
Blitz-64	

Instruction Set Architecture	
Reference Manual	

	 	 	 	
ISA Version: 2.1	

Harry H. Porter III	
Portland State University	

HHPorter3@gmail.com	

14 December 2023	

This document describes the Instruction Set Architecture (ISA) for the Blitz-64
processor core. It documents all the machine instructions as well as the assembly
code notation for these instructions.	

	 Available Online: Blitz64.org/Documentation/Blitz64-ISA.pdf

http://Blitz64.org/Documentation/Blitz64-ISA.pdf
mailto:HHPorter3@gmail.com?subject=Blitz-64:%20xxxxDETAILSxxxx

Table of Contents	
List of Instructions	 	6

Chapter 1: Introduction	 	11
Quick Summary	 	11
Instruction Set Architectures	 	11
Goals and Principles: Personal Statements	 	12
Document Revision History / Permission to Copy	 	17
Relevant Software Tools	 	18

Chapter 2: Terminology and Notation	 	19
Quick Summary	 	19
Kilo and Mega Prefixes	 	19
Bits and Bytes	 	20
Main Memory	 	23
Big Endian	 	23
Alignment	 	26
Signed Numbers	 	27
Sign-Extension	 	30
Size Reduction	 	31

Chapter 3: Architectural Summary	 	32
Quick Summary	 	32
Memory, Addresses, and Memory-Mapped I/O	 	33
The Processor State	 	34
The Registers	 	34
Control and Status Registers (CSRs)	 	38
Virtual Memory	 	39

Chapter 4: Instruction Formats	 	41
Quick Summary	 	41
Compressed and Full-Sized Instructions	 	41
Opcode Encoding	 	42
Instruction Fields	 	44
Instruction Formats	 	45
Operand Syntax	 	48

Blitz-64 Instruction Set Architecture / Porter	 Page of 2 342

Table of Contents	

Chapter 5: Instructions	 	50
Machine Instructions versus Synthetic Instructions	 	50
All Instructions - Summary Listing	 	51
Machine Instructions, Grouped By Format	 	58
The Instruction Set	 	63
Instruction Opcodes	 	146
Miscellaneous Remarks	 	153

Chapter 6: Privileged Instructions and Kernel Mode	 	155
Quick Summary	 	155
Privileged Instructions	 	155
Control and Status Registers	 	156

Chapter 7: Exceptions, Interrupts, and Trap Handling	 	168
Quick Summary	 	168
Traps, Exceptions, and Interrupts	 	168
Interrupt Processing	 	174
Description of Exceptions	 	177
The Singlestep Exception	 	194
Value of Saved PC	 	197
Traps Related to Instruction Fetching	 	199
Trap Priority and Simultaneous Exceptions	 	200
Pending Interrupts	 	206
Delegation to User Mode Error Handlers	 	208
Trap Processing and Handler Startup	 	209
Saving State During Thread Switching	 	211
Global Trap Handler — Dispatching and Return	 	213

Chapter 8: Memory, Address Spaces, and Page Tables	 	220
Quick Summary	 	220
Memory Organization	 	221
Tasks, Address Spaces, and the User Mode Viewpoint	 	223
Page Tables	 	226
Virtual Addresses	 	236
Page Table Entries	 	237
MMU: Basic Operation	 	239

Blitz-64 Instruction Set Architecture / Porter	 Page of 3 342

Table of Contents	

TLB: Translation Lookaside Buffer	 	245
Comments	 	249
Shared Core Functions	 	254

Chapter 9: Multi-Core Issues	 	257
Quick Summary	 	257
Private and Shared Memory	 	257
LOAD / STORE Atomicity	 	258
A Relaxed Memory-Model	 	260
FENCE and Memory Synchronization	 	262
Invalidating Data in the Pipeline	 	272
Out-of-Date TLB Registers	 	275

Chapter 10: Power-On-Reset	 	277
Quick Summary	 	277
Power-On-Reset	 	277

Chapter 11: Memory-Mapped I/O	 	279
Quick Summary	 	279
Overview	 	279
Typical I/O Devices	 	282
Boot ROM Area	 	283
Secure Storage Area	 	284

Chapter 12: The Secure Boot Sequence	 	287
Quick Summary	 	287
The BootLoader Program	 	287
Security Issues Around Booting	 	293
Simple Systems	 	295
Multi-Stage Boot Processes	 	297
The Secure Storage Area	 	301

Appendix 1: Blitz Assembly Language	 	310
Assembling and Linking	 	310
Assembler Syntax	 	311
Pseudo-Ops	 	313
Symbols	 	316

Blitz-64 Instruction Set Architecture / Porter	 Page of 4 342

Table of Contents	

Segments and Linking	 	318
The Global Pointer Register, gp	 	322

Appendix 2: Implementation Details	 	326
Example: The Emulator	 	328

Appendix 3: Recent Changes	 	333

Acronym List	 341

Blitz-64 Instruction Set Architecture / Porter	 Page of 5 342

List of Instructions	

ADD RegD,Reg1,Reg2	 	63
ADDI RegD,Reg1,immed16	 	63
SUB RegD,Reg1,Reg2	 	63
*MUL RegD,Reg1,Reg2	 	63
DIV RegD,Reg1,Reg2	 	63
REM RegD,Reg1,Reg2	 	63
AND RegD,Reg1,Reg2	 	63
ANDI RegD,Reg1,immed16	 	63
OR RegD,Reg1,Reg2	 	63
ORI RegD,Reg1,immed16	 	63
XOR RegD,Reg1,Reg2	 	63
XORI RegD,Reg1,immed16	 	63
MULADD RegD,Reg1,Reg2,Reg3 RegD ← (Reg1 × Reg2) + Reg3	 	64
MULADDU RegD,Reg1,Reg2,Reg3 RegD ← (Reg1 × Reg2) + Reg3 (unsigned)	 	64
*NEG RegD,Reg1	 	68
*BITNOT RegD,Reg1	 	68
*NOP <no operands>	 	68
*ABS RegD,Reg1	 	69
*MOV RegD,Reg1	 	69
*MOVI RegD,immediate	 	70
SLL RegD,Reg1,Reg2 Shift left logical	 	71
SLLI RegD,Reg1,immed6	 	71
SLA RegD,Reg1,Reg2 Shift left arithmetic	 	71
SLAI RegD,Reg1,immed6	 	71
SRL RegD,Reg1,Reg2 Shift right logical	 	71
SRLI RegD,Reg1,immed6	 	71
SRA RegD,Reg1,Reg2 Shift right arithmetic	 	71
SRAI RegD,Reg1,immed6	 	71
ROTR RegD,Reg1,Reg2 Rotate right (circular)	 	71
ROTRI RegD,Reg1,immed6	 	71
SEXTB RegD,Reg1 Sign extend byte to 64 bits	 	72
SEXTH RegD,Reg1 Sign extend 16 bits to 64 bits	 	72
SEXTW RegD,Reg1 Sign extend 32 bits to 64 bits	 	72
NULLTEST Reg1 Trap if reg contains NULL	 	73
CHECKB Reg1 Trap if reg not within -128 … +127	 	73
CHECKH Reg1 Trap if reg not within -32768 … +32767	 	73
CHECKW Reg1 Trap if reg not within 32 bit range	 	73
ENDIANH RegD,Reg1 Reorder bytes in all 4 halfwords	 	73
ENDIANW RegD,Reg1 Reorder bytes in both words	 	73
ENDIAND RegD,Reg1 Reorder bytes in a doubleword	 	73
TESTEQ RegD,Reg1,Reg2 RegD ← (Reg1 = Reg2) ? 1 : 0	 	75
TESTNE RegD,Reg1,Reg2 RegD ← (Reg1 ≠ Reg2) ? 1 : 0	 	75

