg3	 	118
INJECT1D  RegD,Reg1,Reg2,Reg3 RegD ← Reg1; inject Reg2 per addr in Reg3	 	118
INJECT2D  RegD,Reg1,Reg2,Reg3 RegD ← Reg1; inject Reg2 per addr in Reg3	 	118
ILLEGAL  <no operands>	 	125
SYSRET  <no operands>	 	126
SLEEP1  <no operands> Enable interrupts; enter light sleep state	 	126
SLEEP2  <no operands> Enable interrupts; enter deep sleep state	 	126
RESTART  <no operands> Same as Power-On-Reset	 	128
DEBUG  <no operands>	 	129
BREAKPOINT  <no operands>	 	129
SYSCALL  immed10	 	130
CONTROL RegD,Reg1,immed16	 	131
CONTROLU RegD,Reg1,immed16	 	131
TLBCLEAR <no operands> Invalidate all TLBs for current ASID	 	136
TLBFLUSH  Reg1 Invalidate TLB for virtual address in Reg1	 	136
CHECKADDR RegD,Reg1,immed3 Reg1 = virt addr; RegD ← except. code or 0	 	137
CSRSWAP  RegD,CSRReg1,Reg2 RegD ← CSR; CSR ← Reg2	 	139
CSRREAD  RegD,CSRReg1 Reg1 encodes CSR; RegD ← CSR	 	139
CSRSET  CSRReg1,immed16 Set selected bits in CSR	 	139
CSRCLR  CSRReg1,immed16  Clear selected bits in CSR	 	139
*CSRWRITE  CSRReg1,Reg2 Reg1 encodes CSR; CSR ← Reg2	 	140
GETSTAT  RegD RegD ← CSR_STATUS & 0x00000000000003f8	 	140
PUTSTAT  Reg1 CSR_STATUS [9:3] ← Reg1 [9:3]	 	140
FADD  RegD,Reg1,Reg2 RegD ← Reg1 + Reg2	 	141
FSUB  RegD,Reg1,Reg2 RegD ← Reg1 - Reg2	 	141
FMUL  RegD,Reg1,Reg2  RegD ← Reg1 × Reg2	 	141
FDIV  RegD,Reg1,Reg2  RegD ← Reg1 / Reg2	 	141
FMIN  RegD,Reg1,Reg2  RegD ← MIN (Reg1, Reg2)	 	141
FMAX  RegD,Reg1,Reg2  RegD ← MAX (Reg1, Reg2)	 	141
FNEG  RegD,Reg1  RegD ← -Reg1	 	141
FABS  RegD,Reg1  RegD ← ABSOLUTE_VALUE (Reg1)	 	141
FSQRT  RegD,Reg1  RegD ← SQUARE_ROOT (Reg1)	 	141
FEQ  RegD,Reg1,Reg2  RegD ← (Reg1 = Reg2) ? 1 : 0 (float compare)	 	141
FLT  RegD,Reg1,Reg2 RegD ← (Reg1 < Reg2) ? 1 : 0 (float compare)	 	141
FLE  RegD,Reg1,Reg2  RegD ← (Reg1 ≤ Reg2) ? 1 : 0 (float compare)	 	141
FCVTFI  RegD,Reg1 Convert: floating-point ← int	 	141
FCVTIF  RegD,Reg1 Convert: int ← floating-point	 	141
FMADD  RegD,Reg1,Reg2,Reg3 RegD ← (Reg1 × Reg2) + Reg3	 	141
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FNMADD  RegD,Reg1,Reg2,Reg3 RegD ← (-(Reg1 × Reg2)) + Reg3	 	141
FMSUB  RegD,Reg1,Reg2,Reg3 RegD ← (Reg1 × Reg2) - Reg3	 	141
FNMSUB  RegD,Reg1,Reg2,Reg3 RegD ← (-(Reg1 × Reg2)) - Reg3	 	141
*FGT  RegD,Reg1,Reg2 RegD ← (Reg1 > Reg2) ? 1 : 0 (float compare)	 	144
*FGE  RegD,Reg1,Reg2  RegD ← (Reg1 ≥ Reg2) ? 1 : 0 (float compare)	 144
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Chapter 1: Introduction	

What is originality? Undetected plagiarism.	
	 	 	 — Dean William R. Inge	

Quick Summary	

• Blitz-64 introduces a novel 64-bit “Instruction Set Architecture” (ISA).	
• The goals of the Blitz-64 project are:	
	 — Create a complete hardware / software system	
	 — Simple, small, easy to understand	
	 — Fully functional and fully modern	
	 — Reliability, security, and error handling are emphasized	
• This project is open, not proprietary	
• Software and documents use dates instead of version numbers	

Instruction Set Architectures	

An Instruction Set Architecture (ISA) defines, describes, and specifies how a 
particular computer processor core works. The ISA describes the registers and all 
the machine instructions. The ISA specifies exactly what each instruction does and 
how it is encoded into bits.	

The ISA forms the interface between hardware and software. Hardware 
engineers design digital circuits to implement a given ISA and software engineers 
write code (operating systems, compilers, etc.) based on a given ISA specification.	
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There are a number of Instruction Set Architectures in widespread use, for example:	

	 x86-64 (AMD, Intel)	
	 ARM (ARM Holdings)	
	 SPARC (Sun/Oracle)	
	 RISC-V (Berkeley/open source)	

Most of these ISAs are proprietary and very complex. The details are obscured in 
lengthy manuals and some details of the ISA are not made public at all. Furthermore, 
the widely used ISAs have been around for years and their designs carry baggage as 
a result, e.g., for backward compatibility. Since these legacy designs were first 
created, we’ve learned more about how to design computers. Changes in silicon 
hardware technology have also had an impact on which design choices are now 
optimal. The RISC-V project attempts to address the issues of open source and 
interoperability, and heavily influences Blitz-64.	

In this document we define and describe a new ISA called Blitz-64.	

Goals and Principles: Personal Statements	

The following are the guiding goals of the Blitz-64 architecture.	

	 • Simple, small, modest	
	 • Understandable	
	 • Reliable	
	 • Good error reporting/recovery	
	 • Secure against malware	
	 • No desire to support virtualization / hypervisors (due to security concerns)	
	 • Programmable, pleasing design	
	 • Encourage assembly language and kernel programming and experimentation	

All modern processor cores have become far too complex for any single individual to 
understand. My primary goal is to create a computer that is simple enough for one 
person to understand, yet fully modern and practical.	

The way I hope to achieve simplicity is to design the entire system (the ISA, all the 
system software, and good documentation) alone, myself. The resulting system 
must, by necessity, be radically simpler than existing computers. A key aspect to 
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making any design simpler is to make it smaller. Size and complexity are strongly 
correlated. A system designed by one person must be fairly small and modest and, 
as a result, it will necessarily be simpler and easier to understand.	

On the hardware side, modern computer cores (ARM, x86-64, etc.) are just too 
complicated to be understood by any single human being. They are designed by vast 
teams of specialists; they incorporate legacy designs; their documentation 
comprises thousand of pages, and they are proprietary and at least partially 
shrouded in corporate secrecy.	

On the software side, modern operating systems contain millions of lines of code 
written over the course of many decades, by vast numbers of programmers. Much of 
the code is written in “C”, which is notoriously difficult to read, modify, and validate. 
This is unquestionably true of Apple, Windows, and Linux software. Nobody can 
fully comprehend a million lines of code; these large chunks of software must 
remain mysterious black boxes. So instead, programmers today blindly trust and 
build on top of a gigantic accumulation incompletely understood software. It’s 
remarkable that today’s software works as well as it does.	

It is easier to use, trust, and rely on systems that we understand. A primary goal of 
Blitz-64 is to create a complete, modern, and functional computer ISA and collection 
of system software that is understandable by a single person.	

Elegance of design is always a laudable goal. Elegance and beauty are correlated 
with simplicity and size. By keeping the design simple and small, I believe that 
elegance of design will follow.	

As computers are growing more complex and integrated into society, reliability is 
becoming ever more critical. The more complex a system is, the more difficult it is to 
verify correctness and repair bugs. Making systems simpler contributes to greater 
reliability. But beyond simplicity, many small design decisions along the way 
determine whether performance execution speed or reliability is preferred and 
optimized.	

To increase reliability, more error checking must be done at runtime. Furthermore, 
when errors occur, they must be handled with more care, better reporting, and 
reasonable recovery. Error checking incurs a performance penalty. Modern systems 
evolved from ancient, slow computers where performance was the critical 
bottleneck. The legacy systems, upon which the foundation of all modern software is 
built, often ignored the possibility of program bugs and focused all effort on 
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execution speed. Back in the day, when program size was measured in tens or 
hundreds of lines of code, this was a reasonable choice.	

The dynamic has obviously shifted, changing the tradeoff analysis. Today’s 
computers are really fast. It may now be the case that performance is being hurt by 
complexity itself. As the size and complexity of software grows, the reliability of 
individual parts and components becomes ever more critical. (For example, a failure 
rate of 0.1% for each part might be acceptable for a system with 100 parts, but is 
totally unacceptable with a million parts.)	

I recognize that performance is very, very important, but I reject the “performance at 
all costs” mentality. One of my goals is to perform greater runtime error checking 
and improved error recovery, even at the cost of performance. The radical choice I 
make is to sacrifice performance for increased reliability, whenever there is a choice.	

As an example, the Blitz-64 architecture specifies overflow detection and exception 
processing on standard arithmetic computations, like the ADD instruction. In the “C” 
language, an overflow results in no error processing and the program proceeds 
using incorrect values. In other words, the program fails silently. For any program 
that has not undergone a thorough numerical analysis (in other words, almost every 
program), this approach is abominable.	

Simplicity also impacts physical reliability. In order to increase the reliability of 
computer circuits in the face of physical insults (e.g., radiation, temperature 
extremes, and other environmental problems) simplicity of the ISA has several 
benefits. First, simpler designs can be implemented with fewer transistors. Given a 
fixed die size, this allows the individual transistors and wires to be made physically 
larger. Bigger transistors are more fault tolerant, which increases the circuit’s 
reliability. Second, the small size of an implementation allows more space for 
redundancy, and duplication is another important approach to fault tolerance. A 
simple computer with a small footprint can be replicated several times to increase 
reliability.	

Modern computer systems are increasingly susceptible to malware, intrusion, and 
hacking. In addition to guarding against physical insults, the threats of intentional 
attack require careful attention in ISA designs.	

The approach with current systems seems to be the “whack-a-mole” strategy: when 
a security hole is uncovered, the hole is patched. Then, wait and repeat. With a 
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gigantic body of legacy software — millions of lines of code, which nobody really 
understands — the “whack-a-mole” approach seems to be the only viable strategy.	

My approach to increased security includes creating a smaller, simpler design, 
improving error detection, and assuming the presence of “black hat” players (bad 
guys) in all domains, at all times.	

The goal of creating software that is secure, reliable, and bug-free is obviously both 
worthy and elusive. A key approach to making a system secure is to make it reliable 
and bug-free. So my focus on simplicity and reliability is, implicitly, a focus on 
security.	

In order to verify a computer system, to find and patch security holes, it is necessary 
to thoroughly review and analyze the system design. With complex ISAs and millions 
of lines of code, the task of verification is problematic. Simplicity and smallness help 
a lot.	

Another security threat involves embedding spyware or malware within system 
software. Such software remains present during normal operation and can act as a 
backdoor for black hat access to private data at any time. Embedded backdoor 
software can also perform secret surveillance of behavior and activity on the 
computer, compromising the trust and security of the system.	

Spyware can be injected into the system software at many levels. My approach to 
shutting out spyware and embedded malware involves:	

	 • Designing and implementing all the software from scratch	
	 • Completely reimplementing the boot process	
	 • Banning dynamically alterable firmware	
	 • Securely controlling kernel updates	
	 • Keeping the software small enough that it can be entirely reviewed	
	 • Performing system design and implementation in a sort of clean-room isolation	

In particular, hypervisors and emulated systems are considered to be a threat to 
security. It is difficult for kernel software to be certain that it is running on a bare 
machine, but it is critical to security. For example, a kernel is intended to prevent 
security leaks, but if that kernel is being emulated or run in a hypervisor context, all 
the actions of the kernel are subject to surveillance and manipulation.	
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There is currently a trend toward increased use of hypervisors. Typically, a user 
wants to own a single computer, but be able to run software developed for the Mac, 
Windows, Linux, etc. operating systems. The clever approach is to run multiple 
operating systems on top of hypervisor software. As a result, modern ISAs are 
designed with an eye to supporting hypervisor-like software, to make the hosted 
OSes run faster.	

The Blitz-64 system takes the opposite approach. While there seems to be little we 
can do to prevent software from being executed in an emulated environment, the 
emulation of kernels should be discouraged due to security issues. The Blitz-64 
architecture makes no concessions and no special instructions are added to support 
the emulation of “kernel mode” software. This is an intentional design decision, not 
an oversight.	

A final goal of the Blitz-64 project is to support programming for fun and, in 
particular, to support assembly language and kernel programming.	

Programming on “bare metal” is an acquired taste and certainly does not appeal to 
the mass of average programmers because of the high level of skill and attention to 
detail it requires. But there may be a small group of highly proficient hobbyists who 
want this experience.	

I feel that modern computers are simply too complex for programming to be fun. 
Kernel programming is pretty much impossible. I want to create a computer system 
that is more than a one-off, home-brew computer. My goal is to design a computer 
that is small and simple, yet roughly as functional as an ARM or x86-64 machine. 
Basically, I want to create a computer that programmers will enjoy — that I will 
enjoy programming.	
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Document Revision History / Permission to Copy	

Version numbers are not used to identify revisions to this document. Instead the 
date and the author’s name are used. The document history is:	

Date	 Author	
23 May 2018	 Harry H. Porter III  <initial version>	
28 May 2019	 Harry H. Porter III  <document mostly completed>	
24 May 2021	 Harry H. Porter III  <new instructions added>	
18 October 2022	 Harry H. Porter III  <version 2.0 of ISA>	
30 April 2023	 Harry H. Porter III  <changes to csr_pgtable>	
12 September 2023	 Harry H. Porter III  <minor changes>	
14 December 2023	 Harry H. Porter III  <version 2.1 of ISA>	

	 	
For details, consult the appendix titled “Recent Changes”.	

In the spirit of the open-source and free software movements, the author grants 
permission to freely copy and/or modify this document, with the following 
requirement:	

You must not alter this section, except to add to the revision history. You 
must append your date/name to the revision history.	

Any material lifted should be referenced.	
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Relevant Software Tools	

The primary software tools relevant to this document are:	

	 • The Blitz-64 virtual machine — a “C” program called “blitz”	
	 • The Blitz-64 assembler — a “C” program called “asm”	
	 • The Blitz-64 linker — a “C” program called “link”	

 For our purposes, the terms “emulator” and “virtual machine” are synonymous.	

Tool           	 Version Described Here           	 Coding Status	
blitz	 < same date as this document >	 Completed	
asm	 < same date as this document >	 Completed	
link	 < same date as this document >	 Completed	

Instead of version numbers, the Blitz-64 project uses dates to identify versions of 
both programs and documents. By comparing dates, you can determine whether this 
document matches the version of the tools you are using or, if not, which is more 
recent.	
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If you can’t convince them, confuse them.	
	 	 	 — Harry S Truman	

Quick Summary	

•  “Halfword” = 16 bits = 2 bytes.	
•  “Word” = 32 bits = 4 bytes.	
•  “Doubleword" = 64 bits = 8 bytes.	
•  Main memory is byte addressable.	
•  Main memory is Big Endian.	
•  The notation [n:m] is used to identify bits.	
•  For example, [63:60] means the most significant (MSB) 4 bits in a doubleword.	
•  We use KiByte, MiByte, GiByte… instead of KByte, MByte, GByte…	
•  Alignment (e.g., halfword, word, doubleword) is defined.	
•  Proper alignment for sizes 8, 16, 32, and 64 bits is defined.	
•  Properly aligned doublewords are at addresses divisible by 8 (ending in bits 000).	
•  Integers are represented with signed, two’s complement values.	
•  All arithmetic is done using 64 bits.	
•  Sign-extension enlarges an integer represented in signed two’s complement 
binary.	

•  Size reduction (e.g., from 64 to 32 bits) may result in an “overflow” error.	

Kilo and Mega Prefixes	

There has been some confusion in computer science documentation regarding 
abbreviations for large numbers. For example:	

	 4K = ?	
	 	 4,000 	
	 	 4,096 	
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We use the following prefix notation for large numbers, which is becoming common 
in the context of computer architecture:	

	       Prefix      	 Example  	 Value                                                                     	
	 Ki	 kibi	 KiByte	 210	 1,024	 ~103	
	 Mi	 mebi	 MiByte	 220	 1,048,576	 ~106	
	 Gi	 gibi	 GiByte	 230	 1,073,741,824	 ~109	
	 Ti	 tebi	 TiByte	 240	 1,099,511,627,776	 ~1012	
	 Pi	 pebi	 PiByte	 250	 1,125,899,906,842,624	 ~1015	
	 Ei	 exbi	 EiByte	 260	 1,152,921,504,606,846,976	 ~1018	

Contrast this to the standard metric prefixes, which we avoid:	

	       Prefix      	 Example  	 Value                                                                   	
	 K	 kilo	 KByte	 103	 1,000	
	 M	 mega	 MByte	 106	 1,000,000	
	 G	 giga	 GByte	 109	 1,000,000,000	
	 T	 tera	 TByte	 1012	 1,000,000,000,000	
	 P	 peta	 PByte	 1015	 1,000,000,000,000,000	
	 E	 exa	 EByte	 1018	 1,000,000,000,000,000,000	

Bits and Bytes	

We use the terms “byte”, “halfword”, “word”, and “doubleword”, to refer to various 
sizes of binary data.	

	 number	 number    	
 	 of bytes	 of bits	 example value (in hex)	
	 byte	 1	 8 A4	
	 halfword	 2	 16	 C4F9	
	 word	 4	 32	 AB12CD34	
	 doubleword	 8	 64	 0123456789ABCDEF	
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A single hex digit can be used to represent 4 bits:	

	 Binary	 Hex	
0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9
1010 A
1011 B
1100 C
1101 D
1110 E
1111 F

    
The 8 bits within a byte are conveniently expressed with two hex digits. For 
example:	

	 8 bit byte	 In Hex	
1010 0100 A4

The 32 bits in a word are given with 8 hex digits. For example:	

	                                             32 bit word                                              	    In Hex   	
1010 1011   0001 0010   1100 1101   0011 0100 AB12CD34	

Sometimes we insert spaces or commas to make long hex values more readable.	
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These examples show different ways of representing the same doubleword:	

    0123456789ABCDEF
    0123_4567_89AB_CDEF
    0123,4567,89AB,CDEF
    0123 4567 89AB CDEF
    01234567 89ABCDEF

Often we prefix hex values with “0x” to make it clear they are hex values and not 
decimal:	

    0x1234

The bits within an 8-bit byte are numbered from 0 (lower, least significant) to 7 
(upper, most significant).	
	

7  6  5  4  3  2  1  0
0  0  0  0  0  0  0  0

The bits within a 16 bit halfword are numbered from 0 to 15.	

The bits within a 32 bit word are numbered from 0 to 31.	

The bits within a 64 bit doubleword are numbered from 0 to 63.	
	
	 63      56       48       40       32       24       16       8        0	

 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

We use the following notation to represent a range of bits:	

        Example                  Meaning          	
	 [7:0]	 All bits in a byte	
	 [63:0]	 All bits in a doubleword	
	 [31:28]	 The upper 4 bits in a word	
	 [5]	 The 6th bit from the right end	
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Main Memory	

Main memory is byte addressable.	

Main addresses are 36 bits. We generally express addresses in hex. Here are two 
equivalent notations we use:	

    8_ABCD_1234
    0x8ABCD1234	

Memory can be viewed as a sequence of bytes:	

	 address	 data	
	       (in hex)      	     (in hex)    	
    0_0000_0000       89
    0_0000_0001       AB
    0_0000_0002       CD
    0_0000_0003       EF
    0_0000_0004       01
    0_0000_0005       23
    0_0000_0006       45
    0_0000_0007       67
      ...         ...
    F_FFFF_FFFC       E0
    F_FFFF_FFFD       E1
    F_FFFF_FFFE       E2
    F_FFFF_FFFF       E3

“Low” memory refers to smaller addresses, closer to 0_0000_0000. “High” addresses 
are numerically greater.	

Big Endian	

Blitz-64 is a big endian architecture.	
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As an example, assume that main memory holds the following bytes:	

	 address	 data	
	       (in hex)      	     (in hex)    	
         ...         ...
    E_5000_0004       1A
    E_5000_0005       2B
    E_5000_0006       3C
    E_5000_0007       4D
    E_5000_0008       5E
    E_5000_0009       6F
    E_5000_000A       70
    E_5000_000B       81
    E_5000_000C       92
    E_5000_000D       A3
    E_5000_000E       B4
    E_5000_000F       C5
         ...         ...

In Blitz-64, the registers are 64 bits (8 bytes) wide. There are several LOAD and 
STORE instructions, which can move either a byte, halfword, word or doubleword 
between memory and a register.	

Consider a LOADB instruction that loads a byte from address 0xE_5000_0004. After 
execution, the register will contain:	

 0x0000_0000_0000_001A

Consider a LOADW instruction which loads a word from address 0xE_5000_0004. 
After execution, the register will contain:	

 0x0000_0000_1A2B_3C4D

Commentary In a little endian architecture, the order of the bytes is changed 
whenever data is copied from memory to a register or stored from a register into 
memory. This can be a source of confusion, particularly when humans look at a 
printout of memory contents.	
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As an example, consider this memory:	

	      address	 	            data	
	       (in hex)      	        (in hex)    	
         ...         ...
    E_5000_0004       1A
    E_5000_0005       2B
    E_5000_0006       3C
    E_5000_0007       4D
    E_5000_0008       5E
    E_5000_0009       6F
    E_5000_000A       70
    E_5000_000B       81
    E_5000_000C       92
    E_5000_000D       A3
    E_5000_000E       B4
    E_5000_000F       C5
         ...         ...

Memory can be viewed either as a series of bytes, or as a series of larger units, such 
as words or doublewords.	

With a “big endian” computer, this memory is interpreted as:	

	      address	 	             data	
	       (in hex)      	         (in hex)    	
         ...         ...
    E_5000_0004    1A2B3C4D
    E_5000_0008    5E6F7081
    E_5000_000C    92A3B4C5
         ...         ...
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With a “little endian” computer, this memory is interpreted as:	

	      address	 	             data	
	       (in hex)      	         (in hex)    	
         ...         ...
    E_5000_0004    4D3C2B1A
    E_5000_0008    81706F5E
    E_5000_000C    C5B4A392
         ...         ...

Big endian architectures are simpler to understand since the bytes are not reordered 
during loads and stores.	

The primary argument for choosing little endian is legacy compatibility. The two 
approaches are similar in terms of circuit complexity.	

Alignment	

A “halfword aligned” address is an address that is a multiple of 2. The last bit of a 
halfword-aligned address will always be 0. Likewise, a “word aligned” address is a 
multiple of 4, and ends with the bits 00. And finally, a “doubleword aligned” 
address will be evenly divisible by 8 and will end with bits 000.	

A halfword-sized value is said to be “properly aligned” if it is stored at a halfword 
aligned address. Likewise, a word-sized value is properly aligned if it is stored at a 
word aligned address. And similarly, a doubleword-sized value is properly aligned if 
it is stored at a doubleword aligned address.	

Blitz-64 requires data to be properly aligned for the LOAD and STORE instructions.	

Full-sized instructions are 32 bits in length. Compressed instructions are 16 bits in 
length. All instructions are required to be halfword aligned. The LSBit of the PC is 
hardwired to 0, so there can be never be an exception when an instruction is fetched. 
When the PC is loaded — for example during a BRANCH or CALL instruction — the 
LSBit is simply ignored; no exception will be generated.	
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Commentary BRANCH and CALL instructions are normally generated by a 
compiler or assembler, which will always place the target instruction on a properly 
aligned address. Therefore, there is little possibility that an error will be made.	

However, with LOADs and STOREs, the address may come from a programmer 
computed pointer, which may easily be in error. Rather than silently ignoring the 
last 1, 2, or 3 bits and loading/storing from an incorrect location, an “Unaligned 
LOAD/STORE Exception” will be signaled.	

Signed Numbers	

Integers are represented in binary.	

With unsigned number representation, only zero and positive integers can be 
represented. The maximum possible value is determined by the number of bits 
available and is always 2N-1, where N is the number of bits.	

	 	     Size	 	
	 	   in bits  	 Range of values	 	 	
	 byte	 8 	 0 … 255	
	 halfword	 16	 0 … 65,535	
	 word	 32	 0 … 4,294,967,295	
	 doubleword	 64	 0 … 18,446,744,073,709,551,615 (≈ 2 × 1019)	

Signed numbers are represented using “two’s complement” representation. The 
most significant bit gives the sign (1=negative; 0=zero or positive).	

	 	     Size	 	
	 	   in bits  	 Range of values	 	 	
	 byte	 8 	 -128 … 127	
	 halfword	 16	 -32,768 … 32,767	
	 word	 32	 -2,147,483,648 … 2,147,483,647	
	 doubleword	 64	 -9,223,372,036,854,775,808 … 9,223,372,036,854,775,807 	
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To make things simpler, we define the following constants:	

	 Name                        	                                        Decimal	            Hex (64 bits)                                              
	 MIN_8	 -128	 FFFF_FFFF_FFFF_FF80	 	
	 MAX_8 	 127	 0000_0000_0000_007F	
	 MAX_UNSIGNED_8 	 255	 0000_0000_0000_00FF	
	 MIN_16 	 -32,768	 FFFF_FFFF_FFFF_8000	
	 MAX_16 	 32,767	 0000_0000_0000_7FFF	
	 MAX_UNSIGNED_16 	 65,535	 0000_0000_0000_FFFF	
	 MIN_32 	 -2,147,483,648	 FFFF_FFFF_8000_0000	
	 MAX_32 	 2,147,483,647	 0000_0000_7FFF_FFFF	
	 MAX_UNSIGNED_32 	 4,294,967,295	 0000_0000_FFFF_FFFF	
	 MIN_64 	 -9,223,372,036,854,775,808	 8000_0000_0000_0000	
	 MAX_64 	 9,223,372,036,854,775,807	 7FFF_FFFF_FFFF_FFFF	

The Blitz-64 architecture relies entirely on 64 bit signed integers. There is only one 
type for integers.	

Arithmetic on 32 bit quantities is not supported, although there are instructions to 
enlarge and shrink values between 8, 16, 32, and 64 bits.	

Note that the range of signed doublewords is sufficient to represent every byte, 
halfword, and word value regardless of whether it is signed or unsigned.	

Commentary Signed 64 bit integers seem both necessary and sufficient for 
computer arithmetic. There seems to be no good reason to include support for 
“unsigned 64 bit integer” operations. 	

The range of signed doublewords is adequate for expressing quantities such as an 
“astronomical unit” in microns, the number of seconds since the big bang, or the 
world GDP in hundredths of a cent. Unfortunately, the range of 32 bit words is 
inadequate for many things, such as counting humans, the US federal debt in dollars, 
the number milliseconds since January 1, 1970 (widely used by computers), or the 
number of bytes of main memory in typical smartphones. Any programmer who 
uses 32 bit integers needs to think very, very carefully about overflow conditions.	

The use of unsigned data types made sense in the past, when the word sizes were 
smaller. In some applications, the difference between a maximum value of 127 and 
255 (for byte-sized data), or between 32,767 and 65,535 (for 16 bit data) was 
important and critical, and worth sacrificing the ability to represent negative values. 
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It is even conceivable that some applications needed numbers between 
2,147,483,647 and 4,294,967 295 (for 32-bit data), while at the same time, never 
needing negative values.	

However, it’s virtually impossible to imagine an application for which unsigned 64 
bit numbers are appropriate. For such an application, the expected values would be 
expected to exceed 9,223,372,036,854,775,807, and yet be guaranteed to never 
exceed 18,446,744,073,709,551,615, and also be guaranteed to never be negative!	

Commentary The cost of using “unsigned” binary numbers is that negative values 
must be thrown out. Negative numbers are obviously useful and shouldn’t be 
ignored or excluded. Throwing out the negative numbers is a bad, anti-mathematical 
idea. It’s dangerous because we know it causes all sorts of program bugs; it makes 
the discrepancy between “computer integers” and “mathematical integers” vastly 
greater; and a proliferation of different datatypes complicates programming.	

In Blitz-64, if the programmer wishes to force some number into one of the limited, 
legacy ranges, he/she can easily write tests such as:	

if (x<0 || x>MAX_UNSIGNED_32) …

Commentary In any core processor, the speed of addition is critical since addition is 
involved in:	

	 • Incrementing the PC.	
	 • Performing address calculations in LOAD, STORE, BRANCH, … instructions.	
	 • Implementing the ADD and SUB instructions, for loop control, arrays, etc. 	

The Blitz-64 architecture does not support arithmetic on integer data of size byte, 
halfword, or word. How much of a performance penalty does this radical decision 
incur?	

In modern cores, we can assume that addition is implemented with carry lookahead 
units (CLA), each with 4 inputs. Thus, the carry lookahead tree has a branching 
factor of 4 and the depth of the tree determines the gate delay for the adder unit. A 
16 bit adder will require 2 CLA levels (4 × 4) to add 16 bits. A 32 bit adder will 
require 3 levels, since 4 × 4 is not enough. However, a 3 level tree will also be 
sufficient for a 64 bit adder, since 4 × 4 × 4 = 64.	
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Therefore, 64-bit addition incurs no performance penalty over 32 bit addition. 
This holds for subtraction, as well.	

Concerning multiplication, the execution time is constrained by the time to add a 
column of numbers. The setup and sign-adjustment logic incurs a constant delay 
which does not depend on word size.	

For 32 bit multiplication, a set of 32 numbers must be added. For a 64 bit 
multiplication, a set of 64 numbers must be added. Many of the additions can be 
done in parallel, and the final result sum can be determined in log time. A set of 32 
numbers can be added using a tree of adders of depth 5. A set of 64 numbers can be 
added using a tree of adders of depth 6. Therefore, the time required to multiply 64 
bit values will be no more than 20% greater than the time required to multiply 32 
bit values.	

Thus, our (perhaps counterintuitive) conclusions are:	

•	There is no significant performance penalty to pay for performing all arithmetic 
using 64 bits.	

•	The simplicity to be gained by eliminating legacy data types (i.e., “unsigned”, 
“byte”, “halfword”, and “word”) is well worth any small performance cost.	

Sign-Extension	

A value of one size can be “sign-extended” to a larger size. For example, a 32 bit 
word can be sign-extended to 64 bits.	

The sign-extension operation does not change the integer value of the number.	

The sign-extension operation looks at the sign bit (i.e., the most significant bit) of the 
smaller number. Then, that bit value is replicated as necessary to fill additional bits 
on the left, most significant end of the smaller value, until it is the required larger 
size.	
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For example, sign-extending a 16 bit value to 64 bits will look at bit [15] of the input 
value. If it is “1”, the number is negative. To sign-extend it to 64 bits, the uppermost 
48 bits, i.e., bits [63:16], will be filled with “1”. Otherwise, the uppermost bits will be 
filled with “0”.	

Many Blitz-64 instructions include a 16 bit “immediate” value, which is encoded 
directly within the instruction. This immediate value is sign-extended to 64 bits 
before being used.	

Size Reduction	

Often it is necessary to take a larger value and reduce its size. For example, a register 
may contain a doubleword value (i.e., 64 bits) and we may want to reduce it to a  
halfword (i.e., 16 bits).	

A size reduction can be performed by simply cutting off (i.e., ignoring, eliminating) 
the uppermost bits.	

If the original value happens to lie within the range representable by the smaller 
size, then there is no problem. The value remains unchanged by the operation.	

If the original value does not lie within the range representable by the smaller size, 
then the new value will be numerically different. This is considered a form of 
“overflow”, in the sense that the operation has resulted in a mathematically incorrect 
result.	

Looking at a value, we can easily determine whether a size reduction will result in 
overflow or not. For example, if we are reducing a 64 bit value to 16 bits, we ask 
whether the upper 48 bits (i.e., bits [63:16]), which will be discarded, are all equal to 
the sign bit (i.e., bit [15]) of the new, smaller result. If so, there is no problem. In 
other words, we ask whether bits [63:15] are either all 0s or all 1s. If the uppermost 
49 bits are all equal, there is no problem, but if both 0s and 1as are present, the size 
reduction operations will cause an overflow error.	
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A doctor can bury his mistakes but an architect can 
only advise his clients to plant trees.	

	 	 	 — Frank Lloyd Wright	

Quick Summary	

• Register size: 64 bits.	
• Number of general purpose registers: 16.	
• Zero register: r0 always reads as zero and acts as a destination for unneeded 
results.	
• All remaining registers (r1, r2, … r15) are general purpose and equally functional.	
•	Natural data size: 64 bits (i.e., doubleword)	
	 — Integer overflow is never ignored; an exception is always generated.	
	 — All arithmetic is done using 64 bit signed integers.	
• Floating Point:	
	 — No separate floating-point regs. General purpose regs are used.	
	 — Floating point precision: Double only; there is no single precision.	
• Main memory is Big Endian.	
• Instructions are 32 bits in size.	
• Compressed instructions are multiples of 8 bits in size.	
• Number of privilege modes: 2 (Kernel and User).	
• Number of Control and Status Registers (CSRs): 16.	
• Size of Control and Status Registers (CSRs): 64 bits.	
• Program-generated addresses: 36 bits.	
• Maximum Physical Memory: 16 GiBytes.	
• Memory-Mapped Address Range: 16 GiBytes.	
• Maximum Virtual Address Space: 32 GiBytes.	
• Page size: 16 KiBytes.	
• Virtual Memory System: Page tables are supported.	
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Memory, Addresses, and Memory-Mapped I/O	

Installed physical memory up to 16 GiBytes can be addressed without using page 
tables.	

There is an additional 16 GiBytes of physical address space allocated for memory-
mapped I/O.	

Virtual address spaces use page tables that map program generated addressed into 
physical addresses. Virtual address spaces can be up to 32 GiBytes in size.	

All program-generated addresses are 36 bits. Note that 236 = 64 Gi.	

Supporting Larger Main Memory	

Using virtual memory and page tables, up to 16 TiBytes of physical memory is 
supported.	

In the basic configuration, up to 16 GiBytes of physical memory is supported in a 
simple, uniform, linear address space. This should suffice for many applications. 
Larger memory sizes can be supported, but these can only be accessed via virtual 
addresses and the page table mapping.	

Virtual memory and the memory mapping scheme are discussed in a later chapter.	

The limitation on addresses to 36 bits might seem naïve and overly restrictive, but 
this is an important design choice and was not made lightly. ISA design involves a 
trade-off between (1) a large number of registers, (2) a small instruction size, (3) 
long addresses, and (4) the number of instructions required to load arbitrary 
addresses. Since you can’t have it all, our design decisions involve a compromise on 
these issues.	

Remember that main memory is only one tier in a memory hierarchy ranging from 
terabytes of solid state stable memory to megabytes of fast cache. Main memory is 
properly viewed as a staging ground in which programs and data are held, in order 
to supply the core with grist for computation. It is nothing more than a form of per-
core cache between a processing unit and shared data sources. We predict that the 
bandwidth between main memory and the core/ fast-cache circuitry will remain a 
performance bottleneck; 16 GiBytes seems more than adequate to keep a single core 
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busy. Since Blitz-64 cores may be deployed in multi-core systems with 100s or 
1000s of cores, the per-core limit of 16 GiBytes is properly understood as imposing a 
limitation on the entire core array measured in terabytes or exabytes.	

The Processor State	

The entire state of a running Blitz-64 core consists of:	

	 • The general purpose registers (r0, … r15)	
	 • The Program Counter (PC)	
	 • A set of 16 “Control and Status Registers” (CSRs)	

( Here we mean the directly visible state of the core, observable by software; 
additional state, such as related to pipeline stages, cache contents, etc. should not 
affect software functionality or correctness. )	

The Registers	

The general purpose registers are 64 bits (a doubleword, 8 bytes) in width.	

There are 16 registers.	
 	
The registers are named r0, r1, r2, … r15.	

Register r0 is a special “zero register”. When read, its value is always 
0x0000_0000_0000_0000. Whenever there is an attempt to write to r0, the data is 
simply discarded.	

All other registers are treated identically by the ISA; there is nothing special about 
any register.	

By convention, several registers have special functions and these registers are given 
alternate names. The assembler will accept either name.	
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	 	 Alternate	
	 	     Name    	 Function                  	
	 r0	 	 Zero	
	 r1	 	 Argument 1 / Return Value	
	 r2	 	 Argument 2	
	 r3	 	 Argument 3	
	 r4	 	 Argument 4	
	 r5	 	 Argument 5	
	 r6	 	 Argument 6	
	 r7	 	 Argument 7	
	 r8	 t	 Temp register, used by assembler/linker	
	 r9	 s0	 Work reg (caller-saved)	
	 r10	 s1	 Work reg (caller-saved)	
	 r11	 s2	 Work reg (caller-saved)	
	 r12	 tp	 Thread data pointer	
	 r13	 gp	 Global data pointer	
	 r14	 lr	 Link register	
	 r15	 sp	 Stack pointer	

All registers are treated equally by the ISA, with the exception of r0. Their special 
functions arise solely in how the programmer uses them in instructions.	

Register Usage Conventions	

The registers r1 … r7 are used to pass arguments to functions and methods and r1 
is used to return results. Registers r1 … r7 are also used as general working registers 
to hold local variables and intermediate results within a function or method. The 
compiler or assembly language programmer is free to use them as desired within 
functions or methods. If fewer than 7 arguments are passed, then the remaining 
registers can be used as general work registers in the function/method. If more than 
7 arguments are passed, or if any argument is larger than a doubleword, then those 
arguments will be passed on the stack. If most of the registers are taken up with 
argument passing and the function/method has immediate need for some 
temporary work registers, then the function/method may, at its discretion, 
immediately upon entry, store the less urgently needed arguments in the stack 
frame, thereby freeing up registers for other uses.	

The Blitz-64 calling convention sets aside a fairly large number of registers for 
argument passing. Each argument must be collected by the calling code and moved 
into a known, agreed-upon location by the caller’s code. Even if the argument were 
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to be placed on the stack, the caller would at least need to move the argument into a 
register temporarily to do this.	

When the compiler is compiling a function, it cannot know whether it is best for the 
value to be placed in a register or written to the stack. Only the called function can 
make an informed decision about this. Therefore, the Blitz convention is to place a 
large number of arguments (up to 7) in registers and let the called function store 
some of all of them to memory, at its discretion. Ideally, the called function can avoid 
moving any arguments to memory.	

We considered allocating all available registers to carry arguments, but there are 
rarely functions with more than 7 arguments and it may be convenient for a function 
to have some registers free upon entry. We can assume a function with more than 7 
arguments is big and complex; having three work registers available may allow the 
function to achieve much of its task without having to spill registers to the stack 
frame just to have some work registers to work with. Placing all arguments in 
registers and therefore leaving no work registers available means that some spills 
must occur immediately upon entry into the function.	

Therefore, we allocate three additional registers called s0, s1, and s2 (i.e., r9, r10, 
and r11) as work registers.	

The “temporary register” (register t, i.e., r8) is used by the assembler for some 
synthetic instructions. When describing the synthetic instructions, this document 
indicates whether and how register t will be used. The use of register t is 
“clandestine”, in the sense that t is not explicitly named in the synthetic instructions. 
The programmer and compiler are free to use register t in a function/method, as 
long as they realize that some synthetic instructions may alter t.	

The “caller” of a function/method should assume that registers r1…r7, t, and s0…s2 
will trashed (i.e., altered or arbitrarily modified) by the “called” function/method.  If 
the contents are important, the caller should save their contents before calling the 
function/method. In that sense, r1…r7, t, and s0…s2 are said to be “caller-saved”.	

A “callee-saved” register is one in which the caller can assume that the called 
function will not modify the value. Or more accurately, if the called function needs to 
use a callee-saved register, it will save it first and then restore it before returning.	

In some sense, the registers tp, gp, and sp are callee-saved, since the convention 
states that they are to have the same value upon return that they had before the call.	
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We considered setting aside some registers as “callee-saved”. 	1

In a program with multiple threads, each thread may have a block of data specific to 
that thread. The “thread pointer register” (register tp, i.e., r12) points to this block 
of data, making it easy for the thread to access its private data. Typically, this register 
does not change and stays constant during the entire life of the thread. 	2

The “global pointer register” (register gp, i.e., r13) points to a block of memory 
containing static global variables shared by all functions/methods in all threads, 
making it easy for the code to access these variables with a single LOAD/STORE 
instruction using a small offset. The 16 bit immediate offset in LOAD/STORE 
instructions makes it easy to access data within a 4 page (i.e., 64 KiByte) range by 
using offsets up to ±32 KiBytes.	

Typically, the global data will be placed at the beginning of the virtual address space, 
i.e., at address 0x8_0000_0000. Therefore, register gp will contain 0x8_0000_8000 
which is the start of virtual memory, plus 2 pages (i.e., plus 32 KiBytes), allowing 
access to the first 4 pages of virtual memory. Register gp will remain constant during 
the execution of the program.	

The “link register” (register lr, i.e., r14) is used in function/method invocation. The 
CALL instruction will store the return address in register “lr” and the RET 
instruction will jump back to that address. If the function/method is a leaf routine 
(i.e., if it doesn’t invoke other functions/methods) then the return address can 
remain in lr until the RET instruction causes the return. Otherwise, the value of lr 
must be saved somewhere, typically on the stack, and retrieved before the return.	

The “stack pointer register” or “stack top” (register sp, i.e., r15) points to the 
runtime stack. By convention, the stack grows downward from high memory (larger 
addresses) toward low memory (smaller addresses). By convention, sp will point to 
the first byte of the stack, i.e., the most significant byte of the doubleword sitting at 
the top of the stack. By convention, the stack will always grow in multiples of 8. In 
other words, sp will always contain a doubleword aligned address.	

  In fact, s0…s2 were originally callee-saved with the “s” standing for “saved”.1

 In programs which have only a single thread and no need for a thread pointer, this register might 2

instead be used as a callee-saved register. But beware that called functions will likely use this 
register to locate various parameters; using register tp as a callee-saved register is not practical.
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Although floating point instructions are defined, there are no separate floating 
point registers. Instead, floating point data is kept and manipulated in the general 
purpose registers.	

There is a program counter (PC) whose size is 36 bits.	

Thus, the PC can contain any number within 0x0_0000_0000 ... 0xF_FFFF_FFFF. Any 
attempt to load the PC with a number outside this range is legal: bits [63:36] will be 
ignored with no overflow exception signaled.	

Commentary Many processor ISAs include a “condition code register.” Such a 
register usually contains bits such as:	

	 • Sign / Negative Value	
	 • Zero / Equal	
	 • Carry Bit	
	 • Overflow	

In such ISAs, there is usually a COMPARE instruction (which will set bits in the 
status register) and several BRANCH instructions (which will test the status register 
bits and conditionally jump).	

The normal pattern of most code is to execute a COMPARE instruction and, 
immediately afterward, execute a BRANCH instruction. They go together and 
effectively perform a single “test-and-jump” operation.	

Blitz-64 does not include a “condition code register.” Instead, the BRANCH 
instructions will perform both the test and the conditional jump. By combining them 
into a single instruction, greater performance efficiency can be achieved whenever 
this “test-and-jump” operation must be performed.	

Control and Status Registers (CSRs)	

The “Control and Status Registers” (CSRs) are used by the protection and privilege 
system. The privilege system is used by the OS kernel to protect itself and manage 
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user-level processes. The CSRs are also used for interrupt processing, thread 
switching, and virtual memory manipulation.	

At any moment, the processor will be executing either in “user mode” or in “kernel 
mode”. OS kernel code is executed in kernel mode and application programs are 
executed in user mode.	

Each instruction is either “privileged” or “non-privileged”. When the core is 
running in user mode, only non-privileged instructions may be executed. When 
running in kernel mode, all instructions are usable.	

Changing the privilege mode is accomplished by writing to a CSR. A single bit in the 
status register (csr_status) determines the current privilege mode.	

CSRs can only be read/written when running in kernel mode.	

There are 16 CSRs.	

Each CSR has a special name and each has a unique function. Reading and/or writing 
a CSR will have an effect on the processor operation. The CSRs are read and written 
with just a couple of general-purpose instructions. The instructions to read/write 
the CSRs are privileged and can only be executed in kernel mode.	

In order to understand the user-mode instruction set and to create user-level code, 
the CSRs can and should be ignored, especially on your first introduction to Blitz-64.	

Virtual Memory	

Blitz-64 supports virtual memory. For each virtual address space, there will be a 
page table stored in memory. The page table is organized as a tree of nodes and, at 
any time, the root of the current page table is pointed to by a control and status 
register (CSR) named csr_pgtable.	
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Pages in the virtual address space can be marked as	

	 • valid / invalid	
	 • writable	
	 • executable	
	 • copy-on-write	
	 • dirty	

Any attempt by user code to access a page in violation of the permissions for that 
page will cause an exception.	

The virtual memory architecture and page tables are described in the chapter titled 
“Memory, Address Spaces, and the Page Table”.	
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Quick Summary	

• Machine instructions are 32 bits long.	
	 	 The 16 registers are encoded in fields of 4 bits.	
	 	 Immediate values occupy fields of either 16 or 20 bits.	
• There are 4 formats of instructions, called A, B, C, and  D.	
• Assembly syntax is summarized.	
	 	 The destination register is schematically called “RegD”. 	
	 	 The operand registers are schematically called “Reg1”, “Reg3”, and “Reg3”. 	
• Compressed instructions will be defined and specified in the future.	
	 	 Compressed instructions are variable in length.	
	 	 Compressed and full-sized instructions can be distinguished by their opcodes.	

Compressed and Full-Sized Instructions	

There are two types of instructions:	

	 • Full-sized instructions (32 bits)	
	 • Compressed instructions (variable length)	

Each compressed instruction is exactly equivalent in function to a 32 bit full-sized 
instruction. However, there may be many 32 bit instructions for which there is no 
equivalent compressed version.	

A major performance bottleneck is the time required to fetch instructions from main 
memory. The entire purpose of compressed instructions is to reduce the size of code.	

The full-sized and compressed instructions may be intermixed. There is no “mode” 
bit to put the processor into “compressed instruction mode”, as there is in some 
processors.	
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Commentary Reducing the size of code results in increased processor 
performance since it allows more instructions to be cached, reducing the time to 
fetch instructions from main memory, which is often a performance bottleneck.	

In a typical hardware implementation, when a compressed instruction is fetched 
and loaded into the Instruction Register (IR) prior to being executed, the hardware 
will notice that it is a compressed instruction. At that time, the compressed 
instruction will immediately be expanded into the equivalent 32 bit instruction. 
Thereafter, there is no need for any additional hardware logic to support the 
compressed instruction set.	

A sophisticated assembler will automatically generate compressed instructions 
whenever it can. The idea is that the programmer (or compiler) will create only 32 
bit instructions. Upon encountering a 32 bit instruction that can also be coded as a 
compressed instruction, the assembler will choose the smaller instruction. Such an 
assembler will relieve programmers (and compilers) from the burden of selecting 
compressed instructions, although a sophisticated compiler may be able to 
generate shorter code sequences if it is aware of which instructions can be 
compressed.	

At this time, only the full-sized instructions are defined. The compressed 
instructions will be defined in the future, based on which full-sized instructions are 
most widely used.	

Opcode Encoding	

The first 2 bits in every instruction determine whether or not it is a compressed 
instruction. All full-sized instructions begin with bits 00.	

	 00 - Full-sized instruction	
	 01 - Compressed instruction 	
	 10 - Compressed instruction	
	 11 - Compressed instruction	

From here on, we only discuss full-sized instructions.	

The instruction opcode is either 1 or 2 bytes. The opcode is in either the first byte or 
the first two bytes of the instruction, i.e., the most significant byte or bytes.	
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The first byte of every instruction is called “OP1” and the second byte of the opcode, 
if present, is called “OP2”.	

If the first byte (OP1) is 0x00, then a second opcode byte (OP2) will be used. If the 
first byte (OP1) is non-zero, then there will be no second byte.	
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Instruction Fields	

We use the following notations to describe the various bit fields in an instruction.	

	 Reg1	 4 bits, indicating a source register	
	 Reg2 	 4 bits, indicating a source register	
	 Reg3 	 4 bits, indicating a source register	
	 RegD 	 4 bits, indicating the destination register	
	 immed3	 3 bits containing an immediate value	
	 immed6	 6 bits containing an immediate value	
	 immed10	 10 bits containing an immediate value	
	 immed16	 16 bits containing an immediate value	
	 immed20	 20 bits containing an immediate value	

The registers are encoded in the obvious way:	

	 r0 = 0000	
	 r1 = 0001	
	 …	
	 r15 = 1111	

The immed3 field is used in the CHECKADDR instruction and is interpreted as a 
code indicating which sort of check to perform.	

The immed6 field is used in the shifting instructions and is interpreted as a positive 
number, i.e., the number of bits to shift by.	

The immed10 field is only used in the SYSCALL instruction and is interpreted as a 
positive number.	

The immed16 and immed20 fields are signed-extended to 64 bits, unless explicitly 
noted otherwise.	

	 Smallest	 Largest	 Number            	
	   Value    	   Value     	              of Values            	 	
	 reg	 r0	 r15	 16	 = 24	
	 immed3	 0	 7	 8	 = 23	
	 immed6	 0	 63	 64	 = 26	
	 immed10	 0	 1,023	 1,024	 = 210	
	 immed16	 -32,768	 +32,767	 65,536	 = 216 = 64 Ki	
	 immed20	 -524,288	 +524,287	 1,048,576	 = 220 = 1 Mi	
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Instruction Formats	

FIGURE: Instruction Formats	

When giving the binary patterns for the various instruction formats below, we use 
the following notation to represent bit fields.	

	 DDDD = RegD	
	 1111 = Reg1	
	 2222 = Reg2	
	 3333 = Reg3	
	 VVVVVVVV = Immediate value	
	 XXXXXXXX = Op-code	
	 00000000 = Zero bits	
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For some instructions, one or more of the fields may be unused.	

Unused fields are ignored. The assembler should fill them with zeros, but they do 
not affect the core’s execution.	

For example, the ADD instruction is a Format-A instruction, which has room for 4 
register operands. However the ADD instruction only uses 3 registers. The 
remaining field is unused for ADD.	

The shorter immediate values (i.e., immed3, immed6, and immed10) are encoded 
as 16 bit values with the upper bits being unused and ignored.	
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	 Format-A instructions:	
	 	 Operands:	
	 	 	 RegD,Reg1,Reg2,Reg3	
	 	 Binary Encoding:	

0000 0000 XXXX XXXX 3333 2222 1111 DDDD
	 	 Examples:	

SYSRET              # Return from trap handler
CHECKH  r4          # Ensure r4 is within 16 bits
SEXTW   r4,r6       # r4 ← SignExtend(r6)
ADD     r4,r6,r7    # r4 ← r6+r7

	 Format-B instructions:	
	 	 Operands:	
	 	 	 RegD,Reg1,immed16	
	 	 Binary Encoding:	

00XX XXXX VVVV VVVV VVVV VVVV 1111 DDDD
	 	 Examples:	

ADDI    r4,r6,1234   # r4 ← r6+1234
LOAD.B  r6,1234(r4)  # r6 ← Mem[1234+r4]

	 Format-C instructions:	
	 	 Operands:	
	 	 	 Reg1,Reg2,immed16	
	 	 Binary Encoding:	

00XX XXXX VVVV VVVV VVVV 2222 1111 VVVV
	 	 Examples:	

B.LT    r4,r6,loop   # if r4<r6, goto offset(pc)
STORE.B 1234(r4),r6  # Mem[1234+r4] ← r6

	 Format-D instructions:	
	 	 Operands:	
	 	 	 RegD,immed20	
	 	 Binary Encoding:	

00XX XXXX VVVV VVVV VVVV VVVV VVVV DDDD	
	 	 Examples:	

JAL     lr,MyFunc   # call: pc←offset+pc; lr←ret addr
UPPER20 r4,0x3A4B5  # r4 ← (0x3A4B5 << 16)
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Operand Syntax	

In assembly language, the instruction operands are specified in several different 
ways.	

	 General Form	 Example	
	 Format-A	
	 	 A-0	 OP <no operands>	 sysret	
	 	 A-1	 OP Reg1	 checkb r1	
	 	 A-2	 OP RegD,Reg1	 sextb r7,r1	
	 	 A-3	 OP RegD,Reg1,Reg2	 add r7,r1,r2	
	 	 A-4	 OP RegD,Reg1,Reg2,Reg3	 muladd r7,r1,r2,r3	
	 	 A-5	      < No longer used >	
	 	 A-6	      < No longer used >	
	 	 A-7	 OP RegD,CSRReg1,Reg2	 csrswap r7,csr1,r2	
	 	 A-8	 OP RegD,CSRReg1	 csread r7,csr1	
	 	 A-9	 OP RegD	 getstat r7	
	 Format-B	
	 	 B-1	 OP RegD,Reg1,immed16	 addi r7,r1,0x1234	
	 	 B-2	 OP RegD,immed16(Reg1)	 load.b r7,offset(r1)	
	 	 B-3	 OP RegD,Reg1,immed3	 checkaddr r7,r1,5	
	 	 B-4	 OP immed10	 syscall 123	
	 	 B-5	 OP RegD,Reg1,immed6	 slli r7,r1,5	
	 	 B-6	 OP CSRReg1,immed16	 csrset csr_status,0x1234	
	 Format-C	
	 	 C-1	 OP immed16(Reg1),Reg2	 store.b offset(r1),r2	
	 	 C-2	 OP Reg1,Reg2,immed16	 b.le r1,r2,MyLabel	
	 Format-D	
	 	 D-1	 OP RegD,immed20	 jal lr,MyLabel	
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Notice that the destination is almost always the first (leftmost) operand. This is easy 
to remember since this order mimics the order of an assignment statement in a 
high-level programming language.	

	 Typical assignment statement:	
	 	 destination = …expr… ;	
	 Blitz assembler:	
	 	 RegD, …other operands…	

For the branching instructions, the operand order mimics an “if” statement.	

	 Typical “if” statement:	
	 	 if (x <= y) then go to MyLabel	
	 Blitz assembler:	

B.LE     r1,r2,MyLabel
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Don’t leave the classroom of pain without 
gathering wisdom from its instruction.	

	 	 	 — Tim Hiller	

Machine Instructions versus Synthetic Instructions	

A machine instruction is implemented in hardware. Each machine instruction has 
a single numeric opcode and, in assembly code, the opcode is indicated with a 
symbolic name, such as “ADD” or “SLL”.	

Synthetic instructions are not implemented in hardware. Instead, each synthetic 
instruction is processed by the assembler and/or linker and translated into machine 
instructions.	

Each synthetic instruction has a symbolic opcode, such as “LOADD” or “CALL”, so the 
synthetic instructions may be difficult to distinguish when looking at an assembly 
code program.	

Typically, each synthetic instruction is translated into a single machine instruction, 
but in some cases the translation will be 2, 3, or 4 machine instructions. The 
processor core does not see or execute synthetic instructions.	

An Instruction Set Architecture (ISA) normally defines only machine instructions, 
because that is all that hardware designers need in a specification of what to 
implement. However, this document also includes descriptions of synthetic 
instructions, alongside the machine instructions, making an easy reference for 
programmers.	

In the instruction listings, synthetic instructions are identified by marking them 
with an asterisk (*) prefixing the symbolic opcode, as in *LOADD or *CALL. This 
asterisk is only used in this documentation to make it easy to identify the synthetic 
instructions. The asterisk is not part of the assembly language.	
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All Instructions - Summary Listing	

Arithmetic	

	 ADD 	 RegD,Reg1,Reg2	
	 ADDI 	 RegD,Reg1,immed16	
	 ADDOK 	 RegD,Reg1,Reg2 	 RegD ← (Reg1+Reg2 overflows) ? 0 : 1	
	 ADD3 	 RegD,Reg1,Reg2,Reg3 	 RegD ← Reg1+Reg2+Reg3 (unsigned)	
	 SUB 	 RegD,Reg1,Reg2	
*	MUL	 RegD,Reg1,Reg2	
	 MULADD	 RegD,Reg1,Reg2,Reg3	 RegD ← (Reg1 × Reg2) + Reg3	
	 MULADDU	 RegD,Reg1,Reg2,Reg3	 RegD ← (Reg1 × Reg2) + Reg3 (unsigned)	
	 DIV 	 RegD,Reg1,Reg2	
	 REM 	 RegD,Reg1,Reg2	
*	NEG 	 RegD,Reg1	
*	ABS 	 RegD,Reg1	

Logical	

	 AND 	 RegD,Reg1,Reg2	
	 ANDI 	 RegD,Reg1,immed16	
	 OR 	 RegD,Reg1,Reg2	
	 ORI 	 RegD,Reg1,immed16	
	 XOR 	 RegD,Reg1,Reg2	
	 XORI 	 RegD,Reg1,immed16	
*	BITNOT 	 RegD,Reg1	 RedD ← Bitwise NOT (Reg1)	
*	LOGNOT 	 RegD,Reg1 	 RegD ← (Reg1 = 0) ? 1 : 0	

Move	

*	MOV 	 RegD,Reg1	
*	MOVI 	 RegD,immediate-64	
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Shift	

	 SLL 	 RegD,Reg1,Reg2	 Shift left logical	
	 SLLI 	 RegD,Reg1,immed6	
	 SLA 	 RegD,Reg1,Reg2	 Shift left arithmetic	
	 SLAI 	 RegD,Reg1,immed6	

	 SRL 	 RegD,Reg1,Reg2	 Shift right logical	
	 SRLI 	 RegD,Reg1,immed6	
	 SRA 	 RegD,Reg1,Reg2	 Shift right arithmetic	
	 SRAI 	 RegD,Reg1,immed6	

	 ROTR 	 RegD,Reg1,Reg2 	 Rotate right (circular)	
	 ROTRI 	 RegD,Reg1,immed6	

Sign Extension	

	 SEXTB 	 RegD,Reg1	 Sign extend byte to 64 bits	
	 SEXTH 	 RegD,Reg1 	 Sign extend 16 bits to 64 bits	
	 SEXTW 	 RegD,Reg1 	 Sign extend 32 bits to 64 bits	

Range Checking	

	 NULLTEST 	 Reg1	 Trap if Reg1 is contains NULL	
	 CHECKB 	 Reg1	 Trap if Reg1 not within -128 … +127	
	 CHECKH 	 Reg1	 Trap if Reg1 not within -32768 … +32767	
	 CHECKW 	 Reg1	 Trap if Reg1 not within 32 bit range	
	 INDEX0 	 RegD,Reg1,Reg2,Reg3	 Reg1=arrayPtr, Reg2=header, Reg3=index	
	 INDEX1 	 RegD,Reg1,Reg2,Reg3	 .   RegD ← Reg1 + 8 + (Reg3 * scale)	
	 INDEX2 	 RegD,Reg1,Reg2,Reg3	 .   Reg2 =  header = [ArrayMAX || ArrayCURR]	
	 INDEX4 	 RegD,Reg1,Reg2,Reg3	 .   Trap if (Reg3 < 0) or (Reg3 ≥ ArrayCURR)	
	 INDEX8 	 RegD,Reg1,Reg2,Reg3	 .                          or (ArrayMAX = 0)	
	 INDEX16 	 RegD,Reg1,Reg2,Reg3	 .	
	 INDEX24 	 RegD,Reg1,Reg2,Reg3	 .	
	 INDEX32 	 RegD,Reg1,Reg2,Reg3	 .	