Blitz-64 Instruction Set Architecture / Porter	 Page of 6 342

List of Instructions	

TESTLT RegD,Reg1,Reg2 RegD ← (Reg1 < Reg2) ? 1 : 0	 	75
TESTLE RegD,Reg1,Reg2 RegD ← (Reg1 ≤ Reg2) ? 1 : 0	 	75
TESTEQI RegD,Reg1,immed16 RegD ← (Reg1 = immed) ? 1 : 0	 	75
TESTNEI RegD,Reg1,immed16 RegD ← (Reg1 ≠ immed) ? 1 : 0	 	75
TESTLTI RegD,Reg1,immed16 RegD ← (Reg1 < immed) ? 1 : 0	 	75
TESTLEI RegD,Reg1,immed16 RegD ← (Reg1 ≤ immed) ? 1 : 0	 	75
TESTGTI RegD,Reg1,immed16 RegD ← (Reg1 > immed) ? 1 : 0	 	75
TESTGEI RegD,Reg1,immed16 RegD ← (Reg1 ≥ immed) ? 1 : 0	 	75
*TESTGT RegD,Reg1,Reg2 RegD ← (Reg1 > Reg2) ? 1 : 0	 	75
*TESTGE RegD,Reg1,Reg2 RegD ← (Reg1 ≥ Reg2) ? 1 : 0	 	75
*TESTEQZ RegD,Reg1 RegD ← (Reg1 = 0) ? 1 : 0, i.e., if zero	 	76
*TESTNEZ RegD,Reg1 RegD ← (Reg1 ≠ 0) ? 1 : 0, i.e., if non-zero	 	76
*TESTLTZ RegD,Reg1 RegD ← (Reg1 < 0) ? 1 : 0, i.e., if negative	 	76
*TESTLEZ RegD,Reg1 RegD ← (Reg1 ≤ 0) ? 1 : 0, i.e., if non-positive	 	76
*TESTGTZ RegD,Reg1 RegD ← (Reg1 > 0) ? 1 : 0, i.e., if positive	 	76
*TESTGEZ RegD,Reg1 RegD ← (Reg1 ≥ 0) ? 1 : 0, i.e., if non-negative	 	76
*LOGNOT RegD,Reg1 RegD ← (Reg1 = 0) ? 1 : 0	 	76
ADDOK RegD,Reg1,Reg2 RegD ← (Reg1+Reg2 overflows) ? 0 : 1	 	77
ADD3 RegD,Reg1,Reg2,Reg3 RegD ← Reg1+Reg2+Reg3 (unsigned)	 	77
INDEX0 RegD,Reg1,Reg2,Reg3	 	78
INDEX1 RegD,Reg1,Reg2,Reg3	 	78
INDEX2 RegD,Reg1,Reg2,Reg3	 	78
INDEX4 RegD,Reg1,Reg2,Reg3	 	78
INDEX8 RegD,Reg1,Reg2,Reg3	 	78
INDEX16 RegD,Reg1,Reg2,Reg3	 	78
INDEX24 RegD,Reg1,Reg2,Reg3	 	78
INDEX32 RegD,Reg1,Reg2,Reg3	 	78
B.EQ Reg1,Reg2,immed16 Branch if Reg1 = Reg2; Offset is PC-relative	 	81
B.NE Reg1,Reg2,immed16 Branch if Reg1 ≠ Reg2; Offset is PC-relative	 	81
B.LT Reg1,Reg2,immed16 Branch if Reg1 < Reg2; Offset is PC-relative	 	81
B.LE Reg1,Reg2,immed16 Branch if Reg1 ≤ Reg2; Offset is PC-relative	 	81
*BEQ Reg1,Reg2,address Branch if Reg1 = Reg2	 	83
*BNE Reg1,Reg2,address Branch if Reg1 ≠ Reg2	 	83
*BLT Reg1,Reg2,address Branch if Reg1 < Reg2	 	83
*BLE Reg1,Reg2,address Branch if Reg1 ≤ Reg2	 	83
*BGT Reg1,Reg2,address Branch if Reg1 > Reg2	 	83
*BGE Reg1,Reg2,address Branch if Reg1 ≥ Reg2	 	83
*BEQI Reg,value,address Branch if Reg = immediate value	 	88
*BNEI Reg,value,address Branch if Reg ≠ immediate value	 	88
*BLTI Reg,value,address Branch if Reg < immediate value	 	88
*BLEI Reg,value,address Branch if Reg ≤ immediate value	 	88
*BGTI Reg,value,address Branch if Reg > immediate value	 	88
*BGEI Reg,value,address Branch if Reg ≥ immediate value	 	88
*BEQZ Reg,address Branch if Reg = 0	 	89
*BNEZ Reg,address Branch if Reg ≠ 0	 	89

Blitz-64 Instruction Set Architecture / Porter	 Page of 	7 342

List of Instructions	

*BLTZ Reg,address Branch if Reg < 0, i.e., if negative	 	89
*BLEZ Reg,address Branch if Reg ≤ 0, i.e., if not positive	 	89
*BGTZ Reg,address Branch if Reg > 0, i.e., if positive	 	89
*BGEZ Reg,address Branch if Reg ≥ 0, i.e., if not negative	 	89
*BFALSE Reg,address Branch if Reg = 0, i.e., if “false”	 	90
*BTRUE Reg,address Branch if Reg ≠ 0, i.e., if “true”	 	90
UPPER20 RegD,immed20 RegD ← (immed<<16)	 	90
UPPER16 RegD,Reg1,immed16 RegD ← (immed<<16) + Reg1	 	90
SHIFT16 RegD,Reg1,immed16 RegD ← (Reg1 + immed16) << 16	 	91
ADDPC RegD,immed20 RegD ← PC+immed	 	92
AUIPC RegD,immed20 RegD ← (immed<<16) + PC	 	92
JAL RegD,immed20 RegD ← return addr; Target ← PC+offset	 	93
JALR RegD,immed16(Reg1) RegD ← return addr; Target ← offset+Reg1	 	94
*CALL address Jump to address; save return addr in “lr”	 	94
*CALLR Reg1 Jump to address; save return addr in “lr”	 	94
*JUMP address Jump to address	 	96
*JR Reg1 Indirect jump, via register	 	97
*RET <no operands> Return value is in link reg “lr”	 	97
ENTERFUN RegD,Reg1,immed16 Save lr, push frame onto stack	 	98
EXITFUN RegD,Reg1,immed16 Retrieve lr, pop frame, and return	 	98
LOAD.B RegD,immed16(Reg1)	 	102
LOAD.H RegD,immed16(Reg1)	 	102
LOAD.W RegD,immed16(Reg1)	 	102
LOAD.D RegD,immed16(Reg1)	 	102
STORE.B immed16(Reg1),Reg2	 	102
STORE.H immed16(Reg1),Reg2	 	102
STORE.W immed16(Reg1),Reg2	 	102
STORE.D immed16(Reg1),Reg2	 	102
*LOADB RegD,address Where address is any value	 	105
*LOADH RegD,address	 	105
*LOADW RegD,address	 	105
*LOADD RegD,address	 	105
*LOADB RegD,offset(Reg1) Where offset is any value	 	105
*LOADH RegD,offset(Reg1)	 	105
*LOADW RegD,offset(Reg1)	 	105
*LOADD RegD,offset(Reg1)	 	105
*STOREB address,Reg2 Where address is any value	 	107
*STOREH address,Reg2	 	107
*STOREW address,Reg2	 	107
*STORED address,Reg2	 	107
*STOREB offset(Reg1),Reg2 Where offset is any value	 	107
*STOREH offset(Reg1),Reg2	 	107
*STOREW offset(Reg1),Reg2	 	107
*STORED offset(Reg1),Reg2	 	107
CAS RegD,Reg1,Reg2,Reg3 Compare and Set	 	109
FENCE <no operands>	 	111

Blitz-64 Instruction Set Architecture / Porter	 Page of 	8 342

List of Instructions	

ALIGNH RegD,Reg1,Reg2,Reg3 Reg3 (unaligned addr) gives shift amount	 	113
ALIGNW RegD,Reg1,Reg2,Reg3 Reg3 (unaligned addr) gives shift amount	 	113
ALIGND RegD,Reg1,Reg2,Reg3 Reg3 (unaligned addr) gives shift amount	 	113
INJECT1H RegD,Reg1,Reg2,Reg3 RegD ← Reg1; inject Reg2 per addr in Reg3	 	118
INJECT2H RegD,Reg1,Reg2,Reg3 RegD ← Reg1; inject Reg2 per addr in Reg3	 	118
INJECT1W RegD,Reg1,Reg2,Reg3 RegD ← Reg1; inject Reg2 per addr in Reg3	 	118
INJECT2W RegD,Reg1,Reg2,Reg3 RegD ← Reg1; inject Reg2 per addr in Reg3	 	118
INJECT1D RegD,Reg1,Reg2,Reg3 RegD ← Reg1; inject Reg2 per addr in Reg3	 	118
INJECT2D RegD,Reg1,Reg2,Reg3 RegD ← Reg1; inject Reg2 per addr in Reg3	 	118
ILLEGAL <no operands>	 	125
SYSRET <no operands>	 	126
SLEEP1 <no operands> Enable interrupts; enter light sleep state	 	126
SLEEP2 <no operands> Enable interrupts; enter deep sleep state	 	126
RESTART <no operands> Same as Power-On-Reset	 	128
DEBUG <no operands>	 	129
BREAKPOINT <no operands>	 	129
SYSCALL immed10	 	130
CONTROL RegD,Reg1,immed16	 	131
CONTROLU RegD,Reg1,immed16	 	131
TLBCLEAR <no operands> Invalidate all TLBs for current ASID	 	136
TLBFLUSH Reg1 Invalidate TLB for virtual address in Reg1	 	136
CHECKADDR RegD,Reg1,immed3 Reg1 = virt addr; RegD ← except. code or 0	 	137
CSRSWAP RegD,CSRReg1,Reg2 RegD ← CSR; CSR ← Reg2	 	139
CSRREAD RegD,CSRReg1 Reg1 encodes CSR; RegD ← CSR	 	139
CSRSET CSRReg1,immed16 Set selected bits in CSR	 	139
CSRCLR CSRReg1,immed16 Clear selected bits in CSR	 	139
*CSRWRITE CSRReg1,Reg2 Reg1 encodes CSR; CSR ← Reg2	 	140
GETSTAT RegD RegD ← CSR_STATUS & 0x00000000000003f8	 	140
PUTSTAT Reg1 CSR_STATUS [9:3] ← Reg1 [9:3]	 	140
FADD RegD,Reg1,Reg2 RegD ← Reg1 + Reg2	 	141
FSUB RegD,Reg1,Reg2 RegD ← Reg1 - Reg2	 	141
FMUL RegD,Reg1,Reg2 RegD ← Reg1 × Reg2	 	141
FDIV RegD,Reg1,Reg2 RegD ← Reg1 / Reg2	 	141
FMIN RegD,Reg1,Reg2 RegD ← MIN (Reg1, Reg2)	 	141
FMAX RegD,Reg1,Reg2 RegD ← MAX (Reg1, Reg2)	 	141
FNEG RegD,Reg1 RegD ← -Reg1	 	141
FABS RegD,Reg1 RegD ← ABSOLUTE_VALUE (Reg1)	 	141
FSQRT RegD,Reg1 RegD ← SQUARE_ROOT (Reg1)	 	141
FEQ RegD,Reg1,Reg2 RegD ← (Reg1 = Reg2) ? 1 : 0 (float compare)	 	141
FLT RegD,Reg1,Reg2 RegD ← (Reg1 < Reg2) ? 1 : 0 (float compare)	 	141
FLE RegD,Reg1,Reg2 RegD ← (Reg1 ≤ Reg2) ? 1 : 0 (float compare)	 	141
FCVTFI RegD,Reg1 Convert: floating-point ← int	 	141
FCVTIF RegD,Reg1 Convert: int ← floating-point	 	141
FMADD RegD,Reg1,Reg2,Reg3 RegD ← (Reg1 × Reg2) + Reg3	 	141

Blitz-64 Instruction Set Architecture / Porter	 Page of 	9 342

List of Instructions	

FNMADD RegD,Reg1,Reg2,Reg3 RegD ← (-(Reg1 × Reg2)) + Reg3	 	141
FMSUB RegD,Reg1,Reg2,Reg3 RegD ← (Reg1 × Reg2) - Reg3	 	141
FNMSUB RegD,Reg1,Reg2,Reg3 RegD ← (-(Reg1 × Reg2)) - Reg3	 	141
*FGT RegD,Reg1,Reg2 RegD ← (Reg1 > Reg2) ? 1 : 0 (float compare)	 	144
*FGE RegD,Reg1,Reg2 RegD ← (Reg1 ≥ Reg2) ? 1 : 0 (float compare)	 144

Blitz-64 Instruction Set Architecture / Porter	 Page of 	10 342

Chapter 1: Introduction	

What is originality? Undetected plagiarism.	
	 	 	 — Dean William R. Inge	

Quick Summary	

• Blitz-64 introduces a novel 64-bit “Instruction Set Architecture” (ISA).	
• The goals of the Blitz-64 project are:	
	 — Create a complete hardware / software system	
	 — Simple, small, easy to understand	
	 — Fully functional and fully modern	
	 — Reliability, security, and error handling are emphasized	
• This project is open, not proprietary	
• Software and documents use dates instead of version numbers	

Instruction Set Architectures	

An Instruction Set Architecture (ISA) defines, describes, and specifies how a
particular computer processor core works. The ISA describes the registers and all
the machine instructions. The ISA specifies exactly what each instruction does and
how it is encoded into bits.	