Byte Reordering	

	 ENDIANH 	 RegD,Reg1	 Reorder bytes in all 4 halfwords	
	 ENDIANW 	 RegD,Reg1 	 Reorder bytes in both words	
	 ENDIAND 	 RegD,Reg1 	 Reorder bytes in a doubleword	
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Test and Set a Boolean	

	 TESTEQ 	 RegD,Reg1,Reg2 	 RegD ← (Reg1 = Reg2) ? 1 : 0	
	 TESTNE 	 RegD,Reg1,Reg2 	 RegD ← (Reg1 ≠ Reg2) ? 1 : 0	
	 TESTLT 	 RegD,Reg1,Reg2 	 RegD ← (Reg1 < Reg2) ? 1 : 0	
	 TESTLE 	 RegD,Reg1,Reg2 	 RegD ← (Reg1 ≤ Reg2) ? 1 : 0	
*	TESTGT 	 RegD,Reg1,Reg2 	 RegD ← (Reg1 > Reg2) ? 1 : 0	
*	TESTGE 	 RegD,Reg1,Reg2 	 RegD ← (Reg1 ≥ Reg2) ? 1 : 0	

	 TESTEQI 	 RegD,Reg1,immed16	 RegD ← (Reg1 = immed) ? 1 : 0	
	 TESTNEI 	 RegD,Reg1,immed16 	 RegD ← (Reg1 ≠ immed) ? 1 : 0	
	 TESTLTI 	 RegD,Reg1,immed16 	 RegD ← (Reg1 < immed) ? 1 : 0	
	 TESTLEI 	 RegD,Reg1,immed16 	 RegD ← (Reg1 ≤ immed) ? 1 : 0	 	
	 TESTGTI 	 RegD,Reg1,immed16	 RegD ← (Reg1 > immed) ? 1 : 0	 	
	 TESTGEI 	 RegD,Reg1,immed16	 RegD ← (Reg1 ≥ immed) ? 1 : 0	 	

*	TESTEQZ 	 RegD,Reg1 	 RegD ← (Reg1 = 0) ? 1 : 0, i.e., if zero	
*	TESTNEZ 	 RegD,Reg1 	 RegD ← (Reg1 ≠ 0) ? 1 : 0, i.e., if non-zero	
*	TESTLTZ 	 RegD,Reg1 	 RegD ← (Reg1 < 0) ? 1 : 0, i.e., if negative	
*	TESTLEZ 	 RegD,Reg1 	 RegD ← (Reg1 ≤ 0) ? 1 : 0, i.e., if non-positive	
*	TESTGTZ 	 RegD,Reg1 	 RegD ← (Reg1 > 0) ? 1 : 0, i.e., if positive	
*	TESTGEZ 	 RegD,Reg1 	 RegD ← (Reg1 ≥ 0) ? 1 : 0, i.e., if non-negative	

Branch - Limited Range	

	 B.EQ 	 Reg1,Reg2,immed16	 Branch if Reg1 = Reg2; Offset is PC-relative	
	 B.NE 	 Reg1,Reg2,immed16 	 Branch if Reg1 ≠ Reg2; Offset is PC-relative	
	 B.LT 	 Reg1,Reg2,immed16 	 Branch if Reg1 < Reg2; Offset is PC-relative	
	 B.LE 	 Reg1,Reg2,immed16 	 Branch if Reg1 ≤ Reg2; Offset is PC-relative	

Branch - General	

*	BEQ 	 Reg1,Reg2,address	 Branch if Reg1 = Reg2	
*	BNE 	 Reg1,Reg2,address 	 Branch if Reg1 ≠ Reg2	
*	BLT 	 Reg1,Reg2,address 	 Branch if Reg1 < Reg2	
*	BLE 	 Reg1,Reg2,address 	 Branch if Reg1 ≤ Reg2	
*	BGT 	 Reg1,Reg2,address	 Branch if Reg1 > Reg2	
*	BGE 	 Reg1,Reg2,address 	 Branch if Reg1 ≥ Reg2	
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*	BEQI 	 Reg,value,address	 Branch if Reg = immediate value	
*	BNEI 	 Reg,value,address 	 Branch if Reg ≠ immediate value	
*	BLTI 	 Reg,value,address	 Branch if Reg < immediate value	
*	BLEI 	 Reg,value,address	 Branch if Reg ≤ immediate value 	
*	BGTI 	 Reg,value,address	 Branch if Reg > immediate value	
*	BGEI 	 Reg,value,address	 Branch if Reg ≥ immediate value	

*	BEQZ 	 Reg,address	 Branch if Reg = 0	
*	BNEZ 	 Reg,address 	 Branch if Reg ≠ 0	
*	BLTZ 	 Reg,address	 Branch if Reg < 0, i.e., if negative	
*	BLEZ 	 Reg,address	 Branch if Reg ≤ 0, i.e., if not positive 	
*	BGTZ 	 Reg,address	 Branch if Reg > 0, i.e., if positive	
*	BGEZ 	 Reg,address	 Branch if Reg ≥ 0, i.e., if not negative	

*	BFALSE 	 Reg,address	 Branch if Reg = 0, i.e., if “false”	
*	BTRUE	 Reg,address	 Branch if Reg ≠ 0, i.e., if “true”	

Larger Addresses	

	 UPPER20 	 RegD,immed20	 RegD ← (immed<<16)	
	 UPPER16 	 RegD,Reg1,immed16	 RegD ← (immed<<16) + Reg1	
	 SHIFT16 	 RegD,Reg1,immed16	 RegD ← (Reg1 + immed16) << 16	
	 ADDPC 	 RegD,immed20	 RegD ← immed + PC	
	 AUIPC 	 RegD,immed20	 RegD ← (immed<<16) + PC	

Jumping - Limited Range	

	 JAL 	 RegD,immed20	 RegD ← return addr; Target ← PC+offset	
	 JALR 	 RegD,immed16(Reg1)	 RegD ← return addr; Target ← offset+Reg1	

Call / Jump / Return - General	

*	CALL 	 address	 Jump to any address; save return addr in “lr”	
*	CALLR 	 Reg1	 Jump to address; save return addr in “lr”	
*	RET 	 <no operands>	 Return value is in link register “lr”	
*	JUMP 	 address	 Jump to any address	
*	JR 	 Reg1	 Indirect jump, via register	
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Load - Limited Range	

	 LOAD.B 	 RegD,immed16(Reg1)	 Sign extend 8 bits to 64 bits	
	 LOAD.H 	 RegD,immed16(Reg1) 	 Sign extend 16 bits to 64 bits	
	 LOAD.W 	 RegD,immed16(Reg1) 	 Sign extend 32 bits to 64 bits	
	 LOAD.D 	 RegD,immed16(Reg1)	

Load - General	

*	LOADB 	 RegD,address	
*	LOADH 	 RegD,address	
*	LOADW 	 RegD,address	
*	LOADD 	 RegD,address	

*	LOADB 	 RegD,offset(Reg1)	
*	LOADH 	 RegD,offset(Reg1)	
*	LOADW 	 RegD,offset(Reg1)	
*	LOADD 	 RegD,offset(Reg1)	

Store - Limited Range	

	 STORE.B 	 immed16(Reg1),Reg2	 Ignore upper 56 bits	
	 STORE.H 	 immed16(Reg1),Reg2 	 Ignore upper 48 bits	
	 STORE.W 	 immed16(Reg1),Reg2 	 Ignore upper 32 bits	
	 STORE.D 	 immed16(Reg1),Reg2	

Store - General	

*	STOREB 	 address,Reg2	
*	STOREH 	 address,Reg2	
*	STOREW 	 address,Reg2	
*	STORED 	 address,Reg2	

*	STOREB 	 offset(Reg1),Reg2	
*	STOREH 	 offset(Reg1),Reg2	
*	STOREW 	 offset(Reg1),Reg2	
*	STORED 	 offset(Reg1),Reg2	
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Support for Unaligned Loads and Stores	

	 ALIGNH 	 RegD,Reg1,Reg2,Reg3	
	 ALIGNW 	 RegD,Reg1,Reg2,Reg3	
	 ALIGND 	 RegD,Reg1,Reg2,Reg3	

	 INJECT1H 	 RegD,Reg1,Reg2,Reg3	
	 INJECT2H 	 RegD,Reg1,Reg2,Reg3	
	 INJECT1W 	 RegD,Reg1,Reg2,Reg3	
	 INJECT2W 	 RegD,Reg1,Reg2,Reg3	
	 INJECT1D 	 RegD,Reg1,Reg2,Reg3	
	 INJECT2D 	 RegD,Reg1,Reg2,Reg3	

Miscellaneous	

	 SYSCALL 	 immed10	 immed10 selects one of 1,024 syscalls	
	 SYSRET 	 <no operands>	
*	NOP 	 <no operands>	
	 ILLEGAL 	 <no operands>	
	 SLEEP1 	 <no operands>	 Enter light sleep state	
	 SLEEP2 	 <no operands>	 Enter deep sleep state	
	 RESTART 	 <no operands>	 Same as Power-On-Reset	
	 DEBUG 	 <no operands>	
	 BREAKPOINT 	<no operands>	
	 CONTROL 	 RegD,Reg1,immed16	
	 CONTROLU 	 RegD,Reg1,immed16	
	 CAS 	 RegD,Reg1,Reg2,Reg3 Compare and Set: If *r1=r2 then *r1←r3	
	 FENCE	 <no operands>	
	 PUSHFRAME 	 RegD,Reg1,immed16	 Save lr, push frame onto stack	
	 POPRET 	 RegD,Reg1,immed16	 Retrieve lr, pop frame, and return	

CSR Manipulation	

	 CSRSWAP 	 RegD,CSRReg1,Reg2	 RegD ← CSR; CSR ← Reg2	
	 CSRREAD 	 RegD,CSRReg1	 Reg1 encodes CSR; RegD ← CSR	
*	CSRWRITE 	 CSRReg1,Reg2	 Reg1 encodes CSR; CSR ← Reg2	
	 CSRSET 	 CSRReg1,immed16	 Set selected bits in CSR	
	 CSRCLR 	 CSRReg1,immed16 	 Clear selected bits in CSR	
	 GETSTAT 	 RegD	 RegD ← CSR_STATUS & 0x0000…03f8	
	 PUTSTAT 	 Reg1	 CSR_STATUS [9:3] ← Reg1 [9:3]	
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Memory Management Unit	

	 TLBCLEAR	 <no operands>	 Invalidate all TLBs for current ASID	
	 TLBFLUSH 	 Reg1	 Invalidate TLB for virtual address in Reg1	
	 CHECKADDR	 RegD,Reg1,immed3	 Reg1 = virt addr; RegD ← except. code or 0	

Floating Point	

	 FADD 	 RegD,Reg1,Reg2	 RegD ← Reg1 + Reg2	
	 FSUB 	 RegD,Reg1,Reg2	 RegD ← Reg1 - Reg2 	
	 FMUL 	 RegD,Reg1,Reg2 	 RegD ← Reg1 × Reg2	
	 FDIV 	 RegD,Reg1,Reg2 	 RegD ← Reg1 / Reg2	
	 FMIN 	 RegD,Reg1,Reg2 	 RegD ← MIN (Reg1, Reg2)	
	 FMAX 	 RegD,Reg1,Reg2 	 RegD ← MAX (Reg1, Reg2)	
	 FNEG 	 RegD,Reg1 	 RegD ← -Reg1	
	 FABS 	 RegD,Reg1 	 RegD ← ABSOLUTE_VALUE (Reg1)	
	 FSQRT 	 RegD,Reg1 	 RegD ← SQUARE_ROOT (Reg1)	
	 FEQ 	 RegD,Reg1,Reg2 	 RegD ← (Reg1 = Reg2) ? 1 : 0 (float compare)	
	 FLT 	 RegD,Reg1,Reg2	 RegD ← (Reg1 < Reg2) ? 1 : 0 (float compare)	
	 FLE 	 RegD,Reg1,Reg2 	 RegD ← (Reg1 ≤ Reg2) ? 1 : 0 (float compare)	
*	FGT 	 RegD,Reg1,Reg2	 RegD ← (Reg1 > Reg2) ? 1 : 0 (float compare)	
*	FGE 	 RegD,Reg1,Reg2 	 RegD ← (Reg1 ≥ Reg2) ? 1 : 0 (float compare)	
	 FCVTFI 	 RegD,Reg1	 Convert: floating-point ← int	
	 FCVTIF 	 RegD,Reg1	 Convert: int ← floating-point	
	 FMADD 	 RegD,Reg1,Reg2,Reg3	 RegD ← (Reg1 × Reg2) + Reg3	
	 FNMADD 	 RegD,Reg1,Reg2,Reg3	 RegD ← (-(Reg1 × Reg2)) + Reg3	
	 FMSUB 	 RegD,Reg1,Reg2,Reg3	 RegD ← (Reg1 × Reg2) - Reg3	
	 FNMSUB 	 RegD,Reg1,Reg2,Reg3	 RegD ← (-(Reg1 × Reg2)) - Reg3	
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Machine Instructions, Grouped By Format	

Here is a complete list of the Blitz-64 machine instruction set.	

The headers give the format that assembly language programmers will use. These 
are followed by all the instructions that fit the pattern, with example operands and 
comments, to give a hint at what each instruction does.	

	 Format A-0	 <no operands>	
	 	 ILLEGAL Canonical form of illegal instruction
	 	 SYSRET PC ← csr_prev; csr_status ← csr_stat2
	 	 SLEEP1 Enter light sleep state
	 	 SLEEP2 Enter deep sleep state
	 	 RESTART Same as Power-On-Reset
	 	 DEBUG
	 	 BREAKPOINT
	 	 FENCE 	
	 	 TLBCLEAR Invalidate all TLBs for current ASID	

	 Format A-1	 Reg1	
	 	 NULLTEST r1 Trap if reg contains NULL
	 	 CHECKB r1 Trap if reg not within -128 … +127
	 	 CHECKH r1 Trap if reg not within -32768 … +32767
	 	 CHECKW r1 Trap if reg not within 32 bit range

PUTSTAT r1 CSR_STATUS [9:3] ← Reg1 [9:3]
TLBFLUSH r1 Invalidate TLB for virtual address in Reg1

	 Format A-2	 RegD,Reg1	
	 	 ENDIANH r7,r1 Reorder bytes: 76543210 → 67452301
	 	 ENDIANW r7,r1 Reorder bytes: 76543210 → 45670123
	 	 ENDIAND r7,r1 Reorder bytes: 76543210 → 01234567
	 	 SEXTB r7,r1 Sign extend byte to 64 bits
	 	 SEXTH r7,r1 Sign extend 16 bits to 64 bits
	 	 SEXTW r7,r1 Sign extend 32 bits to 64 bits
	 	 FNEG r7,r1
	 	 FABS r7,r1
	 	 FSQRT r7,r1
	 	 FCVTFI r7,r1 Convert: floating-point ← int
	 	 FCVTIF r7,r1 Convert: int ← floating-point

Blitz-64 Instruction Set Architecture / Porter	 Page  of 	58 342



Chapter 5: Instructions	

	 Format A-3	 RegD,Reg1,Reg2	
	 	 ADD r7,r1,r2
	 	 ADDOK r7,r1,r2
	 	 SUB r7,r1,r2
	 	 DIV r7,r1,r2
	 	 REM r7,r1,r2
	 	 AND r7,r1,r2
	 	 OR r7,r1,r2
	 	 XOR r7,r1,r2
	 	 SLL r7,r1,r2
	 	 SLA r7,r1,r2 Shift-left-arithmetic; checks for overflow
	 	 SRL r7,r1,r2
	 	 SRA r7,r1,r2
	 	 ROTR r7,r1,r2 Rotate right (circular)
	 	 TESTEQ r7,r1,r2 RegD ← (Reg1 = Reg2) ? 1 : 0
	 	 TESTNE r7,r1,r2 RegD ← (Reg1 ≠ Reg2) ? 1 : 0
	 	 TESTLT r7,r1,r2 RegD ← (Reg1 < Reg2) ? 1 : 0
	 	 TESTLE r7,r1,r2 RegD ← (Reg1 ≤ Reg2) ? 1 : 0
	 	 FADD r7,r1,r2
	 	 FSUB r7,r1,r2
	 	 FMUL r7,r1,r2
	 	 FDIV r7,r1,r2
	 	 FMIN r7,r1,r2
	 	 FMAX r7,r1,r2
	 	 FEQ r7,r1,r2 RegD ← (Reg1 = Reg2) ? 1 : 0 (float compare)
	 	 FLT r7,r1,r2 RegD ← (Reg1 < Reg2) ? 1 : 0 (float compare)
	 	 FLE r7,r1,r2 RegD ← (Reg1 ≤ Reg2) ? 1 : 0 (float compare)

	 Format A-4	 RegD,Reg1,Reg2,Reg3	
	 	 ADD3 	 r7,r1,r2,r3	 Reg3 ← Reg1+Reg2+Reg3 (unsigned)	
	 	 MULADD r7,r1,r2,r3 RegD ← (Reg1 × Reg2) + Reg3	
	 	 MULADDU r7,r1,r2,r3 RegD ← (Reg1 × Reg2) + Reg3 (unsigned)	
	 	 INDEX0 r7,r1,r2,r3 Reg1=arrayPtr, Reg2=header, Reg3=index	
	 	 INDEX1 r7,r1,r2,r3 .   RegD ← Reg1 + 8 + (Reg3 * scale)	
	 	 INDEX2 r7,r1,r2,r3 .   Reg2=header=[ArrayMAX||ArrayCURR]	
	 	 INDEX4 r7,r1,r2,r3 .   Trap if (Reg3 < 0) or (Reg3 ≥ ArrayCURR)	
	 	 INDEX8 r7,r1,r2,r3 .                          or (ArrayMAX = 0)	
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	 	 INDEX16 r7,r1,r2,r3 .	
	 	 INDEX24 r7,r1,r2,r3 .	
	 	 INDEX32 r7,r1,r2,r3 .	
	 	 ALIGNH 	 r7,r1,r2,r3	 Reg3 (unaligned addr) gives shift amount	
	 	 ALIGNW 	 r7,r1,r2,r3	 Reg3 (unaligned addr) gives shift amount	
	 	 ALIGND 	 r7,r1,r2,r3	 Reg3 (unaligned addr) gives shift amount	
	 	 INJECT1H 	 r7,r1,r2,r3	 RegD ← Reg1; inject Reg2 per addr in Reg3 	
	 	 INJECT2H 	 r7,r1,r2,r3	 RegD ← Reg1; inject Reg2 per addr in Reg3	
	 	 INJECT1W 	 r7,r1,r2,r3	 RegD ← Reg1; inject Reg2 per addr in Reg3	
	 	 INJECT2W	 r7,r1,r2,r3	 RegD ← Reg1; inject Reg2 per addr in Reg3	
	 	 INJECT1D 	 r7,r1,r2,r3	 RegD ← Reg1; inject Reg2 per addr in Reg3	
	 	 INJECT2D 	 r7,r1,r2,r3	 RegD ← Reg1; inject Reg2 per addr in Reg3	
	 	 CAS r7,r1,r2,r3 Compare and Set: If *r1=r2 then *r1←r3	
	 	 FMADD r7,r1,r2,r3 RegD ← (Reg1 × Reg2) + Reg3
	 	 FNMADD r7,r1,r2,r3 RegD ← (-(Reg1 × Reg2)) + Reg3
	 	 FMSUB r7,r1,r2,r3 RegD ← (Reg1 × Reg2) - Reg3
	 	 FNMSUB r7,r1,r2,r3 RegD ← (-(Reg1 × Reg2)) - Reg3	

	 Format A-5	 Reg1,Reg2	
	 	 < No longer used >	

	 Format A-6	 Reg2	
	 	 < No longer used >	

	 Format A-7	 RegD,Reg1,Reg2	
	 	 CSRSWAP r7,csr,r2 Reg1 encodes CSR; RegD ← CSR; CSR ← Reg2 	

	 Format A-8	 RegD,Reg1	
	 	 CSRREAD r7,csr Reg1 encodes CSR; RegD ← CSR;	

	 Format A-9	 RegD	
	 	 GETSTAT r7 RegD ← CSR_STATUS & 0x0000…03f8 	
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Format B-1	 RegD,Reg1,immed16	
	 	 ADDI r7,r1,0x1234
	 	 ANDI r7,r1,0x1234
	 	 ORI r7,r1,0x1234
	 	 XORI r7,r1,0x1234
	 	 TESTEQI r7,r1,0x1234 RegD ← (Reg1=immed) ? 1 : 0
	 	 TESTNEI r7,r1,0x1234 RegD ← (Reg1≠immed) ? 1 : 0
	 	 TESTLTI r7,r1,0x1234 RegD ← (Reg1<immed) ? 1 : 0
	 	 TESTLEI r7,r1,0x1234 RegD ← (Reg1≤immed) ? 1 : 0
	 	 TESTGTI r7,r1,0x1234 RegD ← (Reg1<immed) ? 1 : 0
	 	 TESTGEI r7,r1,0x1234 RegD ← (Reg1≥ immed) ? 1 : 0
	 	 UPPER16 r7,r1,0x1234 RegD ← (immed<<16) + Reg1
	 	 SHIFT16 r7,r1,0x1234 RegD ← (Reg1+immed) << 16	
	 	 CONTROL r7,r1,0x1234
	 	 CONTROLU r7,r1,0x1234

ENTERFUN sp,sp,32	 	 Push frame onto stack, save lr in frame	
EXITFUN sp,sp,32	 	 Retrieve lr, pop frame, and return	

	 Format B-2	 RegD,immed16(Reg1)	
	 	 LOAD.B r7,offset(r1) Value is sign-extended to 64 bits
	 	 LOAD.H r7,offset(r1) .   May cause unaligned exception
	 	 LOAD.W r7,offset(r1) .   No overflow check on addr calculation
	 	 LOAD.D r7,offset(r1)
	 	 JALR lr,offset(r1) RegD ← return addr; Target ← offset+Reg1	

	 Format B-3	 RegD,Reg1,immed3	
	 	 CHECKADDR r7,r1,5 Reg1 = virt addr; RegD ← except. code or 0

	 Format B-4	 immed10	
	 	 SYSCALL 123 immed10 selects one of 1,024 syscalls	

	 Format B-5	 RegD,Reg1,immed6	
	 	 SLLI r7,r1,5
	 	 SLAI r7,r1,5 Shift-left-arithmetic checks for overflow
	 	 SRLI r7,r1,5
	 	 SRAI r7,r1,5
	 	 ROTRI r7,r1,5 Rotate right (circular)	
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	 Format B-6	 Reg1,immed16	
	 	 CSRSET csr,0x1234 Reg1 encodes CSR; Set selected bits in CSR
	 	 CSRCLR csr,0x1234 Reg1 encodes CSR; Clear selected bits in CSR

	 Format C-1	 immed16(Reg1),Reg2	
	 	 STORE.B offset(r1),r2 Upper bits in reg are ignored
	 	 STORE.H offset(r1),r2 .   May cause unaligned exception
	 	 STORE.W offset(r1),r2 .   No overflow check on addr calculation
	 	 STORE.D offset(r1),r2

	 Format C-2	 Reg1,Reg2,immed16	
	 	 B.EQ r1,r2,MyLabel Branch if Reg1=Reg2; Offset is PC-relative
	 	 B.NE r1,r2,MyLabel Branch if Reg1≠Reg2; Offset is PC-relative
	 	 B.LT r1,r2,MyLabel Branch if Reg1<Reg2; Offset is PC-relative
	 	 B.LE r1,r2,MyLabel Branch if Reg1≤Reg2; Offset is PC-relative	

	 Format D-1	 RegD,immed20	
	 	 UPPER20 r7,MyLabel RegD ← (immed<<16)
	 	 ADDPC r7,MyLabel RegD ← immed+PC
	 	 AUIPC r7,MyLabel RegD ← (immed<<16) + PC
	 	 JAL lr,MyLabel RegD ← return addr ; Target ← PC+immed
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The Instruction Set	

Next, we list the Blitz-64 instructions, including both machine instructions and 
synthetic instructions. In this document, synthetic instructions are identified with 
“*”.	

ADD RegD,Reg1,Reg2
ADDI RegD,Reg1,immed16	  
SUB RegD,Reg1,Reg2	  
*MUL RegD,Reg1,Reg2	  
DIV RegD,Reg1,Reg2	  
REM RegD,Reg1,Reg2	  
AND RegD,Reg1,Reg2	  
ANDI RegD,Reg1,immed16	  
OR RegD,Reg1,Reg2	  
ORI RegD,Reg1,immed16	  
XOR RegD,Reg1,Reg2	  	
XORI RegD,Reg1,immed16	  

May cause an “Arithmetic Exception”, “Stack Overflow Exception”	

All computations are performed using 64 bit values and the arithmetic instructions 
are performed with signed, two’s complement arithmetic.	

The operands are either in Reg1 and Reg2, or in Reg1 and an immediate value 
embedded in the instruction. The result is placed into RegD.	

For the immediate-form instructions, the 16 bit immediate value is signed extended 
to 64 bits. Thus, any value within the range -32,768 … 32,767 may be used.	

It is the assembly programmer’s or compiler’s responsibility to ensure that the 
immediate value is within range. If the value is out of range, the assembler will issue 
an error message. If necessary, the programmer can always use a MOVI instruction 
to move a larger value into a temp register. (Register “t” is generally used for things 
like this.)	

Overflow is always checked. The goal is to catch all program bugs and failures, and 
not continue computing with incorrect values, as happens in other systems.	
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The following instructions will never cause an exception:	
	 AND, ANDI, OR, ORI, XOR, XORI	

The following instructions will cause an “Arithmetic Exception” whenever the 
mathematically correct result is not representable.	
	 ADD, ADDI, SUB, MUL	

The following instructions will cause an “Arithmetic Exception” in the case of divide-
by-zero or attempt to evaluate MIN_64 / -1:	
	 DIV, REM	

The following instructions are candidates for emulation. Any attempt to execute an 
unimplemented instruction will result in an “Emulation Exception”.	
	 DIV, REM	

The MUL instruction is synthetic and is shorthand for:	
	 MULADD	 RegD,Reg1,Reg2,r0	

In the case of ADD and ADDI, if the sp register is modified and the new value is less 
than the StackLimit field in csr_status, a “Stack Overflow Exception” will occur.	

MULADD RegD,Reg1,Reg2,Reg3 RegD ← (Reg1 × Reg2) + Reg3
MULADDU RegD,Reg1,Reg2,Reg3 RegD ← (Reg1 × Reg2) + Reg3 (unsigned)

MULADD may cause an “Arithmetic Exception”; MULADDU causes no exceptions	

These instructions multiply the contents of Reg1 and Reg2, then add the contents of 
Reg3, and finally place the result in RegD.	

In the case of MULADD, the arguments and the result are treated as 64 bit signed 
integers. If overflow occurs on either the multiplication or addition, it will cause an 
Arithmetic Exception.	

In the case of MULADDU, the arguments and the result are treated as 64 bit 
unsigned integers. Overflow is ignored and no exception will be raised.	

Note that both instructions will produce the same 64-bit result, unless of course the 
MULADD causes an exception, in which case it fails to produce any result at all.	
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If Reg1 is r0, then these instructions can be used to perform a simple multiply; 
signed in the case of MULADD and unsigned in the case of MULADDU.	

The MULADD instruction is used to implement the synthetic MUL instruction. The 
MULADDU instruction is useful for accessing arrays.	

Integer Division With Negative Operands	

Consider dividing a by n (that is, a/n).	

q  ←  a  DIV  n	 # compute quotient	
r  ←  a  REM  n	 # compute remainder	

The resulting quotient (q) and remainder (r) must obey these equations:	

a = nq + r	
	 |r| < |q|	

With positive operands, this specification is unambiguous. However, there always 
remains a question about how negative operands are treated. There are several 
competing definitions which meet the basic division definition given above.	

Many languages (C, C++, Java) perform “truncated division”:	

q ← trunc(a/n)	
r ← a - n trunc(a/n)	

which produces these results:	

 7 DIV  3 =  2        7 REM  3 =  1
-7 DIV  3 = -2       -7 REM  3 = -1  
 7 DIV -3 = -2        7 REM -3 =  1  
-7 DIV -3 =  2       -7 REM -3 = -1

A second reasonable definition is called “floored division”:	

q = ⌊a/n⌋	
r = a - n⌊a/n⌋	
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which produces the following results. The dot (•) indicates differences with 
truncated division.	

 7 DIV  3 =  2        7 REM  3 =  1
-7 DIV  3 = -3 •     -7 REM  3 =  2 •
 7 DIV -3 = -3 •      7 REM -3 = -2 •
-7 DIV -3 =  2       -7 REM -3 = -1

There is also a third definition called “Euclidean division”, in which the remainder 
is never negative. The dot (•) indicates differences with both previous definitions.	

 7 DIV  3 =  2        7 REM  3 =  1
-7 DIV  3 = -3       -7 REM  3 =  2	 same as “floored”
 7 DIV -3 = -2        7 REM -3 =  1	 same as “truncated”
-7 DIV -3 =  3 •     -7 REM -3 =  2 • different from both	

Which definition is better? The following quote from Wikipedia is pertinent:	

“… Euclidean division is superior to the other ones in terms of regularity and 
useful mathematical properties, although floored division … is also a good 
definition. Despite its widespread use, truncated division is shown to be 
inferior to the other definitions.”	

— Daan Leijen, Division and Modulus for Computer Scientists	

The Blitz-64 spec leaves this decision open as “implementation dependent”.	

We chose to name the instruction “REM” and not “MOD” because “MOD” is assumed 
to mean “Euclidean division”, but this may not be the what the implementation 
actually performs.	

Note that “truncated” and “Euclidean” have identical results as long as the number 
on top (the “dividend”, which is defined as a in the operation a/n) is positive.	

Division by a power of 2 (i.e., when the divisor is 1,2,4,8,16,…) is sometimes 
implemented as a right shift operation. For example, dividing by 4 is implemented 
with a right shift of two bits. Shifting always works correctly if the dividend is 
positive. For example, 21 DIV 4 = 21 >> 2 = 10101 >> 2 = 101 = 5.	

But note: If the dividend is negative, shifting may not be equivalent to the DIV 
operation. The result of shifting is always the same as “floored” and “Euclidean” 
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division. However shifting is not equivalent to “truncated” division. Truncated 
division is used in “C” and may be the choice for some Blitz-64 implementations, so 
care must be taken if the dividend can be negative.	

For example with truncated division:	
	 -21 DIV 4 = -5 with reminder -1.	
In binary:	
	 -21 >> 2 = …11101011 >> 2 = …11111010 = -6	

Division Overflow Conditions	

An attempt to divide by zero will cause an Arithmetic Exception. But there is another 
possibility for overflow.	

Concerning the sizes of the result, note that the following must hold, since |n| ≥ 1:	

|q| ≤ |a|	
|r| < |a|	

Thus, if the operands (a and n) are 64 bits, then the results (q and r) will almost 
always fit into 64 bits.	

There is exactly one exception in which the result will not fit.	

Let MIN_64 represent -263, which is the most negative number representable in 64 
bits. If we divide MIN_64 by -1, the result is +263, which is one greater than the 
largest positive 64 bit number.	

Note that “division overflow” can only occur with negative operands; there is no 
need to worry if n>0 is guaranteed to hold when computing a/n.	

This computation will cause an Arithmetic Exception.	

Bottom Line Programmers computing a/n should take special care unless the 
following are certain to hold:	

	 a ≥ 0	
	 n > 0	
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*NEG RegD,Reg1	  

Synthetic	

May cause an “Arithmetic Exception”	
	 	
Register t Usage: Not used; Okay to use as RegD and/or Reg1.	

Treating the value as a signed number, this instruction will flip the sign. This 
instruction is implemented as:	
	 SUB	 RegD,r0,Reg1	

An “Arithmetic Exception” will be signaled for an attempt to negate the most 
negative number.	

*BITNOT RegD,Reg1	  

Synthetic	
	 	
Register t Usage: Not used.	

All 64 bits are flipped. This instruction is implemented as:	
	 XORI	 RegD,Reg1,-1	

*NOP <no operands>	  

Synthetic	
	 	
Register t Usage: Not used.	

This is a no-op. This instruction is implemented as:	
	 ADDI	 r0,r0,0	
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*ABS RegD,Reg1	  

Synthetic	
	 	
Register t Usage: Not used.	

This instruction computes the absolute value. This instruction is implemented as:	
	 MOV	 RegD,Reg1	
	 BGEZ	 Reg1,Label	
	 SUB	 RegD,r0,Reg1	
	 Label:	 	

An “Arithmetic Exception” will be signaled for an attempt to compute the absolute 
value of the most negative number.	

*MOV RegD,Reg1	  

Synthetic	
	 	
Register t Usage: Not used.	

This instruction is implemented as:	
	 ORI	 RegD,Reg1,0	

Since OR-ing with a constant of 0 is not commonly done, it is reasonable for a 
disassembler to render this instruction as MOV.	

This instruction may also be implemented as any of these.	
	 ADD	 RegD,Reg1,r0	
	 ADDI	 RegD,Reg1,0	
	 OR	 RegD,Reg1,r0	
	 ORI	 RegD,Reg1,0 	 	 This instruction is preferred.	
	 XOR	 RegD,Reg1,r0	
	 XORI	 RegD,Reg1,0	
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*MOVI RegD,immediate	  

Synthetic, Variable Length	
	 	
Register t Usage: Not used; Okay to use as RegD.	

An immediate 64 bit value is moved into register RegD.	

The implementation of this instruction depends on the value of the immediate 
operand.	

If the value is within 16 bits (i.e., within -32,768 … 32,767):	
	 XORI	 RegD,r0,immed16	

If the value is an address near the MOVI instruction itself, i.e., within 20 bits 
(-524,288 … +524,287) of the current PC:	
	 ADDPC	 RegD,immed20	

If the value is within 36 bits (e.g., any valid address, within -32Gi … +32Gi-1):	
	 UPPER20	 RegD,immed20	
	 XORI	 RegD,RegD,immed16	

If the value is an address and PC-relative instructions are required:	
	 AUIPC	 RegD,immed20	
	 XORI	 RegD,RegD,immed16	

If the value is within 52 bits:	
	 UPPER20	 RegD,immed20	
	 SHIFT16	 RegD,RegD,immed16	
	 XORI	 RegD,RegD,immed16	

Otherwise, to load an arbitrary 64 bit value:	
	 UPPER16	 RegD,r0,immed16	
	 SHIFT16	 RegD,RegD,immed16	
	 SHIFT16	 RegD,RegD,immed16	
	 XORI	 RegD,RegD,immed16	

Comment: If the immediate value in the XORI instruction is negative, all the upper 
48 bits will be 1’s. This will flip any bits previously loaded into the upper 48 bits. 
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Therefore, the assembler will need to compensate by flipping all the bits in the 
immediate values used in the UPPER20, UPPER16, and SHIFT16 instructions.	

Since these instruction sequences are idiosyncratic and not likely to occur 
elsewhere, it is reasonable for a disassembler to render them as a MOVI instruction.	

SLL RegD,Reg1,Reg2	 Shift left logical
SLLI RegD,Reg1,immed6	  
SLA RegD,Reg1,Reg2 Shift left arithmetic
SLAI RegD,Reg1,immed6  
SRL RegD,Reg1,Reg2	 Shift right logical
SRLI RegD,Reg1,immed6	  
SRA RegD,Reg1,Reg2	 Shift right arithmetic
SRAI RegD,Reg1,immed6	  
ROTR RegD,Reg1,Reg2 Rotate right (circular)	
ROTRI RegD,Reg1,immed6  

May cause an “Arithmetic Exception”	

The 64 bit value in Reg1 is shifted/rotated and the result is placed in RegD. The 
shift/rotate amount is specified in either Reg2 or as an immediate value.	

The logical shifts (SLL, SLLI, SRL, SRLI) will shift 0 bits in, and will discard the bits 
shifted out.	

The Shift Right Arithmetic instructions (SRA, SRAI) are conventional. The sign-bit is 
duplicated as necessary and shifted in on the most significant (left) end.	

However, Blitz-64 also includes Shift Left Arithmetic instructions (SLA, SLAI) which 
are somewhat unusual. In the case of Shift Left Logical (SLL, SLLI), there is no 
overflow check; bits are simply shifted out the most-significant end with no 
consequences. However, in the case of Shift Left Arithmetic (SLA, SLAI), there is an 
overflow check. For SLA and SLAI, if the bits shifted out do not all agree with the 
final sign bit, then an “Arithmetic Exception” is signaled. This makes these 
instructions usable as a way to multiply by a power of 2, which is required to cause 
an Arithmetic Exception in the case of overflow.	

The shift amounts should be between 0 and 63. If an immediate value is provided in 
SLLI, SLAI, SRLI, and SRAI, only the last 6 bits are examined. The upper bits are 
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ignored and the immed6 value is treated as an unsigned value within the range 0 … 
63. The value of 0 results in no shifting and is effectively a “nop”. 	3

The following instructions will cause an “Arithmetic Exception” whenever the shift 
amount (i.e., the value in Reg2) is not within 0 … 63.	
	 SLL, SLA, SRL, SRA	

Except as mentioned above, the other instructions never cause exceptions.	

For bit rotations (ROTR and ROTRI), if the shift value N is larger than 63, it is 
equivalent in meaning to a rotation of N mod 64. For ROTR and ROTRI, only the least 
significant 6 bits of the shift amount are used; the upper bits are ignored.	

Note that there are no rotate-left instructions, since a rotate-left-by-N is equivalent 
to a rotate-right with a shift amount of 64-N. Thus, we can use negative numbers to 
achieve a left-rotation. This works because the rotate instructions ignore all but the 
least significant 6 bits.	

For example, imagine that you wish to rotate left by 5. The number -5 is 
0xFFFF_FFFF_FFFF_FFFB. But the ROTR and ROTRI only use the least significant 6 
bits. In this example, the least significant 6 bits are 111011, which is interpreted  as 
+59. Rotating right by 59 achieves the same result as rotating left by 5.	

Thus, for ROTR, if register Reg1 contains a negative shift amount of -N, the effect will 
be to rotate to the left by N bits.	

SEXTB RegD,Reg1 Sign extend byte to 64 bits
SEXTH RegD,Reg1 Sign extend 16 bits to 64 bits
SEXTW RegD,Reg1 Sign extend 32 bits to 64 bits	

These instructions sign-extend an 8, 16, or 32 bit value to 64 bits.	

For SEXTB, the upper 56 bits [63:8] are all set to the value of bit [7]. Likewise, for 
SEXTH, the upper 48 bits [63:16] are all set to the value of bit [15]. For SEXTW, bits 
[63:32] are set to the value of bit [31].	

 This range restriction is normally enforced by the assembler, so it is never as issue.3
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NULLTEST Reg1 Trap if reg contains NULL	

May cause an “Null Address Exception”	

This instruction checks to see whether the address in the register is null and signals 
a “Null Address Exception” if so. More specifically, it signals an exception if and only 
if bits [35…3] are zero.	

Recall that the upper 28 bits, i.e., bits [63…36] of a doubleword are ignored when 
the value is used as an address. Also, the entire doubleword at address 0 is 
inaccessible, so the least significant bits are ignored.

CHECKB Reg1 Trap if reg not within -128 … +127
CHECKH Reg1 Trap if reg not within -32768 … +32767
CHECKW Reg1 Trap if reg not within 32 bit range	

May cause an “Arithmetic Exception”	

These instructions look at the 64 bit signed integer stored in a register and test it. If 
the value is out of range, an “Arithmetic Exception” will be signaled.	

CHECKB will ensure that the value is within the range representable as a signed 
byte, namely within -128 … 127.	

CHECKH will ensure that the value is within the range representable as a signed 
halfword, namely within -32,768 … 32,767.	

CHECKW will ensure that the value is within the range representable as a signed 
word, namely within -2,147,483,648 … 2,147,483,647.	

ENDIANH RegD,Reg1 Reorder bytes in all 4 halfwords
ENDIANW RegD,Reg1 Reorder bytes in both words
ENDIAND RegD,Reg1 Reorder bytes in a doubleword	

These instructions are used for transforming data between “big endian” and “little 
endian” byte ordering.	
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ENDIANH will swap the bytes in all halfwords in the register:	
	 0x7766_5544_3322_1100   →  0x6677_4455_2233_0011	

ENDIANW will swap the bytes in both words in the register:	
	 0x7766_5544_3322_1100   →  4455_6677_0011_2233	

ENDIAND will swap the bytes in a doubleword:	
	 0x7766_5544_3322_1100   →  0x0011_2233_4455_6677	

Note that ENDIANW can be used to swap the byte order in a word, but the sign bits 
may not follow. For example, assume that the following 32 bit value from memory is 
assumed to be stored in little endian order. Note that, as a signed valued, this 
number is negative.	
	 55 66 77 88	
We would like to store the correct value in a register. First we load it, using LOADW, 
giving:	
	 0x 0000_0000_5566_7788	
Then we execute the ENDIANW instruction, to get:	
	 0x 0000_0000_8877_6655	
Finally, we must execute the SEXTW instruction to sign extend it, giving:	
	 0x FFFF_FFFF_8877_6655	
However, if we only need to store the 32 bit word back to memory, the SEXTW is 
unnecessary, since STOREW ignores the upper 32 bits in the register.	

The same issue applies to reversing the byte order of halfwords.	
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TESTEQ RegD,Reg1,Reg2 RegD ← (Reg1 = Reg2) ? 1 : 0
TESTNE RegD,Reg1,Reg2 RegD ← (Reg1 ≠ Reg2) ? 1 : 0
TESTLT RegD,Reg1,Reg2 RegD ← (Reg1 < Reg2) ? 1 : 0
TESTLE RegD,Reg1,Reg2 RegD ← (Reg1 ≤ Reg2) ? 1 : 0
TESTEQI RegD,Reg1,immed16 RegD ← (Reg1 = immed) ? 1 : 0
TESTNEI RegD,Reg1,immed16 RegD ← (Reg1 ≠ immed) ? 1 : 0
TESTLTI RegD,Reg1,immed16 RegD ← (Reg1 < immed) ? 1 : 0
TESTLEI RegD,Reg1,immed16 RegD ← (Reg1 ≤ immed) ? 1 : 0
TESTGTI RegD,Reg1,immed16	 RegD ← (Reg1 > immed) ? 1 : 0
TESTGEI RegD,Reg1,immed16	 RegD ← (Reg1 ≥ immed) ? 1 : 0	

These instructions compare two values using signed 64 bit arithmetic. The result, a 
boolean value, is placed in register RegD as either 1 (true) or 0 (false).	

For the immediate values, the 16 bit immediate is sign-extended to 64 bits.	

It is the assembly programmer’s or compiler’s responsibility to ensure that the 
immediate value is within range. If the value is out of range, the assembler will issue 
an error message. The programmer is always free to use a MOVI instruction using 
the temporary “t” register if necessary, to deal with a larger immediate value.	

*TESTGT RegD,Reg1,Reg2 RegD ← (Reg1 > Reg2) ? 1 : 0
*TESTGE RegD,Reg1,Reg2 RegD ← (Reg1 ≥ Reg2) ? 1 : 0

Synthetic	
	 	
Register t Usage: Not used; Okay to use as RegD, Reg1 and/or Reg2.	

The TESGT instruction is implemented as:	
	 TESTLT	 RegD,Reg2,Reg1	 Note that Reg1 and Reg2 are reversed	
The TESTGE instruction is implemented as:	
	 TESTLE	 RegD,Reg2,Reg1	 Note that Reg1 and Reg2 are reversed	
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*TESTEQZ RegD,Reg1 RegD ← (Reg1 = 0) ? 1 : 0, i.e., if zero
*TESTNEZ RegD,Reg1 RegD ← (Reg1 ≠ 0) ? 1 : 0, i.e., if non-zero
*TESTLTZ RegD,Reg1 RegD ← (Reg1 < 0) ? 1 : 0, i.e., if negative
*TESTLEZ RegD,Reg1 RegD ← (Reg1 ≤ 0) ? 1 : 0, i.e., if non-positive
*TESTGTZ RegD,Reg1 RegD ← (Reg1 > 0) ? 1 : 0, i.e., if positive
*TESTGEZ RegD,Reg1 RegD ← (Reg1 ≥ 0) ? 1 : 0, i.e., if non-negative

Synthetic	

Register t Usage: Not used; Okay to use as RegD and/or Reg1.	

The value in a register is compared with zero and a boolean result (either 0 or 1) is 
placed in register RegD. 	

The TESTEQZ instruction is implemented as:	
	 TESTEQ	 RegD,Reg1,r0	 	
The TESTNEZ instruction is implemented as:	
	 TESTNE	 RegD,Reg1,r0	 	
The TESTLTZ instruction is implemented as:	
	 TESTLT	 RegD,Reg1,r0	 	
TheTESTLEZ instruction is implemented as:	
	 TESTLE	 RegD,Reg1,r0	 	
The TESTGTZ instruction is implemented as:	
	 TESTLT	 RegD,r0,Reg1	 Note that the registers are reversed	
The TESTGEZ instruction is implemented as:	
	 TESTLE	 RegD,r0,Reg1 	 Note that the registers are reversed	

*LOGNOT RegD,Reg1 RegD ← (Reg1 = 0) ? 1 : 0

Synthetic	

Register t Usage: Not used; Okay to use as RegD and/or Reg1.	

The convention is to interpret 0 as “false” and any non-zero value as “true”, with 1 
being the desired, canonical value for “true”. The LOGNOT instruction performs a 
logical “not”. For input 0, it computes 1. For any other input, it computes 0.	
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The LOGNOT instruction is implemented as:	
	 TESTEQ	 RegD,r0,Reg1	 RegD ← (zero=Reg1) ? 1 : 0	

Note that the synthetic instruction:	
	 *TESTEQZ	 RegD,Reg1	
is implemented as:	
	 TESTEQ	 RegD,Reg1,r0	 RegD ← (Reg1=zero) ? 1 : 0	
which is slightly different. This allows a disassembler to differentiate them.	

ADDOK RegD,Reg1,Reg2 RegD ← (Reg1+Reg2 overflows) ? 0 : 1

This instruction adds the contents of Reg1 and Reg2 using 64 bit signed arithmetic. 
If the addition results in overflow, then RegD is set to 0. Otherwise, if the addition 
proceeds without overflow, RegD is set to 1. The sum is discarded. No exception will 
be raised.	

ADD3 RegD,Reg1,Reg2,Reg3 RegD ← Reg1+Reg2+Reg3 (unsigned)

This instruction adds the contents of Reg1, Reg2, and Reg3 using 64 bit arithmetic, 
placing the result in RegD. Overflow is ignored and no exceptions will be raised.	

Commentary Obviously, the ADD3 instruction can be used to add only two unsigned 
values by using register r0 as the Reg3 argument.	

The ADD3 instruction can also be used to subtract two unsigned numbers. Recall 
that to arithmetically negate a number, we flip the bits and add 1. Thus, the following 
code sequence can be used to compute “r1 ←  r1-r2” while ignoring overflow.	

	 BITNOT	 r2,r2	
	 MOVI	 t,1	
	 ADD3	 r1,r1,r2,t	

The result is identical and this works properly regardless of whether the numbers 
are viewed as signed or unsigned values.	

Unsigned subtraction is not expected to be used much, so we accept the extra 
instruction overhead. Note that if we have to do a large number of subtractions, the 
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overhead is only one extra instruction (the BITNOT), since we assume that the +1 
can be preloaded into a register so the MOVI instruction is not repeated.	

Note that with a “carry save adder” the microarchitecture gate delay time is minimal. 
With a carry save adder, the gate delay for adding three numbers is substantially less 
than twice the gate delay for adding two numbers.	

INDEX0 RegD,Reg1,Reg2,Reg3 
INDEX1 RegD,Reg1,Reg2,Reg3 
INDEX2 RegD,Reg1,Reg2,Reg3 
INDEX4 RegD,Reg1,Reg2,Reg3 
INDEX8 RegD,Reg1,Reg2,Reg3 
INDEX16 RegD,Reg1,Reg2,Reg3 
INDEX24 RegD,Reg1,Reg2,Reg3 
INDEX32 RegD,Reg1,Reg2,Reg3 

May cause an “Bad Array Index Exception”.	

This instruction is designed to facilitate array accessing.	

To understand these instructions, assume that Reg1 contains a pointer to the array, 
Reg2 contains the array header, and Reg3 contains the desired array index. There 
are eight INDEX instructions and each specifies a “scale”, which can be 0, 1, 2, 4, 8, 
16, 24, or 32. The scale is the size of the array elements, in bytes.	

The instruction computes:	
	 RegD ← Reg1 + 8 + (Reg3 × scale)	
If rewritten as follows, we see the address of the desired element is computed:	
	 RegD ← arrayPtr + 8 + (index × scale)	

This computation is performed with unsigned arithmetic and overflow is ignored.	

In the KPL programming language every array begins with an 8 byte header, which 
consists of the MAX array size (bits [63:32]) and the CURRENT size (bits [31:0]). The 
MAX and CURRENT are unsigned values in the range 0 … 4,294,967,295. We assume 
that the array header has been preloaded into Reg2.	

Each INDEX instruction also performs two tests. The first test is that the index is 
legal. If ((Reg3 < 0) || (Reg3 ≥ CURRENT)), the instruction causes an “Bad Array 
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Index Exception”. The second test is that the array is initialized. If (MAX = 0), the 
instruction causes an “Bad Array Index Exception”.	

The CURRENT size of an array should always be ≤ the MAX array size, but these 
instructions do not check for that.	

Commentary  Many programs use arrays and access the elements a lot. An example 
from KPL is:	

myArr [n+1] = myArr [i]

Such accesses are prone to program bugs. In the spirit of Blitz-64, the fullest possible 
error-checking is desired and this sort of check must be performed since the 
consequences of a program bug can be catastrophic. The purpose of the INDEX__ 
instructions is to reduce the overhead of this checking.	

While these instructions are not limited to checking array index values, it is 
presumed that the software will respond to the exception with a message such as 
“Array index out of bounds”, which could be confusing if the instruction is being used 
for another purpose.	

Commentary  Assume that “myArr” is an array of objects and consider the following 
KPL statement:	

	 … = myArr [i] . someField	

To compile code for this expression, of course instructions to get the address of 
array “myArr” and the value of the index expression “i” are needed. Let’s look at the 
code after that.	

Assume that each array element is 24 bytes in size and that “someField”—the field 
we are interested in—is a halfword at offset 18. Then the following instructions 
suffice:	

	 r1 ← … address of myArr …	
	 r3 ← … index expression …	
	 LOADD r2,0(r1)	 Fetch array header	
	 INDEX24 r7,r1,r2,r3	 Compute address & check for errors	
	 LOADH …,18(r7)	 Fetch the halfword at offset 18	
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If the access is in a loop, then a clever compiler might be able to pull some of these 
instructions out of the loop body, resulting in this code:	

	 r1 ← … address of myArr …	
	 LOADD r2,0(r1)	 Fetch array header	

LOOP:
	 …	
	 r3 ← … index expression …	
	 INDEX24 r7,r1,r2,r3	 Compute address & check for errors	
	 LOADH …,18(r7)	 Fetch the halfword at offset 18	
	 …	

JUMP LOOP

In any other RISC computer, it is unlikely that a LOAD instruction would also be able 
to multiply to perform the scaling, so at least one additional instruction would 
probably be required, resulting in at least two instructions within the loop. So the 
overhead of Blitz-64 to provide the bounds checking appears to be zero instructions, 
at least in this example!	

If the size of the array elements is not 1, 2, 4, 8 16, 24, or 32, then the INDEX0 
instruction can be used in conjunction with the MULADDU instruction. For example, 
assume the element size is 80:	

	 r1 ← … address of myArr …	
	 r3 ← … index expression …	
	 LOADD r2,0(r1)	 Fetch array header	
	 INDEX0 r7,r1,r2,r3	 Check for errors, advance to element 0	
	 MOVI r4,80	 Size of elements is 80 bytes	
	 MULADDU r7,r3,r4,r7	 r7 = r7 + (index × scale)	
	 LOADH …,18(r7)	 Fetch the halfword at offset 18	
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As before, if the access is within a loop, the compiler might pull the loop-invariant 
instructions out of the loop, yielding:	

	 r1 ← … address of myArr …	
	 LOADD r2,0(r1)	 Fetch array header	
	 MOVI r4,80	 Size of elements is 80 bytes	

LOOP:
	 …	
	 r3 ← … index expression …	
	 INDEX0 r7,r1,r2,r3	 Check for errors, advance to element 0	
	 MULADDU r7,r3,r4,r7	 r7 = r7 + (index × scale)	
	 LOADH …,18(r7)	 Fetch the halfword at offset 18	
	 …	

JUMP LOOP

B.EQ Reg1,Reg2,immed16 Branch if Reg1 = Reg2; Offset is PC-relative
B.NE Reg1,Reg2,immed16 Branch if Reg1 ≠ Reg2; Offset is PC-relative
B.LT Reg1,Reg2,immed16 Branch if Reg1 < Reg2; Offset is PC-relative
B.LE Reg1,Reg2,immed16 Branch if Reg1 ≤ Reg2; Offset is PC-relative

May cause a “Null Address Exception”	

The values in Reg1 and Reg2 are compared. In the case of LT (less than) and LE (less 
than or equal), the operand values are treated as signed integers.	

If the condition is satisfied, a branch is taken.	

To compute the target destination address, the 16 bit immediate value is sign-
extended to 64 bits and then added to the value of the PC (i.e., the address of the 
BRANCH instruction itself).	

Overflow is ignored. The upper bits [63:36] of the target address are ignored. The 
LSBit is set to 0, forcing halfword alignment.	

Any attempt to load the PC with zero will cause a “Null Address Exception”. 
Exceptions will only occur if the jump is taken; if the jump is not taken, no exception 
will occur.	
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In systems without compressed instructions and in which alignment is required for 
instructions, there may be an “Unaligned LOAD/STORE Exception” if the target 
address is not properly aligned. Alternatively, such systems may simply ignore the 
final bits, rounding the target address down to force alignment.	

Commentary For the following instructions, we make a distinction between the 
opcode names for machine instructions and synthetic instructions, even though 
their functions are similar.	

	 Machine	 Synthetic	
	 Instruction	 Instruction	

B.EQ BEQ
B.NE BNE
B.LT BLT
B.LE BLE
LOAD.B LOADB
LOAD.H LOADH
LOAD.W LOADW
LOAD.D LOADD
STORE.B STOREB
STORE.H STOREH
STORE.W STOREW
STORE.D STORED

A machine instruction is always a single 32 bit instruction, implemented directly in 
hardware.	

A synthetic instruction may be implemented with 1, 2, or 3 machine instructions, 
depending on the value of the address operand. The assembler and linker make the 
decision about which sequence of machine instructions to use.	

In most cases, a BRANCH, LOAD, or STORE synthetic instruction will be 
implemented by a single machine instruction with the corresponding similar name.	

To make the distinction between machine instruction and synthetic instruction 
explicit, we assign different names. But to keep the correspondence obvious and the 
meaning clear, we use names that differ only by the presence of the period character.	

Blitz-64 Instruction Set Architecture / Porter	 Page  of 	82 342



Chapter 5: Instructions	

We chose to use a period for the machine instructions on the assumption most 
assembly programs will contain the synthetic instructions, not the machine variants. 
The presence of periods (if any) will stand out. Also, programmers are more likely to 
err by forgetting a period, rather than inserting one, so we chose a naming scheme 
in which the programmer does not normally use the period character. 	

*BEQ Reg1,Reg2,address Branch if Reg1 = Reg2
*BNE Reg1,Reg2,address Branch if Reg1 ≠ Reg2
*BLT Reg1,Reg2,address Branch if Reg1 < Reg2
*BLE Reg1,Reg2,address Branch if Reg1 ≤ Reg2	
*BGT Reg1,Reg2,address Branch if Reg1 > Reg2
*BGE Reg1,Reg2,address Branch if Reg1 ≥ Reg2

Synthetic, Variable Length, May Overwrite “t” Register, May cause a “Null Address 
Exception”	

Register t Usage: May be modified; Okay to use as Reg1 and/or Reg2.	

The values in Reg1 and Reg2 are compared. In the case of LT, LE, GT, and GE, the 
operand values are treated as signed integers.	

If the condition is satisfied, a branch is taken.	

In these synthetic instructions, “address” may be any absolute or relocatable 
address, except 0. (Any reference to address 0 always causes a Null Address 
Exception.)	

Typically the programmer or compiler will use a symbolic label to stand for the 
address, but a hard-coded number can be used, too.	
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Note that an integer value indicates an absolute address, not a relative address. For 
example, the following will branch to location 0x0_0000_0008 and not to an 
instruction located two instructions beyond the branch instruction itself.	

	 BEQ	 r1,r2,+8	

This is different behavior from the following machine instruction, which will skip 
the instruction following the branch instruction.	

	 B.EQ	 r1,r2,+8	

In general, the actual target address will be a 36-bit address that is not known until 
link-time. In such cases, the actual instruction sequence may not be determined until 
link-time. (In many cases, the assembler will be able to safely produce the final 
instruction sequence. This happens when the target address is nearby and there are 
no intervening synthetic, variable length instructions.)	

The target of most branch instructions will be within the range of -32,768 … +32,766 
from the address of the branch instruction. (Since the target address must be 
halfword aligned, the high end of the range is 32,766, and not 32,767.)	

If the address is within this range, then a single instruction will be used, as follows.	

The BEQ instruction is implemented with:	
	 B.EQ	 Reg1,Reg2,immed16	
The BNE instruction is implemented with:	
	 B.NE	 Reg1,Reg2,immed16	
The BLT instruction is implemented with:	
	 B.LT	 Reg1,Reg2,immed16	
The BLE instruction is implemented with:	
	 B.LE	 Reg1,Reg2,immed16	

The BGT instruction is implemented by exchanging the registers and changing the 
test condition:	
	 B.LT	 Reg2,Reg1,immed16	 Note: the test and registers are changed.	
The BGE instruction is implemented by exchanging the registers and changing the 
test condition:	
	 B.LE	 Reg2,Reg1,immed16	 Note: the test and registers are changed.	

If the target is within the range of -524,288 … +524,286, then it can be reached with 
a JAL instruction. However, the JAL instruction is unconditional. To use it, the 
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assembler/linker must change the sense of the branch (i.e., negate the condition) 
and use it to branch around the JAL instruction.	

The BEQ instruction is implemented with:	
	 B.NE	 Reg1,Reg2,+8 	 Note the test is reversed 	
	 JAL	 r0,address	
The BNE instruction is implemented with:	
	 B.EQ	 Reg1,Reg2,+8 	 Note the test is reversed	
	 JAL	 r0,address	
The BLT instruction is implemented with:	
	 B.LE	 Reg2,Reg1,+8 	 Note the condition & regs are changed	
	 JAL	 r0,address	
The BLE instruction is implemented with:	
	 B.LT	 Reg2,Reg1,+8 	 Note the condition & regs are changed	
	 JAL	 r0,address	
The BGT instruction is implemented with:	
	 B.LE	 Reg1,Reg2,+8 	 Note the test is reversed	
	 JAL	 r0,address	
The BGE instruction is implemented with:	
	 B.LT	 Reg1,Reg2,+8 	 Note the test is reversed	
	 JAL	 r0,address	

In the very rare cases where the target address is out of this range, a sequence of 3 
instructions must be generated, as follows.	

The temp-register “t” is used to build a 36 bit value. In the code below, “upper-20” 
indicates bits [35:16] of the address and “lower-16” indicates bits [15:0]. The JALR 
instruction will sign-extend the immediate lower-16 value and add it to the register. 
To compensate, the value used for upper-20 will have to be adjusted accordingly.	

The BEQ instruction is implemented with:	
	 B.NE	 Reg1,Reg2,+12	 Jump around next 2 statements	
	 AUIPC	 t,upper-20	 Execute a long jump if EQ	
	 JALR	 r0,lower-16(t)	
The BNE instruction is implemented with:	
	 B.EQ	 Reg1,Reg2,+12 	 Note the test is reversed	
	 AUIPC	 t,upper-20	
	 JALR	 r0,lower-16(t)	
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The BLT instruction is implemented with:	
	 B.LE	 Reg2,Reg1,+12 	 Note the condition & regs are changed	
	 AUIPC	 t,upper-20	
	 JALR	 r0,lower-16(t)	
The BLE instruction is implemented with:	
	 B.LT	 Reg2,Reg1,+12 	 Note the condition & regs are changed	
	 AUIPC	 t,upper-20	
	 JALR	 r0,lower-16(t)	
The BGT instruction is implemented with:	
	 B.LE	 Reg1,Reg2,+12 	 Note the test is reversed	
	 AUIPC	 t,upper-20	
	 JALR	 r0,lower-16(t)	
The BGE instruction is implemented with:	
	 B.LT	 Reg1,Reg2,+12 	 Note the test is reversed	
	 AUIPC	 t,upper-20	
	 JALR	 r0,lower-16(t)

Commentary Since each instruction is only 32 bits, any operation involving 
a 36 bit address will necessarily require at least 2 instructions.	

The Blitz-64 solution is to break a 36 bit address into two pieces, consisting 
of the most significant 20 bits and the least significant 16 bits. In some cases, 
we break a 32 bit value into two equal sized parts, of 16 bits each.	

To explain how the assembler/linker produces machine code, we use the 
following notational abbreviations:	

	 upper-20	 The upper 20 bits of a 36 bit value	
	 upper-16 	 The upper 16 bits of a 32 bit value	
	 lower-16 	 The lower 16 bits of the value	

Generally, the first instruction in the sequence will load the upper 20 bits 
and the second instruction will add in lower 16 bits.	

For example, the following code sequence stores a byte from register “r5” 
into memory, using a 36 bit absolute address. The temporary register “t” is 
used to build the memory address.	

UPPER20 t,upper-20	 t = upper 20 bits [35:16]
STORE.B lower-16(t),r5	 address is upper-20 + lower-16
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Note that the second instruction will sign-extended the lower-16 bit piece 
and perform an addition.	

Therefore, the assembler/linker must be careful when computing the 
“upper-20” and “lower-16” pieces from an arbitrary 36-bit value. Because the 
lower-16 piece will be sign-extended by the second instruction, the 
assembler/linker cannot use:	

	 upper20 = Value[35:16]	 Wrong!	
	 lower16 = Value[15:0]	

Instead, the assembler/linker must do this:	

	 Given:	
	 	 Value (a 36-bit quantity)	
	 Compute:	
	 	 lower16 = Value[15:0]	
	 	 x = Value – SignExtend (lower16)	
	 	 upper20 = (x >> 16) [19:0]	 i.e., grab upper 20 bits [35:16] from x	

The upper-16 value is computed the same way, with the last line modified to:	

	 	 upper16 = (x >> 16) [15:0]	 i.e., grab upper 16 bits [31:16] from x	

Note that overflow cannot occur either in the subtraction performed by the 
assembler/linker, or the addition performed by the second instruction in the 
code sequence (e.g., the STORE.B). This is assuming that the original “Value” 
is limited to a quantity representable in 36 bits, which is true of all memory 
addresses and offsets.	
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*BEQI Reg,value,address Branch if Reg = immediate value
*BNEI Reg,value,address Branch if Reg ≠ immediate value
*BLTI Reg,value,address Branch if Reg < immediate value
*BLEI Reg,value,address Branch if Reg ≤ immediate value 
*BGTI Reg,value,address Branch if Reg > immediate value
*BGEI Reg,value,address Branch if Reg ≥ immediate value	

Synthetic, Variable Length, Will Overwrite “t” Register, May cause a “Null Address 
Exception”	

Register t Usage: Will be modified; Must not use as Reg.	

Since these instructions are synthesized with a MOVI instruction, the value can be 
any 64-bit value. Likewise, the address can be any address in memory, since BEQ/
BNE/BLT/BLE/BGT/BGE can handle any address.	

The BEQI instruction is implemented as:	
	 *MOVI	 t,value	
	 *BEQ	 Reg,t,address	
The BNEI instruction is implemented as:	
	 *MOVI	 t,value	
	 *BNE	 Reg,t,address	
The BLTI instruction is implemented as:	
	 *MOVI	 t,value	
	 *BLT	 Reg,t,address	
The BLEI instruction is implemented as:	
	 *MOVI	 t,value	
	 *BLE	 Reg,t,address	
The BGTI instruction is implemented as:	
	 *MOVI	 t,value	
	 *BGT	 Reg,t,address	
The BGEI instruction is implemented as:	
	 *MOVI	 t,value	
	 *BGE	 Reg,t,address	
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*BEQZ Reg,address Branch if Reg = 0
*BNEZ Reg,address Branch if Reg ≠ 0
*BLTZ Reg,address Branch if Reg < 0, i.e., if negative
*BLEZ Reg,address Branch if Reg ≤ 0, i.e., if not positive 
*BGTZ Reg,address Branch if Reg > 0, i.e., if positive
*BGEZ Reg,address Branch if Reg ≥ 0, i.e., if not negative	

Synthetic, Variable Length, May Overwrite “t” Register, May cause a “Null Address 
Exception”	

Register t Usage: May be modified; Okay to use as Reg.	

Since these instructions are synthesized with BEQ/BNE/BLT/BLE/BGT/BGE, the 
address can be any address in memory.	

The BEQZ instruction is implemented as:	
	 *BEQ	 Reg1,r0,address	
The BNEZ instruction is implemented as:	
	 *BNE	 Reg1,r0,address	
The BLTZ instruction is implemented as:	
	 *BLT	 Reg1,r0,address	
The BLEZ instruction is implemented as:	
	 *BLE	 Reg1,r0,address	
The BGTZ instruction is implemented as:	
	 *BGT	 Reg1,r0,address	
The BGEZ instruction is implemented as:	
	 *BGE	 Reg1,r0,address	
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*BFALSE Reg,address Branch if Reg = 0, i.e., if “false”
*BTRUE Reg,address Branch if Reg ≠ 0, i.e., if “true”

Synthetic, Variable Length, May Overwrite “t” Register, May cause a “Null Address 
Exception”	

Register t Usage: May be modified; Okay to use as Reg.	

The BFALSE instruction is implemented as:	
	 *BEQ	 Reg1,r0,address	
The BTRUE instruction is implemented as:	
	 *BNE	 Reg1,r0,address	

UPPER20 RegD,immed20 RegD ← (immed<<16)

The 20 bit immediate value is sign-extended. It is then shifted left by 16 bits. The 
result is placed into register RegD.	