The ISA forms the interface between hardware and software. Hardware
engineers design digital circuits to implement a given ISA and software engineers
write code (operating systems, compilers, etc.) based on a given ISA specification.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 11 342

Chapter 1: Introduction	

There are a number of Instruction Set Architectures in widespread use, for example:	

	 x86-64 (AMD, Intel)	
	 ARM (ARM Holdings)	
	 SPARC (Sun/Oracle)	
	 RISC-V (Berkeley/open source)	

Most of these ISAs are proprietary and very complex. The details are obscured in
lengthy manuals and some details of the ISA are not made public at all. Furthermore,
the widely used ISAs have been around for years and their designs carry baggage as
a result, e.g., for backward compatibility. Since these legacy designs were first
created, we’ve learned more about how to design computers. Changes in silicon
hardware technology have also had an impact on which design choices are now
optimal. The RISC-V project attempts to address the issues of open source and
interoperability, and heavily influences Blitz-64.	

In this document we define and describe a new ISA called Blitz-64.	

Goals and Principles: Personal Statements	

The following are the guiding goals of the Blitz-64 architecture.	

	 • Simple, small, modest	
	 • Understandable	
	 • Reliable	
	 • Good error reporting/recovery	
	 • Secure against malware	
	 • No desire to support virtualization / hypervisors (due to security concerns)	
	 • Programmable, pleasing design	
	 • Encourage assembly language and kernel programming and experimentation	

All modern processor cores have become far too complex for any single individual to
understand. My primary goal is to create a computer that is simple enough for one
person to understand, yet fully modern and practical.	

The way I hope to achieve simplicity is to design the entire system (the ISA, all the
system software, and good documentation) alone, myself. The resulting system
must, by necessity, be radically simpler than existing computers. A key aspect to

Blitz-64 Instruction Set Architecture / Porter	 Page of 	12 342

Chapter 1: Introduction	

making any design simpler is to make it smaller. Size and complexity are strongly
correlated. A system designed by one person must be fairly small and modest and,
as a result, it will necessarily be simpler and easier to understand.	

On the hardware side, modern computer cores (ARM, x86-64, etc.) are just too
complicated to be understood by any single human being. They are designed by vast
teams of specialists; they incorporate legacy designs; their documentation
comprises thousand of pages, and they are proprietary and at least partially
shrouded in corporate secrecy.	

On the software side, modern operating systems contain millions of lines of code
written over the course of many decades, by vast numbers of programmers. Much of
the code is written in “C”, which is notoriously difficult to read, modify, and validate.
This is unquestionably true of Apple, Windows, and Linux software. Nobody can
fully comprehend a million lines of code; these large chunks of software must
remain mysterious black boxes. So instead, programmers today blindly trust and
build on top of a gigantic accumulation incompletely understood software. It’s
remarkable that today’s software works as well as it does.	

It is easier to use, trust, and rely on systems that we understand. A primary goal of
Blitz-64 is to create a complete, modern, and functional computer ISA and collection
of system software that is understandable by a single person.	

Elegance of design is always a laudable goal. Elegance and beauty are correlated
with simplicity and size. By keeping the design simple and small, I believe that
elegance of design will follow.	

As computers are growing more complex and integrated into society, reliability is
becoming ever more critical. The more complex a system is, the more difficult it is to
verify correctness and repair bugs. Making systems simpler contributes to greater
reliability. But beyond simplicity, many small design decisions along the way
determine whether performance execution speed or reliability is preferred and
optimized.	

To increase reliability, more error checking must be done at runtime. Furthermore,
when errors occur, they must be handled with more care, better reporting, and
reasonable recovery. Error checking incurs a performance penalty. Modern systems
evolved from ancient, slow computers where performance was the critical
bottleneck. The legacy systems, upon which the foundation of all modern software is
built, often ignored the possibility of program bugs and focused all effort on

Blitz-64 Instruction Set Architecture / Porter	 Page of 	13 342

Chapter 1: Introduction	

execution speed. Back in the day, when program size was measured in tens or
hundreds of lines of code, this was a reasonable choice.	

The dynamic has obviously shifted, changing the tradeoff analysis. Today’s
computers are really fast. It may now be the case that performance is being hurt by
complexity itself. As the size and complexity of software grows, the reliability of
individual parts and components becomes ever more critical. (For example, a failure
rate of 0.1% for each part might be acceptable for a system with 100 parts, but is
totally unacceptable with a million parts.)	

I recognize that performance is very, very important, but I reject the “performance at
all costs” mentality. One of my goals is to perform greater runtime error checking
and improved error recovery, even at the cost of performance. The radical choice I
make is to sacrifice performance for increased reliability, whenever there is a choice.	

As an example, the Blitz-64 architecture specifies overflow detection and exception
processing on standard arithmetic computations, like the ADD instruction. In the “C”
language, an overflow results in no error processing and the program proceeds
using incorrect values. In other words, the program fails silently. For any program
that has not undergone a thorough numerical analysis (in other words, almost every
program), this approach is abominable.	

Simplicity also impacts physical reliability. In order to increase the reliability of
computer circuits in the face of physical insults (e.g., radiation, temperature
extremes, and other environmental problems) simplicity of the ISA has several
benefits. First, simpler designs can be implemented with fewer transistors. Given a
fixed die size, this allows the individual transistors and wires to be made physically
larger. Bigger transistors are more fault tolerant, which increases the circuit’s
reliability. Second, the small size of an implementation allows more space for
redundancy, and duplication is another important approach to fault tolerance. A
simple computer with a small footprint can be replicated several times to increase
reliability.	

Modern computer systems are increasingly susceptible to malware, intrusion, and
hacking. In addition to guarding against physical insults, the threats of intentional
attack require careful attention in ISA designs.	

The approach with current systems seems to be the “whack-a-mole” strategy: when
a security hole is uncovered, the hole is patched. Then, wait and repeat. With a

Blitz-64 Instruction Set Architecture / Porter	 Page of 	14 342

Chapter 1: Introduction	

gigantic body of legacy software — millions of lines of code, which nobody really
understands — the “whack-a-mole” approach seems to be the only viable strategy.	

My approach to increased security includes creating a smaller, simpler design,
improving error detection, and assuming the presence of “black hat” players (bad
guys) in all domains, at all times.	

The goal of creating software that is secure, reliable, and bug-free is obviously both
worthy and elusive. A key approach to making a system secure is to make it reliable
and bug-free. So my focus on simplicity and reliability is, implicitly, a focus on
security.	

In order to verify a computer system, to find and patch security holes, it is necessary
to thoroughly review and analyze the system design. With complex ISAs and millions
of lines of code, the task of verification is problematic. Simplicity and smallness help
a lot.	

Another security threat involves embedding spyware or malware within system
software. Such software remains present during normal operation and can act as a
backdoor for black hat access to private data at any time. Embedded backdoor
software can also perform secret surveillance of behavior and activity on the
computer, compromising the trust and security of the system.	

Spyware can be injected into the system software at many levels. My approach to
shutting out spyware and embedded malware involves:	

	 • Designing and implementing all the software from scratch	
	 • Completely reimplementing the boot process	
	 • Banning dynamically alterable firmware	
	 • Securely controlling kernel updates	
	 • Keeping the software small enough that it can be entirely reviewed	
	 • Performing system design and implementation in a sort of clean-room isolation	

In particular, hypervisors and emulated systems are considered to be a threat to
security. It is difficult for kernel software to be certain that it is running on a bare
machine, but it is critical to security. For example, a kernel is intended to prevent
security leaks, but if that kernel is being emulated or run in a hypervisor context, all
the actions of the kernel are subject to surveillance and manipulation.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	15 342

Chapter 1: Introduction	

There is currently a trend toward increased use of hypervisors. Typically, a user
wants to own a single computer, but be able to run software developed for the Mac,
Windows, Linux, etc. operating systems. The clever approach is to run multiple
operating systems on top of hypervisor software. As a result, modern ISAs are
designed with an eye to supporting hypervisor-like software, to make the hosted
OSes run faster.	

The Blitz-64 system takes the opposite approach. While there seems to be little we
can do to prevent software from being executed in an emulated environment, the
emulation of kernels should be discouraged due to security issues. The Blitz-64
architecture makes no concessions and no special instructions are added to support
the emulation of “kernel mode” software. This is an intentional design decision, not
an oversight.	

A final goal of the Blitz-64 project is to support programming for fun and, in
particular, to support assembly language and kernel programming.	

Programming on “bare metal” is an acquired taste and certainly does not appeal to
the mass of average programmers because of the high level of skill and attention to
detail it requires. But there may be a small group of highly proficient hobbyists who
want this experience.	

I feel that modern computers are simply too complex for programming to be fun.
Kernel programming is pretty much impossible. I want to create a computer system
that is more than a one-off, home-brew computer. My goal is to design a computer
that is small and simple, yet roughly as functional as an ARM or x86-64 machine.
Basically, I want to create a computer that programmers will enjoy — that I will
enjoy programming.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	16 342

Chapter 1: Introduction	

Document Revision History / Permission to Copy	

Version numbers are not used to identify revisions to this document. Instead the
date and the author’s name are used. The document history is:	

Date	 Author	
23 May 2018	 Harry H. Porter III <initial version>	
28 May 2019	 Harry H. Porter III <document mostly completed>	
24 May 2021	 Harry H. Porter III <new instructions added>	
18 October 2022	 Harry H. Porter III <version 2.0 of ISA>	
30 April 2023	 Harry H. Porter III <changes to csr_pgtable>	
12 September 2023	 Harry H. Porter III <minor changes>	
14 December 2023	 Harry H. Porter III <version 2.1 of ISA>	

	 	
For details, consult the appendix titled “Recent Changes”.	

In the spirit of the open-source and free software movements, the author grants
permission to freely copy and/or modify this document, with the following
requirement:	

You must not alter this section, except to add to the revision history. You
must append your date/name to the revision history.	

Any material lifted should be referenced.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	17 342

Chapter 1: Introduction	

Relevant Software Tools	

The primary software tools relevant to this document are:	

	 • The Blitz-64 virtual machine — a “C” program called “blitz”	
	 • The Blitz-64 assembler — a “C” program called “asm”	
	 • The Blitz-64 linker — a “C” program called “link”	

 For our purposes, the terms “emulator” and “virtual machine” are synonymous.	

Tool 	 Version Described Here 	 Coding Status	
blitz	 < same date as this document >	 Completed	
asm	 < same date as this document >	 Completed	
link	 < same date as this document >	 Completed	

Instead of version numbers, the Blitz-64 project uses dates to identify versions of
both programs and documents. By comparing dates, you can determine whether this
document matches the version of the tools you are using or, if not, which is more
recent.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	18 342

Chapter 2: Terminology and Notation	

If you can’t convince them, confuse them.	
	 	 	 — Harry S Truman	

Quick Summary	

• “Halfword” = 16 bits = 2 bytes.	
• “Word” = 32 bits = 4 bytes.	
• “Doubleword" = 64 bits = 8 bytes.	
• Main memory is byte addressable.	
• Main memory is Big Endian.	
• The notation [n:m] is used to identify bits.	
• For example, [63:60] means the most significant (MSB) 4 bits in a doubleword.	
• We use KiByte, MiByte, GiByte… instead of KByte, MByte, GByte…	
• Alignment (e.g., halfword, word, doubleword) is defined.	
• Proper alignment for sizes 8, 16, 32, and 64 bits is defined.	
• Properly aligned doublewords are at addresses divisible by 8 (ending in bits 000).	
• Integers are represented with signed, two’s complement values.	
• All arithmetic is done using 64 bits.	
• Sign-extension enlarges an integer represented in signed two’s complement
binary.	

• Size reduction (e.g., from 64 to 32 bits) may result in an “overflow” error.	

Kilo and Mega Prefixes	

There has been some confusion in computer science documentation regarding
abbreviations for large numbers. For example:	

	 4K = ?	
	 	 4,000 	
	 	 4,096 	

Blitz-64 Instruction Set Architecture / Porter	 Page of 19 342

Chapter 2: Terminology and Notation	

We use the following prefix notation for large numbers, which is becoming common
in the context of computer architecture:	

	 Prefix 	 Example 	 Value 	
	 Ki	 kibi	 KiByte	 210	 1,024	 ~103	
	 Mi	 mebi	 MiByte	 220	 1,048,576	 ~106	
	 Gi	 gibi	 GiByte	 230	 1,073,741,824	 ~109	
	 Ti	 tebi	 TiByte	 240	 1,099,511,627,776	 ~1012	
	 Pi	 pebi	 PiByte	 250	 1,125,899,906,842,624	 ~1015	
	 Ei	 exbi	 EiByte	 260	 1,152,921,504,606,846,976	 ~1018	

Contrast this to the standard metric prefixes, which we avoid:	