The UPPER20 instruction is useful for building any 36 bit value, which is the size of a 
memory address. The UPPER20 instruction takes care of the most significant 20 bits. 
The following instruction (e.g., LOAD or STORE) will typically add in the least 
significant 16 bits and perform the access.	

UPPER16 RegD,Reg1,immed16 RegD ← (immed<<16) + Reg1

The 16 bit immediate value is sign-extended and then shifted left by 16 bits. This 
value is added to the value in register Reg1 and the result is placed into register 
RegD. There is no overflow check.	

The UPPER16 instruction is useful for building 32 bit offsets from a register such as 
the stack pointer “sp”. The UPPER16 instruction takes care of the most significant 16 
bits of the offset and the addition of the stack pointer. The following instruction (e.g., 
LOAD or STORE) will typically add in the least significant 16 bits of the offset and 
perform the memory access.	
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Commentary Recall that the ADDI instruction is limited to an immediate value of 
-32,768 … +32,767:	

	 ADDI RegD,Reg1,immed16	

In order to add a larger number, the following code sequence is recommended and 
will work in all cases:	

	 MOVI t,value	
	 ADD RegD,Reg1,t	

However, for a 32-bit value (i.e., in the range -2,147,483,648 … +2,147,483,647), 
notice that the synthetic MOVI will expand to two instructions, giving:	

	 UPPER20 t,upper-20	
	 XORI t,t,lower-16	
	 ADD RegD,Reg1,t	

However, you might consider achieving the same effect with this shorter code 
sequence:	

	 UPPER16 t,Reg1,upper-16	
	 ADDI RegD,t,lower-16	

But beware: The overflow behavior is not equivalent! The UPPER16 instruction 
performs an addition which ignores overflow. The UPPER16 instruction is meant for 
addresses, so this is reasonable. UPPER16 is not meant for general purpose addition.	

SHIFT16 RegD,Reg1,immed16 RegD ← (Reg1 + immed16) << 16

This instruction combines the immed16 value and the value in register Reg1 and 
places the computed result in register RegD. The 16 bit immediate value is injected 
into the lower 16 bits of the value in register Reg1. The value is then shifted left by 
16 bits. The result is stored into register RegD.	

By inject, we mean the 16 new bits overwrite the original bits [15:0] of the value 
fetched from Reg1. The “+” in the summary above is a bit misleading. The following 
is more precise:	
	 RegD ← Reg1[47:16] || immed16 || 0x0000	
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The immediate value is not sign-extended and there is no overflow check.	

This instruction is useful in loading arbitrary 64 bit values into a register. See the 
discussion for the MOVI instruction to see how this instruction is used.	

ADDPC RegD,immed20 RegD ← PC+immed

The 20 bit immediate value gives a PC-relative “target address” which is moved into 
register RegD.	

The immediate value is sign-extended and added to the current value of the PC (the 
address of the ADDPC instruction, not the following instruction).	

Since the PC and the offset are relatively small numbers, overflow is impossible. The 
PC is a positive number; i.e., it is not sign-extended.	

This instruction is used in loading the address of a static variable or function into a 
register, when that address is within -524,288 … +524,287 of this instruction.	

A program can determine its own address with this instruction. For example, 
xecuting “ADDPC r1,0” will move the address of the ADDPC instruction into register 
r1.	

AUIPC RegD,immed20 RegD ← (immed<<16) + PC

The AUIPC instruction is identical to the UPPER20 instruction, except that the PC is 
also added in.	

In more detail, the 20 bit immediate value is sign-extended. It is then shifted left by 
16 bits. This value is added to the current value of the PC (the address of this 
instruction, not the following instruction) and the result is placed in register RegD.	

Since the PC and the offset are relatively small numbers, overflow is impossible. The 
PC is a positive number; i.e., it is not sign-extended.	

The AUIPC instruction is useful for building any PC-relative relocatable address. The 
AUIPC instruction takes care of the most significant 20 bits. The following 
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instruction (e.g., JALR, LOAD.x, etc.) will then add in the least significant 16 bits and 
perform the jump, load, etc.	

JAL RegD,immed20 RegD ← return addr; Target ← PC+offset

May cause a “Null Address Exception”	

The 20 bit immediate value gives a PC-relative “target address". The immediate 
value is sign-extended and added to the current value of the PC (the address of the 
JAL instruction, not the following instruction). The address of the instruction 
following the JAL is stored into RegD, which is typically the link register, “lr”. Finally, 
the PC is loaded with the target address, causing a jump.	

The upper 28 bits [63:36] of the target address are ignored, since addresses are 36 
bits. The least significant bit of the address is ignored and 0 is assumed, forcing 
halfword alignment. There is no overflow check.	

This instruction is used to implement the function CALL instruction. The return will 
be made to the instruction following the JAL, and this address is exactly what this 
instruction will save in the link register.	

This instruction can also be used to implement a PC-relative jump or goto, in which 
case the zero register “r0” is used as the destination for the link value. Since there is 
to be no return, there is no reason to save a return address.	

Any attempt to load the PC with zero will cause a “Null Address Exception”. 
Exceptions will only occur if the jump is taken; if the jump is not taken, no exception 
will occur.	

In systems without compressed instructions and in which alignment is required for 
instructions, there may be an “Unaligned LOAD/STORE Exception” if the target 
address is not properly aligned. Alternatively, such systems may simply ignore the 
final bits, rounding the target address down to force alignment.	
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JALR RegD,immed16(Reg1) RegD ← return addr; Target ← offset+Reg1

May cause a “Null Address Exception”	

The 16 bit immediate value is sign-extended and added to the current value of 
register Reg1, giving a “target address”. The address of the instruction following the 
JALR is stored into RegD, which is typically the link register, “lr”. Finally, the PC is 
loaded with the target address, causing a jump.	

The upper 28 bits [63:36] of the target address are ignored, since addresses are 36 
bits. The least significant bit of the address is ignored and 0 is assumed, forcing 
halfword alignment. There is no overflow check.	

This instruction can be used to implement an indirect jump, via register. It is also 
used to implement the RETURN instruction. It is also used to implement the CALL 
instruction when the target address exceeds the 20 bits accommodated by the JAL 
instruction.	

Any attempt to load the PC with zero will cause a “Null Address Exception”. 
Exceptions will only occur if the jump is taken; if the jump is not taken, no exception 
will occur.	

In systems without compressed instructions and in which alignment is required for 
instructions, there may be an “Unaligned LOAD/STORE Exception” if the target 
address is not properly aligned. Alternatively, such systems may simply ignore the 
final bits, rounding the target address down to force alignment.	

*CALL address Jump to address; save return addr in “lr”
*CALLR Reg1 Jump to address; save return addr in “lr”

May cause a “Null Address Exception”	

Synthetic, Variable Length.	

Register t Usage: May be modified (CALL); Okay to use as Reg1.	

In the case of the CALL instruction, the target is given by the “address” operand, and 
may be any absolute or relocatable address. Typically the programmer or compiler 
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will use a symbolic label to stand for the address, but a hard-coded number can be 
used, too.	

In the case of CALLR, the target address is in register Reg1.	

Since all program-generated addresses are 36 bits, only the lower 36 bits of any 
target address can affect the effective address. The upper 28 bits [63:36] of any 
target address are always ignored.	

The CALLR instruction is implemented with:	
	 JALR	 lr,0(Reg1)	

In the case of CALL, the address will not normally be known until link-time. 
Consequently, the actual instruction sequence may not be determined until link-
time. (However in some cases, the assembler will be able to produce the final 
instruction sequence.)	

If address is within the range -524,288 … +524,287 from the CALL instruction (i.e., 
within the range of a 20-bit offset), then CALL is implemented with:	
	 JAL	 lr,address	

Otherwise (i.e., a full 36 bit relative offset from the PC is needed), then CALL is 
implemented with:	
	 AUIPC	 t,upper-20	
	 JALR	 lr,lower-16(t)	

If the target address is an absolute address in the range -32,768 … +32,767 (i.e., 
within the lowest 32 GiBytes of the address space 0x0_0000_0000 … 0x0_0000_7FFF 
or within the highest 32 GiBytes of the address space 0xF_FFFF_8000 … 
0xF_FFFF_FFFF), then CALL is implemented with:	
	 JALR	 lr,address(r0)	

Otherwise (i.e., an absolute address is provided and a full 36 bits are required), CALL 
is implemented with:	
	 UPPER20	 t,upper-20	
	 JALR	 lr,lower-16(t)	

In the above code, “upper-20” indicates bits [35:16] of the address and “lower-16” 
indicates bits [15:0]. The JALR instruction will sign-extend the immediate lower-16 
value and add it to the register. To compensate, the value used for upper-20 will have 
to be adjusted accordingly.	
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*JUMP address Jump to address

Synthetic, Variable Length, May cause a “Null Address Exception”	

Register t Usage: May be modified.	

See the comments regarding “address” for the CALL instruction.	

This instruction is implemented exactly like the CALL instruction, except the register 
r0 is used for the link register. In other words, the return address is discarded, 
instead of saved.	

If address is within the range -524,288 … +524,287 from the JUMP instruction (i.e., 
within the range of a 20-bit offset), then JUMP is implemented with:	
	 JAL	 r0,address	

Otherwise (i.e., a full 36 bit relative offset from the PC is needed), then JUMP is 
implemented with:	
	 AUIPC	 t,upper-20	
	 JALR	 r0,lower-16(t)	

If the target address is an absolute address in the range -32,768 … +32,767, then 
JUMP is implemented with:	
	 JALR	 r0,address(r0)	

If an absolute addressing requiring 36 bits is given, then JUMP is implemented with:	
	 UPPER20	 t,upper-20	
	 JALR	 r0,lower-16(t)	

In the above code, “upper-20” indicates bits [35:16] of the address and “lower-16” 
indicates bits [15:0]. The JALR instruction will sign-extend the immediate lower-16 
value and add it to the register. To compensate, the value used for upper-20 will have 
to be adjusted accordingly.
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*JR Reg1 Indirect jump, via register

Synthetic, May cause a “Null Address Exception”	

Register t Usage: Not used; Okay to use as Reg1.	

This instruction jumps to the address contained in the register.	

It is implemented with:	
	 JALR	 r0,0(Reg1)	

*RET <no operands> Return value is in link reg “lr”

Synthetic, May cause a “Null Address Exception”	

Register t Usage: Not used.	

A jump is made to the address saved in the link register.	

This instruction is implemented with:	
	 JALR	 r0,0(lr)	

Commentary The basic approach to function call and return is to store the return 
address (i.e., the address of the instruction following the CALL instruction) in a 
register. By convention, one register (named “lr”) is set aside for this purpose.	

A “leaf” function is a function that does not call any other functions. For leaf 
functions, there is no need to save the return address on the stack, since it can 
remain undisturbed in register “lr” until the function is ready to return. This avoids 
two (costly) accesses to memory, one to save the return address and one to restore 
it.	

Some functions can pass all arguments and return values in registers and can store 
all local variables in registers. Such lucky functions can get by without needing to 
use the stack and can execute without ever accessing memory, which enhances 
execution speed.	
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In the case of non-leaf functions, this link register scheme will not work. Instead, the 
function must explicitly save its return address, and this is normally done on the 
stack. Thus, the function “entry prologue” will include a STORE instruction to save 
the return address, while the function “exit epilogue” will include a LOAD instruction 
directly before the RETURN instruction.	

ENTERFUN RegD,Reg1,immed16  Save lr, push frame onto stack
EXITFUN RegD,Reg1,immed16 	 	 Retrieve lr, pop frame, and return

May cause a page-related exception, “Unaligned LOAD/STORE Exception”, “Null 
Address Exception”, “Arithmetic Exception”, or “Stack Overflow Exception”	

The ENTERFUN instruction has the same effect as the following instruction 
sequence:	

STORED -8(sp),lr
ADDI RegD,Reg1,immed16

The EXITFUN instruction has the same effect as:	

ADDI RegD,Reg1,immed16
LOAD pc,-8(RegD)

Of course, the Program Counter (PC) is not a directly addressable register. The above 
pseudo-code for EXITFUN is merely suggestive. In reality, a doubleword is simply 
fetched from memory and used as the target address to jump to.	

In the case of ENTERFUN, when an exception arises from the store operation, the 
destination register RegD may or may not be modified. If the addition causes 
overflow, an Arithmetic Exception will occur. If the instruction modifies the sp 
register and the new value is less than the StackLimit field in csr_status, a "Stack 
Overflow Exception will occur. If the addition causes an exception, the store 
operation may or may not be performed.  These are implementation dependencies.	4

 If the instruction raise more than one exception, only one exception will occur, but we do not 4

specify which exception takes priority. This is an implementation dependency for both ENTERFUN 
and EXITFUN.
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In the case of EXITFUN, when an Arithmetic Exception arises from the addition, the 
load operation may or may not be performed and the PC may or may not be updated. 
If the load operation causes an exception, the addition may or may not be 
performed. Whenever an exception occurs, trap processing saves the previous value 
of the PC in csr_prevpc. If the load operation completes without error, but the 
addition results in an exception, it is indeterminate which value stored in 
csr_prevpc. All these are implementation dependencies.	

The memory address is computed by adding -8 to the contents of a register 
(normally sp). Overflow on this addition is ignored. The upper 28 bits [63:36] of the 
address are ignored and only the lower 36 bits [35:0] are used. The resulting 
address must be non-zero; any attempt to load or store into address zero will result 
in a “Null Address Exception” being signaled. The resulting address must be 
doubleword aligned; if not, a “Unaligned LOAD/STORE Exception” will be signaled.	

Both the addition and the memory operation are performed atomically. Assuming 
there are no exceptions, if one operation is performed the other will also be 
performed without the possibility of traps occurring between them, i.e., in the 
middle of the instruction.	

Commentary To understand the purpose of ENTERFUN and EXITFUN, consider the 
following example function, which allocates a frame of 24 bytes on the stack. The 
return address along with a couple of registers are stored in the frame on entry and 
then restored before returning.	

According to the standard program calling conventions, the return address must 
always be stored in the top (i.e., highest) doubleword of the frame. Other locations in 
the frame will be used in different ways, depending on the needs of the particular 
function.	
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myFunc:
addi      sp,sp,-24 # Function Prologue
store.d   0(sp),r1 # .
store.d   8(sp),r2 # .
store.d   16(sp),lr # .
...
load.d    r1,0(sp) # Return Sequence           
load.d    r2,8(sp) # .           
load.d    lr,16(sp) # .           
addi      sp,sp,24 # .
ret # .

We can rewrite the above code as follows: 	5

myFunc:
store.d   -8(sp),lr # Function Prologue
addi      sp,sp,-24 # .
store.d   0(sp),r1 # .
store.d   8(sp),r2 # .
...
load.d    r1,0(sp) # Return Sequence           
load.d    r2,8(sp) # .           
addi      sp,sp,24 # .
load.d    lr,-8(sp) # .
ret # .

The highlighted code above can be replaced by the ENTERFUN and EXITFUN 
instructions to give:	

 Note that the re-written version saves register lr at -8(sp), beyond and outside the stack (i.e., 5

“above” the “top” of the stack using a negative offset to sp). In certain situations, this may be risky. 
If interrupts are possible and the interrupting trap handler saves things on the stack, disaster will 
result if the trap occurs between saving lr and decrementing sp, since the saved lr will be 
overwritten by the trap handler. With ENTERFUN and EXITFUN, interrupts cannot occur in the 
middle between these two operations, so this problem is avoided. However, in certain situations, 
the KPL compiler will nevertheless generate code that saves values using negative offsets from sp.
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myFunc:
enterfun  sp,sp,-24 # Function Prologue
store.d   0(sp),r1 # .
store.d   8(sp),r2 # .
...
load.d    r1,0(sp) # Return Sequence           
load.d    r2,8(sp) # .           
exitfun   sp,sp,24 # .

Normally, register sp will be used as both Reg1 and RegD in both ENTERFUN and 
EXITFUN. It would be uncommon for any other register to be used.	

If the frame size exceeds what is representable in 16 bits, then we cannot use 
ENTERFUN or EXITFUN or ADDI. In that case, the compiler will need to fall back on 
a more general code sequence.	

Commentary  The ENTERFUN and EXITFUN instructions are unusual in the 
following ways:	

Two registers are implied — the sp and lr registers — in the load and store portions 
of the ENTERFUN and EXITFUN functionality. In all other Blitz-64 instructions, if a 
general purpose register is used, it will be specified explicitly in the instruction. 
Furthermore, wherever a register is specified, any general purpose register can be 
used. In this way, the sp and lr registers now have a special use that is not shared by 
the other registers.	

The ENTERFUN and EXITFUN instructions each perform two very different 
operations. The instruction performs both an addition to a register and a memory 
operation. In all other Blitz-64 instructions, each instruction is limited to a single, 
simple operation. For the most part, the Blitz-64 architecture is RISC, but these 
instructions can reasonably be termed CISC instructions.	
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LOAD.B RegD,immed16(Reg1)  
LOAD.H RegD,immed16(Reg1)  
LOAD.W RegD,immed16(Reg1)  
LOAD.D RegD,immed16(Reg1)  
	  	
STORE.B immed16(Reg1),Reg2  
STORE.H immed16(Reg1),Reg2  
STORE.W immed16(Reg1),Reg2  
STORE.D immed16(Reg1),Reg2	  

May cause a page-related exception, “Unaligned LOAD/STORE Exception”, or “Null 
Address Exception”	

The LOAD instructions transfer a byte/halfword/word/doubleword from main 
memory to the destination register RegD.	

In the case of a LOAD of less than 64 bits, the value will be signed-extended to 64 
bits.	

The STORE instructions transfer a byte/halfword/word/doubleword from register 
Reg2 to main memory.	

In the case of a STORE of less than 64 bits, the upper bits of the register will be 
ignored. There will not be a “Arithmetic Exception” signaled.	

The address is computed by sign-extending the 16 bit immediate value to 64 bits 
and adding it to the contents of register Reg1. Overflow on this addition is ignored. 
The upper 28 bits [63:36] of the address are ignored and only the lower 36 bits 
[35:0] are used.	

The resulting address must be non-zero; any attempt to load or store into address 
zero will result in a “Null Address Exception” being signaled.	

The resulting address must be properly aligned for the size being transferred; if not, 
a “Unaligned LOAD/STORE Exception” will be signaled.	

Commentary The large size of the 16 bit immediate offset in the LOAD and STORE 
instructions provides a lot of flexibility in addressing.	
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To access values stored on the stack using LOAD and STORE instructions, the stack 
pointer register “sp” can be used as Reg1. The stack grows downward toward low 
memory. Therefore, positive offsets from “sp” can be used to access any data within 
the top 32KiBytes of the stack.	

Many language compilers maintain a “frame pointer” as well as a “stack pointer”. The 
frame pointer (often called “fp”) is used in the implementation of stack frames for 
storing local variables in a function invocation. The “fp” register will typically be 
initialized to point to the boundary with the previous stack frame. That is, “fp” will 
point to the top of the current frame and the bottom of the previous frame. As 
always, the “sp” register points to the stack top, accommodating dynamically-sized 
stack frames and ad hoc pushing and popping onto the stack.	

In this approach, negative offsets from “fp” will access variables in the current (top) 
frame and positive offsets will access variable in the previous frames, such as 
function arguments. Given the range of the immed16 offset, this method will 
accommodate stack frames of up to 32 KiBytes in size. For stack frames larger than 
this, an additional instruction may be required for some variables. Thus, in almost 
all cases, stack frame variables will be accessible with a single instruction.	

The Blitz-64 calling conventions do not include a frame pointer register. In other 
words, there is no register named “fp”. However, for functions that need a frame 
pointer, the compiler can choose any register to use. Often, there will be no separate 
thread data area, so register “tp” is normally the logical choice to use as a frame 
pointer. By convention, the compiler will use “tp” as a frame pointer. To prevent 
confusion, we intentionally do not give the “tp” a second name, such as “fp”.	

Data within the lower 32 KiBytes of main memory (addresses 0x0_0000_0000…
0x0_0000_7FFF, i.e., decimal 0…32,767) can be conveniently accessed by using the 
zero register “r0” for Reg1.	

Due to the fact that the upper bits [63:36] of addresses are ignored, data within the 
upper 32 KiBytes of addressable memory (i.e., addresses 0xF_FFFF_8000…
0xF_FFFF_FFFF) is also accessible with negative addresses (i.e., decimal -32,768 … 
-1). This is achieved with a negative immed16 value.	

Assuming the global data pointer register “gp” has been initialized, a range of 64 
KiBytes of static variable data can be accessed with a single LOAD or STORE 
instruction. This can be achieved by initializing the global data pointer “gp” to point 
to the center of the block of 64 GiBytes of global data. The first half of the global data 
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will be accessed with a negative offset and the upper half will be accessed with a 
positive offset.	

Assuming that some register points to an “object” (in the sense of object-oriented 
programming), a single LOAD or STORE instruction can be used to access any field 
within the object, as long as the object is not larger than 32 KiBytes.	

For data located at any other address, an additional instruction will be required. See 
the UPPER20 and UPPER16 instructions.	

Concerning Atomicity of LOAD and STORE Instructions The following machine 
instructions are atomic:	

	 LOAD.B	 LOAD.H	 LOAD.W	 LOAD.D	
	 STORE.B	 STORE.H	 STORE.W	 STORE.D	
	 CAS	

This means the memory operation occurs as a single, uninterruptible unit. 
Conflicting memory operations which touch the same or overlapping memory 
locations will be serialized, which means one operation will be executed to 
completion entirely before the other operation begins execution.	

This assumes that LOADs and STOREs are aligned; if they are not aligned, then an 
“Unaligned LOAD/STORE Exception” will occur and atomicity becomes a software 
issue, and only if the instruction is to be emulated.	

Within the private memory of a single core, unaligned operations may be atomic; 
this is implementation dependent. However, when performed on a shared memory 
address in the presence of multiple processors, the programmer must be careful 
when using unaligned operations. Consider two more-or-less simultaneous attempts 
to STORE different values into a single doubleword that happens to cross a 
boundary and involves two cache lines. Even if operations involving a single cache 
line are atomic, an operation involving two cache lines is not normally atomic. 	

We chose the granularity of atomicity to be 64 bits on the assumption that all 
memory busses and transfer paths to memory and caches will be at least 64 bits in 
width, or at least all bus transactions will accommodate 64 bits. Thus, the atomicity 
of LOADs and STOREs will “come for free”. Perhaps the system busses will transfer 
data in larger units, such as cache lines of 128 bytes, but this should never be relied 
upon.	

Blitz-64 Instruction Set Architecture / Porter	 Page  of 	104 342



Chapter 5: Instructions	

Relying on the atomicity of memory operations is somewhat error prone. To guard 
against race-related bugs, all potentially shared data should be protected by 
software locks. However, for the efficient implementation of “mutex” locks, the 
atomicity of LOAD.x, STORE.x, and CAS (compare-and-set) is critical.	

*LOADB RegD,address	 Where address is any value
*LOADH RegD,address	  
*LOADW RegD,address	  	
*LOADD RegD,address	  	 	

*LOADB RegD,offset(Reg1) 	 Where offset is any value
*LOADH RegD,offset(Reg1)	  
*LOADW RegD,offset(Reg1)	  
*LOADD RegD,offset(Reg1)	  	

Synthetic, Variable Length, may cause a page-related exception, “Unaligned LOAD/
STORE Exception”, or “Null Address Exception”	

Register t Usage: Not used; Okay to use as RegD or Reg1.	

Register Note: RegD and Reg1 must be different !	

In these synthetic instructions, “address” may be any absolute or relocatable 
address. Typically the programmer or compiler will use a symbolic label to stand for 
the address, but a hard-coded number can be used, too. The “offset” operand may be 
any absolute value.	

Both address and offset are limited to 36 bits. Since all program-generated addresses 
are 36 bits, only the lower 36 bits of any address or offset can affect the effective 
address. The upper 28 bits [63:36] of any address are always ignored.	

Normally, the address will not be known until link-time. The offset may also be 
unknown until link-time. In such cases, the actual instruction sequence may not be 
determined until link-time. (However in some cases, the assembler will be able to 
produce the final instruction sequence.)	
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In the following, we describe the sequence of machine instructions produced for a 
LOADB instruction. The LOADH, LOADW, and LOADD instructions are handled 
analogously.	

Consider an instruction of the form:	
	 LOADB	 RegD,address	

If the value of address is within the range of -32,768 … +32,767, then use:	
	 LOAD.B	 RegD,address(r0)	

If address is any other value, then use:	
	 UPPER20	 RegD,upper-20	
	 LOAD.B	 RegD,lower-16(RegD)	

The above code works for any absolute address. Normally the linker will convert 
(i.e., “resolve”) all addresses to absolute numbers. But if PC-relative addressing is 
demanded, the following sequence must be used, regardless of the size of the offset:	
	 AUIPC	 RegD,upper-20	
	 LOAD.B	 RegD,lower-16(RegD)	

Consider an instruction of the form:	
	 LOADB	 RegD,offset(Reg1)	

If offset is within the range of -32,768 … +32,767, then use:	
	 LOAD.B	 RegD,offset(Reg1)	

If offset is within 32 bits (i.e., within the range -2,147,483,648 … +2,147,483,647), 
then use:	
	 UPPER16	 RegD,Reg1,upper-16	
	 LOAD.B	 RegD,lower-16(RegD)	

If offset is a value even larger than 32 bits, then use the following. (An offset larger 
than 32 bits would be quite rare, so this sequence won’t be needed often.)	
	 UPPER20	 RegD,upper-20	
	 ADD	 RegD,RegD,Reg1 	 	
	 LOAD.B	 RegD,lower-16(RegD)	

(This sequence contains an ADD instruction; can this cause an “Arithmetic 
Exception”? The UPPER20 instruction is only capable of loading a 36 bit value. 
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Assuming that Reg1 contains a legal address (i.e., a value limited to 36 bits) the ADD 
instruction cannot cause an Arithmetic Exception.)	

In the above code, “upper-16” indicates the upper 16 bits [31:16] of the value, 
“upper-20” indicates the upper 20 bits [35:16] of the value, and “lower-16” indicates 
bits [15:0]. The LOAD instruction will sign-extend the immediate lower-16 value and 
add it to the register. To compensate, the value used for upper-16 and/or upper-20 
will have to be adjusted accordingly.	

To understand why RegD and Reg1 must be different, consider the following when 
the offset is large:	
	 LOADB	 r5,offset(r5)	

Here is the code generated; obviously it will not work correctly.	
	 UPPER20	 r5,upper-20	 Error: Original value of r5 is lost.	
	 ADD	 r5,r5,r5 	 	
	 LOAD.B	 r5,lower-16(r5)

*STOREB address,Reg2 	 Where address is any value
*STOREH address,Reg2	  
*STOREW address,Reg2	  
*STORED address,Reg2	  	

*STOREB offset(Reg1),Reg2 	 Where offset is any value
*STOREH offset(Reg1),Reg2	  
*STOREW offset(Reg1),Reg2	  
*STORED offset(Reg1),Reg2	  

Synthetic, Variable Length, May cause a page-related exception, “Unaligned LOAD/
STORE Exception”, or “Null Address Exception”	

Register t Usage: May be modified; Must not use as Reg1 and/or Reg2 !	

Concerning “address” and “offset”, see the comments under the LOAD instructions.	

As with the LOAD instructions, we describe how the synthetic instruction can be 
implemented with 1, 2, or 3 instructions.	
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In some cases we need a register in which to build a large address. In the case of the 
LOAD instructions, we used the destination register RegD, since it was to be 
overwritten anyway. In the case of the STORE instructions, this will not work. 
Instead, we use the temporary register “t”.	

Consider an instruction of the form:	
	 STOREB	 address,Reg2	

If the value of address is within the range of -32,768 … +32,767, then use:	
	 STORE.B	 address(r0),Reg2	

If address is any other value, then use:	
	 UPPER20	 t,upper-20	
	 STORE.B	 lower-16(t),Reg2	

If PC-relative addressing is demanded, then use:	
	 AUIPC	 t,upper-20	
	 STORE.B	 lower-16(t),Reg2	

Consider an instruction of the form:	
	 STOREB	 offset(Reg1),Reg2	

If offset is within the range of -32,768 … +32,767, then use:	
	 STORE.B	 offset(Reg1),Reg2	

If offset is within 32 bits (i.e., within the range -2,147,483,648 … +2,147,483,647), 
then use:	
	 UPPER16	 t,Reg1,upper-16	
	 STORE.B	 lower-16(t),Reg2	

If offset is a value even larger than 32 bits, then use:	
	 UPPER20	 t,upper-20	
	 ADD	 t,t,Reg1	
	 STORE.B	 lower-16(t),Reg2	
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CAS RegD,Reg1,Reg2,Reg3 	  Compare and Set

May cause a page-related exception, or “Null Address Exception”	

Register Reg1 contains the address of a doubleword, Reg2 contains the expected 
“old” value, and Reg3 contains the “new”value.	

This operation will load a doubleword from memory. If the value is equal to the 
expected old value (in Reg2), then memory will be updated by storing the new value 
(in Reg3) into memory and 1 will be moved into RegD. If not equal, memory will not 
be updated and 0 will be moved into RegD.	

More precisely, this instruction does the following as one atomic operation:	

if *Reg1 == Reg2
  *Reg1 ← Reg3
  RegD ← true
else
  RegD ← false
endIf

The address in Reg1 is forced to be doubleword aligned by ignoring the final 3 bits. 
Thus, an “Unaligned LOAD/STORE Exception” cannot occur.	

This instruction is not normally used on memory-mapped I/O devices. This 
instruction is implementation dependent if performed on a memory-mapped I/O 
address and may not work as expected.	

Commentary The compare-and-set (CAS) instruction is used for concurrency 
control to allow synchronization between multiple threads which may be running 
on different cores accessing shared memory.	

Consider implementing a mutex lock, which will be represented as a doubleword 
with 0=unlocked and 1=locked. If it is currently locked, the following code will spin 
in a tight loop continually executing the CAS instruction to check it.	
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To acquire the lock:	
      movi     r1,…addressOfLock…
      movi     r3,1
loop:
      cas      r7,r1,r0,r3
      beqz     r7,loop

To release the lock:	
      movi     r1,…addressOfLock…
      store.d  0(r1),r0

Next, consider the case where we have several cores, each executing a thread with 
the goal of selecting one of the cores as a “leader”. For example, we might want all 
cores to agree on which core will act as “master”, with the others acting as “slaves”.	

Assume that each core has a unique ID number and the goal is for these concurrent 
processes to select exactly one core. We will assume there is a shared memory 
location (which we will name Leader) which will be used for the election. The Leader 
variable is assumed to be a doubleword initialized to zero.	

Here is the code that each core will execute in order to chose their leader:	
      movi     r1,…address of Leader…
      movi     r3,…my core ID…
      cas      r7,r1,r0,r3
      bnez     r7,WeWon
WeLost:
      load.d   …,0(r1)      Load the ID of the leader

Commentary To use the CAS instruction, the KPL programming language has a 
built-in function with this usage:	

	 function cas (p: ptr to int, old: int, new: int) returns bool	

Such a function could be implemented in assembly code as:	

casFunct:
      cas    r1,r1,r2,r3
      ret    
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However, the compiler will recognize this as a predefined function and insert the 
CAS instruction inline.	

FENCE <no operands>	

No exceptions; Not privileged	

You might imagine that the processor fetches instructions in order and executes 
them in sequence; this is the programming model that programmers and compilers 
naturally adopt.	

However, to increase performance, modern processors will sometimes execute 
instructions out of sequence. This is acceptable as long as the effect is identical to 
executing them in the sequence they appear.	

In reordering instructions, the processor implicitly assumes that there are no other 
processors. However, this may not be true and the results can be incorrect in a 
multiprocessor system with shared memory. Programmers assume the operations in 
their code are executed in the sequence written but, with concurrent algorithms, 
violations of this assumption can cause race bugs.	

The FENCE instruction is used to ensure critical instructions complete before other 
instructions begin. Therefore, FENCE constrains and limits out-of-order execution 
and may introduce delays and pipeline bubbles.	

The FENCE instruction affects instructions that read or write to memory. This 
includes:	

	 LOAD.B, LOAD.H, LOAD.W, LOAD.D	
	 STORE.B, STORE.H, STORE.W, STORE.D	
	 CAS, TLBCLEAR, TLBFLUSH, CHECKADDR	

The FENCE instruction requires that any of the above instructions that appear 
before the FENCE instruction will be completed before the FENCE instruction. It 
requires that any of the above instructions that appear after the FENCE instruction 
will not be started until after the FENCE instruction.	

To say this another way, let’s call all memory-related instructions that appear in the 
instruction stream before the FENCE as X and all memory-related instructions that 
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appear after the FENCE as Y. The FENCE instruction says, “Finish executing all X 
instructions before starting the execution of any Y instructions.”	

Commentary In some ISAs, a distinction is made between operations that read 
memory and operations that write memory. Also a distinction can be made between 
operations that affect memory and operations that affect I/O. RISC-V is an example.	

We chose to keep it simple and provide a single FENCE instruction for all cases.	

Commentary To use the FENCE instruction, the KPL programming language has a 
built-in function which takes no arguments and returns no result:	

	 function fence ()	

Such a function could be implemented in assembly code as:	

fenceFunct:
      fence
      ret    

However, the compiler will recognize this as a predefined function and insert the 
FENCE instruction inline.	

Like an out-of-order processor, compilers also reorder instructions.	

In fact, the compiler can make major changes to improve performance, for example, 
by keeping variables in registers and delaying writes to memory for long periods of 
time. While these optimizations improve performance, they also open the door for 
race bugs in concurrent programs. Thus, there must be a way to instruct the 
compiler when to limit optimizations and execute the operations in the order 
specified.	

In addition to inserting a FENCE instruction, the KPL compiler will also recognize 
the use of the predefined “fence ()” function as a signal to avoid the sorts of 
reordering and register caching that could confuse and break concurrent code.	

The Blitz approach may seem like a blunt force tool and it is certainly the case that 
other ISAs and languages provide a finer-grained level of control. However, we chose 
the simple approach of Blitz for two reasons.	
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First, since it is simpler, we may avoid a programmer’s failure to fully and adequately 
constrain memory operations that could occur with a finer level of control. In other 
words, a more complicated approach opens the way for the programmer to use it 
incorrectly. We feel that race bugs are so problematic that anything we can do is 
worthwhile.	

Second, the sections of code that will be affected by a particular use of “fence” will 
probably be quite small. We do not expect many variables to be “in play” and subject 
to movement around a particular use of “fence” beyond the variables that we are 
intending to constrain, so the only optimizations that are eliminated are the ones we 
need to eliminate. The overly blunt “fence” of Blitz will not cause many unwanted, 
unintended inefficiencies. (There’s probably an entire PhD thesis to be had in 
sorting this issue out.)	

Although this is never a good justification, the Blitz/KPL approach may be easier to 
implement than the approach of declaring certain variables to be “volatile”.	

ALIGNH RegD,Reg1,Reg2,Reg3 Reg3 (unaligned addr) gives shift amount
ALIGNW RegD,Reg1,Reg2,Reg3 Reg3 (unaligned addr) gives shift amount
ALIGND RegD,Reg1,Reg2,Reg3 Reg3 (unaligned addr) gives shift amount

The ALIGN instructions support the emulation of memory LOADs in which the target 
address is not properly aligned.	

The high-order portion of the data comes from Reg1, the low-order portion of the 
data comes from Reg2. The least significant bits in Reg3 tell how to shift/combine 
the portions. The result is sign-extended and placed in RegD.	

The ALIGN instructions use only the least signifiant bits of Reg3, so the (possibly 
unaligned) target address itself can be used. These bits are the final bits of the 
address and tell how “misaligned” the address is, i.e., how much shifting must be 
done.	
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Commentary Let’s look at the operation of the ALIGN instructions in more detail.	

ALIGNW	

For the ALIGNW instruction, the goal is to select four bytes, which may be aligned in 
any of four ways.	

Assume the memory contains the following sequence of bytes, where xx represents 
one byte. Word alignment boundaries are indicated with a period, so words AA BB 
CC DD and EE FF GG HH are properly aligned. The (possibly unaligned) target 
address will fall into one of the four cases shown. 	

	 	 …  xx xx xx xx.AA BB CC DD.EE FF GG HH.xx xx xx xx  …	
	 0	                AA BB CC DD	
	 1	                   BB CC DD EE	
	 2	                      CC DD EE FF	
	 3	                         DD EE FF GG	

The LOADW instruction only loads properly aligned words. In order to retrieve a 
(possibly misaligned) word such as CC DD EE FF, we will LOAD two consecutive 
words. Regardless of alignment, this guarantees that we will get all the bytes. 	

Assume that Reg1 and Reg2 have been loaded using the LOADW instruction from 
two consecutive words in the memory that contain the desired word.	

	 Reg1	 xx xx xx xx AA BB CC DD	
	 Reg2	 xx xx xx xx EE FF GG HH	

The result placed in RegD will be determined by the least significant two bits in 
Reg3, i.e., the final bits of the address. The resulting word will be sign-extended to fill 
RegD.	

	 Reg3	 Result in RegD	
	 00	 ss ss ss ss AA BB CC DD	
	 01	 ss ss ss ss BB CC DD EE	
	 10	 ss ss ss ss CC DD EE FF	
	 11	 ss ss ss ss DD EE FF GG	
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ALIGNH	

For the ALIGNH instruction, the goal is to select two bytes, which may be aligned in 
any of two ways.	

Assume the memory contains the following sequence of bytes, where xx represents 
one byte. Halfword alignment boundaries are indicated with a period, so words AA 
BB and CC DD are properly aligned. The (possibly unaligned) target address will fall 
into one of the two cases shown. 	

	 	  …  xx.xx xx.AA BB.CC DD.xx xx.xx  …	
	 0	              AA BB	
	 1	                 BB CC	

The LOADH instruction only loads properly aligned halfwords. In order to retrieve a 
(possibly misaligned) halfword such as BB CC, we will LOAD two consecutive 
halfwords. Regardless of alignment, this guarantees that we will get all the bytes. 	

Assume that Reg1 and Reg2 have been loaded using the LOADH instruction from two 
consecutive halfwords in the memory that contain the desired halfword.	

	 Reg1	 xx xx xx xx xx xx AA BB	
	 Reg2	 xx xx xx xx xx xx CC DD	

The result placed in RegD will be determined by the least significant bit in Reg3, i.e., 
the final bit of the address. The resulting halfword will be sign-extended to fill the 
RegD.	

	 Reg3	 Result in RegD	
	 0	 ss ss ss ss ss ss AA BB	
	 1	 ss ss ss ss ss ss BB CC	

ALIGND	

For the ALIGND instruction, the goal is to select eight bytes, which may be aligned as 
follows. The period indicates properly aligned doubleword boundaries. The 
(possibly unaligned) target address will fall into one of the eight cases shown.	

	 	 … .AA BB CC DD EE FF GG HH.II JJ KK LL MM NN OO PP. …	
	 0	    AA BB CC DD EE FF GG HH	

Blitz-64 Instruction Set Architecture / Porter	 Page  of 	115 342



Chapter 5: Instructions	

	 1	       BB CC DD EE FF GG HH II	
	 2	          CC DD EE FF GG HH II JJ	
	 3	             DD EE FF GG HH II JJ KK	
	 4	                EE FF GG HH II JJ KK LL	
	 5	                   FF GG HH II JJ KK LL MM	
	 6	                      GG HH II JJ KK LL MM NN	
	 7	                         HH II JJ KK LL MM NN OO	

The LOADD instruction only loads properly aligned doublewords. In order to 
retrieve a (possibly misaligned) doubleword, we will LOAD two consecutive 
doublewords.	

Assume that Reg1 and Reg2 have been loaded using the LOADD instruction from two 
consecutive doublewords in the memory that contain the desired halfword.	

	 Reg1	 AA BB CC DD EE FF GG HH
	 Reg2	 II JJ KK LL MM NN OO PP	

The result placed in RegD will be determined by the least significant three bits in 
Reg3, i.e., the final bits of the address.	

	 Reg3	 Result in RegD	
	 000	 AA BB CC DD EE FF GG HH	
	 001	 BB CC DD EE FF GG HH II	
	 010	 CC DD EE FF GG HH II JJ	
	 011	 DD EE FF GG HH II JJ KK	
	 100	 EE FF GG HH II JJ KK LL	
	 101	 FF GG HH II JJ KK LL MM	
	 110	 GG HH II JJ KK LL MM NN	
	 111	 HH II JJ KK LL MM NN OO	

Code Examples	

Here is an example of how to use the ALIGNW instruction. Assume that we wish to 
load a word into register RegD from the (possibly unaligned) target address 
contained in register “RegAddr”. This code requires two additional registers, 
represented as RegLo and RegAlign.	

Registers “RegD” and “RegLo” will be used to contain two consecutive words from 
memory, which will contain the target 4 bytes somewhere within them. First, we 

Blitz-64 Instruction Set Architecture / Porter	 Page  of 	116 342



Chapter 5: Instructions	

must modify the address to force alignment, to avoid a “Unaligned LOAD/STORE 
Exception”, placing the rounded-down version of the address in register “RegAlign”. 
Then we load two consecutive words from memory. Finally, we use the ALIGNW 
instruction to compute the desired result.	

 ANDI RegAlign,RegAddr,0xFFFC
LOADW RegD,0(RegAlign)
LOADW RegLo,4(RegAlign)
ALIGNW RegD,RegD,RegLo,RegAddr

[ Note that, in the case when the address happens to be correctly aligned, the second 
LOAD instruction is unnecessary. Also note that if the target word happens to be the 
last word in a page, the second LOAD will retrieve data on a different page than the 
first LOAD. In rare cases, this second page could have different permissions or be an 
unallocated page, causing an exception to occur. This exception is extraneous and 
should be avoided since it could cause the program to fail. To avoid this, the 
programmer could add an extra 8 bytes to the end of the data, which will guarantee 
that an extraneous unnecessary LOAD will not cause problems. Or the programmer 
could use the approach described next.]	

Here is a variation which avoids an unnecessary LOADW in the case where the 
address happens to be correctly aligned.	

 ANDI RegAlign,RegAddr,0xFFFC
LOADW RegD,0(RegAlign)
ANDI t,RegAddr,0x03
BEQZ t,EndLabel
LOADW RegLo,4(RegAlign)
ALIGNW RegD,RegD,RegLo,RegAddr

 EndLabel:

To determine which of these sequences is superior will require a performance 
analysis and depend on the relative costs of LOADW versus the ANDI/BEQZ/
ALIGNW instructions.	

Without the ALIGN instructions, the alternative to loading data from arbitrary, 
unaligned addresses is to load individual bytes, one by one. For example, to load a 
word, we could use a code sequence like this. For loading an unaligned doubleword, 
the code sequence will be twice as long.	
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LOADB r1,0(RegAddr) # Get MSByte and sign bits
LOADB r2,1(RegAddr) # Get byte 2
ANDI r2,r2,0x0ff # .
SLL r1,r1,8 # Shift byte 2 into result
ORI r1,r1,r2 # .
LOADB r2,2(RegAddr) # Get byte 3
ANDI r2,r2,0x0ff # .
SLL r1,r1,8 # Shift byte 3 into result
ORI r1,r1,r2 # .
LOADB r2,3(RegAddr) # Get LSByte
ANDI r2,r2,0x0ff # .
SLL r1,r1,8 # Shift LSByte into result
ORI r1,r1,r2 # .

The hardware implementation of the ALIGN instructions is fairly simple and small. 
The hardware will require some shifting of bits (no gates), several multiplexors to 
select which result to use, and the circuitry to sign-extend either a halfword or a 
word (which might already be present anyway).	

The benefit of the ALIGN instructions depends on how much unaligned data we 
expect to encounter. The KPL language always places all variables, objects, and fields 
on aligned boundaries, so there will be almost no unaligned data in KPL, unless the 
programmer decides to do it explicitly with pointers. Occasionally, we will encounter 
unaligned data from files read in, or data received over the Internet.	

INJECT1H RegD,Reg1,Reg2,Reg3 RegD ← Reg1; inject Reg2 per addr in Reg3
INJECT2H RegD,Reg1,Reg2,Reg3 RegD ← Reg1; inject Reg2 per addr in Reg3
INJECT1W RegD,Reg1,Reg2,Reg3 RegD ← Reg1; inject Reg2 per addr in Reg3
INJECT2W RegD,Reg1,Reg2,Reg3 RegD ← Reg1; inject Reg2 per addr in Reg3
INJECT1D RegD,Reg1,Reg2,Reg3 RegD ← Reg1; inject Reg2 per addr in Reg3
INJECT2D RegD,Reg1,Reg2,Reg3 RegD ← Reg1; inject Reg2 per addr in Reg3

The INJECT instructions support the emulation of memory STOREs in which the 
destination address is not properly aligned.	

The contents of Reg1 are copied to RegD with no shifting. However, some bytes from 
Reg2 may be injected into the copied data. By “injected”, we mean a byte from Reg2 
will replace a byte being copied from Reg1 to RegD.	
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The value in Reg3 controls which bytes from Reg2 are injected into the data and 
where in the data they are injected. The least significant bits in Reg3 tell how to 
shift/combine the values in Reg1 and Reg2 to produce the value stored in RegD.	

The INJECT instructions use only the least signifiant bits of Reg3, so the (possibly 
unaligned) destination address itself can be used. These bits are the final bits of the 
address and tell how “misaligned” the address is, i.e., how much shifting must be 
done.	

In the case of INJECT1H and INJECT2H, only the least significant bit of Reg3 is used. 
In the case of INJECT1W and INJECT2W, the least significant 2 bits of Reg3 are used. 
In the case of INJECT1D and INJECT2D, the least significant 3 bits of Reg3 are used. 
The remaining bits in Reg3 are ignored.	

Details of the INJECT Instructions	

Let’s look at the operation of the INJECT instructions in more detail, starting with a 
code sequence to show how they can be used. This example deals with doubleword-
sized data; the code for halfword or word data would be virtually identical.	

To store a doubleword “source value” into an unaligned memory address, the code 
must first LOAD two aligned doublewords from memory, then use the source 
doubleword to modify (i.e., “inject”) some bytes into each of these doublewords, 
then issue two STORE instructions to store the updated doublewords back into 
memory.	

# Assume the unaligned address is in r4
# Assume the source data to be stored is in r7
ANDI r5,r4,0xFFF8 # Compute an aligned address
LOAD.D r1,0(r5) # Read two doublewords from memory
LOAD.D r2,8(r5) # .
INJECT1D r1,r1,r7,r4 # Inject bytes into lefthand dword
INJECT2D r2,r2,r7,r4 # Inject bytes into righthand dword
STORE.D 0(r5),r1 # Store two dwords back to memory
STORE.D 8(r5),r2 # .

(It’s possible that the address happens to be aligned and, by adding a test and 
branch, some LOADs and STOREs could be avoided. This optimization is not shown.)	
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INJECT1D and INJECT2D	

The two INJECTD instructions will inject eight bytes in one of eight ways, depending 
on the unaligned address, as shown next.	

Assume that the most significant doubleword fetched from memory is	
	 xx xx xx xx xx xx xx xx	
Assume the least significant doubleword fetched from memory is	
	 yy yy yy yy yy yy yy yy	
Assume that the source value to be stored is	
	 AA BB CC DD EE FF GG HH

The source doubleword will need to be injected into these two doublewords in one 
of these 8 ways, where “..” means that the byte is unchanged.	

	 	 xx xx xx xx xx xx xx xx    yy yy yy yy yy yy yy yy

	 0	 AA BB CC DD EE FF GG HH    .. .. .. .. .. .. .. ..	
	 1	 .. AA BB CC DD EE FF GG    HH .. .. .. .. .. .. ..	
	 2	 .. .. AA BB CC DD EE FF    GG HH .. .. .. .. .. ..	
	 3	 .. .. .. AA BB CC DD EE    FF GG HH .. .. .. .. ..	
	 4	 .. .. .. .. AA BB CC DD    EE FF GG HH .. .. .. ..	
	 5	 .. .. .. .. .. AA BB CC    DD EE FF GG HH .. .. ..	
	 6	 .. .. .. .. .. .. AA BB    CC DD EE FF GG HH .. ..	
	 7	 .. .. .. .. .. .. .. AA    BB CC DD EE FF GG HH ..	

INJECT1D will perform the injection shown above on the left and INJECT2D will 
perform the injection shown above on the right.	

To be more precise, assume that Reg1 and Reg2 contain the following bytes.	

	 Reg1	 X1 X2 X3 X4 X5 X6 X7 X8
	 Reg2	 AA BB CC DD EE FF GG HH	

INJECT1D will move the following values into RegD, based on the least significant 3 
bits in Reg3, i.e., the final bits of the unaligned address.	
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	 Reg3	 Result in RegD	
	 000	 AA BB CC DD EE FF GG HH	
	 001	 X1 AA BB CC DD EE FF GG	
	 010	 X1 X2 AA BB CC DD EE FF	
	 011	 X1 X2 X3 AA BB CC DD EE	
	 100	 X1 X2 X3 X4 AA BB CC DD	
	 101	 X1 X2 X3 X4 X5 AA BB CC	
	 110	 X1 X2 X3 X4 X5 X6 AA BB	
	 111	 X1 X2 X3 X4 X5 X6 X7 AA	

Assume that Reg1 and Reg2 contain the following bytes.	

	 Reg1	 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8
	 Reg2	 AA BB CC DD EE FF GG HH	

INJECT2D will move the following values into RegD, based on the least significant 3 
bits in Reg3, i.e., the final bits of the unaligned address.	

	 Reg3	 Result in RegD	
	 000	 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8	
	 001	 HH Y2 Y3 Y4 Y5 Y6 Y7 Y8	
	 010	 GG HH Y3 Y4 Y5 Y6 Y7 Y8	
	 011	 FF GG HH Y4 Y5 Y6 Y7 Y8	
	 100	 EE FF GG HH Y5 Y6 Y7 Y8	
	 101	 DD EE FF GG HH Y6 Y7 Y8	
	 110	 CC DD EE FF GG HH Y7 Y8	
	 111	 BB CC DD EE FF GG HH Y8

INJECT1W and INJECT2W	

When it comes to storing a word into an unaligned address in memory, we make the 
assumption that it will be implemented in terms of aligned word LOADs and STOREs, 
not doubleword LOADs and STOREs.	

The two INJECTW instructions will inject four bytes in one of four ways, depending 
on the unaligned address, as shown next.	
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Assume that the most significant word fetched from memory is	
	 xx xx xx xx	
Assume the least significant word fetched from memory is	
	 yy yy yy yy	
Assume that the source value to be stored is	
	 AA BB CC DD

The source word will need to be injected into these two words in one of these 4 
ways, where “..” means that the byte is unchanged.	

	 	 xx xx xx xx    yy yy yy yy

	 0	 AA BB CC DD    .. .. .. ..	
	 1	 .. AA BB CC    DD .. .. ..	
	 2	 .. .. AA BB    CC DD .. ..	
	 3	 .. .. .. AA    BB CC DD ..	

Assume that Reg1 and Reg2 contain the following bytes.	

	 Reg1	 X1 X2 X3 X4 X5 X6 X7 X8
	 Reg2	 ss ss ss ss AA BB CC DD	

where “ss” represents sign-extension bytes that will be ignored.	

INJECT1W will move the following values into RegD, based on the least significant 2 
bits in Reg3, i.e., the final bits of the unaligned address.	

	 Reg3	 Result in RegD	
	 00	 X1 X2 X3 X4 AA BB CC DD	
	 01	 X1 X2 X3 X4 X5 AA BB CC	
	 10	 X1 X2 X3 X4 X5 X6 AA BB	
	 11	 X1 X2 X3 X4 X5 X6 X7 AA	

Assume that Reg1 and Reg2 contain the following bytes.	

	 Reg1	 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8
	 Reg2	 ss ss ss ss AA BB CC DD	

INJECT2W will move the following values into RegD, based on the least significant 2 
bits in Reg3, i.e., the final bits of the unaligned address.	
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	 Reg3	 Result in RegD	
	 00	 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8	
	 01	 Y1 Y2 Y3 Y4 DD Y6 Y7 Y8	
	 10	 Y1 Y2 Y3 Y4 CC DD Y7 Y8	
	 11	 Y1 Y2 Y3 Y4 BB CC DD Y8

INJECT1H and INJECT2H	

When it comes to storing a halfword into an unaligned address in memory, we make 
the assumption that it will be implemented in terms of aligned halfword LOADs and 
STOREs, not word or doubleword LOADs and STOREs.	

The two INJECTH instructions will inject two bytes in one of two ways, depending on 
the unaligned address, as shown next.	

Assume that the most significant halfword fetched from memory is	
	 xx xx	
Assume the least significant halfword fetched from memory is	
	 yy yy	
Assume that the source value to be stored is	
	 AA BB

The source halfword will need to be injected into these two hafwords in one of these 
2 ways, where “..” means that the byte is unchanged.	

	 	 xx xx    yy yy

	 0	 AA BB    .. ..	
	 1	 .. AA    BB ..	

Assume that Reg1 and Reg2 contain the following bytes.	

	 Reg1	 X1 X2 X3 X4 X5 X6 X6 X7
	 Reg2	 ss ss ss ss ss ss AA BB	

where, “ss” is represents sign-extension bytes, which will be ignored.	
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INJECT1H will move the following values into RegD, based on the least significant bit 
in Reg3, i.e., the final bit of the unaligned address.	

	 Reg3	 Result in RegD	
	 0	 X1 X2 X3 X4 X5 X6 AA BB	
	 1	 X1 X2 X3 X4 X5 X6 X7 AA	

Assume that Reg1 and Reg2 contain the following bytes.	

	 Reg1	 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8
	 Reg2	 ss ss ss ss ss ss AA BB	

INJECT2H will move the following values into RegD, based on the least significant bit 
in Reg3, i.e., the final bit of the unaligned address.	

	 Reg3	 Result in RegD	
	 0	 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8	
	 1	 Y1 Y2 Y3 Y4 Y5 Y6 BB Y8

Commentary The assumption made by the INJECTD instructions is that unaligned 
doubleword operations will be emulated by using aligned doubleword operations. 
Underlying this approach is the implicit assumption that the implementation 
naturally supports doubleword memory operations.	

However, the implementation may actually support only word-sized operations 
directly and implement doubleword LOADs and STOREs by breaking each 
instruction into two memory operations. A LOAD.D instruction will result in two 
memory reads and a STORE.D instruction will result in two memory writes. Thus, 
the approach outlined in the code example above (with 2 LOAD.D and 2 STORE.D 
instructions) will actually result in 4 memory reads and 4 memory writes.	

The INJECTD operations will continue to work, but a better solution might be 
desirable. Note that a doubleword, no matter how it is aligned, can only touch 3 
words. To store a doubleword no matter how it is aligned, one only needs to read at 
most two words and write at most three words.	

We also assume that unaligned word operations will be emulated with aligned word 
operations. However, the implementation may not naturally support word-sized 
LOADs and STOREs and may actually implement them as doubleword memory 
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operations. This would mean that, for a word sized STORE instruction, the 
implementation will be reading, injecting, and storing beneath the level of software, 
similarly to what we are discussing doing in software.	

To store 4 bytes with a machine whose natural unit of transfer is 8 bytes, we only 
require at most 1 read and 1 write in 5/8 of the cases and 2 reads and 2 writes in the 
remaining 3/8 of the cases. This averages to 1.4 reads and 1.4 writes per operation.	

However, naïvely using the scheme suggested in the code snippet earlier would 
result in duplicate effort and severely impact performance. There are two LOAD.W 
instructions, resulting in 2 doubleword memory reads, and there are two STORE.W 
instructions, resulting in 2 memory reads and 2 memory writes. This comes to 4 
reads and 2 writes per operation, much worse than the optimal solution.	

A better approach would be to emulate an unaligned word operation using aligned 
doubleword operations. The INJECTW instructions are not designed for this.	

Likewise, in the case of halfword data, we have the same issues.

ILLEGAL <no operands>	  

Will cause “Illegal Instruction Exception”	

This is the canonical illegal instruction. Both OP1 and OP2 values are 0x00. Often, 
uninstalled main memory will be read as containing all zeros. Thus, when fetched, 
an instruction of 0x0000_0000 will be interpreted as an illegal instruction, 
preventing the execution of uninstalled memory.	

Uninstalled main memory may also be read as all 1 bits. An instruction 0xFFFF_FFFF 
will be interpreted as a pair of compressed instructions. For this reason, the pattern 
0xFFFF will be interpreted as the compressed form of an illegal instruction.	

This instruction will cause an “Illegal Instruction Exception”.	
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SYSRET <no operands>	  	

Privileged	

This instruction is used to return from a trap handler. It performs the following 
operations:	
	 PC = csr_prevpc	
	 csr_status = csr_stat2	

In other architectures, this instruction is often named “RETI”.	

Commentary Interrupts are disabled by the hardware whenever trap handlers are 
invoked and they generally remain disabled throughout the trap handler code. 
Interrupts should always be disabled at the time of the SYSRET at the end of the trap 
handler. Here’s why.	

Note that the SYSRET instruction uses the CSRs — csr_stat2 and csr_prevpc in 
particular. If interrupts happen to be enabled at the time the SYSRET instruction is 
executed, there is a possibility that an interrupt might occur directly before the 
SYSRET instruction.	

Trap handlers save the state of the general purpose registers, but the state of the 
CSRs is not saved. As part of all trap invocation, the hardware will overwrite 
csr_stat2 and csr_prevpc and their previous contents will be lost. Thus, if an 
interrupt might occur directly before a SYSRET, upon return after the interrupt 
processing, the SYSRET could not possibly function correctly.	

Thus, it is always a kernel bug to execute a SYSRET with interrupts enabled. 
However, the hardware does nothing to enforce this.	

SLEEP1 <no operands> Enable interrupts; enter light sleep state
SLEEP2 <no operands> Enable interrupts; enter deep sleep state

Privileged	

These are the “wait” instructions, which put the core to sleep until the next interrupt 
occurs. There are two levels of sleep state. “Light sleep” is intended to make wake-up 
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faster. “Deep sleep” is intended to be a power saving state, which may require more 
time and effort to recover from.	

In both cases, the following are preserved:	
	 • General Purpose Registers	
	 • CSR registers, PC	
	 • Main Memory	

The sleep state ends when an interrupt occurs. During the sleep state, the Program 
Counter (PC) points to the instruction following the SLEEP instruction so, after the 
interrupt trap handler returns, instruction execution will resume with the 
instruction following the SLEEP instruction.	

These instructions will enable interrupts before entering the sleep state.	

These instructions should only be executed with interrupts disabled, for the 
following reason. We only want to sleep when there are no runnable threads and the 
only way to know that is to check first, before going to sleep. But an interrupt might 
occur at any time (including directly before the SLEEP instruction is executed) and 
this may cause some new thread to become runnable. To prevent going to sleep 
when runnable threads exist, the software should disable interrupts, check to make 
sure it is safe to sleep, then execute the SLEEP instruction. If interrupts have become 
pending, then the sleep state will end immediately and the interrupt trap handler 
will be invoked.	

In some implementations, there will be no difference between “light” and “deep” 
sleeping. Thus, the instructions may function identically. A valid implementation is 
to act as a sort of no-op, doing nothing more than enabling interrupts. In more 
complex implementations, SLEEP1 and SLEEP2 may differ as follows: In the light 
sleep state, the clock continues, csr_cycle is constantly incremented, and timer 
interrupts occur. In the deep sleep state, csr_cycle is not incremented and therefore 
timer interrupts do not occur; effectively, the clock is turned off.	

In the emulator, SLEEP2 will cause an immediate halt to emulation. If the emulator is 
executing in auto-go mode (command line option -g), the emulator will terminate 
and the value in register r1 will be returned as the Unix/Linux exit code (where 
0=ok/no error). This is useful for  KPL programs that are to be run under Unix/
Linux.	
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RESTART <no operands> Same as Power-On-Reset

Privileged	

The purpose of this instruction is to cause a full reboot of the system. This 
instruction will have the same effect as cycling the power on the processor, namely:	

The following two registers will be set to their initial values:	

	 csr_inst ← 0x0000_0000_0000_0000	
	 csr_cycle ← 0x0000_0000_0000_0000	

	 csr_status ← 0x0000_0000_0000_0001	
	 Program Counter (PC) ← 0x4_0000_0000	

This means that the following conditions will be true:	

	 Kernel Mode: Enabled	
	 Interrupts: Disabled	

The PC is set to the first word of the memory-mapped I/O area, which is where the 
“Boot ROM” is located.	

Any pending interrupts are cleared. All memory-mapped I/O devices are sent a 
“reset” signal and will go into their initial states. In particular, the Secure Storage will 
be reset and will be writable.	

All other other programmer-visible state of the core (i.e., the general purpose 
registers and all other CSRs) will have undefined values.	

In a multi-core processor, this instruction will affect all cores. The execution of this 
instruction by any one core will instantly kill all cores, which will all be restarted.	
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DEBUG <no operands>	  
BREAKPOINT <no operands>	  

Will cause “Debug/Breakpoint Exception”	

These instructions are used by the debugger. Each instruction will cause an 
exception and there is a corresponding exception type for each:	

	 Debug Exception	
	 Breakpoint Exception	

It is intended that the DEBUG instruction will be inserted into code by the 
programmer. When executed, the resulting exception will be used to invoke and start 
up the debugger. This will allow the user to begin debugging his/her code.	

It is intended that the BREAKPOINT instruction will be inserted by a debugging tool 
into the code being debugged.	

Typically, the user of the debugger will command the debugger to insert a 
breakpoint a some point in the code being debugged. The debugger will replace the 
instruction at the the target address with a BREAKPOINT instruction. Then later, 
after execution is resumed and execution reaches the target address, the 
BREAKPOINT instruction will be encountered. The resulting exception allows the 
debugger to regain control. Typically, the debugger will save the instruction that was 
replaced and, when the BREAKPOINT is removed, the instruction will be restored.	

These two instructions are almost identical, except (1) they each cause a different 
exception, and (2) the value stored in csr_prevpc at the time of the exception is 
different. 	6

These instructions are both Format-A instructions. The opcode occupies the first 16 
bits of the instruction and the remaining 16 bits contain space for register fields. 
However, since no registers are used, these 16 bits are unused and shall be ignored 

 DEBUG stores the address of the following instruction, while BREAKPOINT stores the address of 6

the BREAKPOINT instruction itself.
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by the ISA. Bits [15:0] in the instruction are therefore available for use by a 
debugger, to store additional information. 	7

If the Blitz-64 architecture is being emulated on a virtual machine, the DEBUG and 
BREAKPOINT instructions may be unimplemented. In other words, they will not 
cause exceptions. Instead, when encountered, they will be used by a debugger that is 
built in to the emulator itself.	

These instructions are primarily expected to be used to debug code running in user 
mode. However, they might also to debug code running in kernel mode.	

SYSCALL immed10  	

Will cause “SYSCALL Exception”	

The SYSCALL instruction is used by user mode code to invoke one of the 1,024 
system calls.	

This instruction causes a “SYSCALL Exception”. More precisely, this instruction will 
perform the following actions:	

csr_stat2 = csr_status	
csr_prevpc = PC	
csr_cause = immed10 × 8	

It will then initiate trap processing by performing these actions.	

csr_status[KERNEL_MODE] = 1	
csr_status[INTERRUPTS_ENABLED] = 0	
csr_status[SINGLE_STEP] = 0	
PC = csr_trapvec (the address of the global trap handler)	

The immediate value gives a number in the range 0 … 1,023. This number is shifted 
left by 3 bits (i.e., multiplied by 8) and passed to the trap handler for use in 

 For example, when the debugger sets a break point, it will replace some instruction by a 7

BREAKPOINT instruction. The debugger will need to remember which instruction was removed so 
that when the break point is encountered it can replace the BREAKPOINT instruction with the 
saved instruction. There may be a number of break points set and the debugger might use the 16 
bits as an index into some record-keeping table it maintains.
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dispatching to the correct kernel function. The immediate value is not sign-
extended.	

The PC value copied to csr_prevpc is the address of the instruction after the 
SYSCALL instruction, not the SYSCALL itself.	

Note that this instruction is normally executed in user mode. Whether execution of 
the SYSCALL instruction in kernel mode is a bug or not is a software design decision; 
however, the instruction will still function as described.	

CONTROL RegD,Reg1,immed16  	
CONTROLU RegD,Reg1,immed16  	

CONTROL: Privileged; CONTROLU: Not privileged	

The definition of these instructions is left unspecified here and is completely 
implementation dependent.	

The idea is that an implementation of the Blitz-64 architecture is free to use these 
instructions whenever it is necessary to supplement the instruction set with 
instructions not included in the ISA specification.	

A specific implementation may need to add a large number of instructions to the ISA. 
The immediate value is available to act as a sort of additional op-code. The idea is 
that different values of immed16 will invoke different behaviors.	

These instructions may or may not access registers Reg1 and RegD. They may also 
access other registers not directly mentioned; everything is left to the specific 
implementation designers.	

We really want all User Mode programs to be fully portable between Blitz-64 
implementations. To this end, we make a distinction between the CONTROL and 
CONTROLU instructions.	

Implementation-dependent behavior really ought to be encapsulated within the 
Kernel. Otherwise, a User Mode program that used the instruction would be tied to a 
specific implementation. To support this, the CONTROL instruction is a privileged 
instruction and an Illegal Instruction Exception will be raised if this instruction is 
executed in User Mode.	

Blitz-64 Instruction Set Architecture / Porter	 Page  of 	131 342



Chapter 5: Instructions	

On the other hand, some operations need to be usable in User Mode. For this, we 
provide the CONTROLU instruction, which may be executed in User Mode. Note that 
any program using a CONTROLU instruction will be implementation dependent and 
may have completely unexpected results when executed on a different Blitz-64 
processor.	

The implementation is free to define whether these instructions might raise other 
exceptions. If the CONTROL or CONTROLU instruction is used incorrectly (for 
example, with an undefined immed16 value), the implementation really ought to 
raise an Illegal Instruction Exception.	

Commentary  The memory-mapped I/O regions in the Blitz-64 architecture are 
designed so they can be selectively mapped into the virtual address spaces of user 
processes. However, the CONTROL/CONTROLU mechanism does not have this 
flexibility.	

Whether additional functionality is added to the Blitz-64 architecture using 
CONTROL/CONTROLU or by adding a new memory-mapped I/O region is an 
engineering decision left to implementors.	

Example Uses for CONTROL and CONTROLU	

How might a Blitz-64 implementation use the CONTROL instruction? Let’s look at 
several examples.	

Digital I/O Pins  Imagine that the Blitz-64 chip has a number of digital I/O pins. 
This might occur for a Blitz-64 processor used in an Arduino-like setting.	

For such a system, the CONTROL instruction will be defined to write values to 
OUTPUT pins based on the contents of register Reg1. The instruction will also be 
used to read in values on INPUT pins to register RegD. Each operation will both read 
and the write the I/O pins simultaneously.	

If this is the only use of the CONTROL instruction, the immed16 value can be 
ignored:	

controlu r7,r1,0 # Read inputs and change outputs
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In this case, the COLTROLU instruction was used, which means that user-mode 
programs can control the digital pins directly, without needing kernel intervention.	

A slightly different implementation might be to separate the input and output 
operations, using the immed16 value to distinguish between “read” and “write” 
operations:	

DIGITAL_READ: .equ 0x0001
DIGITAL_WRITE: .equ 0x0002

To read and write the digital I/O pins, the operations would look like this:	

controlu r7,r0,DIGITAL_READ # sample the inputs
controlu r0,r1,DIGITAL_WRITE # update the outputs

LED Control  LEDs are helpful for single-board computers. For example, as the 
system boots, a green LEDs might turn on. If error conditions arise, the core can turn 
on a red LED to signal that it is unhappy. In order to drive such LEDs, each chip will 
need a couple of output pins dedicated to these LEDs.	

Such “status LEDs” are cheap and ought to be included in every single-board 
computer.	

In such a system design, the CONTROL instruction could be used to control the 
status LEDs. 	8

RED_LED_ON: .equ 0x0004
RED_LED_OFF: .equ 0x0008
GREEN_LED_ON: .equ 0x0010
GREEN_LED_OFF: .equ 0x0018
BLUE_LED_ON: .equ 0x0020
BLUE_LED_OFF: .equ 0x0028

To manipulate specific LEDs, the core can execute an instruction such as:	

control r0,r0,GREEN_LED_ON | RED_LED_OFF

 Note that we are defining the immediate values so that there is no overlap with the values used to 8

control the digital pins, so both could be used within the same system.
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Imagine a system with a large number of Blitz-64 cores, perhaps with hundreds of 
processor blades mounted in racks, comprising a giant multi-processor system. 
LEDS for each board (or processor or core) could be very helpful in detecting and 
understanding faults.	

Flushing Caches  The Blitz-64 instruction set includes a single instruction (namely 
FENCE) that has the side-effect of flushing caches, if they exist. However the FENCE 
instruction may be too course-grained for some system designs. In order to add the 
ability to flush individual caches separate, the CONTROL instruction could be 
employed.	

If, for example, the implementation needed several different “flush” operations, then 
some bits in the immed16 field could be defined to indicate which cache flush 
operation is intended. Perhaps the implementation has several caches:	

FLUSH_CACHE_L1_I: .equ 0x0001
FLUSH_CACHE_L1_D: .equ 0x0002
FLUSH_CACHE_L2: .equ 0x0004
FLUSH_CACHE_L3: .equ 0x0008

Then, to perform a cache-flush operation, the OS kernel might execute an instruction 
such as:	

control r0,r0,FLUSH_CACHE_L1_D

Flushing the caches does not involve registers, so r0 is specified for both source and 
destination.	

Encryption Support  A common but time-consuming operation is to encode and 
decode encrypted messages. A related function is computing message digests. The 
algorithms are computationally intensive but it is desirable to perform these 
operations quickly.	

The document “Blitz-64: Memory-Mapped I/O Devices” discusses using the DMA 
memory-mapped I/O device to support SHA-256 and AES, but in some 
implementations it may make sense to implement other, similar algorithms in 
hardware, using the CONTROL instruction to access this special-purpose hardware.	

Typically, such algorithms involve the simultaneous manipulation of a number of 
variables. For example, in the SHA-2 algorithm there are 8 variables, named a, b, c, …, 
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h. During one iteration, all 8 variables are used as inputs to compute 8 new values 
for the next iteration.	

Of course the function computed in each iteration can be done with existing Blitz-64 
instructions, but it will take quite a few instructions for each iteration of the loop. To 
support such an algorithm, the idea is that the entire loop body will be implemented 
using a single new “instruction”. Imagine that an implementation decides to add a 
single instruction which will perform the entire loop body computation in one step.	

Such a proposed new instruction will need 8 inputs and 8 outputs. Consider 
SHA-256 which is a specific example of the SHA-2 class of algorithms. It uses eight 
variables, each of 32 bits. We can pack these into four registers. In this hypothetical 
implementation design, we will assign variables a, b, c, …, h to registers r1, r2, r3, 
and r4. The new, hypothetical CONTROL instruction, which we are suggesting here, 
will ignore the RegD and Reg1 specifiers in the instruction and will always operate 
on registers r1-r4.	

There is no reason that such encryption operations can’t be done in User Mode, so 
for these operations, it makes sense to use the CONTROLU instruction, instead of the 
CONTROL instruction, which must be executed in Kernel Mode.	

Additional Floating Point Operations  The Blitz ISA only requires support for 
double precision floats. It might be desirable to provide support for single precision 
or quad precision floats in some systems. Likewise, there might be special-purpose 
numerical engines (e.g., neural net or graphic engines). This might be 
accommodated with CONTROL instructions.	

Accessing the Micro-architecture  Another possibility is that the CONTROL 
instruction would be defined to access or modify internal core state. For example, 
the CONTROL instruction might be used to read pipeline registers that are otherwise 
invisible to the ISA.	

Flexibility  Given that immediate field has 16 bits, the CONTROL instruction 
framework can be employed to add many unique instructions and behaviors. The 
immed16 field can be considered as a sort of secondary opcode and a large number 
(up to 65,536) of additional implementation-dependent instructions can be added 
to any core using the CONTROL instruction framework.

Blitz-64 Instruction Set Architecture / Porter	 Page  of 	135 342



Chapter 5: Instructions	

TLBCLEAR <no operands> Invalidate all TLBs for current ASID
TLBFLUSH Reg1 Invalidate TLB for virtual address in Reg1

Privileged	

The TLBCLEAR instruction invalidates all TLB registers that apply to the Address 
Space ID (ASID) in csr_pgtable. While the format of the TLB registers is 
implementation dependent, it is assumed that each TLB register will contain a 
“valid” bit. This instruction will clear this bit for all registers with ASIDs matching 
the current ASID.	

The TLBCLEAR should be executed after any change to the page table for a specific 
address space. This will force all subsequent FETCHes and LOAD, STORE, and CAS 
instructions to this virtual address space to trigger a walk of the new page table.	

The TLBFLUSH instruction expects Reg1 to contain a virtual address. If the TLB 
contains a register with a matching virtual address and an ASID matching the 
current ASID (in csr_pgtable), then the “valid” bit for that TLB register will be 
cleared to 0. The address in Reg1 need not be page aligned; only bits [35:14] are 
used.	

If the address is a physical address (i.e., bit [35] is 0) or does not match any TLB 
register, TLBFLUSH does nothing. If the system does not contain TLBs, these 
instructions do nothing.	

Note	

In a multi-core system, the TLBCLEAR and TLBFLUSH instructions affect only the 
TLB registers on the core executing the instruction. There is a potential a problem 
when one virtual address space is shared across multiple cores and the kernel 
running on one core wishes to alter the address space and will execute one of these 
instructions to eliminate out-of-date information in the TLB registers. A change in 
the current specification is contemplated.	
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CHECKADDR RegD,Reg1,immed3 Reg1 = virt addr; RegD ← except. code or 0

Privileged	

The CHECKADDR instruction requires an immediate value, which should be one of 
the following values.	

	   immed3     	       Access Type        	
	 0	 LOAD.B	
	 1	 LOAD.H	
	 2	 LOAD.W	
	 3	 LOAD.D	
	 4	 STORE.B	
	 5	 STORE.H	
	 6	 STORE.W	
	 7	 STORE.D	

(Only the least significant 3 bits of the immediate 16 bit value are used; bits [15:3] 
are ignored.)	

Register Reg1 will contain an address, which may be physical or virtual. The 
CHECKADDR instruction determines what would happen if an instruction of the 
indicated type were to be executed using that address. CHECKADDR will store the 
following code in register RegD.	

	 Result   	             Outcome                                      	
0	 Success; no exception	
1	 Null Address Exception	
2	 Unaligned LOAD/STORE Exception	
3	 Page Illegal Address Exception	
4	 Page Table Exception	
5	 Page Invalid Exception	
6	 Page Write Exception	
7	 Page Copy-On-Write Exception	
8	 Page First Dirty Exception	

The hypothetical access is assumed to be performed in USER MODE, not KERNEL 
MODE.	
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From time to time, a system call will be handled by kernel code. The user code will 
pass a virtual address to the kernel. For example, the kernel may wish to retrieve 
argument data from the user’s virtual address space or move result data into the 
user’s virtual address space.	

Assuming csr_pgtable has been previously set, the kernel can simply use normal 
LOAD and STORE instructions with virtual addresses to retrieve data from or store 
data into the virtual address space.	

Of course the kernel cannot trust any address provided by user code. Executing a 
LOAD or STORE instruction might cause an exception.	

The CHECKADDR instruction is provided so that the kernel can check (before the 
LOAD or STORE operation is attempted) whether such an access would result in an 
exception.	

More Detail	

If CHECKADDR indicates one of the following exceptions, the address is in error. If 
passed from user code to the kernel, the kernel should not attempt to use the 
address in a LOAD or STORE operation.	

	 Null Address Exception	
	 Unaligned LOAD/STORE Exception	
	 Page Illegal Address Exception	
	 Page Write Exception	

The following exception will probably never to occur, since we can assume that the 
kernel has, at some earlier time, set csr_pgtable correctly:	

	 Page Table Exception	

The following exception types may occur in correct user mode code. Normally, they 
would be serviced and the instruction re-tried. When CHECKADDR indicates this 
sort of exception, some additional work may be required of the kernel before it can 
perform the access to the virtual address space.	

	 Page Copy-On-Write Exception	
	 Page First Dirty Exception	
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The following exception could be caused by a bad address, i.e., pointing to some 
region of the virtual address space that is unallocated. Alternately, it might also point 
to a region of the address space that is “allocate-on-demand”, and thus be perfectly 
legitimate.	

	 Page Invalid Exception	

The following exception type cannot be returned by the CHECKADDR instruction:	

	 Page Fetch Exception	

It may be that a hardware fault occurs during the CHECKADDR instruction (or would 
occur during a LOAD or STORE operation). The CHECKADDR instruction does not 
report such a situation; instead the Hardware Fault Exception will simply occur.	

If the implementation uses TLB registers, the CHECKADDR instruction may alter 
them.	

CSRSWAP RegD,CSRReg1,Reg2 RegD ← CSR; CSR ← Reg2 
CSRREAD RegD,CSRReg1 Reg1 encodes CSR; RegD ← CSR	
CSRSET CSRReg1,immed16 Set selected bits in CSR
CSRCLR CSRReg1,immed16 Clear selected bits in CSR

Privileged	

These instructions each access one of the 16 CSR registers. The identity of the CSR is 
encoded using 4 bits in the Reg1 field.	

The CSRSWAP instruction performs both a read and a write operation. If RegD and 
Reg2 indicate the same register, the value in that register is swapped with the value 
in the CSR register.	

The CSRREAD instruction reads a CSR and moves it into a general purpose register.	

For CSRSET and CSRCLR, the immediate field is sign-extended and forms a 64 bit 
mask. Wherever there is a 1 bit in the mask, the corresponding bit in the CSR is 
either set to 1 or cleared to 0. 	
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It is the assembly programmer’s or compiler’s responsibility to ensure that the 
immediate value is within the range -32,768 … 32,767 (0x8000 … 0x7FFF). If the 
value is out of range, the assembler will issue an error message. This is not of great 
concern, since none of the CSRs have individual bit fields, except in the least 
significant bits.	

( But note that if the immediate value is negative, the assembler will not issue an 
error and the mask will include 1 bits in the upper 48 bits, which may not be what is 
intended. For example, CSRSET csrReg,0x8000 will set all bits in the register except 
the least significant 15 bits, while CSRCLR csrReg,-4 will clear all bits except the least 
significant 2 bits. )	

*CSRWRITE CSRReg1,Reg2 Reg1 encodes CSR; CSR ← Reg2	

Synthetic, Privileged	

Register t Usage: Not used; Okay to use as Reg2.	

The CSRWRITE instruction is implemented as.	
CSRSWAP      r0,CSRReg1,Reg2 	

GETSTAT RegD RegD ← CSR_STATUS & 0x00000000000003f8
PUTSTAT Reg1 CSR_STATUS [9:3] ← Reg1 [9:3]

These instructions read and write the portions of the CSR_STATUS register that are 
visible to User Mode code.	

GETSTAT will only return bits that should be visible to User Mode code; all other bits 
will be masked and returned as 0. PUTSTAT will only modify bits that are modifiable 
by User Mode code.	

The bits that can be read and written are the FLOAT_ROUND bits (i.e., [9:8]) and the 
FLOAT_STATUS bits (i.e., [7:3]).	

Even though these instructions access a CSR register, they are not privileged.
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FADD RegD,Reg1,Reg2	 RegD ← Reg1 + Reg2
FSUB RegD,Reg1,Reg2	 RegD ← Reg1 - Reg2 
FMUL RegD,Reg1,Reg2 	 RegD ← Reg1 × Reg2
FDIV RegD,Reg1,Reg2 	 RegD ← Reg1 / Reg2
FMIN RegD,Reg1,Reg2 	 RegD ← MIN (Reg1, Reg2)
FMAX RegD,Reg1,Reg2 	 RegD ← MAX (Reg1, Reg2)
FNEG RegD,Reg1 	 RegD ← -Reg1
FABS RegD,Reg1 	 RegD ← ABSOLUTE_VALUE (Reg1)
FSQRT RegD,Reg1 	 RegD ← SQUARE_ROOT (Reg1)
FEQ RegD,Reg1,Reg2 RegD ← (Reg1 = Reg2) ? 1 : 0 (float compare)
FLT RegD,Reg1,Reg2 RegD ← (Reg1 < Reg2) ? 1 : 0 (float compare)
FLE RegD,Reg1,Reg2 RegD ← (Reg1 ≤ Reg2) ? 1 : 0 (float compare)
FCVTFI RegD,Reg1 Convert: floating-point ← int
FCVTIF RegD,Reg1 Convert: int ← floating-point
FMADD RegD,Reg1,Reg2,Reg3 RegD ← (Reg1 × Reg2) + Reg3
FNMADD RegD,Reg1,Reg2,Reg3 RegD ← (-(Reg1 × Reg2)) + Reg3
FMSUB RegD,Reg1,Reg2,Reg3 RegD ← (Reg1 × Reg2) - Reg3
FNMSUB RegD,Reg1,Reg2,Reg3 RegD ← (-(Reg1 × Reg2)) - Reg3

May cause an “Emulated Instruction Exception”	

The comments above describe the computations performed by these instructions.	

All arithmetic is performed in double precision floating point, per the IEEE 754 
standard. The FLOAT_STATUS bits in csr_status are set as required.	

With Blitz, all rounding is “to nearest, with ties to even”. The FLOAT_ROUND bits in 
csr_status are ignored. 	9

Note that there are no FMOV, FLOAD, or FSTORE instructions. The instructions MOV, 
LOADx, and STOREx will work fine.	

The test performed by FEQ is not the same as BEQ, due to facts like “+0.0 = -0.0” and 
“NaN ≠ NaN”. Programmers should note that equality testing of floating point values 
is especially risky, due to rounding errors.	

 At least in this version of the Blitz ISA; if the need should ever arise, this decision could be 9

revisited.
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The conversion instructions (FCVTFI and FCVTIF) are discussed below.	

The floating point  instructions are candidates for emulation. Any attempt to execute 
an unimplemented instruction will result in an “Emulation Exception”.	

Commentary The IEEE 754 specification requires single precision floating point to 
be implemented whenever double precision is implemented. Blitz-64 does not 
implement single precision floating point, as a conscious design decision. Therefore 
Blitz-64 clearly does not conform to the IEEE 754 spec.	

That said, Blitz-64 “respects” and “follows" the IEEE 754 floating point specification.	

IEEE 754 is a complex specification and floating point math is a can of wriggling 
worms. The Blitz-64 architecture intends and attempts to conform precisely and 
accurately to the IEEE spec.	

To be honest, floating point is a bit out of my primary research expertise and I’d 
really appreciate your help. If you see violations or other issues, you are encouraged 
to speak up and email me.	

FCVTIF The FCVTIF instruction converts a double precision floating point number 
into a 64 bit signed integer with about the same value.	

If the value to be converted is NaN, the instruction will set the NV-Invalid flag in the 
CSR_STATUS register. The integer result will be “0”.	

If the value is +inf, the result will be 0x7FFF_FFFF_FFFF_FFFF and the OF-Overflow 
and NX-Inexact flags will be set. If the value is -inf, the result will be 
0x8000_0000_0000_0000 and the OF-Overflow and NX-Inexact flags will be set.	

Concerning overflow, here are the values around the largest signed integer 
(0x7FFF_FFFF_FFFF_FFFF = 9,223,372,036,854,775,807) that can be represented 
exactly with double precision floats:	

	 +9,223,372,036,854,774,784.0	
	 +9,223,372,036,854,775,808.0	
	 +9,223,372,036,854,777,856.0	
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If the floating value to be converted is greater than +9,223,372,036,854,775,807.0 
(including +inf) then the OF-Overflow and NX-Inexact bits will be set and the result 
will be +9,223,372,036,854,775,807 (i.e., 0x7FFF_FFFF_FFFF_FFFF).	

If the floating value is more negative than -9,223,372,036,854,775,808.0 (including 
-inf) then the OF-Overflow and NX-Inexact bits will be set and 
-9,223,372,036,854,775,808 (i.e., 0x8000_0000_0000_0000) will be used.	

If the floating point value is not an integer (i.e., if it has non-zero digits to the right of 
the decimal point, as in 4.5) then the NX-Inexact bit will be set and the value will be 
rounded to the nearest integer, with ties to even.	

The UF-Underflow and DZ-Divide-by-zero bits in FLOAT_STATUS will be 
unchanged.	

FCVTFI The FCVTFI instruction converts a 64 bit signed integer into a double 
precision floating point number with about the same value.	

All integers within the following range can be represented exactly in double 
precision floating point:	

	 -9,007,199,254,740,992 … +9,007,199,254,740,992	

In hex, this range is:	

	 0xFFE0_0000_0000_0000 … 0x0020_0000_0000_0000	

Some integers outside this range can be represented exactly, but most cannot be. If 
the integer cannot be represented exactly, then the value will be rounded to the 
nearest integer that can be represented, with ties to even, and the NX-Inexact flag in 
FLOAT_STATUS will be set.	

There are no error or overflow conditions, so no other bits in FLOAT_STATUS will be 
affected.	
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*FGT RegD,Reg1,Reg2 RegD ← (Reg1 > Reg2) ? 1 : 0 (float compare)
*FGE RegD,Reg1,Reg2 RegD ← (Reg1 ≥ Reg2) ? 1 : 0 (float compare)	

Synthetic	

Register t Usage: Not used; Okay to use as RegD, Reg1, and/or Reg2.	

The FGT instruction is implemented as:	
	 FLT	 RegD,Reg2,Reg1	 Note the reversal of the registers	
The FGE instruction is implemented as:	
	 FLE	 RegD,Reg2,Reg1	 Note the reversal of the registers	

Commentary Blitz-64 includes floating point instructions because there are 
applications which require this functionality. We include only double precision 
because (1) it fits the 64 bit size of the registers and (2) because it provides more 
precision than single precision. Presumably, double precision can be substituted in 
applications that require single precision, but not vice versa. If there is only one 
precision (to keep the architecture simple), it seems that double precision is a better 
choice.	

However, we make no great effort to design an architecture for high-performance 
floating point computation. Applications that do lots of floating point calculations 
and are dependent on floating point performance benefit from the sort of vector 
architecture and parallelism that are commonplace in special purpose hardware, like 
graphics coprocessors, neural net accelerators, etc. This is really where floating 
point calculations should be done, not in a general purpose core.	

Commentary Whenever one or both of the arguments of FEQ, FLT, FLE, FGT, or FGE 
is not-a-number (NaN), the result is false. This comes from the IEEE 754 spec.	

By true and false, we mean that either 1 or 0 is placed in the result register.	

Whenever one or both of the arguments to FEQ is not-a-number (NaN), the result is 
false (0). Surprisingly, this means that when asking “NaN == NaN?”, that answer is 
“no”!	

The definitions of “not equal” is “NOT(equal)”. Consequently, this means that when 
asking “NaN ≠ NaN?”, that answer is “yes”!	
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This happens regardless of the exact bit patterns used to represent NaN.	

We have not included an “FNE” instruction, but we could easily have included a 
synthetic instruction, which would be translated to:	

	 FEQ	 RegD,Reg2,Reg1	 Store 0 if not equal	
	 TESTEQZ	 RegD,RegD	 	 Change 0 to 1	

But note that a test is typically followed by a branch, as in:	

	 FNE	 RegD,Reg2,Reg1	 	
	 BNEZ	 RegD,Label	 	 Branch if not equal, i.e., if RegD==1	

This would expand to:	

	 FEQ	 RegD,Reg2,Reg1	 	
	 TESTEQZ	 RegD,RegD	
	 BNEZ	 RegD,Label	 	 	

By not including an FNE instruction, we encourage the compiler writer to generate 
the following superior code sequence:	

	 FEQ	 RegD,Reg2,Reg1	 	
	 BEQZ	 RegD,Label	 	 Instead, branch test is reversed	
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Instruction Opcodes	

This list is provisional and subject to change in future versions.	

The Blitz-64 instruction encoding allows up to 256 Format-A instructions (including 
ILLEGAL) and up to 63 instructions in other formats.	

	 Max Number of Format-A Instructions	 256	
	 Max Number of non-Format-A Instructions	 63	

	 Range of possible OP2 values	 0 … 255	
	 Range of possible OP1 values	 1 … 63	

Currently there are…	

	 Number of Format-A Instructions	 80	
	 Number of non-Format-A Instructions	 42	
	 Total Number of Machine Instructions	 120	

	 Current range of OP2 values 	 0 … 79	10

	 Current range of OP1 values	 1 … 42	

Commentary The process of decoding machine opcodes involves circuitry that will 
transform the OP1 and OP2 fields (i.e., bits [31:16]) into a collection of control 
signals. 	

The opcode assignment given here is done without any attempt to make instruction 
decoding via combinational circuitry easier. Instead, we assume that all opcodes are 
decoded using lookup tables.	

The number of OP1 values is less than 64 and the number of OP2 values is also less 
than 64. Therefore, decoding the can be done with two lookup tables, each with no 
more than 64 entries, along with a multiplexor to differentiate Format A instructions 
(with OP1=00000000) from the others.	

In all “Format A” instructions, the value of OP1 is 0x00; to avoid clutter in the list 
below, OP1 is not shown.	

 There may be some gaps in the numbering, as a result of previously deleted instructions. These 10

counts count the ILLEGAL instruction.
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Illegal	
	     OP1   	     OP2   	
	 hex	dec	 hex	dec	 format	
	 	 	 00	 0	 A	 ILLEGAL	

Arithmetic	
	     OP1   	     OP2   	
	 hex	dec	 hex	dec	 format	
	 	 	 01	 1	 A	 ADD	
	 01	 1	 	 	 B	 ADDI	
	 	 	 02	 2	 A	 ADDOK	
	 	 	 03	 3	 A	 ADD3	
	 	 	 04	 4	 A	 SUB	
	 	 	 05	 5	 A	 MULADD	
	 	 	 06	 6	 A	 MULADDU 	
	 	 	 07	 7	 A	 DIV	
	 	 	 08	 8	 A	 REM	

Logical	
	     OP1   	     OP2   	
	 hex	dec	 hex	dec	 format	
	 	 	 09	 9	 A	 AND	
	 02	 2	 	 	 B	 ANDI	
	 	 	 0A	 10	 A	 OR	
	 03	 3	 	 	 B	 ORI	
	 	 	 0B	 11	 A	 XOR	
	 04	 4	 	 	 B	 XORI	
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Shift	
	     OP1   	     OP2   	
	 hex	dec	 hex	dec	 format	
	 	 	 0C	 12	 A	 SLL	
	 05	 5	 	 	 B	 SLLI	
	 	 	 0D	 13	 A	 SLA	
	 06	 6	 	 	 B	 SLAI	
	 	 	 0E	 14	 A	 SRL	
	 07	 7	 	 	 B	 SRLI	
	 	 	 0F	 15	 A	 SRA	
	 08	 8	 	 	 B	 SRAI	
	 	 	 10	 16	 A	 ROTR	
	 09	 9	 	 	 B	 ROTRI	

Sign Extension	
	     OP1   	     OP2   	
	 hex	dec	 hex	dec	 format	
	 	 	 11	 17	 A	 SEXTB	
	 	 	 12	 18	 A	 SEXTH	
	 	 	 13	 19	 A	 SEXTW	

Range Checking	
	     OP1   	     OP2   	
	 hex	dec	 hex	dec	 format	
	 	 	 14	 20	 A	 NULLTREST 	
	 	 	 15	 21	 A	 CHECKB	
	 	 	 16	 22	 A	 CHECKH	
	 	 	 17	 23	 A	 CHECKW	
	 	 	 18	 24	 A	 INDEX0	
	 	 	 19	 25	 A	 INDEX1
	 	 	 1A	 26	 A	 INDEX2
	 	 	 1B	 27	 A	 INDEX4
	 	 	 1C	 28	 A	 INDEX8
	 	 	 1D	 29	 A	 INDEX16
	 	 	 1E	 30	 A	 INDEX24
	 	 	 1F	 31	 A	 INDEX32
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Byte Reordering	
	     OP1   	     OP2   	
	 hex	dec	 hex	dec	 format	
	 	 	 20	 32	 A	 ENDIANH	
	 	 	 21	 33	 A	 ENDIANW	
	 	 	 22	 34	 A	 ENDIAND	

Test and Set a Boolean	
	     OP1   	     OP2   	
	 hex	dec	 hex	dec	 format	
	 	 	 23	 35	 A	 TESTEQ	
	 	 	 24	 36	 A	 TESTNE	
	 	 	 25	 37	 A	 TESTLT	
	 	 	 26	 38	 A	 TESTLE	
	 0A	 10	 	 	 B	 TESTEQI	
	 0B	 11	 	 	 B	 TESTNEI	
	 0C	 12	 	 	 B	 TESTLTI	
	 0D	 13	 	 	 B	 TESTLEI	
	 0E	 14	 	 	 B	 TESTGTI	
	 0F	 15	 	 	 B	 TESTGEI	

Branch	
	     OP1   	     OP2   	
	 hex	dec	 hex	dec	 format	
	 10	 16	 	 	 C	 B.EQ	
	 11	 17	 	 	 C	 B.NE	
	 12	 18	 	 	 C	 B.LT	
	 13	 19	 	 	 C	 B.LE	

Larger Addresses	
	     OP1   	     OP2   	
	 hex	dec	 hex	dec	 format	
	 14	 20	 	 	 D	 UPPER20	
	 15	 21	 	 	 B	 UPPER16	
	 16	 22	 	 	 B	 SHIFT16	
	 17	 23	 	 	 D	 ADDPC	
	 18	 24	 	 	 D	 AUIPC	
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Jump	
	     OP1   	     OP2   	
	 hex	dec	 hex	dec	 format	
	 19	 25	 	 	 D	 JAL	
	 1A	 26	 	 	 B	 JALR	

Load & Store	
	     OP1   	     OP2   	
	 hex	dec	 hex	dec	 format	
	 1B	 27	 	 	 B	 LOAD.B	
	 1C	 28	 	 	 B	 LOAD.H	
	 1D	 29	 	 	 B	 LOAD.W	
	 1E	 30	 	 	 B	 LOAD.D	
	 1F	 31	 	 	 C	 STORE.B	
	 20	 32	 	 	 C	 STORE.H	
	 21	 33	 	 	 C	 STORE.W	
	 22	 34	 	 	 C	 STORE.D	

Align	
	     OP1   	     OP2   	
	 hex	dec	 hex	dec	 format	
	 	 	 27	 39	 A	 ALIGNH	
	 	 	 28	 40	 A	 ALIGNW	
	 	 	 29	 41	 A	 ALIGND	
	 	 	 2A	 42	 A	 INJECT1H	
	 	 	 2B	 43	 A	 INJECT2H	
	 	 	 2C	 44	 A	 INJECT1W	
	 	 	 2D	 45	 A	 INJECT2W	
	 	 	 2E	 46	 A	 INJECT1D	
	 	 	 2F	 47	 A	 INJECT2D	
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Miscellaneous	
	     OP1   	     OP2   	
	 hex	dec	 hex	dec	 format	
	 23	 35	 	 	 B	 SYSCALL	
	 	 	 30	 48	 A	 SYSRET	
	 	 	 31	 49	 A	 SLEEP1	
	 	 	 32	 50	 A	 SLEEP2	
	 	 	 33	 51	 A	 RESTART	
	 	 	 34	 52	 A	 DEBUG	
	 	 	 35	 53	 A	 BREAKPOINT	
	 24	 36	 	 	 B	 CONTROL 		
	 25	 37	 	 	 B	 CONTROLU	
	 	 	 36	 54	 A	 CAS		
	 	 	 37	 55	 A	 FENCE 	
	 29	 41	 	 	 B	 ENTERFUN	 (Note that OP1 is out of order)	
	 2A	 42	 	 	 B	 EXITFUN 	 	 	

CSR Manipulation	
	     OP1   	     OP2   	
	 hex	dec	 hex	dec	 format	
	 	 	 38	 56	 A	 CSRSWAP 		
	 	 	 39	 57	 A	 CSRREAD	
	 26	 38	 	 	 B	 CSRSET	
	 27	 39	 	 	 B	 CSRCLR	
	 	 	 3A	 58	 A	 GETSTAT	
	 	 	 3B	 59	 A	 PUTSTAT	

Memory Management Unit	
	     OP1   	     OP2   	
	 hex	dec	 hex	dec	 format	
	 	 	 3C	 60	 A	 TLBCLEAR	
	 	 	 3D	 61	 A	 TLBFLUSH	
	 28	 40	 	 	 B	 CHECKADDR	
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Floating Point	
	     OP1   	     OP2   	
	 hex	dec	 hex	dec	 format	
	 	 	 3E	 62	 A	 FADD	
	 	 	 3F	 63	 A	 FSUB	
	 	 	 40	 64	 A	 FMUL	
	 	 	 41	 65	 A	 FDIV	
	 	 	 42	 66	 A	 FMIN	
	 	 	 43	 67	 A	 FMAX	
	 	 	 44	 68	 A	 FNEG	
	 	 	 45	 69	 A	 FABS	
	 	 	 46	 70	 A	 FSQRT	
	 	 	 47	 71	 A	 FEQ	
	 	 	 48	 72	 A	 FLT	
	 	 	 49	 73	 A	 FLE	
	 	 	 4A	 74	 A	 FCVTFI	
	 	 	 4B	 75	 A	 FCVTIF	
	 	 	 4C	 76	 A	 FMADD	
	 	 	 4D	 77	 A	 FNMADD	
	 	 	 4E	 78	 A	 FMSUB	
	 	 	 4F	 79	 A	 FNMSUB

Unused Opcodes	
	     OP1   	     OP2   	
	 hex	dec	 hex	dec	 format	
	 2B	 43	 	 	 -	 (Next unused OP1)	
	 	 	 50	 80	 A	 (Next unused OP2)
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Miscellaneous Remarks	

Commentary: The COPY and CLEAR Instructions	

It is useful to be able to copy bytes quickly, or to clear large blocks of memory to 
zero. For example, an operating system must be careful to initialize newly allocated 
memory pages, in order to prevent data leakage from one address space into 
another. The OS will also need the ability to copy pages quickly, whenever the “copy-
on-write” technique is used. Plus, there just seems to be a lot of data copying, no 
matter how much programmers try to eliminate it.	

We considered adding the following instructions, but did not.	

	 COPY   Reg1,Reg2,Reg3	 This is not a Blitz-64 instruction!	
	 	 while Reg3>0 repeat:	
	 	 	 *(Reg1++) ← *(Reg2++)   [ 8 bytes ]	
	 	 	 Reg3--	

	 CLEAR   Reg1,Reg2,Reg3 	 This is not a Blitz-64 instruction!	
	 	 while Reg3>0 repeat:	
	 	 	 *(Reg1++) ← Reg2    [ 8 bytes ]	
	 	 	 Reg3--	

There are several problems with these instructions. First, these instructions require 
many clock cycles to execute and this doesn’t fit within the RISC philosophy. In 
particular, a lengthy operation will effectively disable interrupts for a long time.	

Second, these instructions access memory. When executed in user mode, it is 
possible there could be a virtual memory fault (i.e., one of the page-related 
exceptions). There is no clean way to handle this situation.	

Finally, there is the possibility that the counter register, Reg3, is inordinately large 
due to a bug, and this will effectively bring the core to a stop as the instruction takes 
forever to execute.	

Instead, we opt for coding these operations as functions, which solves all these 
problems.	

In many systems, a Direct Memory Access (DMA) controller will be present as an I/O 
device. If present, the DMA controller can be employed to perform the “copy” and 
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“clear” memory operation at a higher speed. If a DMA controller with this capability 
is present, then it makes sense to add a system call to access this functionality. The 
user-level functions will handle boundary cases and then use the system call to 
invoke the DMA controller to do the bulk of the work.	
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Quick Summary	

• There are two privilege modes: kernel and user.	
• Privileged instructions may only be executed in kernel mode.	
• There are 16 Control and Status Registers (CSRs).	

Privileged Instructions	

At all times, the processor is executing in one of two possible modes:	

	 • Kernel Mode	
	 • User Mode	

The current mode is determined by a single bit within the status register csr_status. 
Upon power-on-reset, the processor begins execution in kernel mode.	

Some instructions are privileged instructions; these may only be executed when 
running in kernel mode. Any attempt to execute a privileged instruction when 
running in user mode will signal a “Illegal Instruction Exception”.	
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Control and Status Registers	

There are 16 Control and Status Registers (CSRs):	

	 0	 r/o	 csr_version	 Version of the BLITZ-64 architecture ISA	
	 1	 r/o	 csr_prod	 Product Info	
	 2	 r/o	 csr_core	 Core number	
	 3	 r/o	 csr_instr	 Instruction counter (Reset upon power-on-reset)	
	 4	 r/o	 csr_cycle	 Cycle counter (Reset upon power-on-reset)	
	 5	 r/w	 csr_timer	 Time until next interrupt, in cycles	
	 6	 r/w	 csr_status	 System status register	
	 7	 r/w	 csr_stat2	 Used during trap invocation and return	
	 8	 r/w	 csr_trapvec	 Pointer to trap handler code	
	 9	 r/w	 csr_pgtable	 Pointer to page table root node	
	 10	 r/w	 csr_prevpc	 Previous PC (for trap handler)	
	 11	 r/w	 csr_cause	 A code indicating which trap just happened	
	 12	 r/w	 csr_bad	 Offending instruction	
	 13	 r/w	 csr_addr	 Bad Address	
	 14	 r/w	 csr_ptr	 Used during trap invocation and return	
	 15	 r/w	 csr_temp	 Temp work register	

The following instructions are used to access the CSRs:	

	 CSRREAD	 Retrieve data from a CSR	
	 CSRWRITE	 Move data into a CSR	
	 CSRSWAP	 Simultaneous read and write to/from a CSR	
	 CSRSET	 Set selected bits to 1	
	 CSRCLR	 Clear selected bits to 0	

These instructions reference a CSR, which is encoded using 4 bits in the Reg1 
register field within the instruction:	

	 0000 = csr_version	
	 0001 = csr_prod	
	 …	
	 1111 = csr_temp	

These instructions are all privileged, which means that they cannot be used by user 
mode code. Thus, the CSRs are hidden and inaccessible from user programs.	
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Some CSRs, as marked above, are read-only. Any attempt to store data into these 
registers is legal, but the data will simply be discarded.	

Next, we discuss the function of each CSR.	

Each CSR is a 64 bit register. All 64 bits can be set and cleared like any normal 
register, with these exceptions:	

— 	Unused bits in csr_status are always zeros; they cannot be altered.	
—	The registers csr_version, csr_intsr, csr_cycle, csr_prod, and csr_core are 
read-only.	

csr_version	

This CSR is read-only. Its value is fixed and will never change. Any attempt to update 
this CSR is ignored.	

The uppermost 32 bits [63:32] indicate the number of cycles per millisecond that 
the core normally runs at. This number need not be perfectly accurate; the actual 
processor speed may be more or less with under- and over-clocking. (This value 
might be used, for example, to control the flashing of LEDs at a rate appropriate for 
humans or for initializing the default time-slice size.)	

Bit [31] indicates whether this core fully conforms to an official Blitz-64 ISA 
specification. If the core meets all the requirements given in an officially sanctioned 
Blitz-64 specification—either this one or some future specification—this bit will be 
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1 and bits [30:16] will contain a version number indicating exactly which 
specification it conforms to.	

Bits [30:16] of this CSR contain a version number of the architecture. The version 
documented here is 0x0002. It is intended that version numbers will be 
incremented sequentially as changes are made to the official Blitz-64 ISA.	

A core can be said to be “in full conformance” (i.e., “compliance”) to this version of 
the Blitz-64 specification if and only if all instructions, registers, and behaviors 
documented here are implemented exactly as described.	

However, the inclusion of additional, novel instructions is acceptable and is not 
cause for bit [31] to be zero. If an opcode that is defined as an “illegal instruction” in 
this document is assigned to a newly created instruction, then it will not affect bit 
[31].	

If the architecture of a core fails to meet any official Blitz-64 ISA specification, bit 
[31] must be zero.  We presume that if a Blitz core fails to fully conform, then it will 11

at least implement “a lot of” the Blitz specification. In particular, we assume the 
version number (bits [30:16]) will still contain the version number of the Blitz-64 
ISA that is most closely implemented by the core, such as 0x0001.	

Bits [15:0] is the “implementor/organization” field and contains a value which 
identifies a specific implementor (e.g., a person, group, or corporation). These 
numbers are to be assigned centrally and are not to be created independently. The 
current assignment is:	

	 0x0000	 All other implementors / organizations	
	 0x0001	 Harry Porter	
	 0x0002	 HDL Express	

Values 0x0003 … 0xFFFF are reserved for future assignment; do not use them.	

NOTE: The csr_prod register (“product info”) is intended to be defined by a specific 
implementor/organization. Software recognizing a particular implementor/

For example, if the MULADD instruction causes an Emulated Instruction Exception, bit [31] must 11

be 0. As another example, if FDIV causes an Emulated Instruction Exception, it is not cause for bit 
[31] to be 0. But is FDIV is implemented but fails to round ties to even, then the entire core fails to 
conform and bit [31] must be 0.
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organization may wish to examine csr_prod to gather more info about the specific 
capabilities of the core.	

csr_prod	

This CSR is read-only. Its value is fixed and will never change. Any attempt to update 
this CSR is ignored.	

The definition of this register is left up to the specific implementation. The 
implementor /organization is identified in csr_version, which should be consulted 
before any attempt to decipher the contents of this register.	

The intent is that a particular implementor or organization may create several 
implementations of the Blitz-64 architecture. Each might be considered a unique 
“product”. This register is intended to contain a number that identifies the product. 
The implementor is free to define certain bits in this register to indicate the 
presence or absence of certain features. For example, certain bits might indicate 
whether some special instruction is available, or whether the core is optimized for 
“low power” or for “high performance”.	

It may also be the case that each part has a serial number hardwired into it and a 
part’s serial number can be obtained by reading this register. For example, the upper 
16 bits might contain a product number and the lower 48 bits might contain a serial 
number. 	12

csr_core	

This CSR is read-only. Its value is fixed and will never change. Any attempt to update 
this CSR is ignored. This register is divided into these fields:	

	 bits [63:48]	 Number of columns (0 … 65536)	
	 bits [47:32]	 Number of rows (0 … 65536)	
	 bits [31:16]	 Number of planes (0 … 65536)	
	 bits [15:0]	 Number of this core (0 … 65536)	

 Of course current technology may make it impractical to hardwire unique serial numbers 12

directly into each core. Thus, an implementation may choose to reveal serial number information 
in other ways, such as through a memory-mapped I/O device created for this purpose, or a 
number written into Secure Storage and therefore not updatable.
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In a multi-core processor, the lower 16 bits [15:0] of this CSR give the core number 
and will be within 0 … 65536. Core number 0 is considered the “primary core”.	

In a multi-core system, the cores can be arranged either linearly, in a 2 dimensional 
array, or in a 3 dimensional array. The upper 48 bits describe the arrangement of the 
cores.	

In a 1D arrangement, the number of rows and the number of planes will be 1. In a 
2D arrangement, the number of planes will be 1.	

In a uni-core processor, this register will contain 0x0001_0001_0001_0000. In a 
multi-core system with NNNN cores in which the cores are not organized as an array, 
this register will contain:	

	 0xNNNN_0001_0001_KKKK	

where KKKK is the number of a particular core (within 0…NNNN-1).	

csr_instr	

This CSR is set to zero upon power-on-reset. It is incremented by one for every 
instruction executed. It can be used for performance measurement.	

This CSR is read-only; any attempt to update this CSR is ignored.	

csr_cycle	

This CSR is set to zero upon power-on-reset. It is incremented by one for every clock 
cycle. It can be used for performance measurement.	

(Assuming the processor runs at 10 gigahertz, the csr_cycle will run for about 30 
years before overflowing. Thus, a problem will only arise in a processor core which 
runs non-stop for decades. The workaround is to reboot every decade.)	

This CSR is read-only; any attempt to update this CSR is ignored.	
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csr_timer	

The processor has a built-in timer. This timer is used by the kernel to implement 
time-slicing. When the timer expires (i.e., when the time-slice ends), a “Timer 
Interrupt” will be signaled.	

This CSR controls when the timer will cause the interrupt. This register is 
decremented on every clock cycle, with no check for overflow. A “Timer Interrupt” 
will be signaled when this CSR goes negative. The trap handler should reset this CSR 
before reenabling interrupts to avoid an infinite chain of timer interrupts.	

If no interrupt is wanted, the value MAX_64 (0x7FFF_FFFF_FFFF_FFFF) can be used. 
The maximum time interval is measured in decades, but normally it will be reset 
after every time-slice, e.g., every millisecond.	

Commentary The timer is specified in terms of clock cycles, rather than real-time, 
since it is easier to implement. A real-time clock may exist, but it will be 
implemented as a separate I/O device, probably with a separate power supply and 
independent frequency generator, so that it continues to operate even when the 
processor is powered down and can measure time accurately, regardless of which 
frequency the processor is clocked.	

The purpose of the cycles-per-millisecond field of csr_version is so that a real-time 
clock can be approximated from the processor cycle frequency, if no real-time clock 
is present.	
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csr_status	

This CSR is broken into the following fields:	

	 [63:28]	 36	 StackLimit	
	 [27:10]	 18	 < unused / zero >	
	 [9:8]	 2	 FLOAT_ROUND — the rounding mode for float operations	
	 [7:3]	 5	 FLOAT_STATUS — the error status of recent float operations	
	 [2]	 1	 SINGLE_STEP (1=enabled, 0=disabled)	
	 [1]	 1	 INTERRUPTS_ENABLED (1=enabled, 0=disabled)	
	 [0]	 1	 KERNEL_MODE (1=Kernel Mode, 0=User Mode)	

FIGURE: CSR_STATUS Register	

Blitz-64 Instruction Set Architecture / Porter	 Page  of 	162 342



Chapter 6: Privileged Instructions and Kernel Mode	

There are 2 bits (FLOAT_ROUND) which should be set by software to control which 
rounding mode to be used when the need arises during floating point computations:	

	 00	 RN — Round to nearest. Tie goes to value with 0 in LSB.	
	 01	 RZ — Round toward zero, i.e., truncate.	
	 10	 RD — Round down, i.e., round toward -inf.	
	 11	 RU — Round up, i.e., round toward +inf.	

There are 4 bits (FLOAT_STATUS) which are set by hardware to reflect recent 
floating point computations. Here is the meaning of these bits:	

	 bit	
	 3	 NX — Inexact results were produced	
	 4	 DZ — Divide by zero has occurred	
	 5	 UF — Underflow has occurred  	13

	 6	 OF — Overflow has occurred	
	 7	 NV — Invalid operation has been attempted	

A value of 00000 indicates that no problems have occurred. These bits are “sticky”, 
once set to 1 they remain set until explicitly cleared by software.	

The floating bits (FLOAT_ROUND and FLOAT_STATUS) must be saved and restored 
upon any context switch. This is why they are in the status register.	

In general , non-privileged instructions are not allowed to read or write the CSR 
registers. However, the GETSTAT and PUTSTAT instructions (which are not 
privileged) can be used to read and write bits [9:3]. This allows user programs to 
make use of the FLOAT_ROUND and FLOAT_STATUS bits.	

The INTERRUPTS_ENABLED bit determines whether an interrupt will cause an 
immediate trap or not. If set to 1, any interrupt will cause trap processing to occur 
after the current instruction completes execution. If the bit is 0, the signaling of an 
interrupt will not cause trap handling. Instead, that interrupt type will become 
pending. The interrupt will remain pending until the bit is set to 1, at which time 
trap processing will occur.	

 The “underflow” (UF) bit is set when the result of an operation is both a subnormal number 13

(including zero) and the result is inexact.
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The KERNEL_MODE bit determines whether the processor is in kernel mode or user 
mode. The mode determines whether privileged instructions can be executed and 
determines whether addresses below 0x8_0000_0000 (i.e., physical memory and 
memory mapped I/O) can be used directly.	

Code running in user mode, but with interrupts disabled, is particularly risky since 
an infinite loop would freeze the system: even timer interrupts would not stop the 
looping. The kernel will normally not run user mode code with interrupts disabled.	

The SINGLE_STEP bit is used to invoke a trap handler after each instruction. This 
functionality is used by a debugger to single-step the code being debugged.	

Bits [63:28] contain a 36 bit address called the “StackLimit”. The StackLimit is the 
smallest address which is allowed; attempting to grow the stack beyond the value 
(i.e., below, with smaller addresses) will cause a Stack Overflow Exception. This is 
discussed more fully in the section on the “Stack Overflow Exception”.	

Bits [27:10] are unused. Attempts to set these bits are ignored and reads always 
return zeros. 	14

csr_stat2	

The csr_status CSR must be saved and restored at context switches and this is the 
function of csr_stat2. During the hardware phase of trap invocation for interrupts 
and exceptions, the status register csr_status is copied to this CSR. This allows the 
software trap handler to return to the interrupted code at some later time.	

This process is discussed more fully later, when trap processing is described.	

csr_trapvec	

This CSR will contain the address of the function that will handle traps. When a trap 
(i.e., an interrupt or exception) occurs, the program counter will be loaded with the 
address in csr_trapvec as part of trap handling. Execution of the trap handler will 
then begin with the next instruction FETCH.	

 If, in the future, a new version of the architecture defines some meaning for an unused bit, then 14

we must ask whether the bit will be visible to User Mode programs or not. If visible to User Mode, 
then it would make sense to redefine the GETSTAT and PUTSTAT instructions to include the newly 
defined bit, along with the FLOAT_ROUND and FLOAT_STATUS bits.
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Only 35 bits — i.e., bits [34:0] — of csr_trapvec will be used, giving an address in 
the kernel address space; the upper bits will be ignored. If csr_trapvec is not a valid 
address — for example 0, which would normally cause a Null Address Exception — 
the results are undefined.	

csr_pgtable	

This CSR will point to the current page table. That is, csr_pgtable will contain the 
address of the root node of the page table tree. In addition, this register will contain 
the address space’s ID (ASID).	

The address of the root of the page table tree is a 44 bit address in the physical 
memory space. The root of the page table must be page aligned. A page-aligned 
address will contain zeros in the lower 14 bits. As such, only bits [43:14] are used, 
constituting the Physical Page Number (PPN) of the page containing the root node. 
The offset bits [13:0] are ignored and zeros are assumed. This results in a page-
aligned address in the 16 TiByte physical address space.	

The Address Space Identifier (ASID) is a 16 bit number which identifies the virtual 
address space. Each virtual address space should have a unique ASID, so there is a 
one-to-one correspondence between virtual address spaces and ASIDs.	
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The ASID from csr_pgtable will be used by the Memory Management Unit (MMU) 
during address translation during any LOAD, STORE, or FETCH. It will be matched 
against the ASID value stored in the Translation Lookaside Buffer (TLB) registers. 	15

csr_prevpc	

This CSR is used to save the value of the Program Counter (PC) during trap 
processing. During the hardware phase of trap invocation for interrupts and 
exceptions, this CSR is set to point to either the instruction causing the exception or 
the following instruction (depending on exactly which interrupt or exception has 
occurred). This allows the software trap handler to return to the interrupted code at 
some later time.	

This process is discussed more fully later, when trap processing is described.	

The PC is only 36 bits, yet csr_prevpc is a 64 bit register. When the PC is copied to 
this register, the upper 28 bits will be set to zero. When csr_prevpc is copied to the 
PC, the upper 28 bits will be ignored.	

csr_cause	

This CSR is set by the hardware during trap processing to a code to indicate which 
exception/interrupt caused the trap.	

csr_bad	

This CSR is set by the hardware during the trap processing to contain the instruction 
that caused the exception.	

When an instruction is copied to csr_bad, the upper bits will be set to zero.	

 It is assumed that the Translation Lookaside Buffer (TLB) will cache page table entries in an 15

associative memory, in order to reduce the number of page table lookups. Each TLB entry will be 
keyed on both ASID and virtual page number. Presumably, each virtual address space will be 
assigned and associated with a unique ASID.	

The purpose of the ASID is to make sure that code running in one virtual address space will only 
use TLB entries that are associated with the correct virtual address space. If, for some reason, the 
TLB registers are not implemented (meaning every FETCH, LOAD, and STORE requires a page 
table lookup), the ASID becomes unnecessary and will be ignored.
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csr_addr	

This CSR is set by the hardware during trap processing of certain exceptions to 
contain additional information about the exception. For example, in the case of page-
related exceptions, this CSR is set to the program-generated address causing the 
problem.	

When the hardware stores an address in csr_addr during an exception, the upper 28 
bits will be set to zero.	

csr_ptr	

This CSR is intended to be used by the kernel to store a pointer to a “thread control 
block” while a user mode program is running. During trap handling and/or context 
switches the kernel must save user mode state, including registers, and this CSR is 
intended to contain a pointer to where in memory that saving should be done.	

This CSR is neither set nor queried by the hardware, except by the CSR instructions.	

csr_temp	

This CSR is available for use as needed by trap handler and/or kernel code. It is 
neither set nor queried by the hardware, except by the CSR instructions.	
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Quick Summary	

• There are two kinds of traps: exceptions and interrupts.	
	 • Exceptions are synchronous and include the “syscall” trap.	
	 • Interrupts are asynchronous and come from I/O devices.	
• All trap processing invokes a single Global Trap Handler.	
• The trap cause code can be used as an index into a jump table.	
• A single timer is specified, which will signal a “Timer Interrupt”.	
• Up to 1,024 different SYSCALLs are supported in the jump table.	
• A novel approach for null pointer exceptions is used.	

Traps, Exceptions, and Interrupts	

There are two sources of “traps”, namely exceptions and interrupts.	

	 • Trap	
	 	 • Exception — synchronous,  caused by an instruction	
	 	 • Interrupt — asynchronous, caused by an external source	

An “exception” is caused by and related to a specific instruction. In that sense, 
exceptions are synchronous.	

An “interrupt” is caused by the arrival of a signal from an external source. 
Interrupts are asynchronous, which means their timing is unrelated to instruction 
execution. Interrupts can occur at any time during execution.	

Exceptions and interrupts are said to be signaled or raised. (We use the terms 
“signaled” and “raised” synonymously.)	
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In response to an exception or interrupt, the hardware will invoke a trap handler.	

Exceptions	

An exception is raised by the execution of an instruction and is therefore directly 
related to one particular instruction.	

In some cases, exceptions are caused by a problem in the instruction which prevents 
it from executing. In other cases, the instruction requires kernel attention and will 
be re-executed after the kernel handles the exception. A system call (raised by the 
“syscall” instruction) is considered to be a type of exception.	

When an exception occurs, trap handling will always be invoked directly after the 
instruction. Trap handling for exceptions will never be delayed, become pending, or 
be ignored.	

Interrupts	

An interrupt is signaled when an external source sends a hardware signal to the 
processor. The device is requesting attention. An interrupt has nothing to do with 
the instruction currently being executed.	

When an interrupt is signaled, the interrupt becomes pending. Trap processing will 
occur at some future time. The interrupt remains pending until trap handling occurs. 
The interrupt may be handled immediately after the completion of the current 
instruction, or it may be postponed until later. Either way, the interrupt will remain 
pending until trap handling is invoked.	

Once handled, the interrupt will cease being pending.	

Interrupts are masked by the INTERRUPTS_ENABLED bit in the status word 
csr_status. If 0, then any interrupt that occurs will remain pending until interrupts 
are once again enabled. Trap processing will not occur until this time.	

Exceptions may not be masked. Any exception will cause trap processing 
immediately after the current instruction (i.e., the instruction which caused the 
exception) has finished execution. In that sense, we might say that exceptions 
remain pending only a very short time, until the current instruction is completed.	
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Interrupt handling is only masked by the INTERRUPTS_ENABLED bit in the 
csr_status register. Unlike other ISAs, Blitz-64 has no additional masking 
mechanisms. 	16

There are several different types of interrupt (e.g., Timer Interrupt, Serial Device 
Interrupt, etc.). If interrupts of two or more types are pending then, when trap 
processing occurs, the one with the higher priority will be selected and the others 
will remain pending during the execution of the trap handler. At some later time, the 
other interrupts will be processed.	

If there are multiple interrupts of the same type signaled before trap handling 
occurs, then they are combined. In other words, only one trap of each interrupt type 
can be pending at once. If an interrupt of type X is signaled and is still pending at the 
time a second interrupt of the same type X is signaled, the second interrupt is 
combined with the first interrupt, which means it is effectively ignored and lost.	

Trap Handlers	

When an interrupt or exception occurs, a trap handler will be invoked. An interrupt 
may remain pending for some time, but eventually it will be handled. An exception 
will be handled immediately, before the next instruction is executed.	

Trap handling has two components: the hardware component and the software 
component. When the trap handling is invoked, the processor will perform several 
simple actions. These actions will occur between instructions. In other words, the 
previous instruction will complete processing, and then the hardware component 
will execute.	

Basically, the hardware phase will save some processor state, clear the 
INTERRUPTS_ENABLED bit in csr_status, and set the Program Counter (PC) to point 
to the trap handler.	

After the hardware component has completed, instruction processing will resume, 
with the first instruction in a kernel function known as a “trap handler”.	

 However, the Platform-Level Interrupt Controller (PLIC) can be used to mask interrupts from 16

various selected devices to various selected cores.
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Here are the types of trap:	

	 Exceptions	
	 	 SYSCALL (multiple types, determined by immed10 in SYSCALL instruction)	
	 	 Arithmetic Exception (integer overflow, divide-by-zero, …)	
	 	 Unaligned LOAD/STORE Exception	
	 	 Null Address Exception	
	 	 Illegal Instruction Exception (including privileged instruction violation)	
	 	 Page Illegal Address Exception (attempt to access kernel space)	
	 	 Page Table Exception (bad csr_pgtable)	
	 	 Page Invalid Exception (either index page or PTE)	
	 	 Page Write Exception	
	 	 Page Fetch Exception	
	 	 Page Copy-On-Write Exception	
	 	 Page First Dirty Exception	
	 	 Debug Exception	
	 	 Breakpoint Exception	
	 	 Singlestep Exception	
	 	 Emulated Instruction Exception	
	 	 Hardware Fault Exception	
	 	 Bad Array Index Exception	
	 	 Stack Overflow Exception	

  	 Interrupts	
	 	 Timer Interrupt	
	 	 DMA Complete Interrupt	
	 	 Platform Level Interrupt Controller (PLIC) Interrupt	
	 … Interrupt details are implementation dependent …	

When a trap occurs, a transfer of control is made to the address in csr_trapvec. In 
other words, the value in csr_trapvec is copied into the Program Counter (PC) as 
part of the trap processing.	

Thus, there is a single trap handler for all trap types, which we call the “global trap 
handler”. This function is responsible for determining the nature of the trap and 
jumping to individual trap handlers to finish the handling of the trap.	

Generally speaking, we expect there will be several individual trap handler 
functions, one for each type of trap. Trap handlers will typically end with a SYSRET 
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instruction, which will be used to resume execution in the interrupted code 
sequence.	

Upon trap handling, the hardware will cause a jump to the global trap handler by 
loading the PC with the address of the the global trap handler, i.e., the contents of 
csr_trapvec. Presumably, this CSR has been previously loaded with the address of 
the global trap handler.	

It is intended that the global trap handler will begin by saving additional state of the 
interrupted process (such as the general purpose registers) and then jump, via a 
trap dispatch table, to the desired individual trap handler. 	17

This dispatch vector is entirely in software. This global trap handler, which may be 
written in assembler, will perform an indirect jump through the jump table. The 
individual target trap handlers will typically be written in high-level KPL.	

The trap dispatch table will contain one entry for each type of trap and each entry is 
8 bytes. With 8 bytes, there is enough room for two instructions, so, if necessary, 
each entry can contain a long absolute jump (UPPER20+JALR). However, many trap 
handler functions may be close and reachable with a single instruction. Although all 
table entries are 8 bytes, some will be padded with unused bytes.	

There are approximately 1100 types of traps, since there are 1024 different syscall 
traps. So the trap vector will consume about 8,800 bytes.	

At the time a trap is handled, the hardware will set the csr_cause register to a code 
indicating which sort of trap is being handled. Each code is divisible by 8, which 
makes trap dispatching simpler.	

 Of course, the global trap handler may be written in an entirely different style, avoiding the jump 17

table altogether. Instead, such a global trap handler would contain special case testing to 
determine which particular trap has occurred.
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	 Code	 Code	
	 (decimal)	 (hex)	 Trap Type	
	 0	 0000	 Syscall 0	
	 8	 0008	 Syscall 1	
	 16	 0010	 Syscall 2	
	 …	 …	 …	
	 8184	 1FF8	 Syscall 1023	

	 8192	 2000	 Arithmetic Exception	
	 8200	 2008	 Unaligned LOAD/STORE	
	 8208	 2010	 Null Address Exception	
	 8216	 2018	 Illegal Instruction, privilege violation	
	 8224	 2020	 Page Illegal Address Exception	
	 8232	 2028	 Page Table Exception	
	 8240	 2030	 Page Invalid Exception	
	 8248	 2038	 Page Write Exception	
	 8256	 2040	 Page Fetch Exception	
	 8264	 2048	 Page Copy-On-Write Exception	
	 8272	 2050	 Page First Dirty Exception	
	 8280	 2058	 Debug Exception	
	 8288	 2060	 Breakpoint Exception	
	 8296	 2068	 Singlestep Exception	
	 8304	 2070	 Emulated Instruction Exception	
	 8312	 2078	 Hardware Fault Exception	
	 8320	 2080	 Bad Array Index Exception	
	 8328	 2088	 Stack Overflow Exception	

	 8336	 2090	 Timer Interrupt	
	 8344	 2098	 DMA Complete	
	 8352	 20A0	 PLIC Platform Level Interrupt Controller	

	 … Codes for asynchronous interrupts are implementation dependent  …	

Note that bit 13 (8192=0x2000) of csr_cause indicates whether this is a syscall or 
not.	