	 Prefix 	 Example 	 Value 	
	 K	 kilo	 KByte	 103	 1,000	
	 M	 mega	 MByte	 106	 1,000,000	
	 G	 giga	 GByte	 109	 1,000,000,000	
	 T	 tera	 TByte	 1012	 1,000,000,000,000	
	 P	 peta	 PByte	 1015	 1,000,000,000,000,000	
	 E	 exa	 EByte	 1018	 1,000,000,000,000,000,000	

Bits and Bytes	

We use the terms “byte”, “halfword”, “word”, and “doubleword”, to refer to various
sizes of binary data.	

	 number	 number 	
 	 of bytes	 of bits	 example value (in hex)	
	 byte	 1	 8 A4	
	 halfword	 2	 16	 C4F9	
	 word	 4	 32	 AB12CD34	
	 doubleword	 8	 64	 0123456789ABCDEF	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	20 342

Chapter 2: Terminology and Notation	

A single hex digit can be used to represent 4 bits:	

	 Binary	 Hex	
0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9
1010 A
1011 B
1100 C
1101 D
1110 E
1111 F

The 8 bits within a byte are conveniently expressed with two hex digits. For
example:	

	 8 bit byte	 In Hex	
1010 0100 A4

The 32 bits in a word are given with 8 hex digits. For example:	

	 32 bit word 	 In Hex 	
1010 1011 0001 0010 1100 1101 0011 0100 AB12CD34	

Sometimes we insert spaces or commas to make long hex values more readable.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	21 342

Chapter 2: Terminology and Notation	

These examples show different ways of representing the same doubleword:	

 0123456789ABCDEF
 0123_4567_89AB_CDEF
 0123,4567,89AB,CDEF
 0123 4567 89AB CDEF
 01234567 89ABCDEF

Often we prefix hex values with “0x” to make it clear they are hex values and not
decimal:	

 0x1234

The bits within an 8-bit byte are numbered from 0 (lower, least significant) to 7
(upper, most significant).	
	

7 6 5 4 3 2 1 0
0 0 0 0 0 0 0 0

The bits within a 16 bit halfword are numbered from 0 to 15.	

The bits within a 32 bit word are numbered from 0 to 31.	

The bits within a 64 bit doubleword are numbered from 0 to 63.	
	
	 63 56 48 40 32 24 16 8 0	

 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

We use the following notation to represent a range of bits:	

 Example Meaning 	
	 [7:0]	 All bits in a byte	
	 [63:0]	 All bits in a doubleword	
	 [31:28]	 The upper 4 bits in a word	
	 [5]	 The 6th bit from the right end	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	22 342

Chapter 2: Terminology and Notation	

Main Memory	

Main memory is byte addressable.	

Main addresses are 36 bits. We generally express addresses in hex. Here are two
equivalent notations we use:	

 8_ABCD_1234
 0x8ABCD1234	

Memory can be viewed as a sequence of bytes:	

	 address	 data	
	 (in hex) 	 (in hex) 	
 0_0000_0000 89
 0_0000_0001 AB
 0_0000_0002 CD
 0_0000_0003 EF
 0_0000_0004 01
 0_0000_0005 23
 0_0000_0006 45
 0_0000_0007 67

 F_FFFF_FFFC E0
 F_FFFF_FFFD E1
 F_FFFF_FFFE E2
 F_FFFF_FFFF E3

“Low” memory refers to smaller addresses, closer to 0_0000_0000. “High” addresses
are numerically greater.	

Big Endian	

Blitz-64 is a big endian architecture.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	23 342

Chapter 2: Terminology and Notation	

As an example, assume that main memory holds the following bytes:	

	 address	 data	
	 (in hex) 	 (in hex) 	

 E_5000_0004 1A
 E_5000_0005 2B
 E_5000_0006 3C
 E_5000_0007 4D
 E_5000_0008 5E
 E_5000_0009 6F
 E_5000_000A 70
 E_5000_000B 81
 E_5000_000C 92
 E_5000_000D A3
 E_5000_000E B4
 E_5000_000F C5

In Blitz-64, the registers are 64 bits (8 bytes) wide. There are several LOAD and
STORE instructions, which can move either a byte, halfword, word or doubleword
between memory and a register.	

Consider a LOADB instruction that loads a byte from address 0xE_5000_0004. After
execution, the register will contain:	

 0x0000_0000_0000_001A

Consider a LOADW instruction which loads a word from address 0xE_5000_0004.
After execution, the register will contain:	

 0x0000_0000_1A2B_3C4D

Commentary In a little endian architecture, the order of the bytes is changed
whenever data is copied from memory to a register or stored from a register into
memory. This can be a source of confusion, particularly when humans look at a
printout of memory contents.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	24 342

Chapter 2: Terminology and Notation	

As an example, consider this memory:	

	 address	 	 data	
	 (in hex) 	 (in hex) 	

 E_5000_0004 1A
 E_5000_0005 2B
 E_5000_0006 3C
 E_5000_0007 4D
 E_5000_0008 5E
 E_5000_0009 6F
 E_5000_000A 70
 E_5000_000B 81
 E_5000_000C 92
 E_5000_000D A3
 E_5000_000E B4
 E_5000_000F C5

Memory can be viewed either as a series of bytes, or as a series of larger units, such
as words or doublewords.	

With a “big endian” computer, this memory is interpreted as:	

	 address	 	 data	
	 (in hex) 	 (in hex) 	

 E_5000_0004 1A2B3C4D
 E_5000_0008 5E6F7081
 E_5000_000C 92A3B4C5

Blitz-64 Instruction Set Architecture / Porter	 Page of 	25 342

Chapter 2: Terminology and Notation	

With a “little endian” computer, this memory is interpreted as:	

	 address	 	 data	
	 (in hex) 	 (in hex) 	

 E_5000_0004 4D3C2B1A
 E_5000_0008 81706F5E
 E_5000_000C C5B4A392

Big endian architectures are simpler to understand since the bytes are not reordered
during loads and stores.	

The primary argument for choosing little endian is legacy compatibility. The two
approaches are similar in terms of circuit complexity.	

Alignment	

A “halfword aligned” address is an address that is a multiple of 2. The last bit of a
halfword-aligned address will always be 0. Likewise, a “word aligned” address is a
multiple of 4, and ends with the bits 00. And finally, a “doubleword aligned”
address will be evenly divisible by 8 and will end with bits 000.	

A halfword-sized value is said to be “properly aligned” if it is stored at a halfword
aligned address. Likewise, a word-sized value is properly aligned if it is stored at a
word aligned address. And similarly, a doubleword-sized value is properly aligned if
it is stored at a doubleword aligned address.	

Blitz-64 requires data to be properly aligned for the LOAD and STORE instructions.	

Full-sized instructions are 32 bits in length. Compressed instructions are 16 bits in
length. All instructions are required to be halfword aligned. The LSBit of the PC is
hardwired to 0, so there can be never be an exception when an instruction is fetched.
When the PC is loaded — for example during a BRANCH or CALL instruction — the
LSBit is simply ignored; no exception will be generated.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	26 342

Chapter 2: Terminology and Notation	

Commentary BRANCH and CALL instructions are normally generated by a
compiler or assembler, which will always place the target instruction on a properly
aligned address. Therefore, there is little possibility that an error will be made.	