Cause codes are zero-extended to 64 bits whenever the hardware writes them into a 
CSR register.	
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Interrupt Processing	

Interrupt processing occurs between instructions.	

If the previous instruction happens to have caused an exception, then that exception 
will be processed first. Processing an exception will always have the effect of 
disabling interrupts. Then, since interrupts are disabled, any pending interrupt will 
remain pending until after interrupts are re-enabled, at which time the interrupt 
processing will occur. But assuming there is no exception, the interrupt will be 
processed.	

If multiple interrupts are signaled, then one will be selected. The order of preference 
among the different interrupt types is implementation dependent.	

The previous instruction will complete execution before an interrupt is processed. If 
there are any future, partially-executed instructions in the pipeline, they will be 
cancelled and will have no effect.	

When an interrupt is processed, the register csr_prevpc will be set to the address of 
the next unexecuted instruction, which is just the value of pc (the Program Counter). 
The registers csr_bad and csr_addr will be set to zero.	

	 csr_prevpc = the address of the next instruction	
	 csr_bad = 0	
	 csr_addr = 0	

We next discuss the individual types of asynchronous interrupts.	
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Timer Interrupt	

The register csr_timer is decremented on every clock cycle. If it is negative and 
interrupts are enabled, then a “Timer Interrupt” will be signaled.	

If interrupts are disabled, this interrupt will not be signaled. When interrupts are 
once again enabled, this interrupt will occur if and only if csr_timer is still negative 
at that time. 	18

Presumably the trap handler that deals with timer interrupts will reset csr_timer in 
preparation for the next time-slice. But before it can do this, there will several cycles 
in which the csr_timer remains negative. However, the negative value of csr_timer 
will not cause an interrupt since interrupts are disabled during the handler, thus 
avoiding an infinite cascade of interrupts.	

If another interrupt is signaled simultaneously to a Timer Interrupt, then the 
determination of which interrupt is handled first is implementation dependent.	

If another interrupt has priority and is handled before the Timer Interrupt, then the 
Timer Interrupt does not remain pending; instead it will be re-signaled when 
interrupts are once again enabled if and only if csr_timer is still negative. 	19

DMA Complete Interrupt	

When the DMA Controller device completes an operation, it will signal this 
interrupt.	

If interrupts are disabled, this interrupt will remain pending.	

 Previously we said that an interrupt, once signaled, remains pending until interrupts are again 18

enabled. What if a Timer Interrupt becomes pending while interrupts are disabled, i.e., during the 
trap handler for some other trap? What if that trap handler subsequently resets csr_timer, in an 
attempt to reschedule the Timer Interrupt? Shall the Timer Interrupt, once raised, remain pending 
or shall it be checked anew during the execution of each instruction?	

Here we specify that the core will check csr_timer for each instruction. It will not remain pending.

 The idea is that the other interrupt’s handler may invoke the scheduler and cause a different 19

thread to be scheduled, thereby terminating the previous thread’s time-slice. Such a thread-switch 
would naturally cause csr_timer to be reset to a new value. Allowing an earlier Timer Interrupt to 
remain pending and to occur later once interrupts are re-enabled would effectively terminate the 
new thread’s time-slice the moment it starts, before it has a chance to do anything.
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PLIC Complete Interrupt	

Various I/O devices will interrupt the core from time to time. In a multi-core system, 
we need to have exactly one core service each interrupt. The duty of the Platform-
Level Interrupt Controller (PLIC) is to channel each interrupt to a single core and 
moderate between multiple cores that are each willing and able to service 
interrupts.	

When the PLIC wishes to interrupt a core, the interrupt will be raised. If interrupts 
are enabled, a trap will occur. The core will then communicate directly with the PLIC 
— which is a memory-mapped device — to determine which device in interrupting 
and to claim the interrupt.	

If interrupts are disabled, this interrupt will become pending and trap processing 
will not occur until interrupts are re-enabled. However, if some other core claims the 
interrupt in question, the PLIC may cause the pending interrupt to disappear so that 
trap processing will not interrupt the core once it re-enables interrupts.	

The details of the Platform-Level Interrupt Controller (PLIC) are discussed 
elsewhere.	

Additional Devices	

There may be additional devices that interrupt. Details are implementation 
dependent.	
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Description of Exceptions	

SYSCALL Exception	

This exception is caused by the execution of the SYSCALL instruction.	

The SYSCALL machine instruction is used in the implementation of a “system call” 
to a kernel function. By convention, the standard calling conventions are used, which 
means that all arguments and returned results are passed in registers r1, r2, … 
There will be many system calls and the global trap handler must be able to quickly 
dispatch to the correct individual trap handler (i.e., to the desired kernel system 
function).	

The SYSCALL instruction takes a 10 bit immediate value which is interpreted as an 
integer in the range 0 … 1,023. This integer is used in dispatching to the individual 
syscall trap handlers. The integer is multiplied by 8 (since each dispatch table entry 
is 8 bytes) and is placed in csr_cause.	

Otherwise, exception processing occurs just like other exceptions.	

The Blitz-64 design facilitates fast dispatching for the most commonly used system 
call functions. If there are more than 1,024 system calls, one of the code numbers 
(e.g., the last code number) can be used to implement a second level of dispatching 
for functions that are not commonly used and not performance-critical.	

This exception will set…	
	 csr_prevpc = the address of the instruction following the SYSCALL	
	 csr_bad = the syscall instruction	
	 csr_addr = 0	

Commentary  Here are the programming conventions that will be followed by user 
mode code making a system call to the kernel:	

•	There can be up to 6 arguments. Arguments are passed in registers r1 … r6. 
(Recall that the normal calling conventions allow up to 7 arguments in 
registers.) Any additional argument data must be passed in user memory, 
placing a pointer to the memory area (i.e., a virtual address) in r1 … r6.	
•	A value will be returned in register r1. Zero will be returned for system calls 
that have no meaningful return value. If additional return data is required, the 
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kernel will place it in memory at the virtual address supplied by one of the 
arguments. 	
•	Upon return, registers r2 … r7, and r8 (t) will be zero.	
•	Registers r9 … r15 (i.e., s0, s1, s2, tp, gp, lr, and sp) will be unchanged.	

Arithmetic Exception	

This exception can be caused by the following operations:	

	 Integer arithmetic :	 ADD, ADDI, SUB, MULADD, DIV, REM	
	 Shift operations:	 SLA, SLAI, SRA, SRL, SLL	
	 Size checking:	 CHECKB, CHECKH, CHECKW	

The instruction may have modified RegD but the result computed is not 
“mathematically correct.”	

This exception will set…	
	 csr_prevpc = the address of the offending instruction	
	 csr_bad = the offending instruction	
	 csr_addr = 0	

Unaligned LOAD/STORE Exception	

This exception can be caused by the following instructions:	

	 LOAD.H, LOAD.W, LOAD.D	
	 STORE.H, STORE.W, STORE.D	

This exception will be signaled whenever the program-generated address is not 
properly aligned. The instruction may have modified RegD but any value stored is 
incorrect.	

This exception will set…	
	 csr_prevpc = the address of the offending instruction	
	 csr_bad = the offending LOAD or STORE instruction	
	 csr_addr = the program-generated address	
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Emulation of Unaligned LOAD and STORE Instructions	

Perhaps unaligned data will be simply banned by fiat. Whenever it might occur, we 
shall make it the responsibility of compiler/programmer to use properly aligned 
operations to read and write data to/from memory. Note that the descriptions 
earlier in this document for the machine instructions LOAD.H, LOAD.W, LOAD.D, 
STORE.H, STORE.W, and STORE.D included the requirement that the addresses must 
be properly aligned. With this approach, this restriction is enforced.	

If this approach is to be taken, then, whenever this exception occurs, it indicates a 
program error. The trap handler will probably just terminate the offending process.	

However, the Blitz-64 ISA is designed to support another more complex approach, in 
which the compiler/programmer is relieved of the responsibility to always use 
aligned addresses. With this approach, the compiler/programmer is free to use 
LOAD and STORE instructions with addresses that are not properly aligned.	

Next we describe this approach.	

It is assumed that the majority of LOAD and STORE operations will be properly 
aligned, but unaligned data will occasionally occur and the compiler/programmer 
will not take special action to check alignment.	

Instead, the Unaligned LOAD/STORE Exception is designed to allow a trap handler 
to intervene and deal with unaligned data addresses by completing the operation 
(using only aligned LOAD and STORE instructions) and returning to the interrupted 
code. To the programmer of the original code, it will simply appear that the LOAD 
and STORE instructions work just fine with improperly aligned addresses.	

In reality, the unaligned LOAD or STORE will invoke a handler that will run in Kernel 
Mode and will ultimately return to the interrupted user code.	

The ALIGN and INJECT instructions are specifically designed to be used in such a 
trap handler to support unaligned LOAD or STORE operations.	

Generally speaking, the trap handler for the Unaligned LOAD/STORE Exception will 
need to make two accesses to memory. For example, to load a doubleword from 8 
bytes that spans two properly aligned doublewords, the handler will need to load 
two aligned doubleword and extract the initial bytes from the first and the final 
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bytes from the second. (Example code sequences are discussed in detail elsewhere 
in this document.)	

When an unaligned LOAD or STORE operation also causes a page-related exception, 
the Unaligned LOAD/STORE Exception will have priority, Thus, the trap handler 
code for Unaligned LOAD/STORE Exception will be invoked.	

Once invoked, the trap handler will then go on to perform two aligned operations. 
One or both of these may cause a page-related exception.  Such exceptions could 20

either be fatal to the LOAD/STORE or repairable. For example, if the operation is a 
STORE into a page that is not writable, then it is fatal; the “Page Write Exception” 
needs to happen and the STORE aborted. On the other hand, a “Page Copy-On-Write 
Exception” should be transparent; it may require the kernel to copy a page, but the 
STORE operation should complete with no consequence to the user code.	

There are two approaches the kernel programmer can take.	

In the first approach, the trap handler code can use the CHECKADDR instruction 
before accessing data in the user’s virtual address space. If a page-related exception 
would occur, the handler can directly invoke whatever kernel functions are required. 
Once complete and the handler code is assured that access to the memory is safe, it 
can proceed.	

But if CHECKADDR indicates that a fatal page-related exception would occur, the 
trap handler for the Unaligned LOAD/STORE Exception will need abandon the 
operation and end by simulating the page-related exception.  In any case, interrupts 21

remain disabled throughout the handler.	

In the second approach, interrupts are reenabled. The handler code for the 
Unaligned LOAD/STORE Exception becomes interruptible. Then it simply performs 
the necessary memory operations without first checking, possibly causing a page-

 The first memory access might not cause an exception while the second access — falling within 20

a different page — might cause an exception.

 An exception can be “simulated” or “faked” as follows. The kernel code must set csr_stat2, 21

csr_prevpc, csr_cause, csr_bad, and csr_addr as they would be if the faked exception had actually 
occurred. Then it must jump to the start of the global trap handler, i.e., to the address in 
csr_trapvec. From then on, the trap handler will deal with the exception just as it normally does 
with all exceptions, without knowing that it was tricked.	
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related exception. If such a page-related exception occurs, it will be handled (since 
interrupts are enabled) by the appropriate handler. Assuming the exception is not 
fatal, there will be a return to the interrupted handler and the handler will then run 
to completion. 	22

If the page-related exception is fatal, then the user thread must be terminated. The 
kernel will need to detect that the problem occurred during the emulation of a LOAD 
or STORE so that it can report it correctly. The real error location is within the user 
code at the instruction that caused the Unaligned LOAD/STORE Exception, not 
within the trap handler that actually caused the fatal exception.	

Concerning Atomicity	

Note that the emulation of unaligned LOAD and STORE operations differs in an 
important way from aligned operations. Aligned LOAD and STORE instructions are 
guaranteed to be atomic, which means that the entire operation is either executed or 
not. With regard to other unrelated memory operations, the LOAD/STORE 
instruction either occurs before or occurs after the other operation. There is no 
interleaving.	

With a single-core processor, it might seem like there is no risk concerning atomicity. 
If there is only one core that can be issuing LOADs and STOREs to memory, you 
might assume an unaligned memory operation is effectively atomic, because the trap 
routine that emulates unaligned operations runs with interrupts disabled. Nothing 
can interrupt the core between the first memory operation and the second memory 
operation and there is no second core capable of touching memory.	

However, the kernel programmer must think carefully. What if the second memory 
operation entails a page-related exception? The thread might get rescheduled and 
other threads might run while the trap handler is waiting for a page to be read in 
from disk. Or, what if there is an I/O device that is also accessing memory? For 
example, a DMA controller might be copying a block of memory at the same time the 
unaligned LOAD/STORE is being emulated.	

 Is it guaranteed that there will not be additional page-related exceptions? Might it be necessary 22

to pin the pages to prevent an infinite chain of page-related exceptions? These are the challenges 
that make kernel hacking fun!
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Practically speaking, the problems associated with non-atomic memory operations 
should be dealt with in other ways. Typically, the kernel will lock shared data, thus 
enforcing the constraint that only one “customer” is allowed to touch the shared 
memory at any time. The use of locks can enforce data consistency. However, within 
the code to implement the locks themselves, it may be necessary to use atomic 
operations, so care must be taken.	

Null Address Exception	

This exception can be caused by the following instructions:	

	 Store to memory :	 STORE.B, STORE.H, STORE.W, STORE.D	
	 Read from memory:	 LOAD.B, LOAD.H, LOAD.W, LOAD.D	
	 Jumping:	 JAL, JALR, B.EQ. B.NE, B.LE, B.LT	
	 Other:	 NULLTEST, CAS	

This exception will set…	
	 csr_prevpc = the address of the offending instruction	
	 csr_bad = the offending instruction	
	 csr_addr = 0	

Any attempt to use an address in the range 0…7 as the target for a LOAD, STORE, 
jumping, NULLTEST, or CAS instruction will cause a “Null Address Exception”.	

A LOAD.X instruction may have modified RegD but the value is “undefined.” A 
STORE.X instruction may or may not have modified the first 8 bytes of physical 
memory (i.e., the doubleword at address 0); this behavior is undefined.	

If any jumping instruction sets the PC to zero, there will be no effect on the PC 
because the trap handling will immediately overwrite the PC. The PC value saved 
into csr_prevpc will be the address of the jumping  instruction itself.	

Note that the machine instructions for jumping are used in the implementation of a 
number of synthetic instructions, including CALL, CALLR, JR, RET, and the branch 
instructions.	

Commentary  “Null” pointers are widely used in programming. Ideally programs 
are either bug-free or will always test pointers before use, so that there will never be 
any attempt to dereference a null pointer. But alas, we live in a difference universe.	
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The Blitz manifesto dictates that we should try to catch and handle every error. 
Catching null pointer dereferencing must be done. We considered requiring the 
compiler to implicitly insert a test for every pointer dereference. In fact, we took this 
approach in Blitz-32 and came to appreciate the testing enormously. However, there 
was a huge performance hit: a test and branch for every pointer use. We also 
considered adding a new instruction, whose sole purpose is to cause an exception if 
necessary. But the overhead of even a single instruction is too much.	

The novel approach we are introducing with Blitz-64 is an unusual innovation.	

In code such as:	
i = *p

the compiler will produce a single instruction, such as:	
LOADD      r1,0(r2)

With our approach, no additional test is necessary.	

In other situations, an offset from the pointer is needed, as in:	
i = p.field

For this, the compiler might produce an instruction sequence such as:	
NULLTEST   r2
LOADD      r1,48(r2)

With Blitz-64, the 8 bytes at location 0 are forever inaccessible, unused, and wasted.	

Any attempt to read or write location zero will cause a “Null Address Exception”. If 
the programmer ever attempts to use a NULL pointer, the program will undergo 
controlled exception handling. The payoff is that every use of a pointer will be 
checked in hardware, in parallel to other execution. Thus, we expect no performance 
penalty.	

This particular sort of error is unique and important enough to be handled specially. 
The programmer deserves an error message that says “NULL pointer used” instead 
of the legacy incantation “segmentation fault”.	

We should note that one approach taken in traditional OSes is to reserve an entire 
virtual page. Page number zero in the user’s address space is not mapped, and any 
attempt to read/write to it will cause a virtual memory exception. Our approach 
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uses a separate type for this error; it is not piggybacked onto a more general error 
condition.	

We also want to catch null pointer use in kernel code.	

In traditional systems, null pointer use within the kernel can be trapped by 
executing the kernel with virtual memory mapping turned on. Page zero in the 
kernel’s virtual address mapping would be marked as invalid. If the kernel’s page 
table maps all of physical memory to virtual memory in a one-to-one manner, then, 
marking page zero as invalid will waste an entire page of physical memory. The 
Blitz-64 approach wastes only 8 bytes.	

The Blitz approach seeks to improve the performance of kernel code by avoiding the 
necessity of mapping the kernel address space. Thus, Blitz kernel code can 
potentially execute faster than in other ISAs, since address mapping is not used for 
kernel code. However, since the kernel’s address space is not mapped into a virtual 
address space, catching null pointers by using a mapping in which the page at virtual 
address 0x0_0000_0000 is invalid is not possible in Blitz-64. But the Null Address 
Exception works better anyway.	

With a 1 GiByte physical memory, the sacrifice of 8 bytes is an insignificant, trivial 
overhead.	

The memory at location 0 can, in fact, be read and written. Physical page zero can be 
mapped into a virtual page, and the first byte of this page can be read/written with a 
non-zero virtual address, effectively accessing byte 0. Recall that the first pages of 
physical memory are intended to contain the kernel’s static data. So mapping these 
into a virtual address space for use by user-level code would be foolish and risky.	

Illegal Instruction Exception (including Privilege Violations)	

Any attempt to execute an instruction with an undefined OPCODE will cause this 
exception. Any attempt to execute a privileged instruction while running in user 
mode will also cause this instruction. The instruction named ILLEGAL will cause this 
exception.	
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The privileged instructions are:	

	 SYSRET	
	 SLEEP1	
	 SLEEP2	
	 CONTROL	
	 CSRSWAP	
	 CSRREAD	
	 CSRWRITE (a synthetic form of CSRSWAP)	
	 CSRSET	
	 CSRCLR	
	 TLBCLEAR	
	 TLBFLUSH	
	 CHECKADDR	

This exception will set…	
	 csr_prevpc = the address of the offending instruction	
	 csr_bad = the offending instruction	
	 csr_addr = 0	

Page-Related Exceptions	

	 Page Illegal Address Exception	Attempt to access kernel space in User Mode	
	 Page Table Exception	 Bad csr_pgtable	
	 Page Invalid Exception	 VALID bit = 0 either at level 1 or 2	
	 Page Write Exception 	 Write to a page which is not marked writable	
	 Page Fetch Exception 	 Fetch from a page not marked executable	
	 Page Copy-on-Write Exception	Page is not dirty and marked copy-on-write	
	 Page First_Dirty Exception	 Writing to page which is not marked dirty	

The page-related exceptions occur when the Memory Management Unit (MMU) has 
a problem translating a virtual address to a physical address. They are discussed 
more fully later.	

A page-related exception can occur during the FETCH phase of execution, whenever 
an instruction is read from memory. It can also occur during LOAD and STORE 
instructions. These situations are the only ones that can cause a page-related 
exception.	
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Page-related exceptions may be caused by code running in either user mode or 
kernel mode.	

For code running in user mode, all program-generated addresses (whether FETCH, 
LOAD, or STORE) should be in the upper, virtual address range. In other words, all 
program-generated addresses should have bit [35] set to 1. Any problem with an 
address will cause one of the page-related exceptions.	

For code running in kernel mode, addresses in the physical address region (that is, 
within the lower 32 GiBytes, i.e., addresses with bit [35] cleared to 0) will never 
cause page-related exceptions. Addresses in upper virtual address range will cause 
the exact same page-related exceptions they would cause if executed in user mode.	

Thus, address translation and page-related exceptions work the same for both user 
code and kernel code, with one difference: Program-generated addresses in the 
physical address region are perfectly okay for kernel code, but will cause a Page 
Illegal Address Exception in user mode.	

The csr_prevpc is set to the address of the instruction causing the problem. The 
csr_addr is set to the program-generated address that caused the exception. (In the 
case of a problem with fetching, both CSRs will contain the same value. )	23

The general purpose registers will be unchanged. The assumption is that, in many 
cases, the kernel trap handler will fix the memory problem and execution will be 
resumed, starting with the faulting instruction which will be re-executed.	

These exceptions will set…	
	 csr_prevpc = the address of the offending instruction	
	 csr_bad = 0	
	 csr_addr = the program-generated address causing the problem	

Debug Exception	

This exception is used in debugging programs.	

This exception is caused by the execution of the DEBUG instruction. If instruction 
execution is resumed, it will occur after the DEBUG instruction.	

 For example, if a SYSRET instruction loads a bad value into the PC, then car_prevpc will contain 23

that bad address, not the address of the SYSRET instruction.
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The DEBUG instruction uses only the OP1 and OP2 fields. The remaining 16 bits of 
the instruction [15:0] are left undefined and may be used by software to store 
additional information.	

This exception will set…	
	 csr_prevpc = the address of the instruction after the DEBUG instruction	
	 csr_bad = the offending instruction, i.e., the DEBUG instruction itself	
	 csr_addr = 0	

Breakpoint Exception	

This exception is used in debugging programs.	

This exception is caused by the execution of the BREAKPOINT instruction. If 
instruction execution is resumed, it will occur by attempting to re-execute the 
instruction.	

It is assumed that a BREAKPOINT instruction replaces some other valid instruction. 
After the breakpoint is reached, the BREAKPOINT instruction will be removed and 
the original instruction will be restored. After execution is resumed, the restored 
instruction will be executed.	

The BREAKPOINT instruction uses only the OP1 and OP2 fields. The remaining 16 
bits of the instruction [15:0] are left undefined and may be used by software to store 
additional information.	

This exception will set…	
	 csr_prevpc = the address of the BREAKPOINT instruction	
	 csr_bad = the offending instruction, i.e., the BREAKPOINT instruction itself	
	 csr_addr = 0	

Singlestep Exception	

The purpose of this exception is to allow debugging software to single-step 
execution, that is, to execute a single instruction of the target program and then 
regain control.	

Whenever single-stepping is turned on (i.e., when the Singlestep bit in csr_status is 
set to 1) then a Singlestep Exception will be signaled following the execution of any 
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instruction, as long as interrupts were enabled during the instruction execution and 
no other exceptions were signaled.	

This exception is described more fully in a later section.	

This exception will set…	
	 csr_prevpc = the address of the next instruction to be executed	
	 csr_bad = the instruction just executed	
	 csr_addr = 0	

The csr_prevpc is set to the address of the next instruction to execute after the 
instruction that caused the exception. For example, if a jump instruction causes the 
exception, csr_prevpc will be set to the jump target address.	

Emulated Instruction Exception	

This exception is caused by an attempt to execute a machine instruction which is 
defined but not implemented. The hardware will set csr_bad to the instruction that 
is not implemented, as it was fetched from memory. The csr_prevpc will be set to 
the address of the instruction following the unimplemented instruction.	

The following instructions are candidates for emulation. The algorithms are complex 
and will require complex hardware. It may be preferable to perform these 
operations in software, especially on smaller, simpler implementations of the 
Blitz-64 architecture.	

	 DIV, REM	
	 All floating point instructions	

Emulated instructions may be used in either user mode or kernel mode.	

This exception will set…	
	 csr_prevpc = the address of the following instruction	
	 csr_bad = the offending instruction	
	 csr_addr = 0	

Hardware Fault Exception	

Some implementations of the Blitz-64 ISA will include circuitry that detects errors. 
For example, a core might include circuitry for:	
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	 • Additional error checking bits for register contents	
	 • Additional error checking bits for main memory data	
	 • Additional error checking bits for bus data	
	 • Duplication of ALU circuitry, to catch errors	

When circuitry such as the above detects that an error has occurred, a Hardware 
Fault Exception will be triggered.	

Presumably a single hardware error will directly affect only the thread in execution. 
That thread can no longer be considered reliable and correct. Presumably, the kernel 
will never ignore a hardware fault. Instead the kernel might take actions such as:	

	 Log the error	
	 Notify the affected thread	
	 Abort the thread	
	 Restart the affected thread	

This exception will set…	
	 csr_prevpc = the address of the offending instruction	
	 csr_bad = the offending instruction	
	 csr_addr = 0	

A hardware error may be “transient” in which case it was a one-time event and there 
will be no further malfunctions in the core. Or it may be an ongoing problem and the 
same error will be detected again in the future, whenever a similar operation is 
performed. The error may also be the result of a physical insult, such as the power 
supply falling below specifications. In such cases, we might encounter an increasing 
number of hardware faults with total failure being imminent.	

In some cases, the “error detection and correction” (EDC) codes will be used. Such 
codes are capable of not only detecting that a bit has erroneously flipped in value, 
but also of determining which bit is in error, thus allowing the bit to be corrected.	

Commentary In some ISAs, hardware faults are treated like asynchronous 
interrupts. However in Blitz-64, a hardware fault causes an exception, not an 
interrupt.	

Interrupts can and are masked at various times. However, hardware faults should 
never be masked. Also, exceptions are tied to a particular instruction; this may be 
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needed for hardware faults, since the kernel may need to identify which thread was 
executing at the moment the fault was detected so that the kernel can abort the 
thread. 	24

In the case when a hardware fault is persistent and recurs repeatedly, what will 
happen? A second Hardware Fault Exception will occur on the heels of the first 
Hardware Fault Exception, before the trap handler has completed. Since the 
exception handler is unable to complete before getting restarted, presumably the 
core will go into an infinite loop and freeze up. 	25

Bad Array Index Exception	

This exception can be caused by the following instructions:	

	 INDEX0, INDEX1, INDEX2, INDEX4,	
	 INDEX8, INDEX16, INDEX24, INDEX32	

The purpose of these instructions is to verify that an array index is legal and within 
range and cause this exception if there is a problem.  Presumably the software will 
react to this exception by printing a message to the effect that there was an array 
index error.	

This exception will set…	
	 csr_prevpc = the address of the INDEX__ instruction	
	 csr_bad = the INDEX__ instruction	
	 csr_addr = 0	

Commentary There is no “Illegal Address” exception.	

All upper bits [63:36] in a program-generated address (i.e., above the normal 36 bits 
in every address) are ignored.	

If a program-generated address is in the upper half of the 36 bit address range, the 
address goes through the Memory Management Unit (MMU) which performs virtual-

 This would be appropriate for a one-time, non-recurring fault which only impacts a single user-24

mode thread.

 We considered a design in which hardware exceptions could be masked in an attempt to prevent 25

such looping. However, the added complexity doesn’t seem worth its cost.
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to-physical address translation. If there is a problem with the address, one of the 
page-related exceptions will be generated.	

If the address is in the lower half of the 36 bit address range, the address is a 
physical address and will be used without translation.	

Regardless of whether any address translation was performed, the full 35 bit 
physical address is sent to the main memory and the memory-mapped I/O devices 
“as is”.	

Physical address violations (i.e., attempts to access an uninstalled address in the 
physical memory region) are not checked and the consequences are undefined. If an 
attempt is made to access uninstalled memory, then writes are likely to be ignored 
and reads are undefined, and likely to return garbage values. In any case, no 
exception will occur. It is the kernel’s responsibility to access only installed memory 
and defined memory-mapped I/O addresses.	

Stack Overflow Exception	

The Stack Overflow Exception can be caused by the following instructions:	

	 ADD, ADDI, ENTERFUN	

The exception is caused when one of these instructions attempts to store a value 
into the sp register which is less than the StackLimit field in csr_status.	

If this exception occurs, the instruction will not modify the sp register.	

This exception will set…	
	 csr_prevpc = the address of the offending instruction	
	 csr_bad = the offending instruction	
	 csr_addr = 0	

Philosophy Behind Checking the Stack Limit	

In Blitz-64, the stack grows downward from high memory to smaller addresses. The 
purpose of the StackLimit field is to catch errors where the stack grows too much 
and exceeds the space allocated for it.	
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In one common arrangement, the OS will place the heap and the stack in the same, 
shared region of memory. The heap will grow up from the lower addresses and the 
stack will grow downward from higher addresses. When they meet, memory is 
exhausted. The stack limit check makes it possible to catch this error.	

In multithreaded programs, each thread will require its own stack. Typically, the 
space for each stack will be preallocated and each stack will be limited to a region 
and incapable of growing further. In fact, each stack may be located within a single 
object that is allocated on the heap. Thus, a comparison against the heap limit 
pointer will not work.	

In a virtual memory system, one typical practice is to allocate each thread’s stack 
“very” far apart in the address space, thus hoping to avoid the possibility of a stack 
out-growing its region. But “hope” is not a viable strategy for systems requiring 
high-reliability. 	26

In a smaller embedded application, there might be no virtual memory and the heap 
and the stack will occupy a not-huge region of memory. A stack-heap collision is 
possible.	

A stack can outgrow its allocated region either because the region was just too small 
to begin with or because an algorithm recurses too deeply. In any case, when a stack 
outgrows its region without triggering an error, it typically causes the overwriting of 
some other, random memory locations. Often, the stack will subsequently shrink 
after doing this damage and the problem will, in some sense, disappear. The 
overwritten memory will cause a failure at a later time in a some completely 
unrelated section of code or — what’s worse — the program’s output will simply be 
incorrect. Errors from stack overflow are insidious since the site of the failure is 
usually unrelated to the function causing the problem.	

The Blitz-64 philosophy is to try to catch all errors, whenever reasonably possible. 
To be sure, checking the sp register against a limit requires a little more hardware, 

 In this approach, a buffer (also called a “sentinel”) page is allocated for each stack. This page will 26

be marked as invalid or unwritable. The idea is that if the stack grows into this page, a page fault 
will occur and the kernel can take appropriate action. To be 100% reliable, this technique would 
place a requirement that writes to the stack must not be spread too far apart. Otherwise, a really 
large stack allocation might fail to cause the expected page fault. This technique works with high 
reliability for stacks in virtual space but can be problematic for stacks allocated dynamically in the 
heap or in systems that do not use virtual memory.
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although not much. The overhead in execution speed is expected to be negligible. We 
recognize this, but believe the benefit exceeds the cost.	

When checking the value to be stored in the sp register, the core will only look at the 
lower 36 bits; the upper bits of sp are ignored. Both sp and the StackLimit field are 
treated as unsigned 36 bit values and the exception occurs when sp < StackLimit.	

If no limit enforcement is desired, a value of 0 can be stored in the StackLimit field 
in csr_status. This will prevent the exception from occurring.	

Details on Stack Limit Checking	

In typical code, the stack is only used for stack frames. A stack frame is allocated at 
the beginning of every function or method and the frame is removed from the stack 
when the function or method returns.	

The “prologue” code at the beginning of a function or method will allocate a frame 
by adjusting the sp register using one of these instructions:	

ADD	
ADDI	
ENTERFUN	

As such, it is only necessary to check for a stack overflow condition when these 
instructions are executed.	

The Blitz-64 specification requires that the condition is checked whenever one of 
these instructions modifies the sp register. It would seem that checking at other 
times might be reasonable, but this is not allowed. 	27

It may be that the OS kernel will respond to a Stack Overflow Exception by enlarging 
the stack region, adjusting the StackLimit within csr_status, and then re-executing 
the instruction that caused the exception. For this reason, we want to ensure that the 

 We considered an alternative ISA design in which the limit check was performed on the STORE.x 27

instructions. The idea was to check any STORE.x instruction that uses the sp register, comparing 
the target memory address against the StackLimit. However, the compiler can generates code to 
address data on the stack in which the final STORE.x instruction uses another register besides sp. 
Thus the design adopted is expected to be more reliable.
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exception is only possible under known conditions, that is, under the conditions 
described here.	

The ADD, ADDI, and ENTERFUN instructions can be used to add a (negative) value to 
sp, triggering the exception. It is conceivable that the addition operation will trigger 
both a Stack Overflow Exception as well as an Arithmetic Exception. Adjusting sp 
should never result in an overflow, so the Arithmetic Exception will take priority and 
the Stack Overflow Exception will be lost.	

In the case of ENTERFUN, the instruction normally stores the return address (from 
the lr register) into memory. If the instruction causes a Stack Overflow Exception, 
this memory operation must not occur. If there are exceptions related to the store 
operation (such as page-related exceptions), the Stack Overflow Exception takes 
priority and the other exceptions are ignored and lost.	

Occasionally, code will store values above the stack top (i.e., using negative offsets 
from sp). This is frowned upon, since this might store data beyond the StackLimit. 
The stack limit is not checked when data is stored, so this error would not be caught.	

The Singlestep Exception	

Programmers may want to debug user mode programs with a “debugger” which will 
allow them to examine variables and execute instructions in a controlled manner. 
The single-stepping facility is designed for use by such a debugger. 	28

The status register csr_status contains a single bit named SINGLE_STEP. When set to 
1, there will be a “Singlestep Exception” signaled immediately after the completion 
of the next instruction. When cleared to 0, no such exception will be signaled.	

 This approach described here requires the execution of privileged instructions, such as 28

modifying the SINGLE_STEP bit in csr_status. We make no assumptions about whether the 
debugger is running as a separate process, or running within the virtual address space of the 
target program as a separate thread, or whether the debugger code is entirely integrated with the 
kernel code. If the debugger is not integrated with the kernel code, then the debugger process will 
need to make specific requests of the kernel to perform the privileged operations and take the 
actions discussed in this section.
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The Singlestep Exception will only occur if the previous instruction was executed 
with interrupts enabled and no other exceptions were generated by the 
instruction. 	29

The purpose of this exception is to allow a debugger to execute a single instruction 
of the target code and then regain control immediately afterward.	

In order for the debugger to execute a single-step operation, the debugger will 
execute a SYSRET instruction in which the new value of csr_status has SINGLE_STEP 
= 1. A “return” (which you can think of as a “jump”) will be effected to the code 
sequence being debugged and a single instruction will be executed.	

After that instruction, a Singlestep Exception will be signaled. The Singlestep 
Exception has a priority below all other exceptions. If the instruction causes another 
exception, the Singlestep Exception will not occur and will be effectively ignored and 
lost.	

Assuming that no other exceptions occurred for that instruction, the Singlestep trap 
handler will be invoked and the debugger will regain control.	

If the target instruction caused another exception, then the Singlestep Exception will 
not occur. It is assumed that the debugger will regain control through the trap 
handler for whatever other exception occurred. 	30

Normally, interrupts will be disabled at the time the SYSRET instruction is executed, 
so the SYSRET will not itself cause a Singlestep Exception. (However, if a SYSRET is 
executed with interrupts disabled — a buggy scenario — a Singlestep Exception will 
occur.)	

 More precisely, a Singlestep Exception may only occur after an instruction for which interrupts 29

were enabled directly prior to instruction execution. This distinction makes a difference for a 
couple of privileged instructions which may alter the INTERRUPTS_ENABLED bit.

 If the other exception was due to a programming error (e.g., a Null Address or Arithmetic 30

Exception), then the kernel should deliver this information to the debugger, along with the address 
of the instruction causing the exception, so the debugger can report it. But the other exception 
might not indicate a program error. For example, some STORE instruction might cause a Page First 
Dirty Exception, which would be handled by the kernel by updating the in-memory page table. The 
kernel can then return to the user code, which will naturally re-attempt to execute the instruction. 
On the second execution, the singlestep exception will finally happen, and the debugger can be 
notified.
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What about the presence of interrupts occurring around the time of a single-step 
operation?	

The trap handler for the Singlestep Exception will run with interrupts disabled. The 
timing of an incoming asynchronous interrupt determines whether it will be 
handled before the Singlestep Exception handler runs or whether it must wait until 
after the Singlestep Exception handler completes.	

Interrupts are disabled before and through the execution of the SYSRET instruction. 
An interrupt may have been signaled, but the interrupt will remain pending until the 
SYSRET instruction is executed.	

Immediately after the SYSRET instruction is executed and interrupts are re-enabled, 
a pending interrupt X may exist. Interrupt processing effectively occurs between the 
execution of instructions, not during them. After the SYSRET, but before the next 
instruction, the hardware will initiate trap processing to invoke the trap handler for 
interrupt X. The Singlestep Exception will not occur, since no instructions were 
executed in user mode before code in the interrupt handler runs.	

Presumably, all interrupt handlers will save csr_status and, upon completion of the 
trap handler, the handler will restore it (with its own SYSRET instruction). This time 
— assuming no more interrupts are pending — a single instruction will be executed 
and the Singlestep Exception will finally occur.	

Because the Singlestep Exception cannot occur when interrupts are disabled, it is 
impossible to single-step though trap handers, using the Singlestep Exception 
mechanism.	

A Singlestep Exception will never occur immediately after a SYSCALL instruction, 
since the Singlestep Exception is overridden by the SYSCALL Exception. This makes 
it moderately tricky to perform single-stepping at a SYSCALL. A Singlestep Exception 
may occur directly before the SYSCALL, but the next opportunity will not be until 
after the instruction following the SYSCALL completes execution. Of course, the trap 
handler for SYSCALL may be aware of the presence of a debugger and the single-
stepping activity.	

There is also an issue with emulated instructions. If an instruction (e.g., FMUL) 
causes an Emulation Exception, it cannot also cause a Singlestep Exception. Thus, 
the FMUL instruction will invoke a trap handler which will return to the instruction 
following the FMUL, call it X. The Singlestep Exception will occur after the execution 
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of instruction X. There will be no Singlestep Exception associated with the FMUL 
instruction.  	31

Instructions that cause page-related exceptions should not present a single-stepping 
problem. Typically, an instruction (e.g., LOAD or STORE) will cause a page-related 
exception. After the trap handler deals with the problem, the instruction will be re-
tried. The Singlestep Exception will then occur after the second attempt succeeds 
with no exception.	

Value of Saved PC	

During trap handling, the hardware will begin by saving the program counter (PC) in 
csr_prevpc. This allows the trap handler software to locate the instruction causing 
the trap and, in many cases, to resume execution of the interrupted code upon 
completion of the trap handler function.	

For the following trap types, the address of the instruction causing the trap is saved.	

In the case of some exceptions, the SYSRET instruction at the end of the trap handler 
will resume execution by attempting to re-execute the offending instruction again. In 
the case of other exceptions, the instruction has a fatal problem that requires 
debugging. In either case, pointing to the offending instruction makes sense.	

 Perhaps the Emulated Instruction Exception will check to see if the interrupted code is actively 31

being debugged. If so, the handler can end by “faking” a Singlestep Exception, rather than simply 
returning to instruction X. We discuss “faking” an exception elsewhere in this document.
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	 csr_prevpc points to offending instruction:	
	 	 Exceptions	
	 	 	 Arithmetic Exception	
	 	 	 Unaligned LOAD/STORE Exception 	32

	 	 	 Null Address Exception	
	 	 	 Illegal Instruction Exception (including privilege violation)	
	 	 	 Page Illegal Address Exception	
	 	 	 Page Table Exception	
	 	 	 Page Invalid Exception	
	 	 	 Page Write Exception	
	 	 	 Page Fetch Exception	
	 	 	 Page Copy-On-Write Exception	
	 	 	 Page First Dirty Exception	
	 	 	 Breakpoint Exception	
	 	 	 Hardware Fault Exception	
	 	 	 Bad Array Index Exception	
	 	 	 Stack Overflow Exception	
	 	 Interrupts	
	 	 	 … all interrupt types …	

For the following trap types, the address to be saved in csr_prevpc will be the next 
instruction to execute. It is assumed that the previous instruction executed to 
completion and re-executing that instruction would be in error. The SYSRET 
instruction will resume by executing the following instruction.	

	 csr_prevpc points to the following instruction:	
	 	 Exceptions	
	 	 	 SYSCALL	
	 	 	 Debug Exception	
	 	 	 Singlestep Exception	
  	 	 	 Emulated Instruction Exception	

 For an Unaligned LOAD/STORE Exception, csr_prevpc will point to the LOAD or STORE 32

instruction. If this exception is to be treated as an error, then pointing at the instruction causing 
the problem makes sense. But if this exception is handled by emulating the operation, then the 
emulation handler will need to increment PC so that, on execution of SYSRET, the same instruction 
will not be re-executed, causing an infinite chain of exceptions.
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Traps Related to Instruction Fetching	

The following instructions can modify the Program Counter (PC) :	33

B.EQ	
B.NE	
B.LT	
B.LE	
JAL	
JALR	
SYSRET	

Keep in mind that a number of synthetic instructions (such as JUMP, JR, CALL, RET, 
BEQ, …) are translated into one of the above instructions.	

Furthermore, trap processing will modify the PC by copying csr_trapvec into the PC. 
Sequential program execution also modifies the PC by incrementing it.	

Whenever an instruction is fetched, one of the following exceptions may arise:	

Null Address Exception	
Page Illegal Address Exception	
Page Table Exception	
Page Invalid Exception	
Page Fetch Exception	

Since compressed instructions may be as short as a single byte, there is no 
alignment requirement for instructions. Therefore, the Unaligned LOAD/STORE 
Exception cannot occur. 	34

The Null Address Exception will occur at the time the PC is loaded, by the jumping 
instruction. The “offending instruction” is the jumping instruction itself.	

The remaining exceptions (that is, the page-related exceptions) occur when the 
memory operation to fetch the instruction is performed. As such, the “offending 
instruction” is the instruction being fetched. No information about where the jump 
“came from” is captured.	

 We ignore power-on-reset and the RESTART instruction, since exceptions do not occur then.33

 In earlier versions of the ISA, there was an alignment requirement on instructions.34
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In some cases, the Null Address Exception may not be detected until the instruction 
fetch occurs. For example, if a trap occurs at a time when csr_trapvec happens to be 
null, the problem is really that someone failed to load csr_trapvec.  In such a case, 
there is no identifiable “offending instruction”. As another example, a user-mode 
program might take a branch to some random address in a page that is invalid.	

In such cases, csr_bad and csr_addr may not be set to the values that were 
mandated in the above description of the Null Address Exception.	

As another example, a CALL instruction (i.e., JALR) could load the PC with a 
problematic PC that results in an exception during the fetch. Normally, when 
exceptions occur, the offending instruction will be completely aborted and have no 
effect. However, in the case of the JALR, the return address may be saved (e.g., 
register LR will be modified) before the exception is discovered. 	35

Trap Priority and Simultaneous Exceptions	

The occurrence of an interrupt or exception will invoke hardware trap processing, 
which initiates the execution of a software trap handler. Conceptually, hardware trap 
invocation occurs between the execution of instructions; it is not done concurrently 
with instruction execution (at least as far as functionality observable by software).	

More precisely, interrupts are checked for before each instruction is executed and, if 
triggered, hardware trap invocation occurs prior to the instruction execution. On the 
other hand, exceptions are checked for during the execution of instructions and, if 
triggered, hardware trap invocation occurs after instruction execution is terminated.	

If an interrupt is pending before an instruction X begins execution, then the 
hardware interrupt processing will occur immediately. This will cause a change in 
the flow of control and the next instruction to execute will be the first instruction of 
the interrupt handler. Instruction X will be delayed and will not be executed until the 
interrupt handler completes and ends by executing a SYSRET instruction.	

 If the kernel repairs the problem and re-executes the instruction, there will be no harm done by 35

moving the return address into the LR register a second time.
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On the other hand, if the interrupt arrives a little later, then instruction X will 
execute. If instruction X causes an exception, then that exception will cause trap 
handling. The next instruction after X will be the first instruction of the trap handler 
for that exception. The interrupt will not invoke a trap handler and the interrupt will 
remain pending.	

As a result of the exception and trap processing, the hardware will clear the 
INTERRUPTS_ENABLED bit in csr_status to disable interrupts. Therefore, the 
handler for the interrupt will not run until after the trap handler for the exception 
completes.	

At some later time, the trap handler for the exception will end by executing a 
SYSRET instruction. At this time, interrupts will become re-enabled. As a result, the 
trap handler for the interrupt will be invoked immediately after the SYSRET 
instruction and before any instruction in the original, interrupted code sequence is 
executed.	

Commentary  Conceptually, interrupt processing occurs before the execution of an 
instruction, and exception processing occurs during and after the processing of an 
instruction. 	

It may seem that our model somehow gives priority to exceptions over interrupts, 
but this is not necessarily accurate. In fact, any core will check for and accept 
interrupts at only certain moments in execution. During other times, instruction 
execution will occur.	

Machine instructions atomic, in the sense that instructions either execute 
completely or do not execute at all. In other words, the instructions following an 
instruction causing an exception are not executed at all. The Blitz-64 architecture 
requires that any partial or incomplete instruction execution (for example, 
instructions further ahead in the pipeline) shall not be visible to the programmer.	

The Blitz-64  model does not preclude a pipelined implementation in which 
interrupts are accepted and processed with alacrity. For example, a pipelined 
implementation might accept and process interrupts immediately, even though 
there are several instructions at varying stages of the pipeline. When an interrupt 
arrives, trap processing would be begin immediately, which will force the emptying 
of whatever is in the pipeline and an immediate switchover to the trap processing 
sequence. However, any and all partially executed instructions must be abandoned 
and any possible effects must be avoided or undone.	
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On the other hand, an implementation may delay an interrupt for several cycles, in 
order to allow all instructions currently in the pipeline to complete execution. The 
key constraint imposed by the ISA is that the interrupt processing must occur 
discretely between two instructions. The instruction before the trap handling will 
complete fully  and all instructions after the interrupt must not begin execution.	36

Our model gives only a semantics for interrupt acceptance and processing. Any 
Blitz-64 implementation must have the the same behavioral result as a simple, non-
pipelined implementation in which instructions are executed serially, one after the 
other, and interrupt processing occurs between two instructions.	

It is possible that some instruction will cause more than one exception. Only one 
exception will be signaled. All other other exceptions for that instruction will be 
ignored and forgotten.	

For example, consider a LOADD instruction attempting to load from address 1. Both 
the Unaligned LOAD/STORE Exception and the Null Address Exception apply. For 
such a conflict, the Null Address Exception shall occur and the Unaligned LOAD/
STORE Exception shall be ignored. 	37

 This includes exception processing associated with the instructions. If the previous instruction 36

causes an exception, then trap handling for that exception will occur. Trap handling for the 
interrupt will be delayed and the interrupt will remain pending.

 In this example, the decision about precedence is more-or-less arbitrary. While an Unaligned 37

LOAD/STORE Exception might invoke emulation, a Null Address Exception always indicates a 
program bug. For this reason, we chose to give the Null Address Exception priority. However, this 
distinction only affects error reporting and should not affect correct code.
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Here is a summary of how multiple simultaneous exceptions are handled:	

	 Highest priority →	 Hardware Fault Exception	

	 	 Illegal Instruction Exception (including privilege violation)	
	 	 Debug Exception	
	 	 Breakpoint Exception	
	 	 Syscall	
	 	 Arithmetic Exception	
	 	 Emulated Instruction Exception	
	 	 Bad Array Index Exception	
	 	 Stack Overflow Exception	

	 	 Null Address Exception	
	 	 Unaligned LOAD/STORE Exception	

	 	 Page Illegal Address Exception	
	 	 Page Table Exception	
	 	 Page Invalid Exception	
	 	 Page Write Exception	
	 	 Page Fetch Exception	
	 	 Page Copy-On-Write Exception	
	 	 Page First Dirty Exception	
	 	
	 Lowest priority →	 Singlestep Exception	

The following rules apply when there are multiple exceptions and interrupts.	

•	If an instruction causes more than one exception, then only one exception will 
be chosen for trap processing. All other exceptions will be lost.	

•	Exceptions have priority over interrupts. If an exception is signaled, any and all 
pending interrupts will remain pending and the exception will be chosen for 
trap processing.	

•	If a “Hardware Fault Exception” is signaled, it will have the next highest priority. 
Any and all exceptions of lower priority will be ignored and lost.	

•	A “Null Address Exception” overrides an “Unaligned LOAD/STORE Exception” 
and all Page-Related exceptions.	
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•	An “Unaligned LOAD/STORE Exception” overrides all Page-Related exceptions.	

•	The following exceptions are all mutually exclusive and cannot co-occur with 
other exceptions types: 	38

	 Illegal Instruction Exception	
	 Debug Exception	
	 Breakpoint Exception	
	 Syscall	
	 Arithmetic Exception	
	 Emulated Instruction Exception	
	 Bad Array Index Exception	
	 Stack Overflow Exception	

•	A “Page Illegal Address Exception” overrides all other Page-Related exceptions.	

•	The following Page-Related exceptions are mutually exclusive; at most only one 
of these can occur.	

	 Page Table Exception	
	 Page Invalid Exception	
	 Page Write Exception	
	 Page Fetch Exception	
	 Page Copy-On-Write Exception	
	 Page First Dirty Exception	

•	During an instruction FETCH a Page-Related exception can occur. However, if 
such an exception occurs, then the instruction is not fetched and instruction 
execution is not begun. Any other exception that the instruction might have 
caused never happens.	

•	A “Singlestep Exception” has a priority below all other exceptions. If, for 
example, the debugger is single-stepping some code and an ADD instruction 
causes an “Arithmetic Exception”, the “Arithmetic Exception” will be chosen.	

 Except “Hardware Fault Exception”, which has higher priority, and “Singlestep Exception”, which 38

has lower priority.
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•	Interrupts have the lowest priority and will only be handled if there are no 
exceptions.	

• If there are several interrupts pending, then one will be chosen for processing. 
That interrupt will cause trap processing and the others will remain pending.	

Commentary The logic behind choosing one exception and ignoring all others is 
this.	

A Hardware Fault Exception has the highest priority since it precludes correct 
operation of at least some code. The hardware fault may be a transient, one-time 
event, in which case the kernel might get by with only terminating a single thread; 
the kernel itself might be able to continue. For example, a Hardware Exception 
occurring in user mode code might be dealt with by simply terminating the affected 
process; it is not necessarily a cause for crashing the kernel. However, a Hardware 
Exception occurring in when in Kernel Mode is more serious (compromising the 
kernel itself) and is probably a good reason for a kernel crash / reboot.	

A Page Illegal Address Exception and a Page Table Exception conflict would occur if 
user code attempts to access kernel memory at the same that the csr_pgtable 
register is uninitialized. However, it is impossible to FETCH an instruction from user 
space without a page table, so this conflict could only arise when the kernel jumps to 
user code with both csr_pgtable and the PC being invalid. Thus, the Page Illegal 
Address Exception is given higher priority. A Page Illegal Address Exception cannot 
co-occur with any other Page-Related exception.	

The decision about precedence between the Null Address Exception and the 
Unaligned LOAD/STORE Exception is more-or-less arbitrary. While Unaligned 
LOAD/STORE Exceptions might sometimes be legitimate (invoking emulation), a 
Null Address Exception always indicates a program bug. For this reason, we chose to 
give the Null Address Exception priority.	
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Pending Interrupts	

Once an interrupt is signaled by a device, it becomes “pending” and remains pending 
until it is accepted for trap processing.  At the time it is accepted, the program 39

counter (PC) is set to csr_trapvec, the status word is saved in csr_stat2, an interrupt 
code is loaded into csr_cause, and the first instruction of the trap handler will be 
executed next.	

If the previous instruction caused an exception, any interrupt that occurs will 
remain pending during the execution of the trap handler for the exception. The only 
information that must be kept is the identity of the interrupt type, i.e., the fact that 
an interrupt is pending. 	40

With this approach, an interrupt can only be serviced after the execution of an 
instruction which causes no exception. Note that the SYSRET will not cause an 
exception. Thus, immediately after the trap handler returns, a pending interrupt will 
be handled, before the next instruction is executed. 	41

Any instruction which causes an exception will invoke a trap handler and during the 
entire execution of the handler, interrupts will be disabled. If an interrupt arrives 
early enough — that is, before the excepting instruction begins execution — the 
interrupt will be handled before the exception’s trap handler runs. On the other 
hand, if the interrupt happens to be signaled a little bit later, it will miss its window 
of opportunity and will be delayed until after the exception’s trap handler completes 
and re-enables interrupts. 	42

 Some pending interrupts can disappear, such as an interrupt from the Platform-Level Interrupt 39

Controller (PLIC) that has been claimed by another core.

 In the case of a conflict between an exception and interrupt occurring simultaneously, we 40

considered a design in which the exception is made pending and the interrupt is handled. 
However, an exception involves more information (such as the values of the Program Counter, 
csr_cause, csr_bad, and csr_addr). Instead of keeping this info, the exception is handled and the 
interrupt remains pending.

 Well, a SYSRET might theoretically cause an exception if it is executing in a virtual address space 41

and a page-related exception arises for the FETCH. But kernel code should never be placed in 
virtual pages that are not pinned and exception-proof, and probably not even then, so this is not 
expected to occur.

 This is a simplification. A real-world kernel will sometimes reenable interrupts before returning 42

to the interrupted code sequence. The point is that the pending interrupt will occur at the moment 
interrupts are re-enabled.
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To summarize, with the design of Blitz-64, an interrupt occurring during an 
exception-causing instruction is effectively treated as if it came a little later and 
simply missed its window of opportunity. It will get serviced immediately after the 
trap handler finishes and reenables interrupts, which is what must happen anyway 
if the interrupt had arrived one instruction later.	

Commentary We considered a design in which a trap handler for one exception or 
interrupt could, itself, be interrupted. For example, a scheme with multiple levels of 
interrupt execution might provide more responsiveness for some interrupt types. 
Such a design might be necessary to handle interrupts that always require a 
immediate, super-fast response.	

Such was the case in the old days, when the CPUs were relatively slow and they had 
to manage a rotating disk drive directly. The CPU was interrupted when the disk 
platter rotated into position and data was ready to be transferred. The CPU needed 
to pay attention quickly and, if it failed to, the disk would continue rotating and the 
opportunity for data transfer would be lost. A similar situation arose with 
communication links, where an incoming message had to be moved into memory as 
the bits arrive, or else the message was lost.	

We’ve come a long way and interrupting devices generally have their own 
controllers. Device-specific controllers handle most of the time-critical operations of 
peripheral hardware and allow the primary core to merely transfer data and high-
level logical commands back and forth to the controller. Nowadays, the interrupt 
primarily serves the function of letting the core know that the some peripheral 
operation is complete and the core is now free to make use of the results. In other 
words, interrupts now serve primarily to send information to the core, allowing the 
core to take action when it is ready, not to demand the core perform some time-
critical action. 	

Blitz-64 is designed to be a general purpose operating system core, not a 
microcontroller. Accommodating interrupts during trap handling would require the 
addition of another level of complexity, perhaps necessitating a third mode or a trap 
priority scheme or a mechanism for selectively masking interrupts. This is just too 
complicated. The simplicity and limitations of the Blitz-64 interrupt mechanism are 
an intentional and logical manifestation of the overall project objectives.	

That said, it is critical that all trap handlers keep interrupts disabled for as short a 
time as possible. The expectation is that any trap handler unable to return quickly 
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will do something — such as simply signal a semaphore in order to wake up another 
thread or immediately go to sleep, waiting on some condition. In any case, the 
handler will effectively branch into to the scheduler to resume execution of user 
threads as quickly as possible, thereby re-enabling interrupts in short order.	

Delegation to User Mode Error Handlers	

Typically, when exceptions occur in user code (such as “Illegal Instruction 
Exception”), the kernel will abort the process without further ado. However, there is 
the possibility that some exceptions will be handled a little differently by invoking a 
“user mode error handler”.	

There is no support for this user mode exception delegation in the hardware; the 
delegation is handled entirely by the kernel software. When an exception occurs in 
user mode code, the kernel will get control through the trap handling mechanisms 
discussed above. The kernel may then, at its option, notify the user process in some 
way or another. This notification is entirely a software operation since there is no 
special hardware involved.	

We specifically use the term “error handler” rather than “trap/exception/interrupt 
handler”, since the mechanisms are quite different.	

The following types of exception are candidates for software delegation to user 
mode code, when they arise in that code:	

	 • Hardware Fault Exception	
	 • Arithmetic Exception	
	 • Illegal Instruction Exception	
	 • Null Address Exception	
	 • Bad Array Index Exception	
	 • Unaligned LOAD/STORE Exception	
	 • Privilege Exception	
	 • Bad Array Index Exception	
	 • Stack Overflow Exception	
	 • Debug Exception	
	 • Breakpoint Exception	
	 • Singlestep Exception	
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	 • Page-related exceptions, under certain conditions such as:	
	 	 — Attempt to access an unallocated page	
	 	 — Attempt to STORE to a read-only page	
	 	 — Attempt to FETCH from a non-executable page	

After the exception occurs and the corresponding trap handler is invoked, it will see 
that the processor was running in user mode when the exception occurred. It will 
then return to the user code but will modify the PC to cause a forced jump to the 
user error handler’s address.	

The kernel may maintain flags associated with each address space so the kernel 
mode trap handler can optionally either (1) abort the process, or (2) pass control to 
the user mode error handler.	

Then, the user code will presumably invoke the “throw-error” sequence in the KPL 
language. But if nothing else, the user code can simply abort the offending thread. In 
any case, this mechanism makes possible the creation of user mode programs that 
can address their own bugs, including the support of debugging and error reporting, 
and potentially fault tolerance and error recovery. Support for error reporting and/
or debugging will likely be included in the shared core function library, as so will be 
available to all processes at no extra cost.	

Trap Processing and Handler Startup	

When a trap is processed, the hardware will take a number of simple, fixed actions. 
These actions are performed between the execution of the previous machine 
instruction and the first instruction of the global trap handler.	

Interrupts are either “enabled” or “disabled” and this is controlled by the 
INTERRUPTS_ENABLED bit in the status register csr_status.	

When an interrupt is signaled, it remains pending until the hardware invokes trap 
handling. Interrupts may not be masked, other than by the INTERRUPTS_ENABLED 
bit in the csr_status. Pending interrupts remain pending while interrupts are 
disabled. Once interrupts are re-enabled, one interrupt will be selected and the 
corresponding trap handler is invoked.	
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Exceptions cannot be masked: If an instruction causes an exception, then hardware 
trap invocation will be immediately performed.	

When a trap handling is invoked, the hardware will perform the following actions:	

	 Invocation (Hardware Phase):	

	 	 csr_prevpc ← PC	
	 	 PC ← csr_trapvec	
	 	 csr_stat2 ← csr_status	
	 	 csr_status [INTERRUPTS_ENABLED] ← 0	
	 	 csr_status [KERNEL_MODE] ← 1	
	 	 csr_status [SINGLE_STEP] ← 0	
	 	 csr_cause ← <trap code>	
	 	 csr_bad ← <additional trap info; e.g., the offending instruction>	
	 	 csr_addr ← <additional trap info; e.g., the virtual address>	

The PC is copied to csr_prevpc so that it can be saved by the trap handler software 
so that after the trap handler finishes, a return can be made to the interrupted code.	

The PC is loaded with the value in csr_trapvec, the address of the global trap 
handler.	

The csr_status is copied to csr_stat2. If a return is made to the interrupted code, the 
status register will need to be restored.	

Interrupts are disabled and the mode is switched to “kernel mode”. The global trap 
handler begins with interrupts disabled, since it needs to perform operations (such 
as saving the general purpose registers and some CSRs) which cannot be 
interrupted. Some individual trap handlers may choose to re-enable interrupts. 
However, the final sequence of returning to the interrupted code (ending with a 
SYSRET instruction) must be performed with interrupts disabled.	

Single-stepping is turned off. Since the global trap handler runs with interrupts 
disabled, this is not strictly necessary, but is a convenience for those individual trap 
handlers which will re-enable interrupts during their execution.	

A code indicating the type or nature of the trap is written to csr_cause. The global 
trap handler is expected to use this information to dispatch to the individual trap 
handlers.	
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In the case of several exceptions, additional information is written to csr_bad and 
csr_addr. For example, during a page-related exception, the program-generated 
virtual address causing the problem in written to csr_addr.	

Saving State During Thread Switching	

When trap processing occurs as a result of an interrupt, an executing thread will be 
interrupted. Generally speaking, the trap handler will return to that thread after trap 
handling is complete. As such, the state of the general purpose registers must be 
saved and restored so that the interrupted thread is unaffected by the trap handler.	

In some cases such as a timer interrupt, the registers associated with the thread will 
be saved for a longer period of time, and the return is made to a different thread. The 
interrupted thread will be delayed for quite some time while other threads are run.	

Next, we discuss how the kernel software is expected to use the Blitz-64 hardware. 
This discussion motivates and explains the Blitz-64 ISA; it should not be confused 
with a description of any specific kernel code.	

It is assumed that each thread will have an area of memory, which we call a Thread 
Control Block (TCB), that will contain important information about the thread and 
that will be used to save the general purpose registers and other state during an 
interruption.	

[ In the discussion of page tables later in this document, we will see that the root 
page will be half used, leaving 8,192 bytes of unused and available space. This area is 
an ideal place in which to store information about the processes, perhaps including 
one or more Thread Control Blocks. ]	

When a thread is interrupted, the first thing that must be done is to save the 
registers and these will be saved in the Thread Control Block (TCB). We expect 
csr_ptr to be used to point to the Thread Control Block of the running thread.	

For any thread running with interrupts enabled — whether in user mode or kernel 
mode — we assume that the following will contain valid state information:	
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	 The State of the Currently Running Thread:	
 	 	 csr_status — The status register	
 	 	 csr_ptr — A pointer to the TCB	
 	 	 csr_pgtable — A pointer to the root of the page table	
 	 	 csr_trapvec — Address of the trap handler to be used for traps	
	 	 … all general purpose registers …	

In this discussion, we make no assumptions about the other CSR registers. They are 
not assumed to contain state information and may be used as work registers by the 
trap handler. (But of course, this discussion is hypothetical. Kernel programmers 
may elect to use other CSRs as they see fit.)	

Some threads will never use virtual memory, so csr_pgtable is not needed for them. 
Such threads — kernel threads — are not associated with any particular address 
space and have no use for a page table.	

Other threads (which we call user threads) will have an associated virtual address 
space. They run in user mode and all addresses are translated from the virtual 
address space to the physical address space, with the assistance of the page table.	

The Translation Lookaside Buffer (TLB) registers — if they exist — serve as a cache 
of Page Table Entries (PTEs). If there is no TLB, the page table must be walked on 
every access to memory. The TLB registers dramatically reduce the need to access 
the page table. For a running user mode thread, the TLB registers contain the 
working set, i.e., information about pages that have been recently used and can be 
expected to be needed in the near future.	

Each TLB is tagged with an Address Space Identifier (ASID). At context switches, 
there is no need to flush the TLB since the ASIDs will function to distinguish the TLB 
registers associated with one process’s address space from the registers for another 
process’s address space. Only when pages tables are modified or deleted is there any 
need to flush the TLB.	

When a context switch occurs and a new process begins execution, it is likely that 
the existing TLB registers used by the previous process will gradually be evicted and 
replaced with the working set of the newly executing process. As the new process 
begins execution, several walks of the page table will be necessary until the new 
process’s working set has been loaded into the TLB.	
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However, if the TLB is large enough and there are not too many addresses spaces, it 
is possible that the working sets of several processes can all coexist in the TLB. In 
such a scenario, at context switches, evictions will be rare and the walking of the 
page tables will be reduced.	

Consider what happens when a user thread makes a system call. The thread will be 
running in user mode before the SYSCALL and then will be running trap handler 
code in kernel mode. Since it is the same thread and since the TLB registers continue 
to contain important values, we will refer to this as a “user thread running in kernel 
mode”. But regardless of what we call it, any code running in kernel mode will need 
to use its own stack. It must be careful not to rely on the correctness of any user 
mode register values and be careful to restore any user mode registers that were 
used. Of course information must not be allowed to not leak from the kernel back to 
the user mode code.	

There are several cases to be considered:	

	 For user threads…	
	 	 The thread performs a SYSCALL	
	 	 The thread causes an exception	
	 	 The thread is suspended by an interrupt	
	 For kernel threads…	
	 	 The thread performs a SYSCALL	
	 	 The thread causes an exception	
	 	 The thread is suspended by an interrupt	
	 Upon completion of the trap handler…	
	 	 The interrupted thread is resumed.	
	 	 The interrupted thread is suspended and another thread is scheduled.	

Global Trap Handler — Dispatching and Return	

Once the core has completed the hardware phase of trap invocation, the first 
instruction of the Global Trap Handler will be fetched and executed.	

In this section, we sketch out algorithms and code sequences for how the Global 
Trap Handler might be coded. The goal is to give some idea about how the various 
architectural features of the Blitz-64 architecture might be used. We also want to get 
a rough idea of how many machine instructions are involved.	
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This discussion is speculative and kernel programmers may take a different 
approach.	

We assume the Global Trap Handler is written in assembler and will invoke 
functions written in the KPL language. We look at handling syscalls (where the 
arguments are passed in registers) and we look at all other traps (where we assume 
that all user registers must be saved and restored before the SYSRET). We assume 
that interrupts will remain disabled for the duration of all handler code and each 
handler will terminate by returning to the interrupted code. 	43

First, let’s look at a possible algorithm for the Global Trap Handler, which is invoked 
after any trap. Its duty is to save the state of the interrupted process and then 
dispatch to function that will handle the particular trap encountered.	

Global Trap Handler - Algorithm	

	 // We assume the following have just been set by the hardware:	
	 //	 	 csr_stat2, csr_prevpc, csr_cause, csr_bad, csr_addr	
	 // We also assume: 	
	 //	 	 csr_ptr points to the Thread Control Block (TCB)	
	 //	 	 csr_pgtable points to a page table	
	 //	 	 csr_trapvec points to this Global Trap Handler	

	 Save general purpose registers in the TCB:	
	 	 Swap csr_ptr with register r7.	
	 	 Save r12-r15 (i.e., “tp”, “gp”, “lr” and “sp”)  in the TCB.	
	 	 	 	 (About 5 instructions)	 	

 	 Determine if this is a SYSCALL Exception.	
	 	 	 	 (About 3 instructions, using only r12-r15)	
	 	

 Realistically, a kernel will invoke the scheduler at timer interrupts, if not during other traps as 43

well. So interrupts will be enabled at some point before return to the interrupted code, but this is 
beyond the scope of the discussion here.
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	 If this is a SYSCALL Exception…	

	 	 Prepare to execute a kernel-mode function written in high-level KPL:	
	 	 	 Load r15 (the kernel stack pointer “sp”) from the TCB.	
	 	 	 Load r12-r13 (i.e, “tp”, “gp”) from the TCB.	
	 	 	 Copy r7 (the ptr to the TCB) back into csr_ptr.	
	 	 	 	 (About 4 instructions)	

	 	 Dispatch to the individual SYSCALL handlers:	
	 	 	 Dispatch on csr_cause, i.e., jump through the trap vector to a KPL function.	
	 	 	 	 (About 4 instructions, using register “t”, including the indirect jump)	

	 	 Upon entry to the KPL function to handle the SYSCALL…	
	 	 	 • Registers r1 … r6 contain arguments to the system function.	
	 	 	 • Register r7 contains a pointer to the TCB.	
	 	 	 • Registers r8-r11 (“t, s0, s1, s2”) are work registers.	
	 	 	 • Registers r1 will contain a return value to the user code.	
	 	 	 • Registers r2-r11 should be zeroed before return.	
	 	 	 • User-mode registers r12-r15 have been saved in the TCB.	
	 	 	 • CSRs csr_stat2, csr_prevpc, csr_ptr, csr_pgtable, csr_trapvec	
	 	 	 	  will remain unchanged throughout the handler function.	

	 If this is NOT a SYSCALL Exception…	

	 	 Save the user mode registers:	
	 	 	 Save r1-r6, r8-r11 in the TCB.	
	 	 	 Read csr_ptr (i.e., previous value of r7) into a reg.	
	 	 	 Store it in the TCB.	
	 	 	 	 (About 12 instructions)	

	 	 Prepare to execute kernel-mode functions written in high-level KPL:	
	 	 	 Load r15 (the kernel stack pointer “sp”) from the TCB.	
	 	 	 Load r12-r13 (i.e, “tp”, “gp”) from the TCB.	
	 	 	 Copy r7 (the ptr to the TCB) back into csr_ptr.	
	 	 	 	 (About 4 instructions)	
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	 	 Prepare the arguments to the individual trap handler.	
	 	 	 r1 ← csr_cause	
	 	 	 r2 ← csr_addr	
	 	 	 r3 ← csr_bad	
	 	 	 r4 ← csr_prevpc	
	 	 	 r5 ← csr_stat2	
	 	 	 // r6 ← <nothing>	
	 	 	 // r7 ← addr of TCB from above	
	 	 	 	 (About 5 instructions)	

	 	 Dispatch to the individual trap handlers:	
	 	 	 Using r1 (csr_cause), jump through the trap vector to a KPL function.	
	 	 	 	 (About 3 instructions, using register “t”, including indirect jump)	

	 	 Upon entry to the KPL function to handle the interrupt / exception…	
	 	 	 • Registers r1 … r7 contain arguments, see above.	
	 	 	 • Register r8 (“t”)  can be trashed.	
	 	 	 • Registers r1-r15 should be restored from the TCB before return.	
	 	 	 • CSRs csr_stat2, csr_prevpc, csr_ptr, csr_pgtable, csr_trapvec	
	 	 	 	  will remain unchanged throughout the handler function	

So we may be looking at about 16 instructions for dispatching to a SYSCALL function 
and about 32 instructions to dispatch to any other trap handler.	

After completely dealing with the trap, the individual KPL handler routines will not 
return. Instead, they will call one of two assembler functions. In either case, this is 
effectively a jump, since these routines do not return.	

The KPL functions for handling SYSCALL traps will invoke a function named 
“SyscallHandlerReturn”. The KPL function for handling all other exceptions and 
interrupts will invoke a function called “TrapHandlerReturn”.	

The SyscallHandlerReturn function is passed a value which it leaves in register r1 
before executing the SYSRET. All other caller-saved regs should be zeroed or 
restored to prevent information leakage from the kernel.	

Here are the final steps of a SYSCALL trap handler, which must be coded in assembly 
language:	
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Syscall Handler Return - Algorithm	

	 // At this point, we assume…	
	 // 		 r1 contains the value to be returned to the user mode code.	
	 //	 	 CSRs csr_stat2, csr_prevpc, csr_ptr, csr_pgtable, csr_trapvec	
	 	 	 	  have remained unchanged throughout the handler function.	
	 //	 	 csr_ptr still points to the Thread Control Block (TCB).	
	 // 		 csr_prevpc still contains the PC.	
	 // 		 csr_stat2 still contains the status register.	
	 // 		 csr_pgtable and csr_trapvec are unchanged.	
	 // 		 User-mode registers r12-r15 have been saved in the TCB.	

	 r7 ← 0.	
	 Swap r7 with csr_ptr.	
	 // r7 now points to the TCB.	
	 // csr_ptr now contains 0.	

	 // We assume that nothing of value remains on the kernel stack,	
	 //	 	 so we can avoid saving the value of “sp”.	
	 // We assume that the kernel “tp” and “gp” registers never change,	
	 //	 	 so we can avoid saving their values.	
	 // Register r14 (“lr”) is meaningless, so we don’t need to save it.	

	 // Values of user registers “tp, gp, lr, sp” were saved at the time of the trap.	
	 Fetch the saved registers from the TCB and move into r12…r15.	

	 Set registers r2-r6,r8-r11 to 0    // To prevent info leakage from the kernel.	
	 Swap csr_ptr with r7.	
	 Execute the SYSRET instruction, which will…	
	 	 PC ← csr_prevpc.	
	 	 csr_status ← csr_stat2.	

	 (About 17 instructions)	

The TrapHandlerReturn function is passed no args. All the registers are restored 
before the SYSRET is executed. The TrapReturn function will take the following 
actions, performed in assembly code:	
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Trap Handler Return - Algorithm	

	 // On entry, we assume…	
	 //	 	 csr_ptr still points to the Thread Control Block (TCB).	
	 // 		 csr_prevpc still contains the PC.	
	 // 		 csr_stat2 still contains the status register.	

	 r7 ← csr_ptr	

	 // We assume that nothing of value remains on the kernel stack,	
	 //	 	 so we can avoid saving the value of “sp”.	
	 // We assume that the kernel “tp” and “gp” registers never change,	
	 //	 	 so we can avoid saving their values.	
	 // We assume their values of sp, tp, and gp were placed in the TCB	
	 //	 	 when it was initialized.	
	 // Register r14 (“lr”) is meaningless, so we don’t need to save it.	

	 Fetch the “saved r7” from the TCB and move it into csr_ptr.	
	 Fetch the saved registers from the TCB and move into r1…r6, r8…r15.	

	 Swap csr_ptr with r7.	
	 Execute the SYSRET instruction, which will…	
	 	 PC ← csr_prevpc.	
	 	 csr_status ← csr_stat2.	

	 (About 19 instructions)	

A typical trap handler will perform its work and complete, returning to the 
interrupted code without reenabling interrupts. However, in many cases the handler 
will be unable to return immediately and will need to block the thread. In such cases, 
the trap handler might perform a “wait” operation on a semaphore, or sleep on a 
lock, or simple invoke the scheduler directly. Often, an interrupt handler will need to 
wake up a process to service the interrupt. This could be done by performing a 
“signal” operation on a semaphore.	

The algorithms sketched above are provisional. For example, it may be the case that 
the kernel will make use of additional CSRs (e.g., csr_temp) for storing registers, 
rather than saving the register in the TCB. This may improve trap invocation by 
replacing memory STORES and LOADs with CSR_SWAP instructions, at the cost of 
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requiring these registers to be saved before re-enabling interrupts. Or, alternatively, 
csr_stat2 and csr_prevpc may be saved to the TCB immediately within the global 
trap handler, removing the need to save/restore them when enabling interrupts.	

It will often be the case that after a trap has occurred, but before a SYSRET has been 
executed, the kernel code will need to re-enable interrupts.	

The above algorithms assume the interrupted thread was running in user mode. The 
global trap handler saves the user mode registers in the TCB in an area reserved for 
the user mode registers. However, if the interrupted thread is running in kernel 
mode, there could be issues. If, for example, the interrupted thread is a user thread 
currently running in kernel mode (for example, in the middle of servicing a 
SYSCALL) and it has reenabled interrupts, then an interrupt or exception will be 
catastrophic. The TCB register save area already contains the value of user mode 
registers. The global trap handler (as coded above) will blindly overwrite those, 
resulting in disaster when, at some future time, the thread tries to return to user 
mode.	

The above algorithms are only intended to give you an idea of how the hardware 
could be used. Your kernel-hacking skills will be needed to figure out how to actually 
use the Blitz-64 ISA. 	44

 Another issue is the FENCE instruction, which may be needed.44
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Quick Summary	

• Program-generated address range:  64 GiBytes (36 bit addresses)	
	 — Maximum Virtual Address Space: 32 GiBytes (35 bits)	
	 — Max size of physical memory: 16 GiBytes (34 bits)	
	 — Memory-mapped I/O region: 16 GiBytes (34 bits)	
• The current page table’s address is in csr_pgtable.	
• Page table architecture:	
	 — Page size: 16 KiBytes.	
	 — Page offset (to access a byte within a page): 14 bits.	
	 — Page table entry (PTE): 8 bytes.	
	 — Each page holds 2Ki entries.	
	 	 	 2Ki x 8 bytes = 16 KiBytes.	
	 	 	 11 bits to index into a page (recall 211 = 2,048).	
	 — Page table has two levels.	
	 — Virtual addresses are 35 bits.	
	 	 	 VPN[1]: 10 bits. VPN[2]: 11 bits. Offset: 14 bits.	
	 — With a two level table…	
	 	 	 Only half of the top-level page is used.	
	 	 	 1Ki x 2Ki = 2Mi pages per address space.	
	 — Maximum size of virtual address space:	
	  	 	 2Mi pages x 16 KiBytes/page= 32 GiBytes.	
	 — Maximum size of supported, mappable memory:	
	  	 	 244 = 16 TiBytes.	
• The address translation cache (TLB registers): invisible to the ISA.	
	 — Each TLB entry is tagged with an Address Space ID (ASID).	
	 — ASID is 16 bits; maximum number of address spaces: 65,536.	
	 — ASID of current process is in csr_pgtable register.	
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Memory Organization	

All program-generated addresses are 36 bits. This allows a program to address up to 
64 GiBytes.	

This total 64 GiByte address space is divided into the following ranges:	

	       size        	 	
	 16 GiBytes	 Physical memory	
	 16 GiBytes	 Memory mapped I/O devices	
	 32 GiBytes	 Virtual address space	

FIGURE: Program Generated Addresses	

Any address in the lower 32 GiBytes is said to be a physical address. Any address in 
the upper 32 GiBytes is said to be a virtual address.	
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Blitz-64 instructions can generate both physical addresses and virtual addresses. 
However, the processor core will only generate physical address for use in accessing 
the installed main memory and I/O devices.	

The first 32 GiBytes (i.e., physical memory and memory-mapped I/O) is the kernel’s 
address space and can only be accessed in kernel mode. User mode code cannot use 
addresses in this range. Any attempt by user mode code to use a physical address 
will cause a “Page Illegal Address Exception”.	

Of course, the kernel is free to map virtual addresses to physical addresses via the 
page table scheme. This allows user mode programs to access physical memory and 
memory-mapped I/O devices.	

The upper 32 GiBytes can be accessed regardless of the privilege mode. Any address 
in this range is a virtual address and memory mapping will be performed to convert 
the address into a physical address in the lower 32 GiBytes.	

Bit 35 of the address determines whether the access is allowed only in kernel mode 
or whether it will be mapped as a virtual address.	

	 0 = Kernel access only; no memory mapping	
	 1 = The address is virtual; memory mapping always performed	

As mentioned above, any attempt to LOAD, STORE, or FETCH instructions using an 
address in the lower 32 GiBytes while executing in user mode will cause an 
exception. But any attempt to LOAD, STORE, or FETCH instructions using an address 
in the lower 32 GiBytes will be allowed when running in kernel mode, and the 
program-generated address will be used “as is”. All bytes in the lower 32 GiBytes are 
considered to have full read/write/fetch privileges and no checking is performed.	

A program-generated address is considered to be “virtual” and will be mapped to a 
physical address if and only if the address is within upper half of the address range. 
In other words, any address with bit 35 set to 1 (i.e., within the range 
0x8_0000_0000 … 0xF_FFFF_FFFF) will be mapped.	

Any attempt to LOAD, STORE, or FETCH instructions using an address in the upper 
32 GiBytes will be processed by the Memory Management Unit (MMU). The MMU 
will translate a virtual address into a physical address. The mode is irrelevant for 
this range.	
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Tasks, Address Spaces, and the User Mode Viewpoint	

A user mode program in execution (i.e., a running program) is called a “task”. A task 
consists of a virtual address space and one or more threads. (The term “process” is 
often defined as a task with exactly one thread. The “task” concept is more general 
and useful.)	

A user mode program runs within a “virtual address space”. Each byte has an 
address and a virtual address space appears to behave very similarly to a chunk of 
physical main memory. Generally speaking, each byte of the virtual address space 
will be implemented (i.e., “backed”) by a byte of physical main memory.	

Virtual address spaces are, of course, subtly different from physical memory. For one 
thing, virtual addresses are mapped into physical addresses in such a way that the 
user program has no way of determining which physical addresses are being used. 
Also, each virtual address space is independent; a user program has no way to 
access bytes in the kernel space or in other address spaces.	

Here is one way a kernel might organize a virtual address space for user tasks, 
although this particular organization is not mandated by the ISA.	

FIGURE: User Mode Virtual Address Space	
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Every virtual address space is broken into a number of pages.	

In Blitz-64, the page size is 16 KiBytes. Each page starts on a 16 KiByte boundary: 
pages are always properly aligned. Since 214 = 16,384 = 16 Ki, the last 14 bits [13:0] 
of the page address will always be 00000000000000.	

Each page of the virtual address space will be either:	

	 •	Allocated	
	 •	Not allocated	

Typically, most of the pages in the address space will be unallocated. Any attempt by 
the user program to access an unallocated page will cause an exception. Typically 
the user program will be aborted; that is random memory accesses to unallocated 
areas normally cause the kernel to terminate the program. However, it may also be 
the case that the kernel throws (i.e.., signals or forwards) a user mode error.	

(There may also some pages in the virtual address space that are not allocated until 
there is a demand for them.  For example, as the stack grows, pages will be allocated 
as necessary. However, this is transparent to the user program. When an attempt is 
made by a user program to access such a page, the kernel will quietly allocate a new 
page and retry the instruction. Such dynamic  allocation is solely a kernel function.)	

From the viewpoint of the running user mode program, each allocated page will 
have certain privileges. Every page is:	

	 • Writable or not	
	 • Executable or not	

Therefore, the following combinations are allowed:	

	 • Unallocated	
	 • Read-only	
	 • Read/write	
	 • Read/executable	
	 • Read/write/executable	

Every allocated page is readable; there is not a separate privilege status for this. 
Pages containing executable code are always readable.	
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Every thread within a task will see the exact same address space. Each page will 
have the same privileges, regardless of which thread within the task is accessing it. 	45

Any attempt by a thread to LOAD from a page that is not allocated will cause an 
exception. Any attempt by a thread to STORE to a page that is not allocated or not 
writable will cause an exception. Any attempt to FETCH instructions from a page 
that is not allocated or not executable will cause an exception.	

Presumably, the kernel will treat such accesses as a program error.	

Note that here we are talking about the viewpoint of the user mode program. There 
are cases in which such attempts will cause exceptions but the kernel will take 
actions, change the status of pages, and restart the user program. The instruction 
will then execute and the user program will be unaware that there was ever an 
exception.	

For example, imagine a situation where a page is allocated but is not currently 
resident in memory. Instead, the page has been written out to disk (i.e., backing 
store). Any attempt to access that page (FETCH, LOAD, or STORE) will cause an 
exception. The kernel will respond by reading the page’s contents from disk into 
physical memory and resuming execution of the user program. Another example is 
when a page is marked “copy-on-write”; any attempt to STORE to the page will cause 
an exception; then the kernel will copy the page and the user program will be 
resumed.	

In some cases, a page may be shared by two different address spaces. The page will 
be backed by a single page of physical memory. Thus, a page can be mapped into two 
(or more) address spaces. All tasks will see the same contents of the page. A WRITE 
by any task can be observed by a READ or FETCH performed in any other task. A 
single page of physical memory may be mapped into pages in multiple virtual 
address spaces at either the same or different virtual addresses. A single physical 
page may have the same or different permissions in the different address spaces.	

 It may be desirable for two threads to share most of an address space, but have some 45

differences. For example, the pages of the stack might need to be mapped into different physical 
pages. In order to achieve this, the kernel must create a separate address space for each thread and 
mark all pages except the stack pages as “shared” in both address spaces. However, since address 
spaces can be up to 32 GiBytes, the preferred solution is to use a single address space and place 
the stacks in separate, non-overlapping memory regions.
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In some cases, a virtual page may be mapped, not onto physical memory, but onto a 
location in the memory-mapped I/O region. In such a case, when the user mode 
program WRITEs to an address in the page (i.e., executes a STORE instruction), the 
data will be sent to the I/O device. When the user mode program READs from an 
address in the page (i.e., executes a LOAD instruction), data will be transferred from 
the I/O device.	

Page Tables	

For each address space, the kernel will create, build, and update a page table. 
Blitz-64 uses a two level page table.	

Diagram: “Page Table Tree”	

Each page table index node and each data page is stored in a single 16 KiByte page. 
Both index and data pages must at page-aligned addresses. 	

A page table tree consists of a root node and up to 1,024 second level index nodes. 
Each second level node can point to up to 2,048 data pages.	
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There can be up to 2,097,152 data pages in a virtual address space. Since each data 
page is 16 KiBytes, this exactly accommodates the largest virtual address space, 
which is 32 GiBytes. 	46

Each page table entry is 8 bytes. 	47

The root node contains 1,024 entries pointing to second level nodes. A page can 
accommodate up to 2,048 entries, but only the first half of the page is used. The 
second half of the root page is not used.	

 Notice that	46

	 221 = 1,024 × 2,048 = 2,097,152	
and	
	 235 = 2 Mi × 16 Ki = 32 Gi

 Notice that	47

	 8 × 2,048 = 16,384	
	 211 = 2,048	
So up to 2,048 PTE’s will fit into a single page. And to address any one of 2,048 entries, 11 bits are 
required.

Blitz-64 Instruction Set Architecture / Porter	 Page  of 	227 342



Chapter 8: Memory, Address Spaces, and Page Tables	

Each second level node contains 2,048 entries.	

Diagram: “Page Table Detail”	

The smallest address space would require a single root node and 2 nodes at the 
second level (one for low memory and one for high memory).  A page table for the 48

largest address space will require 1,024+1 nodes in the page table tree. 	49

 Such a minimal page table will accommodate a virtual address space up to 64 MiBytes (i.e., 48

4,096 pages). This would easily include enough space for entries for the 32 pages required for the 
shared core functions, as described elsewhere.

 The maximum virtual address space has a size of 32 GiBytes (i.e., 2,097,152 pages). The page 49

table for such an address space requires 1,024 + 1 pages (i.e., 16.02 MiBytes).
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The memory overhead for page tables is roughly 8 bytes per 16 KiByte data page, in 
other words, the ratio of page table memory to data memory is less than 1 :: 2,000.	

Each index page in the page table is stored in a single 16 KiByte page. Each index 
page is organized as an array of “page table entries” (PTEs). Each page table entry 
will be 8 bytes in length. Thus, a single page can contain 2,048 PTEs.	

As mentioned, the top-level (root) node of the page table will only contain 1,024 
PTEs so only the first half of the page is used. The kernel is free to use the second 
half of the page to store additional information about the address space, the task, 
and/or the threads running in that address space.	

Conceptually, every time a virtual memory address is accessed, the page table will be 
walked to locate the data page and translate the virtual page number into a physical 
page number.	

However, actually walking the page table to retrieve the page table entry (PTE) 
requires two additional memory accesses for every “real” memory access. This 
would impose an intolerable performance penalty.	

Instead, it is assumed that the processor will cache recently used page table entries 
in order to avoid accessing the index pages for most memory operations. To improve 
performance, we assume Page Table Entries (PTEs) from the page table are cached 
in a set of special purpose registers designed for the purpose. This cache is called the 
Translation Lookaside Buffer (TLB).	

For the most part, the TLB is invisible to the kernel programmer. The caching is 
transparent and the result is exactly the same as if no TLBs are implemented.	

Just as with main memory caches, the TLB registers are loaded automatically by the 
hardware, with no special attention required of the software. The presence or 
absence of a TLB cache will not change the correctness or functionality of the 
software, only its performance.	

Whenever a memory operation (LOAD, STORE, or FETCH) is attempted using a 
virtual address, the page table must be consulted — at least in theory. If a matching 
entry is cached in a TLB register, then that can be used instead and the hardware can 
avoid the two additional memory operations that would be necessary to access the 
page table.	
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However, from time to time, the page tables will be modified by the kernel software. 
This may invalidate the information previously cached in the TLB registers. It is 
crucial that any PTEs cached in the TLB registers contain only valid and current 
information.The Blitz-64 ISA provides instructions to flush (i.e., modify or 
invalidate) selected TLB registers. 	50

An OS kernel will implement a number of virtual address spaces, with one address 
space for each task. Associated with every address space is a page table. At any one 
time, a core is executing code within one address space, so there is always a “current 
page table.”	

The current page table is pointed to by the Control and Status Register named 
csr_pgtable. More precisely, csr_pgtable contains the address of the root index page 
of the page table. 	51

When the kernel switches from one task to another (i.e., from one address space to a 
new address space), it will modify csr_pgtable to point to the page table of the new 
address space.	

Given that there are many address spaces and many page tables, it is crucial that the 
cached page table entries (PTEs) in the TLB for the old address space not be 
confused with PTEs for the new address space.	

To facilitate this, each address space is assigned a unique number called the 
Address Space Identifier (ASID). This is a 16 bit value, accommodating up to 
65,536 different address spaces. It is assumed that each PTE cached in a TLB 
register will be marked with the ASID of the address space to which it belongs.	

The ASID of the currently executing task is kept in the csr_pgtable register.	

The idea is that whenever the TLB is consulted to see if there is a cached PTE, the 
ASID is checked. Each TLB register will contain an ASID, along with the cached 

 These instructions are  named TLBFLUSH and TLBCLEAR.50

 The csr_pgtable register contains a 44 bit page-aligned address within the physical main 51

memory, i.e., anywhere within the 16 TiByte address space. Addressing memory within the lower 
16 GiBytes can be done directly and easily when running in Kernel Mode, so it is likely that most 
OSes will choose to place all page table nodes within the first 16 GiBytes of main memory. Of 
course, page table nodes can be placed elsewhere, but in order to accommodate this, the kernel 
itself will need to set up and use a second virtual address space, solely for accessing such page 
table nodes.
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mapping information. If there is an entry with a matching ASID, then the cached PTE 
can be used and the core can avoid accessing the index pages altogether. But if the 
ASID doesn’t match, the cached value applies to a different address space and the 
cached PTE cannot be used.	

If there is no cached PTE in the TLB registers, then the core is forced to access the 
page table in main memory. This will require the core to perform two additional 
LOADs to read from the index pages in order to retrieve the desired PTE. But once a 
PTE is retrieved from the in-memory page table, that PTE will be cached in the TLB. 
This means that future accesses will hit the TLB cache and all page table accesses for 
any addresses within the same data page can be avoided in the future. Whenever a 
PTE cached (i.e., the PTE is written to the TLB ), the TLB register will be marked 
with the ASID of the current task, which is the ASID currently stored in csr_pgtable.	

A General Overview of TLBs	

To accommodate virtual memory, program-generated “virtual addresses” are 
translated into “physical addresses” in hardware by address translation 
hardware. This circuitry is called the Memory Management Unit (MMU) and it 
uses a page-table (stored in memory) to perform the translation from virtual to 
physical addresses.	

To make address translation fast enough for virtual memory to be feasible, page 
table entries must be cached in an “address translation cache”. Such a cache is 
traditionally called a “Translation Lookaside Buffer”, or “TLB”.	

The TLB will contain a small number of page table entries. When a FETCH, LOAD 
or STORE to memory occurs, the address translation hardware (the MMU) will 
check the address translation cache (the TLB). If the TLB contains a matching 
entry, the address translation hardware will use it to generate a physical address 
immediately, which is much faster because the core can avoid going to main 
memory to read the page table tree to locate the data page.	

The TLB is organized as an associative memory, keyed on virtual page number 
(VPN). If a TLB entry is present, then the entry will contain the physical page 
number. The MMU will then concatenate the physical page number to the offset 
within the page to build a physical address. It will then proceed directly to 
performing the FETCH, LOAD, or STORE operation.	
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However, if the entry is absent, the address translation process must go to 
memory to locate and fetch the appropriate entry from the page table. Some TLB 
entry will be evicted and the new entry will be placed in the TLB. The address 
translation will then proceed.	

From the Memory Management Unit’s perspective, the in-memory page table is 
considered to be read-only. Thus, the values stored in the TLB never need to be 
updated by the hardware whenever a FETCH, LOAD, or STORE occurs.	

When a memory access is attempted but the TLB contains no matching entry, the 
MMU will need to cache a new entry in the TLB. To make room, it must “evict” 
some existing entry. Since the TLB contains only copies of entries from the in-
memory page table, the MMU has no need to update the in-memory page table.	

However, from time-to-time, the kernel will modify the address space and update 
the page table. When this happens, the cached entries in the TLB can become out 
of date. To handle this, the hardware must include instructions that can be used to 
invalidate some or all entries in the TLB. The simplest approach is to include an 
instruction that will invalidate all TLB entries. A more targeted approach is to 
include an instruction that can be used to invalidate selected pages, possibly also 
including information about which address space is affected.	

Megapages	

Due to the large (16 KiByte) page size used in Blitz-64, the overhead of the page 
table is less than with the typical 4 KiByte page size of traditional architectures. 
Roughly speaking, a page that is 4 times as large could cut the number of page 
table walks by a factor of 4 and reduce the number of TLB registers by the same 
amount. The large page size also allows each page walk to require only two 
memory LOADs, instead of three, which are needed for a system with three level 
page tables. 	

We considered defining a “megapage” as a chunk of memory of size 32 MiBytes. 
This is exactly 2,048 pages in size. The idea is that a single entry in the root page 
of the page table would point directly to the megapage, instead of pointing to a 
second-level node in the page table.	

With megapages, we would be able to accommodate very large address spaces 
with almost no page table overhead. The maximal address space with 32 GiBytes 
would require only a single root page table node.	
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It should be noted that with megapages, a single PTE will suffice for a very large 
amount of memory. Without megapages, many more PTE entries may be required 
to support the same algorithm. Thus, support for megapages reduces the number 
of PTEs, therefore reducing access to the in-memory page table and contention for 
TLB registers.	

If a process’s working set is not too large and changes slowly, then occasional page 
table walks and TLB loads will not be a great overhead, and a small number of TLB 
registers will support good performance. We believe that a system with (say) a 
dozen 16 KiByte pages should be adequate to cover the working set of many 
typical programs and thus provide good performance.	

Of course, support for megapages will reduce the number of page table accesses 
and could be critical in programs that would otherwise have a lot of page table 
accesses.	

As a general principle, complex algorithms with complex behavior tend to exhibit 
complex (i.e., seemingly random) memory patterns. In other words, modern 
programs bounce around a lot. For processes like this, there can be much more 
pressure on the TLB.	

Megapages may become necessary to enable acceptable performance for complex 
algorithms that consume a lot of memory, exhibit little locality of reference, and 
bounce all around memory quickly.	

At this time, Blitz-64 does not support megapages, but this decision may be 
revisited. An unused bit in the PTE entry might be defined to flag megapages. The 
PTE entry will either point to a second level page table node, or to a megapage, as 
determined by this bit.	

Why Only Two Levels?	

Most computer architectures use 3 or 4 level page tables. Blitz-64 was carefully 
designed to use only 2 levels. This mandated a limit on the maximum address 
space size; is it worth this cost?	

For programs that exhibit very good locality of reference — that is, that have very 
small working sets — the TLBs will work well and the in-memory page tables will 
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need to be consulted rarely. So it will matter less if the table is one level deeper: 
the additional memory operation will not often be needed.	

However, we expect modern programs to often be more complex, such as object-
oriented programs which bounce around large heaps or complex algorithms that 
exhibit minimal locality. Each time such an algorithms follows a pointers to a new 
area, a new pages is touched and another page table lookup is required. In the 
extreme, each and every memory reference could be a TLB miss and require a 
page table lookup. Going from 3 to 2 levels implies turning an operation that 
requires 4 memory references into one requiring only 3 memory operations, a 
huge performance gain.	

While such completely degenerate programs may be rare, the general idea 
remains. Page table lookups are very, very costly and reducing each lookup from 3 
memory accesses to 2 accesses will improve overall performance, although we 
cannot yet say by how much.	

Another consideration is time-slicing. Every time the kernel’s scheduler is 
invoked, a new thread is selected and initiated. The execution of the new thread 
may have the effect of entirely flushing the TLB, which means that every time the 
scheduler runs (i.e., every time-slice), the entire TLB will need to be reloaded. This 
means a page table lookup is required for each TLB register.	

This cost can potentially be large. Of course, there are techniques to mitigate this 
problem, such as distributing the threads across cores in such a way that the 
scheduler will likely choose to run a thread that lives in the same address space as 
the thread previously scheduled.	

A final issue is that address spaces will sometimes be changed and modified. With 
message passing kernels, we expect to see large amounts of data passed by the 
manipulation of page tables. For example, to pass data from one task to another, a 
page may be deallocated from one address space and mapped into another 
address space.	

Each time such an operation is done, it may be necessary to flush the entire TLB, 
this requiring a reloading the TLB registers, with multiple page table lookups. 
Again, there may be techniques to reduce this cost. For example, Blitz-64 provides 
an instruction (TLBFLUSH) to clear a single entry cached in the TLB.	
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Although a 2 level page table is conceptually simpler than a 3 level table, the 
performance around virtual memory must be the overriding concern.	

Some architectures have a flexible design. For example, the RISC-V can 
accommodate 2, 3, or 4 level page tables. Accommodating multiple depths 
introduces quite a bit of complexity into an ISA.	

Finally, we note that 2 level page tables seem adequate, so there is no reason for a 
3 level table. Of course this is closely tied to the decision to limit the maximum 
size of a virtual address space to 32 GiBytes.	

Will the address space limitation prove to be a problem in practice? Are 3 levels 
clearly a better approach? Time will tell.	
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Virtual Addresses	

Program-generated addresses are 36 bits, as shown in this diagram :	52

FIGURE: “Virtual Address”	

The upper bits [63:36] are always ignored. This means that any address outside of 
the basic 64 GiByte range is mapped into the lower 64 GiByte area.	

The most significant bit [35] selects for virtual/kernel mode. If the bit is 1 (virtual 
address space), then memory mapping (i.e., address translation) will occur. If the bit 

 Here is the same information, expressed differently:	52

	 bits	 size	 field	
	 [35]	 1		 mapped or unmapped	
	 [34:14]	 21	 VPN: virtual page number	
	 	 [34:25]	 	 10	 	 VPN[1]: First level	
	 	 [24:14]	 	 11	 	 VPN[2]: Second level	
	 [13:0]	 14	 byte offset (14 bits)	
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is 0 (kernel/physical space), then mapping does not occur and the address is used, 
as is.	

Memory is broken into pages. The page size is 16 KiBytes. To access a byte within a 
page, the page offset is 14 bits.	

Within a virtual address, 21 bits, namely bits [34:14], indicate the Virtual Page 
Number (VPN). This is further broken into fields VPN[1] and VPN[2], which are 
used to index into the two-level page table tree.	

Page Table Entries	

Each entry in the page table is called a Page Table Entry (PTE). Each entry is 8 
bytes and has this format:	

FIGURE: “Page Table Entry”	
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Here the same information:	

	     bits    	   width  	
	 [63:34]	 30	 Physical Page Number 	53
	 [33:5]	 29	 < unused, available for kernel use >	
	 [4]	 1	 C bit (1 = Copy-on-write)	
	 [3]	 1	 D bit (1 = Dirty)	
	 [2]	 1	 W bit (1 = Writable)	
	 [1]	 1	 X bit (1 = Executable)	
	 [0]	 1	 V bit (1 = Valid)	

Commentary We do not include a “Referenced Bit” as is done in some systems. The 
purpose of the Referenced Bit is to allow software to implement a least-recently-
used algorithm (or more likely, an approximation thereto), in order to select which 
pages are candidates for paging out to backing store. However, updating and 
maintaining such a least recently used bit requires the MMU to write PTEs back to 
the page table. In Blitz-64, the MMU only reads from the page table.	

When an executing program attempts to access memory, it will generate a 36-bit 
“program-generated address” and will use it to:	

	 • LOAD	
	 • STORE	
	 • FETCH (i.e., read an instruction for execution)	

 With 30 bits of physical page number and 14 bits of offset, this allows addressing up to 16 53

TiBytes of physical memory, since	
	 244 = 17,592,186,044,416	

However, in the basic implementation, physical addresses are limited to 35 bits and only 32 
GiBytes can be addressed, since	
	 235 = 34,359,738,368	
This range accommodates 16 GiBytes of physical memory followed by 16 GiBytes of memory-
mapped I/O. As such, only the lower 35-14=21 bits of the Physical Page Number will be non-zero, 
i.e., bits [54:34]. The upper 9 bits [63:55] should be zero and will be ignored on systems that don’t 
exceed 32 GiBytes of installed physical main memory.	

In systems accommodating more main memory than this, the upper 9 bits of a Physical Page 
Number can be non-zero. However, program-generated addresses are still limited to 36 bits and 
virtual addresses are still limited to 35 bits. This limits every virtual address space to 32 GiBytes.
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The Memory Management Unit (MMU) sits between the core and main memory. The 
program-generated address will be put through the MMU along with the type of 
access required (LOAD/STORE/FETCH) and the current privilege mode (kernel or 
user).	

The MMU will either generate an exception or will translate the address into a 
physical address. (If a TLB is implemented, the translation may be performed using 
the TLB registers.)	

MMU: Basic Operation	

We next describe the operation of the Memory Management Unit (MMU). We begin 
by describing the MMU as if there is no TLB cache and each memory access requires 
a page table lookup.	

The MMU starts with a virtual address and the type of operation requested (LOAD, 
STORE, or FETCH). It may generate any one of these exceptions:	

• Unaligned LOAD/STORE Exception	
• Page Illegal Address Exception	
• Page Table Exception	
• Page Invalid Exception	
• Page Fetch Exception	
• Page Write Exception	
• Page Copy-On-Write Exception	
• Page First Dirty Exception	

If the operation is LOAD.H, LOAD.W, LOAD.D, STORE.H, STORE.W, or STORE.D and the 
address is not aligned properly, then an “Unaligned LOAD/STORE Exception” will be 
triggered. Whenever an exception is triggered, the instruction execution is aborted 
and a trap occurs.	

If the core is currently running in user mode and the address has bit [35] = 0, then 
we have an illegal attempt to access a physical memory or memory-mapped I/O 
address. A “Page Illegal Address Exception” will be triggered.	
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Otherwise, the MMU will walk the page table in order to obtain the address of the 
data. This involves first reading a page table entry (PTE) from the root page and then 
reading a PTE from the second level index page, as shown in the following diagram.	

FIGURE: “Mapping”	

First, the csr_pgtable register is used to obtain the address of the root index page.	
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If csr_pgtable contains 0, a “Page Table Exception” will be signaled.  But assuming 54

csr_pgtable is not 0, the address it contains will used to locate and read an entry 
from the root index page. 	55

The VPN[1] field of the virtual address will be used to select a PTE within the root 
page and that PTE will be read from physical memory.	

Within the root page, each entry will use only the following two fields. (The other 
fields will be ignored by the MMU and will presumably be zero.)	

	 Physical Page Number	
	 Valid Bit	

The VALID (V) bit will be 1 if the PTE points to a second level index page, and 0 if 
not. If the MMU encounters a 0 valid bit, it will trigger a “Page Invalid Exception”.	

In the second step, the MMU will extract the physical page number of the second 
level index page and will use the VPN[2] field to select a PTE within the second level 
page.  That PTE will be read from memory.	56

If the VALID (V) bit of the second PTE is 0, a “Page Invalid Exception” will be 
triggered.	

The address of the data page will be extracted from this PTE and a physical address 
will be constructed using the offset field from the virtual address.	

 Presumably this is a kernel bug; a virtual address should not be generated unless the kernel has 54

already created a page table and set csr_pgtable to point to it. The test for null only checks bits 
[43:14], i.e., the Physical Page Number (PPN) of the root node.

 Within csr_pgtable, the upper 20 bits (which include the ASID) will be ignored, to form an 55

address of 44 bits, i.e., an address within the 16 TiByte physical memory area. The lower 14 bits 
will also be ignored and zeros will be used. This forces the address of the root page to be page-
aligned, regardless of what csr_pgtable contains.

 More precisely, 30 bits are extracted from bit positions [63:34] in the “Physical Page Number” in 56

the top level PTE. These upper 30 bits are used to construct the address of the second level PTE. 
The 10 bits of the VPN[1] field are shifted 3 bits to give a doubleword aligned offset. This is 
extended to 14 bits [13:0] by adding a zero for bit [13]. Together, the 30 bit page number [43:14] 
and the offset [13:0] give a 44 bit, doubleword aligned address in physical memory, which will 
contain the second level PTE.
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If the requested operation is LOAD, then the operation will read from memory with 
no further ado.	

If the requested operation is FETCH and the EXECUTE (X) bit is 1, the MMU will read 
from memory. If the EXECUTE (X) bit is 0, a “Page Fetch Exception” will be triggered.	

Finally, if the requested operation is STORE then the W, C, and D bits will be checked, 
as follows:	

W: Writable	 C: Copy-on-write	 D: Dirty	 	
0	 …	 …	 Page Write Exception	
1	 0	 0	 Page First Dirty Exception	
1	 0	 1	 The operation is performed	
1	 1	 0	 Page Copy-On-Write Exception	
1	 1	 1	 The operation is performed	

We can explain this as follows:	

If the page is not writable (W=0) and the user tries to write into it, then it is a user 
error and the kernel will need to deal with the error (Page Write Exception). When 
the page is first written (D=0), it may be necessary for the kernel to update the page 
table in memory to indicate that if the page is to be evicted, it must first be saved to 
the backing storage (Page First Dirty Exception). Otherwise if the page has already 
been marked dirty, the operation can be performed without kernel involvement.	

If the page is shared using copy-on-write (C=1), then upon the first write (D=0) it is 
necessary for the kernel to make a copy of that page (Page Copy-On-Write 
Exception). After that, the kernel can mark the page as having been copied by setting 
the D bit. Otherwise (D=1), the page has already been copied, so the operation can 
proceed without kernel involvement.	
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We can summarize the MMU interface as follows:	

Memory Management Unit (MMU)	

	 Input:	
	 	 The current mode (Kernel or User)	
	 	 The 36 bit program-generated address:	
	 	 	 MSBit:	 Bit [35]	
	 	 	 	 	 	 0=kernel region, i.e., unmapped	
	 	 	 	 	 	 1=virtual region, i.e., mapped	
	 	 	 VPN:	 Bits [34:14] page number (21 bits)	
	 	 	 Offset:	 Bits [13:0] offset into page (14 bits)	
	 	 Is this a FETCH attempt? (1 bit)	
	 	 Is this a STORE attempt? (1 bit)	
	 	 Alignment requirement:	
	 	 	 • Doubleword	
	 	 	 • Word	
	 	 	 • Halfword	
	 	 	 • None	
	 	 csr_pgtable	
	 	 	 • ASID (Address Space ID)	
	 	 	 • Address of the page table root node	

	 Output:	
	 	 Status:	
	 	 	 • Null Address Exception (Address < 8)	
	 	 	 • Unaligned LOAD/STORE Exception (Address not properly aligned)	
	 	 	 • Page Illegal Address Exception (User mode to access kernel space)	
	 	 	 • Page Table Exception (Bad csr_pgtable)	
	 	 	 • Page Invalid Exception (Either index page or PTE has V=0)	
	 	 	 • Page Write Exception (Attempt to write an unwritable page)	
	 	 	 • Page Fetch Exception (Attempt to execute an un-executable page)	
	 	 	 • Page Copy-On-Write Exception (Attempt to write a copy-on-write page)	
	 	 	 • Page First Dirty Exception (Write to a previous unmodified page)	
	 	 	 • All okay	
	 	 The physical address (35 bits)	
	 	 	 (If there is an exception, we don’t care about the address returned.)	
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The precedence of the exceptions is:	

• Null Address Exception	 ← highest	
• Unaligned LOAD/STORE Exception	
• Page Illegal Address Exception	
• Page Table Exception	
• Page Invalid Exception	
• Page Fetch Exception	
• Page Write Exception	
• Page Copy-On-Write Exception	
• Page First Dirty Exception	

What if we have several violations at once? For example, what if there is an 
alignment violation, and the address falls in kernel space while running in user 
mode, and the csr_pgtable register is null? We’ve got 3 things wrong. In such a case, 
only the Unaligned LOAD/STORE Exception will be signaled. The Page Table 
Exception and Page Illegal Address Exception will be ignored.	

The last 6 exceptions are mutually exclusive and these errors cannot arise 
simultaneously. 	57

Here are some example scenarios:	

Conflict: Null Address and Unaligned LOAD/STORE	
Example: A LOADD instruction attempting to load from address 0x0_0000_0001 
while running in kernel mode.	
Result: Null Address Exception	

Conflict: Null Address and Page Illegal Address	
Example: A LOADD instruction attempting to load from address 0x0_0000_0000 
while running in user mode.	
Result: Null Address Exception	

Conflict: Unaligned LOAD/STORE and Page Illegal Address	

 If there is a Page Table Exception, then there is no Page Table Entry (PTE), so the remaining 5 57

exceptions cannot occur. If the PTE is invalid, then the flags (Copy-on-write, Dirty, Writable, 
Executable) do not exist, so the remaining 4 exceptions cannot occur. If there is a Fetch Exception, 
the operation is a FETCH and not a STORE, so the remaining 3 exceptions cannot occur. Finally, if 
one of the last there exceptions is signalled, then the operation must have been a STORE and the 
outcome — which was described above — can result in at most one of the final 3 exceptions.
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Example: A LOADD instruction attempting to load from address 0x0_0000_1111 
while running in user mode.	
Result: Unaligned LOAD/STORE 	58

NOTE: The following exceptions are not suppressed when running in Kernel Mode:	

Page Fetch Exception	
Page Write Exception	
Page Copy-On-Write Exception	
Page First Dirty Exception	

TLB: Translation Lookaside Buffer	

Previously, we described the MMU as if there is no TLB cache, but there would 
almost certainly be a Translation Lookaside Buffer (TLB).	

Although the presence of a TLB is theoretically optional, in practice each core will 
have its own set of TLB registers to reduce accesses to memory that would 
otherwise be needed to fetch Page Table Entries (PTEs) from the in-memory page 
table.	

The discussion below is intended to give you an idea of how a TLB would work.	

Each core contains a private set of TLB registers. These registers constitute the TLB 
cache and are not directly accessible by software.	

The number of TLB registers associated with one core is implementation dependent. 
For example, there might be 128 TLB registers.	

 This decision is arbitrary; it is hard to say which exception is more applicable in this case.58
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Each TLB register contains a TLB entry, which has the fields shown in the following 
diagram :	59

FIGURE: “TLB Entry”	

The TLB is a set-associative memory, keyed on “ASID || VirtPageNumber”, i.e., the 
most significant 37 bits of the TLB entries.	

Whenever a LOAD, STORE, or FETCH operation occurs, the MMU will first consult 
the TLB cache to see if it contains a matching PTE. If so, the MMU uses that and 
avoids reading from the in-memory page table.	

The MMU uses the Address Space Identifier (ASID) from csr_pgtable and the virtual 
page number from from virtual address, to construct a “search key”. The TLB cache 
is an associative memory and this key is used to retrieve a TLB entry with a 
matching key.	

 This layout is merely a suggestion and implementations may lay out the TLB entry differently.59
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If a matching TLB entry is found, then it is used. This is called a cache hit.  A 60

physical address is constructed and the bits (Copy-On-Write, Dirty, Writable, 
Executable, and Valid) are used as described earlier. Either an exception is signaled 
or the memory operation is performed.	

However, if no matching entry is found, the MMU will then access the in-memory 
page table. This was described above. In addition, the MMU will construct an TLB 
entry and add it to the cache. Since the TLB cache is a fixed small size, this means 
that an existing entry must be evicted.	

The TLB cache — at least as we are describing it here — will implement the least-
recently-used algorithm in hardware.	

To do this, the TLB will operate as a stack. In other words, the TLB registers are 
organized as a stack of memory registers, with TLB register 0 at the top of the stack 
and TLB register 127 at the bottom (assuming 128 registers in the cache).	

Entry 0, at the top of the stack, will be the most recently used entry. The entry at 
the bottom of the stack (e.g., entry 127) is the least-recently-used entry, and will be 
the entry that gets evicted (i.e., discarded) when a new entry is pushed onto the 
stack top.	

When there is a cache miss, the entire TLB register array will be shifted down. The 
last entry (e.g.., entry 127) will be discarded. The newly constructed entry will be 
added as entry 0. In other words, the new entry is pushed onto the top of the stack.	

Furthermore, in order to maintain the proper order, any time a cache hit occurs, the 
matching entry must be removed from its place in the stack and moved to the top of 
the stack. All entries from the previous top, down to the matching entry, are shifted 
one position down, making room for the matching entry to be moved into the top 
position.	

The TLB entries contain a VALID bit and, upon power-on-reset all VALID bits are set 
to 0. Whenever the VALID bit is 0 (indicating the entry is invalid), the entry is 
ignored. A cache hit can only return a valid entry.	

 The TLB registers (which are a cache of page table entries) should not be confused with memory 60

caches, such as L1, L2, and L3 which are a cache of main memory data. A hit in the cache of page 
table entries has nothing to do with a hit in the L1, L2, or L3 memory caches, although both can be 
said to be “cache hits”.
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There is an important difference between the VALID bit in a PTE in the in-memory 
page table and the VALID bit in a TLB entry. For the page table, an invalid entry 
means the page is not mapped into the virtual address space. Any attempt to access 
that page will require the kernel to determine whether a page should be allocated or 
whether the thread should be aborted. For the TLB entries, an invalid entry just 
means that the TLB register is not in use. When there is a cache hit for the TLB, the 
returned entry will always be valid.	

Whenever the MMU performs a walk of the in-memory page table and retrieves an 
invalid PTE, it will signal a “Page Invalid Exception”. The MMU will not update the 
TLB cache.	

Whenever the kernel updates a PTE in the in-memory page table, we have a 
situation where the cached TLB entry becomes out-of-date. To deal with this, the 
kernel must invalidate the old TLB entry by setting its VALID bit to 0.	

This is the purpose of the TLBFLUSH instruction. This instruction will mark any 
matching TLB entry as invalid . Later, when the same virtual address is used, the 61

MMU will get a cache miss and will respond by reading the PTE from the in-memory 
page table and adding to the TLB cache. 	62

From time to time, the kernel may wish to make major changes to an in-memory 
page table. Perhaps the virtual address space is deleted altogether, or perhaps a 
large number of PTEs are modified. In such a case, it will be necessary for the kernel 
to invalidate all the cached entries for a given address space. This is accomplished 
with the TLBCLEAR instruction. This instruction simply marks as invalid all TLB 
entries that have an ASID that matches the ASID from the csr_pgtable register.	

 There can be at most one matching entry; the cache should never contain more than one valid 61

entry with the same key.

 Ideally, when a new entry must be added to the TLB stack (evicting an existing entry from the 62

cache), we’d like to reuse an entry that was previously marked invalid. So, whenever a cache miss 
occurs and a new entry is to be pushed onto the TLB stack top, instead of shifting all entries down 
and discarding the last entry, the shifting should only occur above the first invalid entry, thereby 
evicting and discarding the invalid entry.	

An alternative approach to the TLBFLUSH instruction would be to move the invalidated entry to 
the bottom of the TLB stack, so that whenever an entry must be evicted in the future, the invalid 
entry will be discarded. However, this is impractical for the TLBCLEAR operation, which must 
invalidate a number of entries all at once.
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When a LOAD, STORE, or FETCH occurs, the MMU will check the TLB. If the TLB 
contains a matching entry, then that PTE will be used and a walk of the page table is 
avoided. Whenever a TLB entry is successfully retrieved, it’s also possible that the 
csr_pgtable register happens to contain zero, which would normally cause a Page 
Table Exception. Whether or not an exception will occur in this situation is 
specifically left unspecified and implementation dependent. 	63

It is also possible that the TLB cache becomes “out of synch” with the page table. For 
example, this could happen if the kernel failed to flush the TLB after switching to a 
new task and reloading csr_pgtable. In such a case, the TLB would return a PTE that 
is completely different from the PTE in the in-memory page table. Or perhaps a walk 
of the page table pointed to by csr_pgtable might encounter a missing index page 
and cause a Page Invalid Exception, while the TLB returns a perfectly serviceable 
PTE.	

Obviously, in such cases, the contents of the TLB will be used. No walk of the in-
memory page table will occur and such discrepancies would never be detected.	

To summarize: If a TLB cache is implemented and a cached entry in the TLB 
provides a different result than a walk of the page table would provide, the in-
memory page table is ignored and the TLB result prevails.	

Comments	

Kernel Access to User’s Virtual Memory	

Note that the kernel always has access to a user’s virtual address space. This is 
convenient for a trap handler that implements a system call. For example, a user 
process may pass pointers to memory buffers through the syscall to the kernel code. 
When servicing the syscall, the kernel can simply LOAD and STORE from the virtual 

 Normally, the csr_pgtable register will be zero only after power-on-reset until initialization is 63

complete. From then on, only valid pointers would ever be stored into the register. Null would 
never be stored, so this situation is unlikely to occur in practice.
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addresses that were provided. However, since the user mode process has passed in 
virtual addresses, the kernel must go through memory mapping.	

In the Blitz-64 design, this is accomplished easily and naturally. The kernel simply 
uses the virtual address pointer as is. Virtual memory mapping occurs regardless of 
the current privilege mode.	

Of course, the user code may pass illegal pointers to the kernel. The kernel really 
ought to check any virtual address before using it, to see what sort of an exception 
might be triggered if the access is attempted. The CHECKADDR instruction is 
provided for exactly this purpose.	

As another example, a debugger process may wish to write to a user page that is 
otherwise not writable. This would be necessary when the debugger writes a 
BREAKPOINT instruction into a page of code that is marked executable, but not 
writable. Clearly, this must involve some sort of kernel involvement.	

Perhaps the page in question is simply mapped into the debugger space as writable. 
But if the action is to be done directly by the kernel, it must temporarily change the 
page to writable. In more detail, the kernel must change the PTE entry in the page 
table to writable and execute the TLBFLUSH instruction in case the PTE was 
previously cached. Then the kernel can issue the STORE, change the PTE back to not-
writable, and re-execute the TLBFLUSH instruction.	

( Why did we not just specify in the Blitz-64 ISA something like “write permission 
checking is disabled whenever the core is running in kernel mode”? Because the 
core might be using separate data and instruction caches and an inconsistency might 
arise. Scenarios like this are explored in detail in a later section concerning caches. ) 	

Regarding the 16 KiByte Page Size	

Several page sizes were considered in the design of Blitz-64. Traditionally, pages 
have been 4 KiBytes; the selection of 16 KiBytes is somewhat radical.	

Here are some arguments in favor of the larger page size:	

• TLB entries need only be loaded ~¼ times as often, compared to systems with 
page size of 4 KiBytes. 	64

 Assuming good locality-of-reference, of course.64
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• Fewer TLB registers are needed. A TLB cache with ¼ the size will cover the 
same amount of virtual address space. 	

• A two level page table becomes feasible. In other systems with a smaller page 
size, a page table of at least three levels is required.	

• With a two level page table, the hardware response to a TLB cache miss is 
substantially faster, requiring 2 memory LOADs, versus 3 LOADs.	

• Whenever a page-related exception occurs, the kernel must search the in-
memory page table. The algorithm to search the page table will be faster with 
a two level table than a three-level table, but the difference is minimal.	

• For large processes, the page table takes ~¼ the space, since it only needs ¼ as 
many PTEs. Furthermore, initializing such a page table will be 4 times faster.	

• Internal fragmentation (i.e., lost space inside the last page at the end of  
sections) is not much of a problem. Assuming 3 sections per process 
(i.e., .data, .text, and stack), 8 KiBytes on average lost per page, and 200 
processes, we only lose 0.5% of 1 GiByte.)	

• The total size of page tables is small. (Assuming 3 pages per process × 16 
KiBytes per page × 200 processes = 1% of 1 GiByte.)	

• Every process with data plus code size under 32 MiBytes requires only 3 pages 
(48 KiBytes) for its page table. 	65

On the other hand, there are some drawbacks to a larger page size:	

• Each virtual address space will consume (i.e., waste) more physical memory 
with a larger page size, than with a smaller size. Let’s assume that most 
programs have three sections/segments (.code and .data in low memory and 
stack in high memory). On average, half of the last page in these segments will 
be wasted. So, about 3 × 16,384 × ½ = 24,576 bytes of virtual memory will be 
unnecessarily added to each address space. There is also waste in the second 
level index-pages, the amount of which is dependent on the size of the virtual 

 One second-level index page covering the bottom of the virtual address space (where the .data 65

and .text sections reside) will cover 2,048 × 16,385 = 32 MiBytes. Along with a page to cover high 
memory and the root index page, we have a total of 3 pages in the page table.
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address space. If we assume that, on average, half a page is wasted in both 
high and low memory, we have 2 × 16,384 × ½ = 16,384. Thus, we estimate the 
total waste to be 40,960 bytes per process. In a system with (say) 200 
processes, this will waste about 8,000,000 bytes. In a system with 2 GiBytes of 
main memory, this is less than 0.5%.	

• Copying / initializing data pages each time a virtual address space is created 
will require more time. Assume two data sections (.text and .data) in low 
memory, with half of the last page being unused. We must initialize 2 × 2,048 
bytes for 4 KiByte pages and 2 × 8,192 bytes for 16 KiByte pages. Assuming we 
need to initialize /clear the entire page for the stack section, we must initialize 
4,096 bytes for 4 KiByte pages and 16,384 bytes for 16 KiByte pages. In 
summary, for each new address space, we will need to initialize 8,192 versus 
32,768 bytes, which is 4 times as many bytes for the larger page size. To create 
a new address space, we are presumably reading in several kilobytes of code 
and data from a file. It is unclear whether the cost of zeroing an additional 
24,576 bytes is significant.	

• Many address spaces will be very small. Creating a mostly empty page table 
requires more space and more time with a larger page size, compared to a 
smaller page size. Roughly speaking, we can say a larger page size will waste 
as much as 4 times as much memory with additional, unused page table 
entries . Since we need to initialize these unused PTEs, up to 4 times as much 66

time will be required to setup the virtual address space.	

Examples of System Memory Requirements	

To give a feel for potential Blitz-64 usage, we show some example virtual address 
spaces.	

Minimal process (112 KiBytes)	
	 1 page for code and constants = 16 KiBytes (~1K lines of code)	
	 1 page for data = 16 KiBytes	
	 1 page for stack = 16 KiBytes	
	 3 pages for page table = 48 KiBytes	
	 1 page for kernel data and stack = 16 KiBytes	
	 	 ⇒ 7 pages (working set cannot exceed 3 TLB entries)	

 In other words, many entries in the lowest level index pages will be unused and will need to be 66

initialized to “invalid”.
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Small process (512 KiBytes)	
	 16 pages for code and constants = 256 KiBytes (~10K lines of code)	
	 8 pages for data = 128 KiBytes	
	 4 pages for stack = 64 KiBytes	
	 3 pages for page table = 48 KiBytes	
	 1 page for kernel data and stack = 16 KiBytes	
	 	 ⇒ 32 pages	

Large process (48 MiBytes)	
	 2048 pages for code and constants = 32 MiBytes (~1M lines of code)	
	 1024 pages for data = 16 MiBytes	
	 16 threads @ 4 pages per stack = 1 MiBytes	
	 4 pages for page table = 64 KiBytes	
	 1 page for kernel data and stack = 16 KiBytes	
	 	 ⇒ ~3200 pages	

Mega process (400 MiBytes)	
	 16Ki pages for code and constants = 256 MiBytes (~10M lines of code)	
	 8Ki pages for data = 128 MiBytes	
	 128 threads @ 4 pages per stack = 8 MiBytes	
	 16 pages for page table = 256 KiBytes (< 0.1%)	
	 1 page for kernel data and stack = 16 KiBytes	
	 	 ⇒ ~25,000 pages	

Examples of installed physical memory	
    1 MiByte	
	 	 = 64 pages (0 megapages)	
	 	 Accommodates 8 minimal processes.	
    512 MiBytes	
	 	 = 32Ki pages (or 16 megapages).	
	 	 Accommodates 1,000 small processes.	
	 	 Accommodates 200 small, 8 large processes.	
    4 GiBytes	
	 	 = 256 Ki pages (or 128 megapages).	
	 	 Accommodates 5 mega, 20 large, 2,000 small processes.	
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Shared Core Functions	

The Blitz-64 design is tuned to support a set of globally shared functions. The idea is 
that a collection of functions is so widely used by user programs that it makes sense 
to make these functions available to all tasks in a uniform way, as a sort of universal, 
shared library.	

These are called the “shared core functions” and the pages containing the 
functions will be mapped into every virtual address space, whether or not the 
functions are used. The maximum virtual address space is so large that a small 
number of pages set aside for the shared core functions does not make a significant 
difference.	

In this discussion, we describe how functions are shared. We can also place heavily 
used methods into the shared core function library. Thus, commonly used classes 
need not be included in every executable program.	

It is envisioned that there will be several hundred shared functions/methods. As an 
example, imagine that 2,500 functions are placed in the shared core library, with 
each consuming and average of 200 bytes each. This number of functions can be 
accommodated with 32 pages, consuming 512 KiBytes of the virtual address space.	

The shared core functions will be placed in the very uppermost pages of the address 
space, which end at address 0xF_FFFF_FFFF. In our example, setting aside 32 pages 
out of 2,097,152 possible pages in the address space has no significant cost.	

The pages of the shared core functions will be marked “read/execute” so that they 
can be freely shared by all virtual address spaces. Since the pages are shared and 
assumed to be memory-resident at all times anyway, there is essentially no overhead 
for individual tasks.	

Regardless of how many pages are consumed by the shared core functions, when 
loading a program to be executed, the kernel will typically initialize the stack pointer 
to somewhere below the shared core function area.	

To facilitate linking and the dynamic connection between separately compiled 
programs and the shared library functions, there will be a “dispatch table” (i.e., a 
branch or jump table) which will consist of one entry per shared core function.	
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Each entry of the dispatch table is 8 bytes. Each entry will contain a JUMP to the first 
instruction of the function. If the function itself is located close enough (i.e., within 
32 pages, or 512 KiBytes), a single JAL instruction will suffice. Otherwise, the JUMP 
will require two instructions, i.e., 8 bytes.	

The dispatch table will occupy the last page of the address space. If the number of 
functions exceeds 2,048, the dispatch table will occupy the last two pages.	

	 First page of dispatch table:	
	 	 Number of entries:	 2,048	
	 	 Entry 0:	 F_FFFF_C000	
	 	 Entry 2047:	 F_FFFF_FFF8	
	 Additional page (if necessary):	
	 	 Number of entries:	 2,048	
	 	 Entry 2,048:	 F_FFFF_8000	
	 	 Entry 4,095:	 F_FFFF_BFF8	

To call (i.e., invoke) a shared core function, user code can contain a CALL instruction 
to the dispatch table address. From there, the JUMP instruction will take execution to 
the first instruction of the function.	

The purpose of using a dispatch table is to allow simple linking between arbitrary 
user mode programs and the shared core function library. Each shared core function 
is assigned an offset in the dispatch table which will never change. There will be a 
KPL header file declaring each of the shared core functions as an “external” function. 
This allows the KPL compiler to perform type checking on the function invocations. 
A simple assembly file will equate each function name with the address of the 
corresponding dispatch table entry. The user mode programs do not need to know 
the exact location or size of the functions themselves, and these can be changed 
without needing to recompile user mode programs. Functions can be modified and 
new functions can be added to the shared core function library without requiring 
user mode programs to be recompiled.	