However, with LOADs and STOREs, the address may come from a programmer
computed pointer, which may easily be in error. Rather than silently ignoring the
last 1, 2, or 3 bits and loading/storing from an incorrect location, an “Unaligned
LOAD/STORE Exception” will be signaled.	

Signed Numbers	

Integers are represented in binary.	

With unsigned number representation, only zero and positive integers can be
represented. The maximum possible value is determined by the number of bits
available and is always 2N-1, where N is the number of bits.	

	 	 Size	 	
	 	 in bits 	 Range of values	 	 	
	 byte	 8 	 0 … 255	
	 halfword	 16	 0 … 65,535	
	 word	 32	 0 … 4,294,967,295	
	 doubleword	 64	 0 … 18,446,744,073,709,551,615 (≈ 2 × 1019)	

Signed numbers are represented using “two’s complement” representation. The
most significant bit gives the sign (1=negative; 0=zero or positive).	

	 	 Size	 	
	 	 in bits 	 Range of values	 	 	
	 byte	 8 	 -128 … 127	
	 halfword	 16	 -32,768 … 32,767	
	 word	 32	 -2,147,483,648 … 2,147,483,647	
	 doubleword	 64	 -9,223,372,036,854,775,808 … 9,223,372,036,854,775,807 	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	27 342

Chapter 2: Terminology and Notation	

To make things simpler, we define the following constants:	

	 Name 	 Decimal	 Hex (64 bits)
	 MIN_8	 -128	 FFFF_FFFF_FFFF_FF80	 	
	 MAX_8 	 127	 0000_0000_0000_007F	
	 MAX_UNSIGNED_8 	 255	 0000_0000_0000_00FF	
	 MIN_16 	 -32,768	 FFFF_FFFF_FFFF_8000	
	 MAX_16 	 32,767	 0000_0000_0000_7FFF	
	 MAX_UNSIGNED_16 	 65,535	 0000_0000_0000_FFFF	
	 MIN_32 	 -2,147,483,648	 FFFF_FFFF_8000_0000	
	 MAX_32 	 2,147,483,647	 0000_0000_7FFF_FFFF	
	 MAX_UNSIGNED_32 	 4,294,967,295	 0000_0000_FFFF_FFFF	
	 MIN_64 	 -9,223,372,036,854,775,808	 8000_0000_0000_0000	
	 MAX_64 	 9,223,372,036,854,775,807	 7FFF_FFFF_FFFF_FFFF	

The Blitz-64 architecture relies entirely on 64 bit signed integers. There is only one
type for integers.	

Arithmetic on 32 bit quantities is not supported, although there are instructions to
enlarge and shrink values between 8, 16, 32, and 64 bits.	

Note that the range of signed doublewords is sufficient to represent every byte,
halfword, and word value regardless of whether it is signed or unsigned.	

Commentary Signed 64 bit integers seem both necessary and sufficient for
computer arithmetic. There seems to be no good reason to include support for
“unsigned 64 bit integer” operations. 	

The range of signed doublewords is adequate for expressing quantities such as an
“astronomical unit” in microns, the number of seconds since the big bang, or the
world GDP in hundredths of a cent. Unfortunately, the range of 32 bit words is
inadequate for many things, such as counting humans, the US federal debt in dollars,
the number milliseconds since January 1, 1970 (widely used by computers), or the
number of bytes of main memory in typical smartphones. Any programmer who
uses 32 bit integers needs to think very, very carefully about overflow conditions.	

The use of unsigned data types made sense in the past, when the word sizes were
smaller. In some applications, the difference between a maximum value of 127 and
255 (for byte-sized data), or between 32,767 and 65,535 (for 16 bit data) was
important and critical, and worth sacrificing the ability to represent negative values.

Blitz-64 Instruction Set Architecture / Porter	 Page of 	28 342

Chapter 2: Terminology and Notation	

It is even conceivable that some applications needed numbers between
2,147,483,647 and 4,294,967 295 (for 32-bit data), while at the same time, never
needing negative values.	

However, it’s virtually impossible to imagine an application for which unsigned 64
bit numbers are appropriate. For such an application, the expected values would be
expected to exceed 9,223,372,036,854,775,807, and yet be guaranteed to never
exceed 18,446,744,073,709,551,615, and also be guaranteed to never be negative!	

Commentary The cost of using “unsigned” binary numbers is that negative values
must be thrown out. Negative numbers are obviously useful and shouldn’t be
ignored or excluded. Throwing out the negative numbers is a bad, anti-mathematical
idea. It’s dangerous because we know it causes all sorts of program bugs; it makes
the discrepancy between “computer integers” and “mathematical integers” vastly
greater; and a proliferation of different datatypes complicates programming.	

In Blitz-64, if the programmer wishes to force some number into one of the limited,
legacy ranges, he/she can easily write tests such as:	

if (x<0 || x>MAX_UNSIGNED_32) …

Commentary In any core processor, the speed of addition is critical since addition is
involved in:	

	 • Incrementing the PC.	
	 • Performing address calculations in LOAD, STORE, BRANCH, … instructions.	
	 • Implementing the ADD and SUB instructions, for loop control, arrays, etc. 	

The Blitz-64 architecture does not support arithmetic on integer data of size byte,
halfword, or word. How much of a performance penalty does this radical decision
incur?	

In modern cores, we can assume that addition is implemented with carry lookahead
units (CLA), each with 4 inputs. Thus, the carry lookahead tree has a branching
factor of 4 and the depth of the tree determines the gate delay for the adder unit. A
16 bit adder will require 2 CLA levels (4 × 4) to add 16 bits. A 32 bit adder will
require 3 levels, since 4 × 4 is not enough. However, a 3 level tree will also be
sufficient for a 64 bit adder, since 4 × 4 × 4 = 64.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	29 342

Chapter 2: Terminology and Notation	

Therefore, 64-bit addition incurs no performance penalty over 32 bit addition.
This holds for subtraction, as well.	

Concerning multiplication, the execution time is constrained by the time to add a
column of numbers. The setup and sign-adjustment logic incurs a constant delay
which does not depend on word size.	

For 32 bit multiplication, a set of 32 numbers must be added. For a 64 bit
multiplication, a set of 64 numbers must be added. Many of the additions can be
done in parallel, and the final result sum can be determined in log time. A set of 32
numbers can be added using a tree of adders of depth 5. A set of 64 numbers can be
added using a tree of adders of depth 6. Therefore, the time required to multiply 64
bit values will be no more than 20% greater than the time required to multiply 32
bit values.	

Thus, our (perhaps counterintuitive) conclusions are:	

•	There is no significant performance penalty to pay for performing all arithmetic
using 64 bits.	

•	The simplicity to be gained by eliminating legacy data types (i.e., “unsigned”,
“byte”, “halfword”, and “word”) is well worth any small performance cost.	