To invoke a share core function, the code will first “call” to an address in the dispatch 
table and, from there, a JUMP instruction will take execution to the first instruction 
of the function.	

Notice that a CALL to a shared core function can always be implemented with a 
single JALR instruction. (This is because, using register “r0” and a negative offset, 
each of the 4,096 entries in the dispatch table can be reached with a single 
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instruction.) From there, a single instruction will take execution to the function 
itself. (This is because the JALR instruction contains a 20 bit offset and can jump 
-524,288 … +524,287 bytes relative to the PC.)	

Thus, the overhead for invoking a shared core function is a single instruction! 	67

 Since some function invocations might be far away and require two instructions, we can actually 67

say the overhead is at most one instruction for shared core functions.
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Quick Summary	

• Cores may have private memory and/or shared memory.	
• LOAD and STORE instructions are always atomic.	
• Cores are assumed to have caches, which may contain out-of-date values.	
• Blitz-64 uses a relaxed memory model.	
	 — STOREs do not propagate instantly to all caches in the system.	
	 — STOREs do not necessarily propagate in the same order to other cores.	
• The FENCE instruction is provided to force change propagation.	
	 — Blitz-64 uses a single, coarse-grained FENCE semantics for all purposes.	
• Programmers must use locks to ensure correctness and protect shared data.	
• Lock ACQUIRE and RELEASE must use the FENCE instruction.	
• A FENCE on one core may require cache lines on other cores to be invalidated.	
• A modification to an address space on one core may invalidate remote TLBs.	

Private and Shared Memory	

A multi-core system in which all cores share a common block of main memory is 
called a Shared Memory Multiprocessor (SMP).  In a typical multi-core system, 68

there is a single large block of physical memory and this block is mapped to the 
same location in all cores, thus making it fully and symmetrically shared.	

The Blitz-64 architecture supports both private and shared memory.	

A multi-core system may have only shared memory and have no private memory. 
This is expected to be a common design choice, mirroring other SMP computers. The 
shared physical memory will be located at the same physical addresses in all cores.	

 Other authors use SMP to stand for “Symmetric Multiprocessing”, where all cores are identical 68

and connected symmetrically.
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On the other hand, a multi-core system may have only private memory and no 
shared memory. In this design, each core will have its own block of private memory.	

Finally, a Blitz-64 system may have a mix of both private and shared memory. In such 
a design, the private memory might be devoted to containing the kernel code and the 
code of the share core functions. The benefit of this is that any cache loads from this 
region will be entirely local and therefore faster. 	69

Private memory, if present, will always start at address 0. The cores need not have 
the same amount of private memory, although we normally expect all cores in a 
given computer to have the same amount.	

Shared memory, if it exists, will always follow private memory. The shared memory 
will be located at the same address in all cores. If no cores have private memory, the 
shared physical memory will be placed at address 0.	

LOAD / STORE Atomicity	

In Blitz-64, all LOAD and STORE operations are required to be properly aligned. This 
means that the data involved can never cross a cache line . Since the data in 70

question will reside entirely within a single cache line,	

Every LOAD and STORE instruction is atomic.	

One core (call it “A”) may STORE a value and another core (call it “B”) may LOAD or 
FETCH from the same address. By “atomic”, we mean that if another core looks at the 
same address, it will either see the data as it was before the modification or as it is 

 If all private memories contain the identical data, then these addresses can be mapped into 69

virtual space with no problem. For example, the shared core functions would typically be mapped 
into the highest pages of the virtual address spaces. When a cache fault occurs and the data must 
be loaded, the virtual address will be mapped into a physical address within private memory. It 
will not matter which core is executing, since all private memories contain identical data.

 In this section, the terms “cache line” and “cache block” are used synonymously. Elsewhere, 70

“cache block” is used to refer only to the data in a cache line, while a “cache line” includes address 
key and control bits as well as the block of data.
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after the modification. But it will never retrieve a value that is partly modified and 
partly unmodified. 	71

If instead, some data value is not aligned, it might possibly cross a cache line 
boundary. In other words, the value could reside partly in one cache line and partly 
in the following cache line. An update to the data value by core A will need to modify 
both cache lines. Now consider what might happen at core B. It may be that one of 
the cache lines is present in the cache of B, but the other line is not present.	
Of course the updates will not be instantaneous. If core B looks at the data in a given 
cache line, it will either see the data before a change or after the modification.	

As an example, assume that some data item crosses a cache boundary. When core A 
updates the data value, the modifications to the cache lines must propagate to other 
cores.	

Blitz-64 allows for a relaxed memory model, which means these changes may 
propagate at different speeds. Thus it is possible that core B will see part of the data 
as it was before the modification and the other part of the data as it was after the 
modification. Thus, core B could effectively retrieve a value that was never actually 
stored by any core!	

Of course some shared data is sometimes very large and must necessarily lie in 
multiple cache lines.	

To control synchronization, we assume the kernel uses locks and respects the 
locking protocol . Before accessing any shared data, we assume the kernel has 72

acquired the appropriate lock, giving the core exclusive use of that data.	

But even though locks are used, we still have the problem of cache lines being out-
of-date, which we now turn our attention to in the following sections.	
core.	

 We are implicitly mandating that cache lines must be at least 8 bytes long.71

 The locking protocol requires that a lock is acquired before the shared data is read or 72

modified and the lock is released afterwards. The code between the acquire and the release 
operations is called a critical section and the shared data is only accessed within a critical section, 
i.e., when the relevant lock is held.
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A Relaxed Memory-Model	

In a Shared Memory Multiprocessor (SMP) model, several cores share physical 
memory. In this section, we’ll ignore private memory, since the issues to be 
discussed do not arise.	

In the basic, simplest model of memory, every memory location has exactly one 
value — or at least behaves in a functionally equivalent way. Any STORE to some 
location (say X) will become immediately visible to all cores. Any subsequent LOAD 
or FETCH from address X by any core can only return the most recent value, and 
never any prior value. If one core updates two locations one after the other (say X 
first, followed by a STORE to Y), then all cores must observe those updates in that 
order.	

In short, such a system behaves as if there are no caches. Every address is stored in 
only one location and every memory operation is executed in linear order, one after 
the other. But of course caches — which complicate things — are necessary for 
performance.	

To improve efficiency, the same cache block will often be held in multiple caches at 
different cores. To deal with this, many common cache protocols (such as MSI, MESI,  
MOESI, …) are designed to preserve the invariants discussed above, allowing the 
programmer to ignore cacheing, without risking incorrect results. In other words, 
the caching is transparent. While caches will affect performance, they will not affect 
functionality or results.	

But there is a cost to making cacheing fully transparent . To address this, Blitz-64 73

adopts a relaxed memory model.	

The Blitz-64 Memory Model:  Blitz-64 accommodates a relaxed 
memory model. Local caches are assumed to exist and the results of 
updates to memory (i.e., STOREs) are not assumed to propagate to 
other cores instantly or in the order actually executed.	

The relaxed memory model of Blitz-64 does not assume a memory in which each 
address contains exactly one value at any instant or that all cores see exactly the 
same value. This is different from systems with transparent caching, which require a 

 Generally speaking, this cost is in additional bus traffic imposed by the cache coherence protocol 73

and the additional overhead of the snooping required of the individual caches.
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cache protocol that guarantees that it appears to all cores that, at every instant, 
every memory location has exactly one value.	

Instead, Blitz-64 assumes that cores have local caches which are not transparent. 
Although any update to a memory address by one core will eventually be seen by 
other cores, cache propagations take non-zero time. Some cores may still see the old 
values while other cores are already seeing the new value.	

Since cache propagation is not instant, some cache lines may contain older values 
and still remain valid in the Blitz-64 memory model. As a result, one core may fetch 
data that is old, out-of-date, and seemingly made in an inconsistent order with 
respect to other cores and other memory locations.	

Like all systems, Blitz-64 requires the cache protocol to implement a coherent 
memory model.	

By “coherent”, we mean that a sequence of writes of different values by one core to 
any single location must be observed by all cores as happening in the same order, 
i.e., in the order they were actually performed. Basically, if any core sees the new 
value in location X, it can never subsequently retrieve an old value from that 
location.	

The behavior of LOADs, STOREs, and FETCHes made exclusively by one core must 
always respect the order in which they appear, at least to that core. By “respect”, we 
mean that any reordering performed by the compiler or an out-of-order core must 
be transparent and will never be observable by that core.	

However, since the core doing the reordering may not fully understand the 
interdependencies of the data, the reordering may be visible at other cores.	

Consequently, an additional mechanism — the FENCE instruction — is required to 
prevent a core from reordering certain operations and to constrain the order in 
which changes are propagated to other cores.	

With the Blitz-64 relaxed memory model, if multiple addresses are involved, it is 
possible and acceptable that the updates made by one core (call it A) do not appear 
to another core (B) as being made in the same order. For example, if core A writes a 
new value to address X followed by writing a new value to address Y, some other 
core (such as B) might see the new value when reading from Y but subsequently see 
the old value when reading from X!	
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Of course, the software really ought to use locks and the FENCE instruction (as 
discussed below) to prevent such confusing scenarios.	

FENCE and Memory Synchronization	

An out-of-order core (which is sometimes called a superscalar core) may execute 
the instructions in a slightly different order than they actually appear in the 
instruction stream. This dynamic rescheduling of instructions is done to improve 
performance and more efficiently utilize the hardware’s circuits and functional 
units. The execution of the reordered instructions must be transparent and the 
results indistinguishable. Reordering by the core is allowable only when there are no 
data dependencies between the reordered instructions.	

For example, consider this instruction sequence:	

movi   r7,0x1234567890
div    r1,r2,r3
addi   r1,r1,r7

Since there are no registers used in common by both the MOVI and DIV instructions, 
the order of these two instructions doesn’t matter. The core is free to begin the DIV 
instruction first. In fact, this is probably a good idea since DIV will take longer than 
MOVI to complete. But the ADD cannot begin until both MOVI and DIV have 
completed.	

However, the core may not fully understand all data dependencies, especially in the 
presence of concurrent algorithms and multiple cores.	

On a single core system, the FENCE instruction can be used to make sure that an 
out-of-order core (which might be reordering instructions for the sake of 
performance) does not violate some ordering and/or synchronization requirements 
that must be respected, but which cannot be inferred from a myopic analysis of the 
instruction stream.	

The FENCE instruction requires that any instruction that occurs 
before the FENCE is completed before beginning the execution of any 
instruction after the FENCE.	
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FENCE instructions can be used to limit and restrict any instruction reordering an 
out-of-order core or compiler might otherwise attempt. 	74

For multi-core systems, the FENCE requirement is expanded to include inter-core 
interactions. The FENCE instruction affects the instructions on the core that 
executes the FENCE, but the FENCE instruction is required to do more in multi-core 
systems.	

To address the problem of some data being old and out-of-date in the caches of other 
cores, the following additional requirement is added:	

The FENCE instruction requires all memory updates performed by 
the core to be fully propagated to other cores before execution 
proceeds.	

In other words, after the FENCE instruction is completed, it must be impossible for 
any other core to see an old, out-of-date value for any memory location that was 
updated by the core before that core executed the FENCE instruction. All STORE 
operations must be fully performed and all old, out-of-date values must be purged 
from all caches before the FENCE instruction can be retired. 	75

Note that we specifically do not place the following requirement on the FENCE: “All 
LOADs and FETCHes that occur after the FENCE must retrieve the most recent, up-
to-date value.”  Such a requirement would impose an additional burden on the 76

implementation. Assuming that locks are used rigorously and properly to protect 
shared data in a multi-core system, the requirement to propagate STOREs is 
sufficient to ensure the shared data is always accessed exclusively.	

 We also assume that a “fence statement” is available to the compiler. This is true in the KPL 74

programming language. The presence of a fence statement in the KPL code will restrict the 
reorderings that the compiler might consider, as well as insert a FENCE instruction.

 For example, a write buffer must be emptied and STORES must be propagated before execution 75

proceeds.

 In other words, a core executing a FENCE instruction must propagate all prior STOREs it made 76

to all other cores. But, any STOREs made on other cores, need not be propagated to the core 
executing the FENCE instruction.
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Commentary  The  specification of FENCE, as given above, imply that the following 
are true:	

(1)	All memory operations that appear before the FENCE are truly completed 
before the FENCE.	

(2)	All memory operations that appear after the FENCE are truly not started 
until after the FENCE.	

These requirements impact changes to shared memory and the timing of when 
those changes become visible to other cores.	

Transparent Cache Protocol	

Imagine a very simple multi-core system in which private caches do not exist: there 
is only main memory.  This is a perfectly reasonable implementation for smaller 77

systems where simplicity is favored over performance. Every time a FETCH, LOAD, 
or STORE is executed, the operation is performed directly on the main memory. In 
such a simple system, it is not possible for an address to simultaneously contain two 
values, since there is only one location in which the value can be stored. In such a 
system, the problem of out-of-date data is impossible. The requirement that “all 
previous memory operations become visible to all cores” happens implicitly with 
every STORE operation.	

Some computer designs include private, per-core local caches, but the cache 
protocol will be designed in such a way that all updates to data are immediately 
propagated to other caches. Such an “instant propagation” protocol will guarantee 
that every memory address will appear to have exactly one value. In this design 
approach, cacheing is entirely transparent — data is never out-of-date — and its 

 A memory-side cache (often called the L3 cache) is a cache which sits between main memory 77

and the bus that connects to the private caches. All accesses to main memory must pass though the 
L3 cache. In our discussion of cache synchronization, we are focussing on private, per-core caches 
and we ignore memory-side caches. While the L3 cache can contain a different value than main 
memory — implying that one value is out-of-date — all cores will always see the same value, and 
that will be the value in the L3 cache, which is the most current value.
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presence does not affect the result. Aside from performance impacts, the behavior is 
identical to the simpler design without any private caches at all. 	78

Linearizability	

A strictly linearizable cache protocol is defined as follows. Although the actual 
order in which operations occur is not fully constrained, there must exist a total 
order for all LOADs and STOREs.  The results of a strictly linearizable protocol are 79

the same as if all operations had been performed sequentially, one after the other in 
that order, on a system without any cacheing.	

The “no cache” and the “instant propagation” protocols described in previous 
paragraphs are strictly linearizable. However the strictly linearizable protocol 
allows added flexibility in the ordering of two operations that are performed by 
different cores. Another way to say this is that cache propagations can be delayed, as 
long as the outcome is guaranteed to be the identical to the result on a no-cache 
system in which the cores run at variable and indeterminate speeds.	

While a linearizable cache protocol is ideal, there is a cost to making cacheing 
entirely transparent.	

So in some modern systems — including Blitz-64 — strict linearizability is 
sacrificed. Updates to the cache are not required to propagate immediately. The 
cache at some core can continue to use out-of-date data at the same time that the 
core is seeing and using updated values in other cache lines.	

 Imagine a program that goes through memory byte-by-byte writing to sequential bytes, one-by-78

one. Each STORE instruction updates a single byte within some cache line. For each STORE, it is 
necessary to notify all other caches to make certain they invalidate any copy of this cache line they 
hold in their private caches. This overhead can impose a huge burden on bus traffic.

 Of course this total order must respect the order in which the LOADs and STOREs on any one 79

core are performed.
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The relaxed memory model of Blitz-64 allows the same cache line in the caches at 
two different cores to contain different data.  In short, the cache protocol can allow 80

some core to continue to see an old, out-of-date value for some time, while other 
cores are seeing the new, updated value. This allows for improved performance, but 
opens the door to confusion when two cores are accessing the same address in a 
shared address space. 	81

Locking Example	

To perform synchronization and concurrency control, all shared data really ought to 
be protected by locks. Program correctness cannot be guaranteed without proper 
locking.	

To accommodate the Blitz-64 memory model, a FENCE instruction 
should be used within the locking functions.	

The FENCE is used to make sure that all operations which are to be done after a lock 
is acquired are truly not begun until after the lock has been properly acquired. 
FENCE is also used before a lock is released to ensure that all instructions that 
should be executed in the critical section (i.e., before the release) are truly 
completed before the lock is freed.	

This is required to prevent an out-of-order processor or the relaxed cache protocol 
from violating the locking protocol that programmers depend on.	

 In Blitz-64, the following restriction holds: It must be clear which value is most recent. We do 80

not allow two cores to STORE into a single location where neither STORE has precedence. While 
changes may not propagate immediately, the values retrieved from a single location are required to 
be sequentially ordered. Assume that one core stores 6 while another core stores 7 into the same 
location. Then either the 6 is stored first (in which case it is never possible for any core to read 7 
followed by reading 6) or 7 is stored first (in which case it is never possible for any core to read 6 
followed by reading 7).

 It would get even more problematic if the cache protocol allowed the updates to be propagated 81

in an unconstrained, arbitrary order. It would then become possible that one core can see changes 
made in an order that is different from the order in which the other core actually made them. But 
as mentioned, this is not allowed in the Blitz-64 memory model.
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As an example, consider the following code:	

Acquire Lock 	82

	 Wait for lock to become 0	
	 lock ← 1	
	 FENCE	

Critical Section	
	 Access shared variable X	

Release Lock	
	 FENCE	
	 lock ← 0	

Let’s assume some shared data (which we will call X) is protected by a lock, 
represented by variable lock. We assume the usual locking convention that any core 
wishing to examine or modify X must first acquire the lock. 	

Imagine that core A grabs the lock and updates X. While the lock is held, the value of 
X will pass through some “inconsistent states”, but before the lock is released, the 
core will set X to a “consistent state”, ready for other cores to see and use.	

So what happens after core A releases the lock? It is perfectly legitimate for some 
other core (call it B) to acquire the lock and then retrieve the value of X. But core B 
must not see an out-of-date value; it must see the final value of X and not some 
earlier, inconsistent state.	

Updates to lock and updates to the shared variable X must propagate and become 
visible to all cores in a timely, controlled, and correct way. The FENCE instruction 
must be used to guarantee this.	

What would happen without the FENCE instructions? The locking will not work 
properly, given the relaxed memory model of Blitz-64. Core A (which we assume 
initially holds the lock) will update X before releasing the lock and updating lock. 
Unfortunately, core B might observe the update to lock before the update to X. Such 
a scenario could allow core B to see a premature, inconsistent state of X. This defeats 
the idea of locking and would be a total disaster.	

 The “wait” and the “set lock” operations must be done together atomically, but those details are 82

ignored here.
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The FENCE instruction requires that all changes by one core must be propagated to 
all cores at the time of the FENCE.	

In the code above, any core (such as A) acquiring the lock must set lock to 1 before X 
can be accessed. The FENCE instruction in the acquire code guarantees that all other 
cores will see the lock as being set — and must therefore be outside of their critical 
sections — before core A can proceed to access X.	

At the end of its critical section, core A updates X and then executes a FENCE before 
updating and releasing the lock. The FENCE in the release code guarantees that all 
changes to X will be propagated to other cores before core A can proceed to the 
instruction after the FENCE which then releases the lock. All changes to X must be 
delivered to other cores  before the code can begin to release the lock. Therefore, 83

no other core can observe an older value of X after observing the updated (released) 
value of lock.	

In conclusion, if FENCE is used within the code to acquire and release locks as 
shown above, and if locks are always used to protect all shared data, then 
concurrently accessed data will be properly protected and behave as expected. The 
results obtained will be consistent with a linearizable memory model and the fact 
that the memory model is relaxed will become invisible.	

More Discussion / Implementation	

Clearly, the FENCE instruction must prevent any reordering of instructions on the 
core executing the FENCE. More precisely, memory operations (LOAD, STORE, 
FETCH) that appear before the FENCE instruction must not be moved past the 
FENCE instruction and memory operations that occur after the FENCE must not be 
initiated before the FENCE. In other words, the core executing the FENCE must not 
reorder instructions around the FENCE instruction. 	84

 Or, at least any old values must be made invisible and inaccessible.83

 In theory, any data pre-fetched into the core’s pipeline must be flushed whenever a FENCE is 84

encountered since that might be out-of-date. But we can avoid clearing the instruction prefetch 
buffer as long as the prefetch buffer is cleared whenever the core issues a STORE that invalidates 
any line in the core’s i-cache.
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We must also ensure that any STORE appearing before a FENCE will be propagated 
to other cores so that no other LOAD or FETCH on any core after the FENCE is 
encountered can possibly retrieve an earlier, out-of-date value.	

On the other hand, there is no possibility of another core prematurely getting a value 
STOREd after the FENCE, since the STORE instruction is not permitted to begin until 
after the FENCE.	

We must also ensure that any LOAD or FETCH that occurs after a FENCE must 
retrieve the most up-to-date copy of any data. Obviously, there is no danger of a 
LOAD or FETCH that occurs before the FENCE getting a value that was STORED any 
time after the FENCE.	

Both may require invalidating any cache lines that could possibly contain old, out-of-
date data.	

To illustrate, imagine a cache line that is held both in the cache of core A and in the 
cache of some other cores. Imagine that this line is updated by A before a FENCE 
instruction. (For example, the shared data might be a lock which is getting set, 
followed by a FENCE instruction before the critical section is entered.) The FENCE 
must cause any cache line that A updated to be either updated or invalidated in all 
other private caches that happen to contain that same line, since the other cores’ 
caches might previously have contained different (i.e., older) values. (For example, 
they might have previously seen the lock as “unset” , but they must now see the lock 
as being “set”.) After that, the only value observable by any core will be the value 
held in A’s cache, which is necessarily up-to-date. This new value may or may not 
also appear in other caches — depending on whether the FENCE is implemented by 
invalidating the other cores’ caches or by updating them with the new value — but 
no older value will be present in any cache.	

The implementation gets more complex if it allows the possibility that a cache line 
updated by core A can subsequently migrate to another cache before the FENCE 
without invalidating some other, older copies in other cores. Failure to invalidate the 
contents in these other cores would violate the requirements of FENCE.	

For example, there may be several variables coincidentally occupying the same 
cache line. Assume that, after A updates the cache line, some other core (call it B) 
grabs the line for some unrelated usage, thereby invalidating A’s copy. Now B has the 
most recent copy and A no longer contains the line. On top of this, imagine that some 
other core (C) may happen to contain an older version of this very same cache line. 
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The cache line at C is old and out-of-date, but since no FENCE has occurred, this old 
cache line has not been invalidated. C is just looking at an older copy of the data. 
(Perhaps the cache line contains several variables, each protected by different locks. 
Since the locking protocols are respected, the data that C is seeing is not, itself, out-
of-date at all. Only the data elsewhere on the line is out-of-date.)	

Now assume A issues a FENCE operation. It required that this old, out-of-date cache 
line in core C must be invalidated, even though this cache line is no longer present in 
A.	

In order to implement the Blitz-64 requirements correctly, it seems necessary to do 
one of the following:	

(1)	Invalidate any and all cache lines that could possibly be out-of-date in 
any core, whenever a FENCE instruction is executed on any core.	

(2)	Never migrate an updated cache line from one core to another without 
updating or invalidating any and all other copies. More precisely, if 
other private caches may contain older, out-of-date copies of the cache 
line, these same cache lines must either be updated or invalidated at 
the time the current, most recent value of the cache line is migrated 
from one core to another.	

Option (2) is preferable in terms of performance.	

Self-Modifying Code	

Another issue that can arise with caches is the fact that cores often have separate 
caches for instructions and data. The so-called i-cache holds instructions and the d-
cache holds data.	

A program that does instruction modification alters its own code during execution. 
In other words, the code will STORE into some memory location and then FETCH 
from that same location at some later time, possibly on the very next instruction.	
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The kernel regularly writes data to pages that will be subsequently executed, so we 
must consider it to be self-modifying. . It is not entirely uncommon for a user mode 85

process to modify its own code while it executes, although this is often frowned 
upon.  In some cases, user mode code might even be prohibited from instruction 86

modification. 	87

In any case, we could now have a situation in which data from the same address is 
held simultaneously in two different caches (the i-cache and the d-cache). 
Consequently, there is a need to synchronize these caches from time to time.	

The FENCE instruction also guarantees that any writes to the d-cache will be 
propagated to the i-cache. After a FENCE, the i-cache must never hold out-of-date 
values. The FENCE instruction must also flush and invalidate any instruction that 

 One example is the “exec” syscall, in which the kernel loads an executable file into memory, 85

treating it as data. Later, the instructions that were loaded will be executed.	

Another example is dynamically loaded I/O drivers. A kernel may download code from the internet 
to deal with some new device and, after moving this code into memory, invoke this code. Since no 
kernel rebuild or reboot is required, this is an example of self-modifying code.	

A kernel capable of downloading kernel patches and dynamically applying them — while very 
risky from a security viewpoint — is a third example.

 One example involves the implementation of dynamically loaded library functions. The idea is 86

that the CALL to such a function is actually directed at a dynamic loader; upon the first invocation, 
the function is loaded and the site of the CALL instruction is overwritten so that subsequent 
invocations go directly to the now-resident function.	

Another example involves just-in-time compilation. The idea is that the original code is expressed 
in some high-level form; upon the first invocation, a resident compiler is called to generate 
machine code, which will then be executed. Both the code and the compiler might live and run 
within a single user mode address space.	

Another more esoteric example might involve some research-oriented simulation program that 
uses a genetic algorithm to evolve code via natural selection, treating the address space as a 
sandbox environment. I’m sure there are other ideas I don’t know.

 In the case of malware, a virus might enter the virtual address space of some innocent process 87

as data and subsequently get executed. If the user process has some critical security clearance, 
then the malware code can do its dirty-work. This is an excellent reason to forbid security-critical 
processes from containing pages that are both writable and executable or ever adding “writable” 
privileges to any page.
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was previously fetched and sitting in the pipeline (or some prefetch buffer) awaiting 
execution.	

In a multi-core system, any modifications by the core executing the FENCE must be 
propagated to the i-caches — as well as the d-caches — of all other cores.  This 88

includes instructions sitting in the pipelines of other cores. 	89

Within a single core, this could be implemented by having the i-cache constantly 
snooping. Whenever the CORE executes a STORE to a line that happens to be held in 
the i-cache, that line must be invalidated. Whenever an invalidate or update comes 
in from another core, the i-cache must respond, just as the d-cache must. Finally, 
whenever the i-cache must FETCH a new line, it must look in the d-cache as well as 
the L2 cache.	

Invalidating Data in the Pipeline	

At any moment in time, a core will contain a number of instructions which are in 
various stages of decoding and execution within the instruction pipeline. In 
particular, a core will normally contain an instruction prefetch buffer which 
contains a number of instructions which have been fetched from the i-cache but 
whose execution has not yet begun, as well as instructions that are in various stages 
of execution within the execution pipeline.	

The instructions in the prefetch buffer may or may not ultimately get executed, 
depending on branch instructions and conditional execution, but they have been 
FETCHed from main memory, so they are effectively cached.	

In this section, we talk more generally about all instruction and data bytes anywhere 
within the instruction pipeline of a core. The instruction prefetch buffer is one 

 Since the i-cache cannot be written to, propagation in the reverse direction is not an issue.88

 It is a far-fetched example, but consider a scenario where core A modifies an instruction in 89

memory and executes a FENCE. Assume that core B has already fetched the previous value of this 
same instruction and it is already in core B’s pipeline awaiting execution. A correct multi-core 
system must make sure that the old instruction is not executed after the FENCE has completed. A 
design in which the FENCE instruction simply delays enough cycles for the pipelines on all other 
cores to be completely exhausted is adequate to handle this, as long as the i-caches are also flushed 
as discussed.
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example of data effectively pre-cached in a core’s pipeline. A core may also 
speculatively prefetch data from the d-cache. In either case, the core’s pipeline may 
contain a value that is effectively cached and may differ from values for that same 
byte that have been modified by other cores and held in other caches.	

Of course, it is unacceptable to execute an instruction on core B after core A has 
modified that instruction and a FENCE instruction has been executed. Therefore 
when discussing the FENCE instruction, we must consider data present in pipelines.	

Given that the instruction prefetch buffer has a finite size, we can assume that any 
data within the pipeline will be consumed within the execution of a small number of 
instructions. For example, let us assume that the prefetch buffer can hold 10 
instructions and the execution pipeline can hold up to 5 instructions in various 
stages of execution. Then after the execution of 15 instructions, any old, out-of-date 
data in the pipeline will necessarily be consumed and subsequent instructions and 
data must be fetched from the i-cache and d-cache.	

We expect the execution of the FENCE instruction to be fairly common; after all, the 
kernel must use it on every lock “acquire” and “release” operation and it’s 
reasonable to assume that a minimum of four FENCEs are required on every core at 
every timer interrupt (i.e., every “tick”). 	90

In the simplest design approach, the cache protocol would clear every core’s 
pipeline for each and every FENCE operation on any core. It’s probably unacceptable 
to introduce a 15 instruction delay into all cores whenever any single core issues a 
FENCE, but definitely not out of the question for simpler systems.	

In another approach, the FENCE instruction would be implemented by simply 
making the core that executed the FENCE wait. The idea is that all processing on the 
core must be suspended until all inconsistencies involving that core’s caches have 
had a chance to propagate. This gives any changes made by the core enough time to 
propagate to other caches so that no cache can contain an old, out-of-date values. 
Also, the core will need to wait until the other cores have had a chance to exhaust 

 For example, the previously executing process must acquire a lock before changing its status 90

from RUNNING to READY; the scheduler releases that lock and acquires the lock of another 
process in order to change its status from READY to RUNNING; and finally the new process must 
release that lock.
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and consume all the pre-fetched data in their pipelines. So one core must wait for 15 
instructions. 	91

If the implementation assumes that all data in a core’s prefetch buffer is always 
present in its i-cache, a third, more sophisticated implementation of FENCE would 
be to empty the prefetch buffer only whenever any line in the core’s i-cache is 
invalidated. That is, whenever a FENCE instruction from another core forces any line 
in a core’s i-cache to be invalidated, then that core must also unconditionally empty 
its entire prefetch buffer.	

An even more complex implementation  might involve keeping track of which cache 92

lines are represented in the core’s prefetch buffer. The idea is that the prefetch 
buffer would only be cleared when one of those particular lines is invalidated. 	93

Summary	

We risk correctness unless we empty the caches and the execution pipeline of any 
core whose local, private caches might possibly contain an out-of-date data at the 
time of a FENCE.	

We stipulate the following:	

A FENCE instruction on any core must invalidate out-of-date data 
kept in the private caches (both d-caches and i-caches) of all other 
cores. If data is invalidated in a core’s private cache, and there is any 
possibility that the same data is also sitting in the core’s execution 
pipeline, execution must stop and the pipeline must be cleared.	

 More precisely, the core must first wait until all cache inconsistencies are eliminated, then it 91

must wait additional time (such as 15 instructions) giving the pipelines on other cores a chance to 
finish, so that no out-of-date data can possibly exist anywhere in any other core.

 Since code modification is fairly rare, the approach described in this paragraph seems like 92

overkill.

 An even more targeted implementation would involve adding hardware to remember, for each 93

byte in the pipeline, from exactly which cache line it originated. Then we could use this to limit 
pipeline flushing even further. The idea is that a “FENCE bubble” would be inserted into the 
pipeline of every core whenever a FENCE is executed on any core. If the pipeline contains a 
prefetched byte before that FENCE bubble which came from a cache line that has since been 
invalidated, we would only need to flush the pipeline from that point on, forcing a reload of the 
byte and its the new value. However, this sounds overly expensive and complicated.
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More precisely, we are referring to any instructions (FETCHed from the i-cache) and 
any data (LOADed from the d-cache) present in the pipeline at any stage of 
incomplete, non-retired execution. This includes the prefetch pipeline as well as any 
data speculatively prefetched. The invalidated bytes and everything behind them in 
the pipeline must be removed. Instructions and data prefetched and sitting in front 
of the invalidated data is allowed to remain in the pipeline.	

The simplest implementation is to clear every core’s pipeline every time there is any 
FENCE operation. However, this could result in an unacceptable slowdown, since 
there might be a lot of unnecessary pipeline flushing.	

We described a more reasonable implementation, which is to clear the entire 
pipeline but only whenever any line in the d-cache or i-cache is invalidated as a 
result of a FENCE operation on a remote core. If no line in the private caches is 
invalidated, there is no reason to clear the pipeline. 	94

Out-of-Date TLB Registers	

The Translation Lookaside Buffer (TLB) registers are effectively a cache of data 
retrieved from memory, namely page table entries (PTEs) that have been cached in 
the TLB to improve performance. As such, the TLB may become out-of-date 
whenever changes are made to the in-memory page table.	

The FENCE operation is not required or expected to affect the TLB 
registers.	

Instead, the instructions — TLBFLUSH and TLBCLEAR — are used to invalidate TLB 
entries.	

 It is crucial to note that this assumes that any byte in the pipeline that came from  the core’s 94

local d- or i-caches must still be resident in the local cache and therefore subject to potential 
invalidation by some other core’s FENCE operation. Fortunately, this requirement is easily met. If 
instructions and data in the pipeline always come from the i-cache and d-cache and lines in these 
caches are evicted based on the least-recently-used algorithm, then this requirement will be met. 
Since the pipeline is not too large, the relevant lines can not yet have been evicted.
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At this time, the Blitz-64 ISA only mandates that the TLBFLUSH and 
TLBCLEAR instructions only affect the TLB registers on the current 
core. However, this is still under consideration and the ISA may be 
modified.	

The alternative is to require a TLBFLUSH or TLBCLEAR operation to affect the TLB 
registers on all cores.	

Consider the following scenario. Two user mode threads are executing 
simultaneously using a single, shared address space. Assume each thread is 
executing on a different core. Imagine that one thread requests a kernel operation 
that causes a change to the address space. As part of the operation, the kernel will 
naturally issue a TLBFLUSH or TLBCLEAR operation to get rid of old, out-of-date 
Page Table Entries (PTEs) cached in the TLB. But what about the TLB resisters on 
the other core? They must also be invalidated! Perhaps the first core must interrupt 
all other cores to request they execute TLBFLUSH/TLBCLEAR operations. But the 
other cores are most likely not using the affected address space. Such interruptions 
would be very common but will result in nothing but wasted time on all other cores!	

Unfortunately, the obvious solution — to put all threads operating within a given 
address space on the same core — tends to defeat the very purpose of having more 
than one core.	

To deal with multiple threads executing within the same virtual address space, 
another approach might be to create a unique address space for each thread. These 
address spaces will simply share all pages, although they each have a unique address 
space identifier (ASID). But this doesn’t really solve the problem: when one thread 
modifies the address space, the other threads (running on other cores) must still be 
notified so the same modifications can be made to their address spaces.	
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Quick Summary	

• After power-on, certain registers will be initialized before execution begins.	
• Execution begins with the BootLoader program in the Boot ROM Area.	

Power-On-Reset	

A “power-on-reset” occurs whenever:	

• The processor core is first powered up	
• The RESET button (if one exists) is pressed	
• The RESTART machine instruction is executed	

Before the first instruction is executed, hardware will set the following registers to 
these initial values:	

	 csr_instr ← 0x0000_0000_0000_0000	
	 csr_cycle ← 0x0000_0000_0000_0000	
	 csr_status ← 0x0000_0000_0000_0001	
	 Program Counter (PC) ← 0x4_0000_0000	

With this value for csr_status, we have:	

	 Kernel Mode:	 Enabled	
	 Interrupts:	 Disabled	
	 StackLimit:	 0 (i.e., any value of sp is okay)	

The PC is set to the first word of the Boot ROM Area, which is the memory-mapped 
I/O area where the BootLoader program is stored.	
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All memory-mapped I/O devices will be sent a reset signal and will go into their 
initial states. Any pending interrupts will be cleared at power-on-reset.	

If the core contains a Secure Storage Area, the Secure Storage Limit Register will 
be set to 0.	

All other other programmer-visible state of the core (i.e., the general purpose 
registers and all other CSRs) will have undefined values. 	95

 Of course the read-only CSRs will have their expected values.95
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Quick Summary	

• Each I/O device is allocated one or more pages.	
• The memory-mapped I/O pages are located in a dedicated region of addresses.	
• The memory-mapped I/O region is 16 GiBytes (1 Mi Pages).	
• The memory-mapped I/O region begins at address 0x4_0000_0000.	
• Code running in kernel mode has full access to the memory-mapped I/O region.	
• The I/O pages may optionally be mapped into virtual address spaces.	
• The Boot ROM Area is treated as a memory-mapped I/O region.	

Overview	

The Blitz-64 architecture does not contain instructions that are dedicated to input or 
output.	

Instead, all I/O devices are memory-mapped, which means they are accessed using 
LOAD and STORE instructions. Instructions can also be FETCHed from memory-
mapped I/O regions. For example, instructions are fetched from the Boot ROM Area.	

Each device is assigned to, and located within, one or more pages. In other words, 
the starting address for a device’s address range will be page-aligned and the 
amount of address space the device consumes will be a multiple of the page size, 
which is 16 KiBytes.	
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In the layout of the memory-mapped I/O region, the various I/O devices will be 
ordered and laid out sequentially, one after the other. They will not overlap and 
different devices will be on different pages. 	96

The exact layout of the memory-mapped I/O regions is implementation-dependent.	

Allocating the memory-mapped I/O address space in units of pages is mandated for 
the following reason: it allows the kernel to use address translation to map the 
pages into various virtual address spaces. At runtime, the Memory Management Unit 
will use page tables to map a LOAD or STORE from a virtual address to the physical 
address of the device. Thus, the kernel can use the paging mechanism to make an 
individual memory-mapped I/O device available to one address space, but hidden 
and invisible to all other address spaces.	

In most cases, the device driver for a particular device will run as a user-mode 
program. The pages for the device being managed are mapped into the address 
space of the driver program. This approach frees the kernel from the overhead of 
dealing with many devices. More importantly, it allows device drivers to be 
dynamically loaded, started, and stopped in a safe fashion. If a device driver is buggy 
or contains malicious code, the damage is limited to the device in question; it cannot 
modify other devices or corrupt kernel memory. Moving most device drivers out of 
the kernel is critical for security, as well as flexibility.	

Nevertheless, a few devices will undoubtedly be managed directly by the kernel. The 
pages for such a device would not be mapped into any virtual address space and the 
kernel code would address the pages directly.	

Like normal memory pages, I/O pages that are mapped into virtual spaces may have 
any combination of permissions.	

By not mapping a memory-mapped I/O page into a virtual address space, the kernel 
prevents user mode code from accessing the device. If a page is mapped, then it will 
be readable. In addition, the kernel may mark the page as writable and/or 
executable. Normally, the pages for I/O devices would be marked writable (allowing 
the code to update/alter/command the device) but not executable.	

 It is allowed for implementation to place unused gaps between the regions, if this is convenient. 96

If there is an expectation that a region will grow in subsequent implementations or that some 
devices may be implemented optionally in different versions, then those pages should be pre-
allocated, set aside, and documented as such.
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In this document, we do not fully specify the nature of all I/O devices available on a 
Blitz-64 system. In fact, different implementations will have different devices. In 
other words, which devices are present and how they function will vary between 
implementations.	

Each implementation must specify:	

	 • Which I/O devices are present	
	 • Where each device is located in the physical address space	
	 • How many pages are allocated to each device	
	 • Exactly how the device functions and how it is used	

Below is an example placement of memory-mapped I/O devices. (This happens to be 
the default memory map for the devices implemented by the Blitz-64 emulator.)	

	                             Size                            	 	 	
	 Device                         	 Starting Addr	      Hex    	      Bytes     	 Pages	 	 	
	 Boot ROM Area	 4_0000_0000	 10_0000	 1 MiBytes	 64	 	 	
	 Secure Storage Area	 4_0010_0000	 10_0000	 1 MiBytes	 64	 	 	
	 PLIC	 4_0020_0000 	 4000	 16 KiBytes	 1		 	 	
	 UART	 4_0020_4000	 4000	 16 KiBytes	 1		 	 	
	 DISK	 4_0020_8000 	 4000	 16 KiBytes	 1		 	 	
	 DMA Device	 4_0020_c000 	 4000	 16 KiBytes	 1		 	 	
	 Host Device	 4_0021_0000 	 4000	 16 KiBytes	 1		 	 	

The mapping of I/O devices is implementation dependent and will vary. For 
example, an implementation might also include mappings for devices such as:	

• Digital I/O Pins	
• MicroSD Card	
• HDMI	
• USB	
• WiFi	
• Adjacent Core Links	
• Lock Controller	
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Typical I/O Devices	

The following devices are common and expected to be implemented on all or almost 
all Blitz-64 systems. For greater detail on the devices mentioned in this section, 
consult the document	

	 “Blitz-64: Memory-Mapped I/O Devices”	

The Boot ROM Area contains the code that will be executed on startup. Upon 
power-on-reset, the program counter (PC) is set to the first address in this area. This 
area is populated with preset memory bytes (i.e., ROM) which cannot be altered.	

The Secure Storage Area would be present in any complex system and contains 
additional code used during the bootstrapping process. It contains firmware, which 
means that the bytes are retained when the power is off, but which are also 
updatable (e.g., EEPROM).	

The Platform-Level Interrupt Controller (PLIC) device manages interrupts 
coming other devices (such as the UART or DISK devices) and channels interrupts to 
one or more cores.	

The Universal Asynchronous  Receive Transmit (UART) device allows individual 
8-bit characters to be sent and received over a serial channel.	

This DISK device implements some form of long-term stable storage, such as a disk 
or flash drive.	

The Direct Memory Access (DMA) controller is capable of the following tasks:	

• Move a large block of memory	
• Zero a large block of memory	
• Perform secure hashing (using SHA-256)	
• Perform AES encryption and decryption	
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The Host Device is implemented only in the Blitz-64 emulator. It provides a sort of 
“back-door” to the underlying Unix/POSIX system running the emulator. This 
“device" would not be included in a physical implementation. The Host Device 
provides the following functionality:	

• Ability to access command line arguments	
• Ability to access the date and time	
• Ability to perform file I/O (fopen, fgetc, ungetc, fputs, fseek, ...)	

Boot ROM Area	

This is the location of the “BootLoader”, the initial program which is executed when 
the core is powered up. As read-only-memory, all LOAD and FETCH operations 
function the same as any memory, but STORE operations are ignored.	

The BootLoader program and the exact contents of this area are implementation 
dependent. The BootLoader program will be tailored to the system containing the 
Blitz-64 core.	

The starting address for this region is mandatory and fixed. The number of bytes 
actually implemented may be less than the 1 MiByte range — this is implementation 
dependent — although setting aside the entire region as specified above is strongly 
recommended.	

In a multi-core system, there may be one Boot ROM Area shared by all cores or each 
core may have its own separate Boot ROM Area. This is implementation dependent.	

The intended use of this area and various considerations are discussed in the 
chapter “The Secure Boot Sequence”. That chapter explains why the Boot ROM Area 
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should be implemented with ROM  and why this area should not implemented with 97

flash memory, which can be updated. 	98

Secure Storage Area	

The Secure Storage Area is used to make certain the boot process is secure and that 
malicious code cannot gain a foothold during the boot process.	

The Secure Storage Area should be implemented if secure booting is wanted. 
However, simpler systems may leave this area unimplemented.	

With secure booting, the boot process is a two-step process. The first stage is the 
Low Level Boot Loader (LLBL), which is the program residing in Boot ROM. The 
LLBL will invoke the Second Stage Boot Loader (SSBL), which is a program 
residing in flash memory, and more particularly in the Secure Storage area described 
here.	

It is the SSBL that will actually access the file system, locate the OS kernel’s 
executable image file, load it, and jump to the kernel’s entry point. The SSBL is 
considered to be “firmware”, since it can be updated.	

The LLBL is only concerned with managing security and the Secure Storage Area, 
including updates to the Secure Storage Area and the SSBL.	

The Secure Storage functions much like main memory: It is a large chunk of byte-
addressable memory that can be read and written, and instructions can be fetched 
from this area, as well. The number of bytes actually implemented may be less than 

 Read-Only Memory (ROM) is memory whose contents are fixed and cannot be altered.97

 As a practical manufacturing concern, the Boot ROM Area might be implemented with flash-type 98

memory that can be loaded when the system is manufactured. The key point is that once written 
and released into the field, the Boot ROM Area should not be modified by instruction execution or 
any programmatic behavior of the system.	

For example, the Boot ROM Area might be writable using an electrical connection that is made 
during the manufacturing process. But once the product is delivered, the Boot ROM Area must not 
be modifiable without physical contact to directly manipulate the device. The inviolability of the 
Boot ROM Area is crucial for system security and integrity. However, the measures described in 
this ISA do not attempt to protect a Blitz-64 system against direct physical meddling.
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the 1 MiByte range — this is implementation dependent — although the range itself 
is mandatory and fixed.	

In terms of reading data and fetching instructions, it functions exactly like other 
memory: there are no special restrictions and any byte can be retrieved.	

In terms of writing, there is a crucial difference with main memory. The Secure 
Storage area has a lock capability which allows bytes to be “write-protected”. The 
bytes can be written until they become locked and after that, writes are ignored. 
From that time on, the memory functions like ROM.	

The write protection is controlled by a special register called the “Secure Storage 
Limit Register”. This is a 64 bit register containing an address. Any byte located 
below the Secure Storage Limit is locked and cannot be updated. Any byte whose 
address is greater than or equal to the Secure Storage Limit may be updated freely 
and without restriction.	

The Secure Storage Limit Register is set to zero on startup. That is, a power-on-reset 
will initialize the Secure Storage Limit Register to 0x0000_0000_0000_0000. A value 
of zero implies that the entire Secure Storage area is unlocked. Any byte can be 
written.	

The Secure Storage Limit register is mapped to the first doubleword of the Secure 
Storage Area. That is, the first 8 bytes of the Secure Storage Area are special in that 
any write to them is a write to the Secure Storage Limit Register. The remaining 
bytes of the Secure Storage Area function as described above. The Secure Storage 
Limit Register is readable and can be obtained at any time by reading the first 8 
bytes of the Secure Storage Area. 	99

Note that since the Secure Storage Limit Register is at the beginning of the Secure 
Storage area, if any of the Secure Storage area is locked, then the Secure Storage 
Limit Register itself will be locked. The first write to the Secure Storage Limit 

 The Secure Storage Limit register is a 36-bit doubleword aligned address. Any other bits outside 99

of [35:3] shall be ignored for the purpose of imposing write-protection. Presumably, all 64 bits will 
be written into the first 8 bytes of flash and all bits will be retrievable, but this is not required.
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register will lock some or all of the Secure Storage area, but will surely lock the 
Secure Storage Limit Register itself. 	100101102

In a multi-core system, there may be one Secure Storage area shared by all cores or 
each core may have its own separate Secure Storage area. This is implementation 
dependent.	

The intended use of this area and various considerations are discussed in the 
chapter “The Secure Boot Sequence”.	

 A write to the register with an address below the start of the Secure Storage area would be 100

possible, but would accomplish nothing, so we ignore such a thing.

 We envision that the Stack Limit Register will be implemented as follows. The core will contain 101

a separate register, which is not a Command and Status Register (CSR) and which is not directly 
accessible. Whenever a STORE to the Secure Storage Area is attempted, the core will check the 
target address against this register and inhibit the operation if it violates the constraint. Otherwise 
the STORE will function like any memory STORE. Additionally, if a STORE is attempted in which the 
target address happens to be the first address of the Secure Storage Area and the constraint is not 
violated, the Stack Limit Register will also be updated, in additional to the normal writing of the 
data to the Secure Storage Area itself. With no loss of generality, the Stack Limit Register can be 
limited to 35 bits.

 A specific implementation may limit the Secure Storage Limit Register to holding only certain 102

values. For example, the register may be required to be (say) page aligned. Such a restriction is an 
implementation dependency. If a write is made to such register, then the actual value stored will be 
rounded up to the next legal value. In this example, the value will be rounded up to the next page 
boundary. Such a limitation might be useful to accommodate the nature of the non-volatile storage 
being used.
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Quick Summary	

• After power-on, certain registers will be initialized before execution begins.	
• Execution begins with the BootLoader program in the Boot ROM Area.	
• Details of the BootLoader program are implementation dependent.	
• Security issues around the boot process are discussed.	

The BootLoader Program	

It is assumed that a program (called the BootLoader) has been pre-installed in the 
Boot ROM Area.	

Upon start-up (i.e., a “power-on-reset”), instructions will be fetched from the Boot 
ROM Area, beginning with the instruction stored in the first word of the Boot ROM 
Area. Thus the entry point of the BootLoader after a power-on-reset is its first word, 
located at address 0x4_0000_0000.	

A “warm reboot” (also called a “soft reset”) occurs when the kernel branches into 
the BootLoader directly, with the intent to reboot exactly as if a power-on-reset had 
occurred. This branch is made to a second entry point, in case there are subtle 
distinctions between cold and warm booting.	

After a kernel crash (e.g., a “Hardware Exception”), the trap handler may end by 
branching directly to the BootLoader. In this case, a third entry point is used. This is 
called the “kernel-crash” entry point.	
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	 BootLoader Entry Points	
	 	 Power-on-reset entry point:	 0x4_0000_0000	
	 	 Warm-reboot entry point:	 0x4_0000_0008	
	 	 Kernel-crash entry point:	 0x4_0000_0010	

In all cases, the behavior of the BootLoader will be almost identical. 	103

Commentary  Since instructions can be fetched from the Memory Mapped I/O area, 
there is no need to remap the physical address space, as is done in some systems. 
Also, there is no particular reason to make the BootLoader code relocatable. 	104

We don’t specify the exact behavior of the BootLoader program here, but perhaps it 
will begin by probing the physical memory to determine the size of installed 
physical main memory.	

 To support kernel development, the code at the “kernel-crash entry point” might be specially 103

tailored for debugging.

 Relocatable code is code that will run correctly regardless of where it is placed in memory. This 104

is done by making all addresses PC-relative. For the purposes of debugging, it may be useful to 
make the BootLoader relocatable. During debugging of the BootLoader itself, it might be 
convenient to place the BootLoader in a writable area of main memory, to accommodate 
breakpoints, and so forth.
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Probing Memory to Find Its Size	

The size of installed physical memory is assumed to be a power of two, e.g., 256 
MiBytes. Thus, it will take about 34 probes to determine the installed memory size:	

	 211 = 2 Ki	
	 212 = 4 Ki	
	 213 = 8 Ki	
	 214 = 16 Ki	
	 	 …	
	 244 = 16 Ti	

To probe a memory doubleword, the BootLoader should:	

	 • Read the previous existing value and save it.	
	 • Write 0xFFFF_FFFF_FFFF_FFFF.	
	 • Read the value back & check that it is unchanged.	
	 • Write 0x0000_0000_0000_0000.	
	 • Read the value back & check that it is unchanged.	
	 • Restore the previous value. 	105

By convention, the BootLoader is free to use the uppermost 1 MiByte of physical 
memory for its R/W data. The kernel image will be loaded into low physical memory 
so there should be no overlap.	

 The reason for saving the pre-existing value is that the BootLoader may be invoked after a 105

kernel crash and the pre-existing memory contents may be important. For example, the 
BootLoader may be passed a pointer to an area of memory where the kernel has stored 
information about the crash. This may include register state, as well as other data. The BootLoader 
may be tasked with displaying this info before rebooting. The BootLoader might also need to pass 
this information on to the reincarnated kernel after the reboot. The re-incarnated kernel may 
enter a “kernel debugging mode” in which the previous contents of the memory can be queried. In 
either case, the BootLoader must preserve the pre-existing memory contents.
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Before loading the kernel, the BootLoader may perform other operations, such as:	

	 • Check and verify that all physical memory bytes function correctly.	
	 • Initialize various memory-mapped I/O devices.	
	 • Turn on LEDs, e.g., to indicate the core is booting.	
	 • Print messages on the display or serial UART line.	
	 • Allow for interactive use, debugging, selection of kernel source, etc.	

The BootLoader will determine on which device the kernel image is stored (e.g., on 
internal flash memory or on an external microSD card) and read the kernel into 
main memory.	

Presumably, the kernel will be loaded starting at location 0x0_0000_0008.  Note 106

that there is no privilege checking for physical memory: All pages have FETCH, 
READ, and EXECUTE permission.	

By convention, the kernel will contain the following entry points:	

	 	 Power-on-reset entry point:	 0x0_0000_0008	
	 	 Warm-reboot entry point:	 0x0_0000_0010	
	 	 Kernel-crash entry point:	 0x0_0000_0018	

The kernel (as stored in an executable file to be loaded), will contain additional 
information, generally including:	

	 • size	
	 • entry point 	107

	 • error checking code	

The BootLoader will check to make sure the kernel was loaded correctly and the 
computed error checking code matches the expected value. Note that the error 
checking mentioned here (in which the expected code value is read in from an 
external source along with the kernel image) is only useful in guarding against 
accidental, non-malicious errors, such as data corruption due to transient electrical 
noise. Any malicious user who can corrupt the kernel image will also update the 
error-checking code mentioned here.	

 Recall that the first 8 bytes of memory are reserved and never used. Any attempt to access the 106

first 8 bytes will result in a Null Address Exception.

 This should be equal to the Power-on-reset entry point, 0x0_0000_0008.107
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Finally, the BootLoader will complete by branching to the kernel’s entry point.	

We have just described a straightforward booting chain, which doesn’t involve 
multiple boot phases. While nothing precludes a complex boot chain, the approach 
described above will be adequate for many systems.	

The BootLoader should not contain functions that are used by the kernel. The 
reasons for this are (1) Different implementations will have different BootLoader 
programs. Depending on the BootLoader code would tie the kernel to a specific 
implementation. (2) There may be performance issues. The BootLoader is located in 
the Boot ROM, which is in the memory-mapped I/O area. Thus, the ROM is 
functioning as a sort of I/O device and may not operate as quickly as main 
memory. 	108

There is one situation in which it may be acceptable for the kernel to invoke 
functions residing within the BootLoader code. When the kernel fails 
catastrophically (e.g., a Hardware Exception occurs), the BootLoader I/O functions 
might be used to print error messages. The BootLoader may have a specific interface 
for use during kernel errors. The BootLoader may contain a primitive user-interface 
to allow some state to be recovered from the crashed kernel. For example, a branch 
to the kernel-crash entry point may assume that the registers contain certain values, 
such as:	

	 • Numeric crash code, indicating the nature of the crash	
	 • Pointer to area of memory containing additional data	
	 • Size of memory area	

These values could be passed as parameters to the re-incarnated kernel, for use in 
debugging and crash reporting.	

A warm reboot (i.e., soft reset) occurs whenever a program branches back to the 
BootLoader, i.e., to address 0x4_0000_0008. Before doing so, the core must be in 
kernel mode and have interrupts disabled.	

 For example, instructions fetched from the ROM might not be cacheable in the i-cache. There is 108

no particular need to make the BootLoader run quickly since its performance will almost always 
be limited by the time required to read the kernel image from an external device. Therefore, any 
code within the BootLoader may not execute at a speed acceptable for kernel performance.
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Note that the power-on sequence may result in some I/O devices receiving a “reset” 
signal. Such a reset signal is not assured during a soft reset. The kernel should 
contain code during its initialization phase, to query and reset all I/O devices, in 
order to avoid complications during a soft-reset. Upon soft-reset, neither the 
BootLoader nor the kernel can assume that the I/O devices have received their 
proper reset signals.	

For this reason, it is usually preferable to execute the RESTART instruction, rather 
than branch to the “Warm Reset Entry Point”. 	

The BootLoader is free to pass information to the Kernel. The BootLoader can do 
this by initializing some variables in the global static data area of the Kernel, which 
is at the beginning of memory, or the BootLoader can pass parameters directly in 
registers.	

For example, the BootLoader would normally pass the size of installed memory, 
information about the hardware configuration that the kernel will find itself running 
in, and possibly information about the current state of various I/O devices or 
information about a previous kernel crash.	

Contrast with Traditional Booting	

In some computers, code in the BIOS will read in the Master Boot Record (MBR) and 
then jump to code in the sector just loaded. In other approaches, the firmware itself 
will be capable of understanding the file system and will ignore the code within the 
MBR.	

In some systems, there is a “boot chain”, in which there is a sequence of programs 
executed one after the other, until finally the full kernel is loaded and executed. For 
example, the BIOS reads in the MBR; the code in the MBR reads in another (second 
level) boot loader from the disk; and then the second level boot loader reads in the 
kernel.	

In any case, the first step must necessarily involve executing code stored in some 
form of non-volatile memory and that code must be capable of understanding, 
controlling, and reading from any device from which the system can boot. This is 
true of Blitz-64 as well.	
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The Blitz-64 architecture does not mandate whether there shall be a complex, multi-
phase boot chain, or whether a simple program burned into on-chip ROM will do all 
the work of loading and starting the kernel.	

Security Issues Around Booting	

We know that the Master Boot Record (MBR) in traditional systems was a point of 
vulnerability and a potential target of malware. If the MBR becomes corrupted by 
malware, it can open the door for a corrupted version of the kernel to be loaded.	

However, the entire boot chain including the code in the ROM — whether it is the 
BIOS of a traditional system or the BootLoader code in Blitz-64 — is also very 
critical, perhaps even more critical than the MBR. If the BootLoader program has 
been maliciously tampered with, then nothing that executes afterward can be 
trusted.	

Because it is the first code that executes, the BootLoader is therefore the most 
trusted piece of software in the computer system, more trusted than the kernel 
itself. The kernel can trust that the BootLoader will “do the right thing” when 
executed. But the BootLoader must be very cautious about trusting any kernel code 
or functionality.	

For security reasons, the BootLoader should avoid communication with other 
entities. (For example, it is very risky to receive instructions or commands over the 
internet.) If the BootLoader must communicate, the security and integrity of the 
communication and identity of the other parties must be carefully and securely 
verified. Otherwise the bad guys can impersonate legitimate sources and can send 
commands that exploit weaknesses in the BootLoader.	

In all ISAs, careful thought must given to guarding against malware. In systems using 
the Blitz-64 architecture, the BootLoader must remain secure at all times. Putting 
the BootLoader in firmware  — as opposed to ROM — must be done with utmost 109

 ROM means Read-Only Memory: once data is placed the memory, it cannot be modified. Once 109

written, it cannot be altered. By “firmware”, we mean a non-volatile memory device that will retain 
its data even when power is turned off, but that can be altered or re-programmed. Flash memory is 
an example.
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attention to security, since it may inadvertently create a pathway for the kernel to be 
compromised.	

To emphasize that the memory containing the BootLoader should be implemented 
with ROM and not some form of updatable memory, the memory-mapped I/O region 
is named the Boot ROM Area. 	110

The key to avoiding firmware is to keep the BootLoader small, simple, and correct. 
Adding a bunch of code to the BootLoader is not a good idea, since it creates a need 
for some mechanism to patch the code. 	

Of course placing some of the BootLoader code in firmware, which can be updated 
under program control, is very convenient because bugs can be fixed and support for 
new devices and greater functionality can be added.	

The cost of placing the BootLoader entirely in ROM is programming discipline: 
Any bugs with a ROM-based BootLoader cannot be fixed, so the BootLoader must 
work correctly and be bug-free.	

If, instead, the BootLoader is implemented as firmware, then once the kernel is 
compromised — even once, for a very short time — security on the entire system is 
lost forever. Using firmware necessarily increases the security risk. During any 
malicious and successful attack on the kernel, we must assume the malware has 
updated the BootLoader program, replacing it with a malicious version which will 
do the bidding of the malware upon every future power-on-reset. Thereafter, the 
boot process is forever compromised and no future kernel can be trusted.	

However if the BootLoader is placed in unalterable ROM, then malware cannot 
persist beyond a power-on-reset. If a kernel is found to have security bugs and a 
security breach occurs, then of course it is a bad thing and perhaps the kernel code 
is forever compromised. But a repaired kernel can be created and distributed to 
repair the security flaw. And the BootLoader can be relied upon to load the new, 
corrected kernel correctly.	

The BootLoader must not contain secret data. The BootLoader code is fully visible to 
the kernel and may become visible to arbitrary programs, through bugs, malware, or 
oversight. It should be assumed that every byte of the BootLoader is in the public 

 This document cannot control how the Blitz-64 architecture is implemented and does not 110

explicitly prohibit the Boot ROM Area from being implemented in updatable, non-volatile 
memory.
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domain, and, in the spirit of open software, it is even encouraged. Any idea of 
keeping the BootLoader code confidential as a security measure is misguided.	

As we should all remember, “security through obscurity”, is not security at all.	

For security purposes, the BootLoader may validate the kernel after loading it into 
memory. For example, the BootLoader may compute a secure hash of the kernel 
image and compare it to a known value. This ensures that the kernel image is what is 
expected and the executable file containing the kernel has not been modified in any 
way.	

However, the question is: Where is this “known value” to be kept? There are several 
possible answers:	

• The user is required to type the expected secure hash value in to the 
BootLoader. This is the most secure, but requires the most effort by the user. 
Possibly appropriate for military-level security.	

• The BootLoader displays the secure hash value and asks the user to verify its 
correctness before branching to the kernel. This is not reliable, since users will 
tend to ignore such messages and “accept without reading”.	

• The BootLoader keeps the expected value in some form of stable, nonvolatile 
storage. While most convenient to the user, this nonvolatile storage becomes a 
critical component which must be protected. If there is any possibility it can be 
altered by anything but the BootLoader, system security will be compromised.	

Various approaches to BootLoader / Kernel security and verification, which make 
use of the “Secure Storage” area, are discussed later in this chapter.	

Simple Systems	

In some embedded systems, there may be no OS at all; perhaps all code will be “set 
in stone” and not updatable as well. This would be particularly desirable for systems 
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that must be impervious to malware. In such cases, the entire code base might reside 
in flash memory or even in the ROM itself. 	111

ROM-Only Systems	

In the simplest ROM-only system, there will be no kernel and all code will be 
burned into ROM. This might be appropriate for a very low cost, mass-produced 
microcontroller.	

It might also be appropriate for military weapons systems and other critical 
embedded applications, in which extreme efforts must be taken to prevent any and 
all cyber-attacks.	

In a ROM-only system, all code resides within the Boot ROM Area and there is never 
any branch to other areas of memory. The main memory area (i.e., bytes within the 
first 16 GiBytes of the physical address space) will only be used for storing variables 
and data.	

Flash-Based Systems	

In a Flash-based system design, the ROM-based code is solely devoted to loading a 
program into flash memory. Subsequently, on every power-on-reset, the flash-based 
code will execute.	

This accommodates a model similar to that used for the Arduino. The on-board 
loader code is permanently fixed in the ROM and the various application programs 
are placed in the Secure Storage Area, which is implemented with flash memory. 	112

If the loader program in ROM detects a working connection to a host computer at 
power-on-reset, it can download and overwrite the flash with a new program. 

 A system with no flash might also be appropriate for simple, low-cost systems where the 111

additional cost and complexity of an OS is not worth it. But the real benefit is that maintenance 
costs are eliminated. It is ridiculous to have to deal with firmware upgrades for (say) headphones. 
And if there is no possibility of updates, there is no possibility of breaking the system with an 
update, which has become an increasing plague upon us.

 By “flash memory” we mean any form of updatable, nonvolatile memory.112
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Otherwise, the loader program in ROM will branch directly to the program last 
stored in flash. This is basically the Arduino model. 	113

Single-Stage Bootstrap Systems	

In another system design, booting the kernel will be a single-stage process.	

The Boot ROM Area will contain a BootLoader program. This BootLoader will locate 
the kernel on some other device and will load it directly. The Secure Storage will not 
be used.	

This approach might be appropriate for a Single Board Computer (SBC), which will 
always boot from a microSD card.	

This sort of design might also be appropriate for an embedded application such as 
an automobile, airframe, or weapon system, where the system must be entirely 
isolated from the Internet, in order to prevent any possibility of cyberattack. A 
multitasking kernel is needed to control various complex and interacting functions. 
However, because of the complexity, bugs and modifications to all parts of the code 
must be accommodated. So all code — i.e., the kernel and the filesystem — are 
placed on a microSD card. If upgrades and/or bug fixes are required, the microSD 
card is simply removed and replaced. 	

Multi-Stage Boot Processes	

In modern operating systems, the kernel is updated periodically and is distributed to 
the users. We assume the kernel originates from a trusted source but is transmitted 
over insecure communication channels to end-users. The communication and 
bootstrapping must be done in such a way that the kernel cannot be compromised 
by bad guys at any step of the process.	

We assume that both the communication channels and the files on the user’s local 
file system may be intentional hacked, corrupted, and modified in an attempt to 

 In a related development model, the program resides in flash memory, but updates to the flash 113

are performed by plugging in a microSD card, rather than through a communication channel. At 
power-on-reset, the ROM-based code will detect that a card is present and will then update the 
flash from data on the card.
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install and boot a malicious version of the kernel, and we must protect against this. 
We also assume that new devices (requiring new device drivers) are periodically 
added and that the kernel must boot using driver code that will be written and 
distributed in the future.	

To achieve these goals, booting the OS kernel will be a multi-stage process.	

The BootLoader code in the Boot ROM Area is called the Low Level BootLoader 
(LLBL). The BootLoader code will locate and pass control to the Second Stage 
BootLoader (SSBL). The Second Stage BootLoader resides in non-volatile storage 
which, in Blitz-64, is called the “Secure Storage Area”. The Second Stage BootLoader 
will locate the OS Kernel, load it in to memory, and pass control to it.	

The idea is to keep the Low Level BootLoader as simple as possible and place all 
complex functionality in the Second Stage BootLoader.	

A “power-on-reset” occurs whenever the system is initially powered up. If the 
system contains a RESET button, then pressing this button will also initiate a power-
on-reset. This can also be triggered by the execution of the RESTART machine 
instruction.	

A power-on-reset will have this effect:	

	 The PC will be loaded with 0x4_0000_0000.	
	 The csr_status register will be initialized (kernel mode, interrupts disabled).	
	 Any pending interrupts will be cleared.	
	 The Secure Storage Limit register will be set to 0.	

The BootLoader is a high-security, high-trust system component. If it contains bugs 
or security vulnerabilities, these might be exploited to load a compromised OS 
kernel. Furthermore, since the BootLoader is in ROM (not flash), it cannot be fixed or 
updated. Any flaws it contains will be with the device forever. Putting unnecessary 
or complex functionality into the BootLoader is risky and ill-advised.	

It is assumed that the Boot ROM and the core(s) are bundled together and will often 
be on the same silicon. The Boot ROM is therefore the obvious place to put constant 
and unchanging information about the system’s design and configuration. This 
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would include information about main memory sizes and details about memory-
mapped I/O devices. 	114

Commentary	

It is extremely difficult for a core CPU to distinguish between private and shared 
memory. From the point of view of a single core, a byte of memory functions the 
same regardless of whether or not it is accessible by another core.	

A logical thing to place in the Boot ROM is information about the memory system. In 
particular, the starting address of the shared memory is critical. The BootLoader can 
determine how much memory is installed by the use of STORE-LOAD cycles to 
determine whether there is functional memory at a given address. However, having 
additional information in the BootLoader might make this process smoother.	

Another critical piece of information is the location and size of the Secure Storage 
area. The Secure Storage is another memory-mapped I/O device that is used for an 
additional level of security in a multi-level boot chain.	

As mentioned above, a BootLoader can simply go find something that looks like an 
OS kernel — perhaps on some removable microSD card or disk drive — load it, and 
jump to it.	

But in order to implement any level of security for the boot process, something more 
is required.  With Blitz-64, this is supplied by the Secure Storage device. The 
BootLoader program will access Secure Storage to implement the secure booting 
protocol.	

 Although the BootLoader can determine how much memory is installed by the use of STORE-114

LOAD cycles to determine whether or not there is functional memory at a given address, having 
this information in the BootLoader might make the process smoother.  Furthermore, it is 
extremely difficult for a core to distinguish between private and shared memory. From the point of 
view of a single core, a byte of memory functions the same regardless of whether or not it is 
accessible by other cores. Therefore, it might make sense to place information like the starting 
address of the shared memory in the Boot ROM.
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In a single-stage boot process with no security , a minimal BootLoader will only 115

need to perform the following tasks:	

•	 Perform basic machine start-up and error-checking	
•	 Locate the kernel image	
•	 Read the kernel image from an external source	
•	 Load the kernel image into memory	
•	 Jump to the kernel entry point	
•	 Optionally, the BootLoader might pass data about previous kernel crashes to 
the new kernel	

However, the following operations require substantial amounts of code:	

•	 Interface with complex I/O devices, where the kernel might be located	
•	 Understand complex file formats, in which the kernel might be stored	
•	 Implement various cryptographic techniques to verify kernel integrity	
•	 Provide a facility to securely update firmware	
•	 Implement a user interface	
•	 Deal with complex I/O devices for user interaction (e.g., USB, HDMI, Bluetooth)	
•	 Provide a debugging facility to deal with kernel crashes	

For this reason, a Second Stage BootLoader (SSBL) is anticipated. Presumably, the 
Second Stage BootLoader will be firmware, meaning that it will be stored in the 
Secure Storage area. In this case, the Low Level BootLoader (LLBL) in Boot ROM 
will:	

•	 Perform basic machine start-up and error-checking	
•	 Pass machine-specific parameters to the SSBL	
•	 Jump to the SSBL entry point	
•	 Manage firmware updates in a secure way 	116

 This is appropriate for a device that is (1) not-connected to the Internet, (2) not expected to 115

have software updates, and (3) not mission-critical. Think: dishwasher, refrigerator.

 This might also include dealing with firmware corruption and/or firmware rollbacks.116
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The ISA pre-allocates are block of 1 MiByte for the Boot ROM area and 1 MiByte for 
the Secure Storage are. The amount of memory actually installed is implementation 
dependent. 	117

The Secure Storage Area	

Next, we  describe how Secure Storage is intended to be used.	

Upon power-on-reset, the Secure Storage area is assumed to contain the Second 
Stage Boot Loader (SSBL) program in the lower portion and unused bytes in the 
upper portion. The Secure Storage is initially unlocked.	

The Secure Storage Area	

The Secure Storage area works as follows.	

The Secure Storage area is implemented as a block of non-volatile memory (i.e., flash 
memory) which is mapped into a memory-mapped I/O region.	

In addition, there is a Secure Storage Limit Register, which is mapped into the first 
doubleword of the Secure Storage area.	

The Secure Storage memory has two states: “locked” and “unlocked”. In the locked 
state, the memory can only be read, while in the unlocked state, it can be modified.	

More precisely, all Secure Storage bytes below the current value of the Limit Register 
are in the locked state and cannot be modified. All bytes above the Limit Register are 
unlocked and can be freely read and modified.	

Upon power-on-reset, the Secure Storage Limit Register is initialized to zero, which 
puts all the Secure Storage bytes in the unlocked state. A subsequent STORE into the 
Secure Storage Limit Register will switch the Secure Storage to the locked state. 
More precisely, a write to the Limit Register will make the first portion of the Secure 

 Two MiBytes is a tiny fraction (1/8,192) of the available memory-mapped I/O address space. 117

We aim to keep the BootLoader as small and simple as possible, so this size should be adequate. 
But setting aside larger regions for the ROM or Secure Storage presents no conceptual issue.

Blitz-64 Instruction Set Architecture / Porter	 Page  of 	301 342



Chapter 12: The Boot Sequence	

Storage locked. The exact value written to the Limit Register determines how many 
bytes are to be locked and how many are to remain unlocked.	

Since the Limit Register itself occupies the very first bytes in the Secure Storage 
area, once it is written to, the Limit Register itself will also be in the locked region, 
preventing any further changes in which portion of the Secure Storage is locked and 
which is unlocked.	

Since the Limit Register is no longer modifiable, the Secure Storage area will remain 
locked as long as the device is powered up. 	118

The Low Level Boot Loader program will verify the Second Stage Boot Loader 
program is correct. If everything looks good, it will proceed to lock the lower portion 
of the Secure Storage area and branch to the Second Stage Boot Loader, leaving the 
upper portion of the Secure Storage area updatable.	

Since the Low Level Boot Loader is in ROM, it must be reliable and cannot be 
repaired or replaced. Therefore, it really should not interface with I/O devices. The 
I/O devices connected to a processor may vary from system to system. Furthermore, 
I/O devices change over time and require updates to software drivers.	

The Second Stage Boot Loader (SSBL) is expected to be a large and complex piece of 
software.	

It will, among other things, validate the OS Kernel. It must check to make sure the OS 
Kernel has not been tampered with or altered by malware. Thus, it must securely 
maintain and protect the secure hash keys  of the various kernel versions that it 119

knows about. If there are issues, it must interact with the user, e.g., to install new 
kernel versions, or roll-back to earlier kernel versions.	

To perform its duties, the Second Stage Boot Loader (SSBL) will need to contain 
information about:	

 More precisely, the Limit Register itself will remain locked after any write to the register with 118

any value greater than or equal to 0x4_0010_0008 until a power-on-reset signal is received.

 To quote Wikipedia, “A cryptographic hash function … is a mathematical algorithm that maps 119

data of an arbitrary size (often called the ‘message’) to a bit array of a fixed size (the ‘hash value’, 
‘hash’, or ‘message digest’). It is a one-way function, that is, a function for which it is practically 
infeasible to invert or reverse the computation. Blitz-64 primarily uses the SHA-256 secure hash 
function, which produces a 256 bit (32 byte) key.
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•	 The devices where a kernel might be stored.	
•	 The file systems on those devices.	
•	 The user interface devices and interfaces.	

Periodically, updates to the Second Stage Boot Loader code will be required, for 
these reasons:	

•	 A new version of the OS Kernel is distributed with a new secure hash key.	
•	 A new file system has been implemented and the SSBL must interface to it.	
•	 A new device has been implemented and the SSBL must interface to it.	
•	 Changes are made to the user interface used by the SSBL.	
•	 A bug in the SSBL must be repaired.	

Periodically, messages must be sent to the firmware. These messages must be acted 
on before the Secure Storage area is locked, or else they can have no lasting effect. 
However, since the Low Level Boot Loader will lock secure storage before it 
branches to the Second Stage Boot Loader and since the Low Level Boot Loader will 
never access any I/O devices, the messages must be passed in the Secure Storage 
area itself.	

Every update to the Second Stage Boot Loader will follow these steps:	

•	 While running the OS kernel, some app will move a newly received message 
into Secure Storage at an address above the current Secure Storage Limit.	

•	 A power-on-reset is required, reseting the Secure Storage Limit register and 
making the entire Secure Storage area updatable.	

•	 The Low Level Boot Loader in Boot ROM will run, before any other code runs.	
•	 The Low Level Boot Loader will see the message previously stored in the 
Secure Storage area and will process it.	

•	 Using public-private (asymmetric) encryption, the Low Level Boot Loader will 
verify that the message is from a trusted authority. Using a secure hash 
function (such as SHA-256), it will verify that the message has not been 
tampered with.	

•	 The Low Level Boot Loader will update the Secure Storage area as directed by 
the message. This could be in the form of replacing the Second Stage Boot 
Loader code, or by adding new secure hash keys for new versions of the OS 
kernel.	

•	 The Low Level Boot Loader remove the message from the Secure Storage area.	
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•	 The Low Level Boot Loader will lock Secure Storage by writing to the Secure 
Storage Limit register.	

•	 Finally, the Low Level Boot Loader branch to the Second Stage Boot Loader.	

When the next power-on-reset occurs, the Low Level Boot Loader will see that there 
is no new message. It will then lock Secure Storage and branch to the Second Stage 
Boot Loader program.	

It is likely the Secure Storage and the core will be integrated and located on the same 
chip. Nevertheless, they are separate modules. The Secure Storage Limit register can 
be located either within the core module or within the Secure Storage module. The 
important thing, of course, is that the register and the write-protection circuitry 
must be located “on the side of the Secure Storage”, by which we mean there must be 
no pathways to write the Secure Storage that do not first go through the limit 
register and the write-protection mechanism.	

As an example of a potential vulnerability, imagine that the DMA controller or some 
other device that updates memory is able to write to the Secure Storage area 
without first going through the write-protection circuitry. This would provide a way 
to circumvent this critical security mechanism.	

Memory-mapped I/O devices are not involved in the cache system. Caching occurs 
only for physical main memory, which lies below address 0x4_0000_0000. While it 
might be tempting to allow the Secure Storage memory to participate in caching, this 
is disallowed, since it might introduce subtle security vulnerabilities. 	120

Verifying the Kernel Code	

The boot process will load a kernel image into main memory. Before branching to it, 
the boot process must verify that the image it has just loaded is the real, correct 
image. We must ensure that the kernel image has not been corrupted or altered by 
malicious software.	

 Although we cannot see how this could happen, perhaps the cache contents could become 120

outdated, allowing the core to fetch incorrect data from a location in the Secure Storage area that is 
assumed to have been updated, locked, and guaranteed to be correct. Or perhaps a delayed write-
back/write-through from the cache to the Secure Storage area could delay the updating of the 
Secure Storage Limit register , thereby leaving the Secure Storage area vulnerable to malicious 
updates for a short window of time.
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In order to achieve this, the BootLoader will compute a secure message digest and 
compare it with a known, expected value. 	121

Secure Message Digests	

A secure message digest (also called a secure hash) is a short, fixed size binary 
value which is computed from all the bytes in a much longer string of bytes. There 
are a number of different secure hash algorithms. For example, with the SHA-256 
algorithm, the message digest is a 256 bit value.	

The secure hash algorithm is designed in such a way that any change in the long byte 
sequence will alter the digest value (with extremely high probability). Furthermore, 
given a particular digest value, it is extremely difficult to create a string that will 
hash to that digest value.	

An example usage would be to make sure a kernel executable image has not been 
modified by a malicious actor or cyberattack. If the kernel image is scanned and a 
digest value is computed that matches a stored “expected value”, then (with 
extremely high probability) this kernel image must be exactly the one and only same 
byte string that was used to produce the expected value in the first place. The secure 
hash system allows us to be sure the kernel has not been modified.	

In Blitz-64, we prefer and recommend the SHA-256 secure message digest 
algorithm.	

The BootLoader can easily compute a secure hash of any potential kernel image it 
has loaded, but the question is: Where does the BootLoader get the “expected value” 
with which the computed value must be compared?	

In other words, the BootLoader needs a secure, non-volatile storage in which to 
store expected hash values. Moreover, to prevent malware from changing the 
expected value and then substituting a modified kernel, the expected value must be 
stored in a place that cannot be modified by any software other than the BootLoader.	

 In the case of a single-stage boot chain, the code that loads the kernel executable will be 121

resident in the Boot ROM Area. In the case of a multi-stage process, the code will be in firmware, 
i.e., in the Secure Storage area. For this discussion, it doesn’t matter and we will just talk about the 
BootLoader program, regardless of whether it is in Boot ROM or is Second Stage Boot Loader 
(SSBL) code.
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This place is the Secure Storage area.	

The Secure Storage area need only be large enough (e.g., 32 bytes in the case of 
SHA-256) to store a single secure message digest value, although the Secure Storage 
area is expected to be much larger. To accommodate the loading of several different 
versions of the kernel, several secure message digest values would need to be stored. 
The idea is that the BootLoader would accept any kernel executable if its secure 
message digest matches any of the stored values.	

The expected secure message digest of the kernel will be placed in the Secure 
Storage area. The BootLoader, as part of its functionality, must always lock the 
Secure Storage before branching to any non-BootLoader code, so that no other 
software can possibly modify the expected message digest values stored in the 
Secure Storage area.	

On typical power-on-resets and soft-resets, the BootLoader will simply compute the 
message digest for the kernel executable, retrieve the expected message digest from 
Secure Storage, and compare them to verify that the kernel being loaded has not 
been corrupted.	

Normally, the version of the kernel to be loaded will be the same version as last time, 
so there is rarely a need to store a new expected value. But occasionally the user will 
need to install a new version of the kernel. In that case, the computed secure digest 
will not match the stored expected value. We need a way to update the stored 
expected value.	

In one approach, the BootLoader might require the user to manually type in the 
expected secure hash value. The BootLoader will then store the new value in the 
non-volatile Secure Storage memory area before it locks it. With every new version 
of the kernel, the user must type in a secure hash value to validate the kernel 
version.	

Of course this secure hash value for the kernel is a cryptographic key which must be 
securely validated and protected from alteration or spoofing, to prevent the user 
from seeing a false key. 	122

 If this is too onerous, the BootLoader might simply alert the user that the kernel image has 122

changed and ask the user whether this is intended. If the user agrees, the hash value just computed 
for the new version will be written to Secure Storage and saved as a new “expected value”.
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In order for the BootLoader to be able to store a new key, a hard restart is required, 
i.e., a power-on-reset signal must be generated. This will always and definitely cause 
the BootLoader code from the Boot ROM Area to be executed, with no intervening 
software possible.	

However, requiring intervention by users when it comes to verification of a new 
kernel’s message digest is risky. Instead, we need a way to completely automate the 
updating of kernel versions.	

Secure Distribution of New Message Digests	

Presumably new versions of the kernel software are distributed by a single trusted 
source and the goal is to prevent any bad actor from impersonating the trusted 
source. We must make sure the BootLoader never, ever boots to a compromised 
version of the kernel.	

Here we describe an approach to distributing secure hash keys (i.e., secure message 
digests) using a public-private key encrypted communication channel.	

In the public-private encryption technique, there are two keys. One key (the private 
key) is used to encrypt the message and the other key (the public key) can be used 
to decrypt the message.	

The BootLoader software will have the public key hardcoded directly into it. The 
public key is not a secret. The private key will be kept remotely, by the organization 
authorized update the kernel. For example, the private key will be held by the 
trusted company that creates and distributes new, authorized versions of the kernel.	

In the public-private key system, the communication is both kept private and 
protected from corruption.  We must protect against spoofing: we must be certain 123

that the message came from the sender it claims to have come from. Public-private 
key systems do this, since they guarantee the message has not be altered and that it 
comes only from the organization holding the other (private) key.	

From time to time the trusted authority will communicate with the existing kernel 
instructing is to install a new version of the kernel. The existing, old version of the 
kernel will download the new executable file and store it on the boot device. This 

 In this case, we care only about protection from corruption; privacy is not required.123
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communication will also contain a special message to be delivered to the 
BootLoader.	

The message to the BootLoader will command it to boot to a new version of the 
kernel image. The message will consist of two items: (1) the name/filename/version 
number of the new kernel, and (2) the corresponding secure message digest for that 
version. The sole purpose of the message is to instruct the BootLoader to update the 
Secure Storage area to save a new secure hash key for the new version of the kernel 
code.	

The message to the BootLoader will be encrypted using the private key. Only the 
authorized and trusted organization can create a valid encrypted message in this 
way. The message will be decrypted by the BootLoader using the public key. 	124

The BootLoader must receive the message and process it after a power-on-reset, 
since only at that time will the Secure Storage area be unlocked. Thus, the 
BootLoader will look for an incoming message every time it runs after a power-on-
reset. If an incoming message is found, it will be processed.	

The message can be communicated to the BootLoader in several ways. One approach 
is to place the message in a file with a fixed, well-known name, such as 
“BootLoaderNewKey”. Upon power-on-reset, the BootLoader will read from this file. 
This might be appropriate for a single-stage boot sequence, since the BootLoader 
code — which is in the Boot ROM Area — will already be capable of understanding 
the file system and the device on which it is stored, since it will be capable of reading 
the kernel executable file.	

Another approach is for the message to be stored directly in the Secure Storage area. 
Of course, it can just be stored directly above the current value of the Secure Storage 
Limit Register. Recall, that writing is always allowed to memory addresses above the 
limit, but the memory below the limit is in the locked state and cannot be altered, 
even by the kernel.	

 In order to reduce the likelihood of the private key being discovered by a bad actor who is 124

viewing the message traffic, the quantity of data encrypted by the private key should always be 
kept to a minimum. The private key held by the trusted organization for the purpose of validating 
new kernel versions should only be used for this purpose and the encoded data should be kept as 
concise and non-redundant at possible, with all repeated, formulaic, or boilerplate information 
eliminated.
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The process of updating a kernel involves (1) downloading the new kernel 
executable file and the associated encrypted message for the BootLoader; (2) 
placing the message in a place where the BootLoader will find it; and (3) performing 
a power-on-reset by executing a RESTART command.	

The BootLoader does the rest.	

The result is that — without obtaining the private key of the organization trusted 
with distributing new kernel images — it is impossible to boot into a corrupted or 
compromised kernel. Only “official” kernels will boot. 	125

 For added security, perhaps the Low Level Boot Loader (LLBL) code running in the Boot ROM 125

Area should begin by immediately verifying that the Secure Storage Limit Register is zero (as 
expected) to verify that a power-on-reset has truly just occurred. It is perhaps conceivable that if 
not, malicious code running simultaneously might be able to interfere somehow.
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Assembling and Linking	

This appendix contains a brief introduction to assembly language concepts, as 
applied to Blitz-64. 	

Assembly language is a sort of primitive programming language, in which the 
programmer writes instructions that can be directly executed by the processor core. 
Each computer architecture has its own assembly language. Programming 
convenience, portability, and maintainability are crucially important. Although all 
these are absent with assembly language, assembly language programming 
necessary for anyone close to the hardware.	

This appendix discusses one assembler tool in particular; the Blitz-64 assembler. 
This tool exists in two identical versions. One version is written in C (and runs on a 
POSIX-based host) and the other version is written in KPL (and runs on a Blitz-64 
computer). 	126

The basic idea is that each machine instruction can be written symbolically instead 
of written in binary. An assembler tool translates the symbolic assembly code into 
binary machine code. For example, the assembler translates an assembler 
instruction such as:	

addi r2,r4,100 # end = start + size

into the following 32 bit machine instruction:	

  0x01006424

 There may be other assemblers; for details, consult the documentation for the assembler tool 126

you are using.
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An assembly program is a text file with one instruction per line, making it possible to 
write machine code in a human-readable, symbolic form. Machine code specified in 
binary or hex is just too error-prone for humans to create, and an assembly language 
is an improvement over pure machine code.	

In addition to the assembler tool, the linker tool must be used, in a step called 
“linking”.	

Roughly speaking, the purpose of the assembler is to:	

•	 Check the assembly source file for errors, to make sure all the instruction 
names are spelled correctly.	

•	 Determine whether the required operands are present and correctly specified.	
•	 Compose the machine instructions, at least in most cases.	

And roughly speaking, the purpose of the linker is to:	

•	  Determine where in memory to place the machine instructions and data.	
•	  Evaluate expressions that depend on memory locations.	
•	  Determine which machine instructions will be used, in cases where the 
assembler can not do it.	

The assembler translates each assembler source file into an “object file”. One or 
more object files are then combined by the linker to produce an “executable file”. 
Often the executable file is called the “a.out” file, since that is the name commonly 
given to the executable file. At runtime, the OS kernel loads the executable file into 
memory and begins execution.	

Assembler Syntax	

Each line of the assembly program contains a single instruction. Each line contains 
the following fields:	

	 Label — optional	
	 Opcode	
	 Operands — zero or more	
	 Comment — optional	
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The syntax for a line is this (where brackets indicate optional material):	

	 [  label :  ]    [ opcode  [ operands ]  ]    [ # comment ]	

For example:	

myLabel: xor r2,r4,r6 # An example instruction

A label consists of an identifier symbol, followed by a colon (“:”). The label may be on 
a line alone, or it may prefix an instruction or pseudo-op. The label associates the 
symbol with the address of whatever follows.	

Label symbols are user-defined identifiers and may not have the same spelling as 
instructions, register names, or pseudo-ops. Symbols may contain the underscore 
character, e.g., “MyLab_43” and “_entry”. A leading underscore is only meaningful by 
convention; the assembler doesn’t care whether identifiers begin with underscore. 
Identifiers may not begin with a digit, but they may contain digits.	

The register names, the CSR names, and the opcodes are all in lowercase. For 
registers with two names (e.g., “sp” = “r15”), either name may be used.	

Values specified in decimal are written as a sequence of digits, e.g., “1234”. Values 
coded in hex are written with the prefix “0x”, e.g., “0x1234”. Floating point constants 
(e.g., “0.5”, “123e-9”) can be used, but only in the “.float” pseudo-op.	

Comments begin with the “#” character and run through the end of the line.	

Tabs are typically used between labels, opcodes, operands, and comments, but 
spaces may also be used.	

	 t	 t	 t	 t	 t	 t	 t	 t	 t	 t	 	
# Here is an example:

addi r2,r4,0x3B7F # Add decimal 15,231
csrread r3,csr_status

MyLab_43:
load.b r5,123(sp)
ble r5,r2,Exit_Label

Blitz-64 Instruction Set Architecture / Porter	 Page  of 	312 342



Appendix 1: Assembly Language	

The names of the machine instructions have been given earlier in this document and 
the order and meaning of the operands have been specified, so they will not be 
repeated here.	

Assembly code is case sensitive.	

Whenever the operand is an immediate value (e.g., “immed16” or “address” in the 
earlier chapters), the programmer may specify a value in hex or decimal, a symbol, 
or (more generally) an expression using constants, symbols, and the usual 
operators, such as +, -, <<, &, … For example the following instruction:	

ADDI RegD,Reg1,immed16

might be used like this:	

addi r7,sp,MyLabel+(3*len)

Pseudo-Ops	

In addition to lines containing machine instructions, the assembly code file will 
contain lines containing pseudo-ops. A “pseudo-op” is an assembler directive 
which gives guidance to the assembler/linker about how to assemble instructions.	

While a line containing a pseudo-op looks like a machine instruction, it is not. To 
emphasize the distinction, all pseudo-ops begin with a period.	
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Here are the pseudo-ops:	

	 .byte <integer expr>	 Place a byte in memory	
	 .halfword <integer expr>	 Place a halfword in memory	
	 .word <integer expr>	 Place a word in memory	
	 .doubleword <integer expr>	 Place a doubleword in memory	
	 .float <floating value>	 Place a 64 bit floating point in memory	
	 .string <string>	 Place a sequence of bytes in memory	
	 .skip <integer expr>	 Skip N bytes, filling with zeros	
	 .align 2/4/8/16/32/page	 Insert 0x00 bytes to achieve alignment	
	 .equ <integer expr>	 Equate symbol to an integer value	
	 .export <symbol>	 Make this symbol available to other files	
	 .import <symbol>	 Expect symbol to be defined in other file	
	 .begin <parameters>	 Start filling a new chunk of memory	

Each pseudo-op is written on a line by itself, in the same format as a machine 
instruction. Here are some examples:	

x: .byte 123 # Byte containing value
c: .halfword 0x04d2 # Decimal: 1234
d: .word 0x000BC614E # Decimal: 12345678
e: .doubleword 0x12-100 # 0xffff_ffff_ffff_ffae
f: .float -123.456e-10 # Double precision
str: .string “Hello\n” # No terminating \0
arr: .skip 400 # Array of 400 bytes

.align 8 # Insert padding bytes

The .byte, .halfword, .word, and .doubleword pseudo-ops are used to allocate 1, 2, 
4, and 8 bytes (respectively). The initial value to be placed in the memory (before 
execution begins) is given by an expression, which may include values given in 
decimal or hex. The expression appearing in the operand field may also employ the 
usual operators. The expression will be evaluated and the value will be computed at 
“assembly time” (i.e., by the assembler and linker) and not at “run-time”.	

If a label precedes a pseudo-op or instruction, that symbol will be associated with 
the address of the thing that follows. (More precisely, the symbol will be associated 
with the address of the first byte of the thing that follows.) The label may appear on 
the same line or on the preceding line.	
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For example, this	

myVar: .doubleword 0x0123456789abcdef

is equivalent to this:	

myVar:
.doubleword 0x0123456789abcdef

The .float pseudo-op is used to allocate 8 bytes and fill it with the IEEE 
representation of a double-precision floating point number. The operand should be a 
floating point constant. Expressions are not supported.	

The .string pseudo-op is used to place ASCII data in memory. The usual escapes (\n, 
\0, \t, etc.) can be used, as well as specific hex codes. For example, the byte 0x3f is 
written as \x3f, where “x” means “hex”. The string is not null-terminated, but the null 
character can be included in two ways, e.g.,	

str: .string “Bye\0”

and:	

str: .string “Bye”
.byte 0

The .skip pseudo-op causes the assembler to skip over a number of bytes, without 
filling these bytes in with initial values. The bytes are guaranteed to be filled with 
zeros before execution begins. If a label precedes the .skip pseudo-op, then that 
symbol is associated with the address of the first byte in the block of bytes allocated 
by the .skip pseudo-op.	

The .align pseudo-op is used to insert padding bytes to force the next following 
thing to be aligned. In the following example, the string may end on an improperly 
aligned address; the .align pseudo-op will insert as many bytes as necessary to 
guarantee that the variable “x” is properly aligned.	

str: .string “hello”
.align 8

x: .doubleword 0x0123456789abcdef
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The padding bytes inserted by .align are guaranteed to be zero-filled. The operand 
for .align may be 2, 4, 8, 16, or 32. In addition, the keyword “page” may be used as 
the operand. Including “.align page" will add padding bytes as necessary to round up 
to the next page aligned address, i.e., to an address that is a multiple of 16,384 (i.e., a 
multiple of 16 KiBytes and in which the least significant 14 bits are zeros).	

Symbols	

The .equ pseudo-op should always be preceded by a label. The purpose of .equ is to 
define a symbol and give it a specific value. The value is given by an expression, 
which is evaluated at the time of assembly and linking, not at runtime. For example:	

start: .string “hello”
end:
len: .equ end-start

A symbol is defined by its appearance as a label on some line in an assembly source 
file. Symbols may be used before they are defined. In other words, the line defining a 
symbol may appear later in the assembly source file than a line in which the symbol 
is used as an operand.	

A symbol may also be defined in one file and used in another file, although 
the .export and .import pseudo-ops must be used. As a result, the actual value of a 
symbol may not be known by the assembler. Therefore, some expressions cannot be 
evaluated until the linker tool is executed.	

The .export pseudo-op is used to make a symbol defined in this file available for use 
in other assembly source files. Symbols are, by default, local to the current assembly 
source file and must be exported if they are to be used in other files. The operand 
should be a single symbol. For example:	

myVar: .doubleword 1234
.export myVar

myConst: .equ 100
.export myConst
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The .import pseudo-op is used to make a symbol that is defined in another file 
available for use in this file. For example:	

.import myVar
loadd r3,myVar
.import myConst
addi r3,r3,myConst

A symbol must either be defined or imported (but not both). If a symbol is neither 
defined nor imported, the assembler will flag it as an error. Every symbol that is 
imported in one file must be exported in exactly one other file; if not, the linker will 
issue an error message.	

Every symbol either has an “absolute value” or a “relative value”. For example, 
“myConst” in the above example has the absolute value of 100. An absolute value is 
not dependent on where in memory the linker places things.	

A relative symbol is a memory address and is dependent on where the linker places 
code and data. In the example above, “myVar” is a relative symbol. The values of 
relative symbols are not computed until the linker assigns memory locations to code 
and data.	

For some instructions, the actual binary machine code cannot be determined by the 
assembler. This will happen whenever the instruction contains an immediate value 
for which the programmer has provided an expression containing a relative symbol. 
Since the value of the symbol cannot be known until link-time, only the linker has 
enough information to complete the assembly of the instruction.	

For instructions using absolute symbols, the assembler will be able to complete the 
assembly of instructions whenever the symbol is used in the same file in which it 
was defined. However, when the symbol is defined in one file and used in another 
file, the linker will be required to fill in the values and complete the instructions.	

In the case of synthetic instructions, the assembler will sometimes be able to choose 
the final machine code and complete the assembly. But in other cases, the synthetic 
instruction may translate into one, two, three, or even four machine instructions, 
depending on the actual value of the operand. Since the value of the operand may 
not be known until link time, it will be up to the linker to determine which sequence 
of machine instructions will be used to implement a given synthetic instruction.	
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[ The assembler and linker work together to produce the final code. In cases where a 
synthetic instruction may be turned into several instructions and the assembler 
must pass the problem to the linker, the assembler will make the initial assumption 
that a single machine instruction will suffice and will allocate a slot of size 4 bytes. 
Once the final value of all symbols is known, the linker will determine whether one 
instruction (i.e., 4 bytes) turns out to be adequate. If 4 bytes as inadequate, the 
linker will expand the slot (and the segment containing the slot) by another 4 bytes 
to accommodate a second machine instruction. Once again, the linker will determine 
whether there is enough room. This process will be repeated, enlarging all synthetic 
instruction slots until each is large enough to contain the machine instructions 
needed to handle the value. This is an example of a “relaxation” algorithm. Since 
slots are only enlarged and never reduced in size, this process will eventually 
terminate. In the worst case — highly improbable — each slot will be enlarged to its 
maximum size, which is enough to accommodate any possible value. In the vast 
majority of cases, the slot size will be just large enough to accommodate the smallest 
synthetic instruction sequence, and no larger. ]	

Segments and Linking	

The linker will place code and data into pages of memory. Each page of virtual 
address space will be marked either executable or not, and each page will be marked 
either writable or not. All pages are readable, so this is not an issue. This was 
described in an earlier section when virtual memory and page tables were 
discussed.	

Each assembly code source file consists of a sequence of “segments”. Each segment 
consists of a sequence of instructions. The segments are listed one-after-the-other in 
the source code file. Thus, every line in the source file will belong to exactly one 
segment. 	127

An assembly source file will typically contain only one segment, or just a couple of 
segments. For example a given assembly source file may contain one segment of 
instructions (which will go into pages marked “executable” but not “writable”) and 
one segment of data (which will go into pages marked “writable” but not 
“executable”).	

 The term “section” is sometimes used instead of “segment”.127
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The term “segment”, as used here, is a purely software concept used only by the 
assembler and linker; at runtime there is no such thing as a segment. (Other 
computer systems have used the term “segment” differently, e.g., for regions of 
memory supported by various hardware features.)	

The purpose of the “.begin” pseudo-op is delineate segments.	

Below is a small, artificial example, representing a single assembly source code file 
containing three segments:	

.begin executable
entry: loadd r1,myVar

addi r1,r1,300
stored myVar,r1
ret

.begin writable
myVar: .doubleword 12345
other: .doubleword 200

.begin
str: .string “Hello”

.byte 0
xor r1,r2,r3

Each segment must start with a .begin pseudo-op. A segment runs from a .begin 
pseudo-op until just before the next .begin pseudo-op, or until the end-of-file. Every 
instruction and every other pseudo-op will be located in exactly one segment, based 
on where it is placed.	

There is no requirement that an “executable” segment contains only machine 
instructions; it may contain data as well. There is no requirement that a “writable” 
segment contains only data; it may contain machine instructions as well.	

In this example, the third segment is marked with neither executable nor writable. It 
contains a string and an XOR instruction. This segment is read-only (i.e., not writable 
and not executable) so the XOR instruction cannot be executed.	
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Segments are not given names and the line containing .begin must not contain a 
label. Any label directly preceding a .begin pseudo-op will be associated with an 
address in the previous segment.	

The .begin pseudo-op has an operand field that can contain a number of comma-
separated parameters.	

.begin parameter , parameter , parameter , parameter

For example:	

.begin startaddr=0x8000a0000,executable,writable

The following parameters are indicated by a keyword, which is either present or 
absent.	

kernel
executable
writable
zerofilled

The programmer may also include a “startaddr=” parameter:	

startaddr=integer	

The programmer may also include a “gp=” parameter:	

gp=integer	

The job of the linker is to determine where in memory to place the segments. More 
specifically, the input to the linker will be a number of object files, each containing a 
number of segments.	

For programs that will go into a virtual address space, these segments will 
ultimately be placed into memory pages. One constraint is that two segments with 
different executable/writable attributes may not be placed in the same page. 
Another constraint is that segments may not overlap. The linker will attempt to 
group similar segments together and pack them as close as possible in order to 
reduce the number of pages in the final memory image.	
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Normally, the linker will be free to choose the location of a segment. However, the 
programmer may demand that the linker place a segment at a given memory 
address. This is the purpose of the “startaddr=” parameter, which gives the starting 
address of the segment as an absolute value. This parameter forces the linker to 
place a segment at a particular location in memory.	

If there is no starting address given for a segment, the linker is free to place the 
segment where it best fits. By default, the linker will place segments in the virtual 
address region, which starts at 0x8_0000_0000. The linker will more-or-less place 
segments one after another, filling up the virtual address space from 0x8_0000_0000 
on up, within the previously mentioned constraints.	

However, the presence of the “kernel” keyword will force the linker to place the 
segment in the lower, physical region of address space. Segments with this keyword 
will be placed in low memory, starting with 0x0_0000_0000 and going up.	

The “zerofilled” keyword is used to indicate that a segment will contain only zeros. 
Thus, only the following are allowable in a “zerofilled” segment:	

.byte 0

.halfword 0

.word 0

.doubleword 0

.float 0.0

.skip <any>

.align <any>

.equ <any>

.import <any>

.export <any>

The data in zerofilled segments is not present in the object and executable files, 
since the pages can be created and initialized at the time the executable file is loaded 
into memory. Zerofilled segments are useful for large data structures (such as 
gigantic arrays, spaces for heaps, and so on), since these data structures would 
waste a large amount of space in the object and executable files if all bytes were 
actually present.  For example:	

.begin startaddr=0x9_0000_0000,writable,zerofilled
MyHeap: .skip 0x1_0000_0000 # 4 GiBytes
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The assembler will round each segment up in size to a multiple of 8 bytes, by adding 
0 to 7 bytes of 0x00, as necessary. The linker will place each segment on an aligned 8 
byte address.	

The Global Pointer Register, gp	

Several of the synthetic instructions specify that an operand can be an “address”. 
Examples include:	

	 BEQ	 Reg1,Reg2,address	
	 LOADB	 Reg1,address	
	 CALL	 address	

In the course of generating code, the assembler and linker must be able to translate 
memory addresses into the forms required by the machine instructions. For 
example, consider this line from an assembly source file:	

loadb r1,MyVar

Assuming the address of MyVar is within 0 … 0x0_0000_7fff, the above instruction 
can be assembled like this:	

load.b r1,0x7fff(r0)

For user programs running in a virtual address space, the assumption is that the 
global pointer register (gp) will contain the value 0x8_0000_8000 at runtime, and 
this register can make addressing certain locations in memory particularly easy.	

(The gp register will be initialized either by the kernel during thread-creation or 
within the first couple of instructions at thread-startup, as part of the thread 
initialization prologue. If initialized within the thread prologue, the MOVI 
instruction is safe to use for this purpose although it is synthetic. The assembler may 
use gp whenever it synthesizes a MOVI instruction and the value in question is 
within range, allowing the MOVI to be translated into a single ADDI instruction. 
However, the assembler will specifically avoid using gp whenever the destination 
register is gp itself.)	
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When generating code, the assembler/linker will make use of the assumed value of 
gp. For example, if MyVar is located within the first 4 pages of the virtual address 
space (i.e., the first 64 KiBytes of the virtual address space, 0x8_0000_0000 … 
0x8_000_FFFF), then the assembler/linker can generate an instruction which uses 
an offset from register gp. For example, if MyVar is located at 0x8_0000_8056, it can 
be assembled like:	

load.b r1,0x0056(gp)

Positive offsets will be used for addresses above 0x8_0000_8000 and negative 
offsets will be used for addresses below that:	

	 8_0000_0000 … 8_0000_7fff	 negative offset 8000 … ffff from gp	
	 8_0000_8000 … 8_0000_ffff	 positive offset 0 … 7fff from gp 	128

The assembler/linker can deal with arbitrary addresses but addresses outside this 
range might require additional instructions or the use of the temp register “t”. 
Therefore, the programmer is encouraged to place commonly used variables at the 
bottom of the virtual address space, in the first 64 KiBytes. The typical practice 
would be to place all static, non-stack data at the bottom of the virtual address 
space, with the code segments in pages following the data pages.	

The above comments about register gp primarily concern LOAD and STORE 
instructions which are used to access data in static, fixed memory locations. Other 
instructions (e.g., JUMP, BRANCH, CALL) are using addresses as jump targets. For 
them, PC-relative addressing is more common and useful. However, the gp-relative 
addressing mechanism is still present and gp-relative jumps can be generated 
whenever the target address is in low memory. For example, it might make sense to 
place jump tables in low-memory, so the code can easily branch to various entries.	

Kernel code will not be running in a virtual address space, so things are different. All 
addresses will be located in the physical memory region.	

For kernel code, the “gp” register is assumed to be initialized to 0x0_0001_0000 (i.e., 
64 KiByte).	

This means that any address in the first 6 pages (i.e., the first 96 KiBytes of memory, 
0 … 0x0_0001_7fff) can be accessed with a single instruction.	

 More precisely, non-negative offsets. For address 0x8_0000_8000 an offset of 0 is used.128
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Addresses within the first 32 KiBytes (0x0 ... 0x7FFF) are easily accessible using 
offsets from “r0”. The next 64 KiBytes (0x8000 ... 0x1_7FFF) can easily be accessed 
from register “gp”.	

	 0_0000_0000 … 0_0000_7fff	 offset 0…7fff from “r0”	
	 0_0000_8000 … 0_0000_ffff	 negative offset 8000…ffff from “gp”	
	 0_0001_0000 … 0_0001_7fff	 positive offset 0…7fff from “gp”	

Commentary It is recommended that the kernel place all frequently accessed, 
global, static data in low memory.	

If “gp” has been properly initialized, bytes within the first 6 pages (96 KiBytes) are 
addressable with a single LOAD or STORE instruction, since they can be addressed 
with a 16 bit immediate offset from register r0 or gp. The need to use two 
instructions is avoided for the most frequently accessed kernel variables.	

Thus, the most critical data should be placed within the first 6 pages (96 KiBytes). 
The data region can then be followed by the code at successively larger memory 
addresses. Placing the code after the data (rather than before the data) means that 
accesses to the most frequently accessed data can be done with a single instruction.	

If the “kernel” keyword is present in the .begin pseudo-op, the default assumption 
made by the assembler and linker is that register gp will contain the value 
0x0_0001_0000. If the “kernel” keyword is not present, the assumption is that gp 
contains 0x8_0000_8000.	

The programmer can override the default assumption with the “gp=” parameter.	

The “value” associated with a “startaddr=” or “gp=” parameter must be an absolute 
value that can be calculated immediately by the assembler. Normally, every 
“startaddr=” or “gp=” value will be a simple hex constant.	

User mode code should never be accessing any address below 0x8_0000_0000 and 
the assembler/linker may issue warnings for any LOAD, STORE, BRANCH, JUMP, or 
CALL instruction that uses such an address in a code segment that is not marked 
“kernel”.	
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The programmer can also specify “gp=undefined” in the .begin pseudo-op, which 
will entirely prevent the assembler/linker from using register “gp” in any 
synthesized instructions. This would be useful for code in which the gp register (i.e., 
r13) is used for an entirely different purpose.	
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Every implementation of the Blitz-64 architecture must provide documentation to 
elaborate on ISA details that are “implementation dependent” or “undefined” in this 
document.	

Such an implementation document must answer the following questions.	

•	 What values are used for csr_version and csr_prod? What values are obtained 
when these registers are read?	

•	 How many cores are implemented and what is their arrangement? Is the 
organization 1-D, 2-D, or 3-D? What are the dimensions  of the array of cores?	129

•	 Which machine instructions are unimplemented and require emulation?	
	 	 DIV, REM	
	 	 Floating point instructions	

•	 If the DIV and REM instructions are implemented, do they perform “truncated”, 
“floored”, or “Euclidean” division when the operands are negative?	

•	 How are the CONTROL and CONTROLU instructions defined? (Perhaps they are 
unused and always causes an Illegal Instruction Exception.)	

•	 Concerning the ENTERFUN instruction, if an Arithmetic Exception occurs for the 
addition but there is no exception for the store operation, will the store to 
memory be executed? If there is an exception related to the store operation but 
the addition does not overflow, will the update to the destination register occur? 
If there is an Arithmetic Exception and an exception related to the store 
operation, which exception will be signaled?	

 That is, what are M, N, and P in the array addresses [0,0,0] … [M-1,N-1,P-1]?129
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•	 Concerning the EXITFUN instruction, if an Arithmetic Exception occurs for the 
addition but there is no exception for the load operation, will the program 
counter be updated, that is, which value will be saved in csr_prevpc ? If there is 
an exception related to the load operation but the addition does not overflow, 
will the update to the destination register occur? If there is an Arithmetic 
Exception and an exception related to the load operation, which exception will 
be signaled?	

•	 Are there any additional instructions or changes to the Blitz-64 ISA?	

•	 Does the core contain TLB registers? How many?	

•	 Concerning memory…	
	 	 How much private memory is available to each core?	
	 	 Is shared memory is present? How much? Starting address?	

•	 What memory caching is implemented?	
	 	 What are the details?	
	 	 Is the cache write-through or not?	

•	  Which memory-mapped I/O devices are implemented?	

•	 Concerning each memory-mapped I/O device…	
	 	 What is its starting address?	
	 	 How many pages does it occupy?	
	 	 Exactly how does it function?	

•	 Concerning asynchronous interrupts…	
	 	 What are the possible interrupt types?	
	 	 What causes each interrupt to occur?	
	 	 What value is stored in csr_cause for each type?	

•	 Concerning the Boot ROM area, what does it contain? In particular, what is the 
assembly source file that produced it, showing all the bytes?	

•	 Are there any other changes to the Blitz-64 specification?	
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Example: The Emulator	

What values are used for csr_version and csr_prod? What values are obtained 
when these registers are read?	

The emulator is configurable; the values can be set as part of the “emulation 
parameters”. The default for csr_version is 0x0002_49F0_8002_0001, i.e., conforms 
to spec = 1;  version number = 0x0002; implementor = 0x0001 (“Harry Porter”); and 
a value of 0x0002_49F0 (decimal 150,000) for clock cycles per millisecond, 
indicating 150MHz operation. The default for csr_prod is 0x0000_0000_0000_0000.	

How many cores are implemented and what is their arrangement? Is the 
organization 1-D, 2-D, or 3-D? What are the dimensions of the array of cores?	

The emulator is configurable; the number of cores and their arrangement are 
included in the “emulation parameters”. The default is 6 core, but by default, only 
core 0 is “running”, while the others are “stopped”.	

Which machine instructions are unimplemented and require emulation?	
	 DIV, REM	
	 Floating point instructions	

The DIV, and REM instructions are implemented, but the “-nodiv” command line 
option can be used to force an Emulated Instruction Exception. The floating point 
instructions can either cause an Emulated Instruction Exception, or will be executed 
directly. This is configurable with the “-fp” command line option.	

If the DIV and REM instructions are implemented, do they perform “truncated”, 
“floored”, or “Euclidean” division when the operands are negative?	

The operations of “truncated” and “Euclidean” division only differ when the top 
value (the dividend) is negative and the remainder is non-zero. Whenever an 
operation is attempted where this condition holds, the emulator will signal a user 
error. Thus, the results of the emulator are consistent with both “truncated” and 
“Euclidean” division, and signals an error if ever the user attempts an operation 
where the results would differ.	

How are the CONTROL and CONTROLU instructions defined? (Perhaps they are 
unused and always causes an Illegal Instruction Exception.)	
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The following operations are implemented for the CONTROLU instruction, using the 
corresponding values in the immediate field.	

DIGITAL_READ	 0	
DIGITAL_WRITE	 1	
HALT	 2	
SERIAL_STAT	 3	
SERIAL_RECV	 4	
SERIAL_SEND	 5	
ENABLE_KERNEL	 6	
SET_STATUS	 7	
TLB_DEBUG	 8	

These codes and operations are designed to match the codes used in the MicroBlitz 
hardware implementation. These operations are useful in testing and exercising the 
hardware implementation and are provided in the emulator so that the emulator can 
be used to execute code meant to be run on the hardware. Such code is meant to test 
and verify the correctness of the hardware.	

The DIGITAL_READ operation is not implemented. DIGITAL_WRITE will print the 
value in register Reg1 in hex. HALT will halt execution. SERIAL_STAT will move 
0x0000_0000_0000_0003 into RegD. This is a value that indicates that the serial 
device is ready to receive and ready to transmit. SERIAL_RECV will get a byte from 
the user and store it in RegD. SERIAL_SEND will print the byte in Reg1 on the output. 
ENABLE_KERNEL will move the current value of csr_status to RegD and will then 
set csr_status to 0x0000_0000_0000_0001. SET_STATUS will set csr_status to 
0x0000_0000_0000_0001. TLB_DEBUG will retrieve the number of a TLB register 
from Reg1. It will move a representation of that TLB register into RegD. The TLB 
registers are larger than 64 bits, so this operation will store the following in RegD:	

	 ASID[63:48]  ||  VirtAddr[47:27] ||  PhysAddr[26:5]  ||  C  ||  D  ||  W  ||  X  ||  V	

This captures all the information except the upper bits of the physical address, 
which are lost.	

The behavior of all other CONTROL and CONTROLU operations is left to the user. 
When encountered, the emulator will halt and display the immed16 value and the 
contents of register Reg1. Then, the emulator will ask the user whether or not the 
instruction should cause an Illegal Instruction Exception. If “no”, then the emulator 
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will prompt for a value to be entered, which is placed in register RegD. Then, 
execution is resumed.	

Concerning the ENTERFUN instruction, if an Arithmetic Exception occurs for the 
addition but there is no exception for the store operation, will the store to memory 
be executed? If there is an exception related to the store operation but the addition 
does not overflow, will the update to the destination register occur? If there is an 
Arithmetic Exception and an exception related to the store operation, which 
exception will be signaled?	

If an Arithmetic Exception occurs, it will take precedence; the store operation will 
not be attempted and the destination register will not be modified. If the addition is 
okay, but there is an exception related to the store operation, then neither the 
update to the destination register nor the store operation will be performed.	

Concerning the EXITFUN instruction, if an Arithmetic Exception occurs for the 
addition but there is no exception for the load operation, will the program counter 
be updated, that is, which value will be saved in csr_prevpc ? If there is an exception 
related to the load operation but the addition does not overflow, will the update to 
the destination register occur? If there is an Arithmetic Exception and an exception 
related to the load operation, which exception will be signaled?	

If an Arithmetic Exception occurs for the addition, it will take precedence; the load 
operation will not be attempted. If the addition is okay, then the destination register 
will be updated, regardless of whether or not there is an exception related to the 
load operation. If there is an exception (regardless of whether it is from the addition 
or the load operation), csr_prevpc will be set to the address of the EXITFUN 
instruction.	

Are there any additional instructions or changes to the Blitz-64 ISA?	

No.	

Does the core contain TLB registers? How many?	

The emulator is configurable; this is one of the “emulation parameters”. The default 
number is 16. If desired, the value 0 can be used to run with no TLB registers.	
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Concerning memory…	
	 How much private memory is available to each core?	
	 1 GiByte.	
	 Is shared memory is present? How much? Starting address?	
	 Shared memory is 1 GiByte, starting at address 0x0000_0000_4000_0000.	
	 These values are the defaults; the emulator is configurable.	

What memory caching is implemented?	
	 What are the details?	
	 Is the cache write-through or not?	

The emulator does not implement memory caching.	

Which memory-mapped I/O devices are implemented?	

Boot ROM	
Secure Storage	
DMA Controller	 Memory moves, SHA-256, AES-256	
Host Device	 For passing commands through to the host OS)	
UART	 Serial communication	
DISK	 Non-volatile storage device	
PLIC	 Platform-Level Interrupt Controller	
Digital I/O Pins	

There is only one “Secure Storage” device, which is shared between all cores. Ideally, 
each core would have its own Secure Storage device.	

Concerning each memory-mapped I/O device…	
	 What is its starting address?	
	 How many pages does it occupy?	
	 Exactly how does it function?	

Details are given in the document “Blitz-64: Memory-Mapped I/O Devices”.	
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Concerning asynchronous interrupts…	
	 What are the possible interrupt types?	
	 What causes each interrupt to occur?	
	 What value is stored in csr_cause for each type?	

The following devices cause interrupts:	

Timer Interrupt	
DMA Controller	
Platform-Level Interrupt Controller (PLIC)	

Details are specified elsewhere in this document and in “Blitz-64: Memory-Mapped 
I/O Devices”.	

Concerning the Boot ROM area, what does it contain? In particular, what is the 
assembly source file that produced it, showing all the bytes?	

The value stored in the Boot ROM is configurable. It is read in by the emulator from a 
secondary file named “emulationROM”. A simple version of the BootLoader comes 
from boot0.s; it assumes the emulator has already read in an executable file into 
memory and simply jumps to it.	

Are there any other changes to the Blitz-64 specification?	

No.	
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This appendix documents changes to the Blitz-64 architecture and this document 
over time.	

28 May 2019	

A new exception called “Null Address Exception” is added.	

The exceptions numbers are changed and shifted to make room for the new Null 
Address Exception.	

The relevant instructions were altered. They will now signal this exception when 
appropriate.	

15 June 2019	

Modification to instructions SLL, SLA, SRL, SRA. These instructions will now cause 
an Arithmetic Exception if the value in the register (i.e., the shift amount) is not 
within 0 … 63. 	

15 June 2019	

The CHECKA instruction is added.	

A new exception called “Bad Array Index Exception” is added.	

The exceptions numbers are changed and shifted to make room for the new Bad 
Array Index Exception.	
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23 July 2019	

In the section describing the Arithmetic Exception, there was an error in the list of 
which instructions can cause the exception. It is changed as follows: 	

Arithmetic Exception	

This exception can be caused by the following operations:	
	 Integer arithmetic :	 ADD, ADDI, SUB, MUL, DIV, REM	
	 Shift operations:	 SLA, SLAI, SRA, SRAI, SRL, SLL	
	 Size checking:	 CHECKB, CHECKH, CHECKW	

3 August 2019	

In the discussion of priorities in the case of multiple, simultaneous exceptions, a 
mention of the “Bad Array Index” exception was added. This exception cannot co-
occur with any Page-related exceptions, since it can only be caused by the INDEX__ 
instructions, which don’t access memory.	

Additional discussion of the FCVTFI and FCVTIF instructions was added. A 
commentary section titled “Overflow for FCVTFI” was added.	

Minor changes and rewordings were added and some typos were corrected.	

16 August 2019	

Added a commentary about floating comparisons with NaN. Explained why FNE is 
not included in the instruction set.	

18 August 2019	

Added clarification about “unused/zero” bits in the csr_status register. They cannot 
be modified.	
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Added clarification about csr_prevpc, which is a 64 bit register. When the PC is 
copied to this register, the upper 28 bits will be set to zero. When this register is 
copied to the PC, the upper 28 bits will be ignored.	

Added: Cause codes are zero-extended to 64 bits whenever the hardware writes 
them into a CSR register.	

21 August 2019	

The version number in the csr_version register is specified to be 0x0001.	

22 August 2019	

Concerning the TLB registers, this sentence was added: “All bits of each register, 
including bit [5] which marked as “unused,” can be read and written by the 
TLBREAD and TLBWRITE instructions.”	

6 September 2019	

Updates were made to the Simple Serial device concerning how UTF-8 is handled. 
[The Simple Serial device was later replaced by the UART device.]	

The ADD3, CONTROL, and CONTROLU instructions were added.	

8 November 2019	

The DZ “Divide-by-zero” bit was added to CSR_STATUS and the CSR_STATUS was 
altered to squeeze it in. In CSR_STATUS register, the DZ bit was inserted as bit 4 and 
bits 4-8 were shifted to 5-9. (The FCLASS instruction was changed, but a subsequent 
change eliminated the FCLASS instruction.)	
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11 November 2019	

Added a commentary describing a hypothetical csr_limit register (which would be 
to watch for stack overflow) and why it was not included.	

7 October 2020	

Footnotes were added discussing error conditions for FCVTIF and FCVTFI. This 
behavior needs to be reviewed and is subject to change / correction / improvement.	

18 April 2021	

Previously, the Null Address Exception was defined to occur if the address of 0 was 
used. It has been redefined to include any address within 0…7, i.e., the last 3 bits are 
now to be ignored in the check. The reason for this change is that some array 
operations (e.g., arraySize) look at the current size at offset 4 without ever reading 
offset 0. Without this change, use of a null pointer fails to cause an exception.	

10 May 2021	

The csr_core register was created to replace csr_extra2. The csr_extra1 register 
was renamed csr_extra.	

24 May 2021	

The GETSTAT, PUTSTAT instructions were added. The FCLASS instruction was 
eliminated.	
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2 June 2021	

The following instructions were added:	
	 INDEX0, …, INDEX32, MULADD, MULADDU	
MUL was changed to synthetic. Previously, MUL was optional; MULADD and 
MULADDU are now mandatory, never emulated. The CHECKA instruction was 
eliminated, since the INDEX__ instructions are superior.	

The format of register csr_version was changed.	

Register csr_temp1 was renamed csr_temp. Registers csr_temp2 and csr_temp3 
were renamed csr_resv1 and csr_resv2. Register csr_extra was renamed csr_prod 
which was also defined and described.	

The DMA Controller memory-mapped I/O device and corresponding interrupt was 
added.	

The Secure Storage memory-mapped I/O device was changed. The allocated space 
was enlarged and the semantics of locking was changed. Discussion of the boot 
process was improved.	

10 July 2021	

Discussion of interrupt priority was improved.	

The RESTART instruction was added.	

22 October 2021	

The CAS and FENCE instructions were added.	

LOADs and STOREs are defined to be atomic if they are aligned. (Previously, 
atomicity was guaranteed only for byte and halfword sizes.)	
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15 November 2021	

The NULLTEST instruction was added.	

18 October 2022	

There are a number of changes to the ISA. The ISA documented here is now called 
version 2.0.	

The version number in csr_version is incremented to 2.	

Registers csr_trapvec and csr_pgtable replace csr_resv1 and csr_resv2. The trap 
processing will now load PC from csr_trapvec. (Previously the trap handler was at 
fixed address 0x0_0001_8000.)	

Page tables are introduced and the TLB organization is completely changed. TLB 
registers are now an optional cache of page table entries.	

The following instructions and exceptions have been eliminated:	

TLBREAD	
TLBWRITE	
TLBPUSH	
TLBSET	
TLBCLR	
TLBDELETE	
TLBCHECK	

TLB Miss Exception	
TLB Write Exception	
TLB Copy-on-write Exception	
TLB Execute Exception	
TLB Privilege Exception	

The following instructions and exceptions have been added:	

TLBCLEAR	
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TLBFLUSH	
CHECKADDR	

Page Illegal Address Exception	
Page Table Exception	
Page Invalid Exception	
Page Write Exception	
Page Fetch Exception	
Page Copy-On-Write Exception	
Page First Dirty Exception	

The Control and Status Registers (CSRs) were reordered and renumbered.	

The opcodes for the machine instructions have been renumbered.	

The chapter “Power-On-Reset and the Boot Sequence” was created and added. 	

The chapter “Memory-Mapped I/O” was rewritten. 	

9 February 2023	

The ASID was moved from csr_status to the upper bits of csr_pgtable. The Physical 
Page Number (PPN) field of csr_pgtable was extended from 20 to 30 bits, allowing 
the root node of the page table to be located anywhere in the 16 TiByte physical 
memory space. The diagram of the virtual-to-physical mapping was corrected to 
show 30 bit PPNs, instead of 20 bit PPNs.	

17 February 2023	

The CHECKADDR instruction is modified to return a code number, instead of a trap 
cause code. Trap cause codes might be renumbered in the future and this reduces 
dependencies. Formerly, the CAS instruction was named “compare-and-swap”; it has 
been renamed to “compare-and-set”.	
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23 April 2023	

The ENTERFUN and EXITFUN instructions have been added.	

30 April 2023	

The StackLimit field is added to csr_status. The Stack Overflow Exception is added.	

6 October 2023	

The Simple Serial Device was eliminated. The PLIC, UART0, and DISK0 peripheral 
memory-mapped I/O devices were added.	

4 December 2023	

Reorganized the discussion of Memory-Mapped I/O. Moved much material to 
separate document: “Blitz-64: Memory-Mapped I/O Devices”	

10 December 2023	

The “Kernel Exception” was eliminated and exceptions were renumbered. The 
CONTROL and CONTROLU instructions were modified.	
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ASID	 Address Space ID	
CISC	 Complex Instruction Set Computer	
CLA	 Carry Lookahead Adder	
CSR	 Control and Status Register	
DMA	 Direct Memory Access	
DZ	 Divide by zero (within FLOAT_STATUS within csr_status)	
EDC	 Error Detection and Correction	
EOF	 End of File	
ISA	 Instruction Set Architecture	
KPL	 Kernel Program Language	
LLBL	 Low Level BootLoader program	
LSB	 Least Significant (rightmost) Bit or Byte	
MBR	 Master Boot Record	
MMU	 Memory Management Unit	
MSB	 Most Significant (leftmost) Bit or Byte	
MTE	 Matching TLB Entry	
NV	 Invalid operation (within FLOAT_STATUS within csr_status)	
NX	 Inexact (within FLOAT_STATUS within csr_status)	
OF	 Overflow (within FLOAT_STATUS within csr_status)	
OS	 Operating System	
PC	 Program Counter	
PLIC	 Platform-Level Interrupt Controller	
PPN	 Physical Page Number	
PTE	 Page Table Entry	
PWM	 Pulse Width Modulation	
RAM	 Random Access Memory (i.e., “main memory”)	
RD	 Round Down (within FLOAT_ROUND within csr_status)	
RISC	 Reduced Instruction Set Computer	
RN	 Round Up (within FLOAT_ROUND within csr_status)	
r/o	 Read Only	
r/w	 Read / Write	
ROM	 Read-Only Memory	
RU	 Round Up (within FLOAT_ROUND within csr_status)	
RZ	 Round toward Zero (within FLOAT_ROUND within csr_status)	
SBC	 Single Board Computer	
SSBL	 Second Stage BootLoader program	
SMP	 Shared Memory Multiprocessor	
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TCB	 Thread Control Block	
TLB	 Translation Lookaside Buffer (i.e., the page table cache)	
UART	 Universal Asynchronous Receive Transmit	
UF	 Underflow (within FLOAT_STATUS within csr_status)	
VPN	 Virtual Page Number
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