Sign-Extension	

A value of one size can be “sign-extended” to a larger size. For example, a 32 bit
word can be sign-extended to 64 bits.	

The sign-extension operation does not change the integer value of the number.	

The sign-extension operation looks at the sign bit (i.e., the most significant bit) of the
smaller number. Then, that bit value is replicated as necessary to fill additional bits
on the left, most significant end of the smaller value, until it is the required larger
size.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	30 342

Chapter 2: Terminology and Notation	

For example, sign-extending a 16 bit value to 64 bits will look at bit [15] of the input
value. If it is “1”, the number is negative. To sign-extend it to 64 bits, the uppermost
48 bits, i.e., bits [63:16], will be filled with “1”. Otherwise, the uppermost bits will be
filled with “0”.	

Many Blitz-64 instructions include a 16 bit “immediate” value, which is encoded
directly within the instruction. This immediate value is sign-extended to 64 bits
before being used.	

Size Reduction	

Often it is necessary to take a larger value and reduce its size. For example, a register
may contain a doubleword value (i.e., 64 bits) and we may want to reduce it to a
halfword (i.e., 16 bits).	

A size reduction can be performed by simply cutting off (i.e., ignoring, eliminating)
the uppermost bits.	

If the original value happens to lie within the range representable by the smaller
size, then there is no problem. The value remains unchanged by the operation.	

If the original value does not lie within the range representable by the smaller size,
then the new value will be numerically different. This is considered a form of
“overflow”, in the sense that the operation has resulted in a mathematically incorrect
result.	

Looking at a value, we can easily determine whether a size reduction will result in
overflow or not. For example, if we are reducing a 64 bit value to 16 bits, we ask
whether the upper 48 bits (i.e., bits [63:16]), which will be discarded, are all equal to
the sign bit (i.e., bit [15]) of the new, smaller result. If so, there is no problem. In
other words, we ask whether bits [63:15] are either all 0s or all 1s. If the uppermost
49 bits are all equal, there is no problem, but if both 0s and 1as are present, the size
reduction operations will cause an overflow error.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	31 342

Chapter 3: Architectural Summary	

A doctor can bury his mistakes but an architect can
only advise his clients to plant trees.	

	 	 	 — Frank Lloyd Wright	

Quick Summary	

• Register size: 64 bits.	
• Number of general purpose registers: 16.	
• Zero register: r0 always reads as zero and acts as a destination for unneeded
results.	
• All remaining registers (r1, r2, … r15) are general purpose and equally functional.	
•	Natural data size: 64 bits (i.e., doubleword)	
	 — Integer overflow is never ignored; an exception is always generated.	
	 — All arithmetic is done using 64 bit signed integers.	
• Floating Point:	
	 — No separate floating-point regs. General purpose regs are used.	
	 — Floating point precision: Double only; there is no single precision.	
• Main memory is Big Endian.	
• Instructions are 32 bits in size.	
• Compressed instructions are multiples of 8 bits in size.	
• Number of privilege modes: 2 (Kernel and User).	
• Number of Control and Status Registers (CSRs): 16.	
• Size of Control and Status Registers (CSRs): 64 bits.	
• Program-generated addresses: 36 bits.	
• Maximum Physical Memory: 16 GiBytes.	
• Memory-Mapped Address Range: 16 GiBytes.	
• Maximum Virtual Address Space: 32 GiBytes.	
• Page size: 16 KiBytes.	
• Virtual Memory System: Page tables are supported.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 32 342

Chapter 3: Architectural Summary	

Memory, Addresses, and Memory-Mapped I/O	

Installed physical memory up to 16 GiBytes can be addressed without using page
tables.	

There is an additional 16 GiBytes of physical address space allocated for memory-
mapped I/O.	

Virtual address spaces use page tables that map program generated addressed into
physical addresses. Virtual address spaces can be up to 32 GiBytes in size.	

All program-generated addresses are 36 bits. Note that 236 = 64 Gi.	

Supporting Larger Main Memory	

Using virtual memory and page tables, up to 16 TiBytes of physical memory is
supported.	

In the basic configuration, up to 16 GiBytes of physical memory is supported in a
simple, uniform, linear address space. This should suffice for many applications.
Larger memory sizes can be supported, but these can only be accessed via virtual
addresses and the page table mapping.	

Virtual memory and the memory mapping scheme are discussed in a later chapter.	

The limitation on addresses to 36 bits might seem naïve and overly restrictive, but
this is an important design choice and was not made lightly. ISA design involves a
trade-off between (1) a large number of registers, (2) a small instruction size, (3)
long addresses, and (4) the number of instructions required to load arbitrary
addresses. Since you can’t have it all, our design decisions involve a compromise on
these issues.	

Remember that main memory is only one tier in a memory hierarchy ranging from
terabytes of solid state stable memory to megabytes of fast cache. Main memory is
properly viewed as a staging ground in which programs and data are held, in order
to supply the core with grist for computation. It is nothing more than a form of per-
core cache between a processing unit and shared data sources. We predict that the
bandwidth between main memory and the core/ fast-cache circuitry will remain a
performance bottleneck; 16 GiBytes seems more than adequate to keep a single core

Blitz-64 Instruction Set Architecture / Porter	 Page of 	33 342

Chapter 3: Architectural Summary	

busy. Since Blitz-64 cores may be deployed in multi-core systems with 100s or
1000s of cores, the per-core limit of 16 GiBytes is properly understood as imposing a
limitation on the entire core array measured in terabytes or exabytes.	

The Processor State	

The entire state of a running Blitz-64 core consists of:	

	 • The general purpose registers (r0, … r15)	
	 • The Program Counter (PC)	
	 • A set of 16 “Control and Status Registers” (CSRs)	

(Here we mean the directly visible state of the core, observable by software;
additional state, such as related to pipeline stages, cache contents, etc. should not
affect software functionality or correctness.)	

The Registers	

The general purpose registers are 64 bits (a doubleword, 8 bytes) in width.	

There are 16 registers.	
 	
The registers are named r0, r1, r2, … r15.	

Register r0 is a special “zero register”. When read, its value is always
0x0000_0000_0000_0000. Whenever there is an attempt to write to r0, the data is
simply discarded.	

All other registers are treated identically by the ISA; there is nothing special about
any register.	

By convention, several registers have special functions and these registers are given
alternate names. The assembler will accept either name.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	34 342

Chapter 3: Architectural Summary	

	 	 Alternate	
	 	 Name 	 Function 	
	 r0	 	 Zero	
	 r1	 	 Argument 1 / Return Value	
	 r2	 	 Argument 2	
	 r3	 	 Argument 3	
	 r4	 	 Argument 4	
	 r5	 	 Argument 5	
	 r6	 	 Argument 6	
	 r7	 	 Argument 7	
	 r8	 t	 Temp register, used by assembler/linker	
	 r9	 s0	 Work reg (caller-saved)	
	 r10	 s1	 Work reg (caller-saved)	
	 r11	 s2	 Work reg (caller-saved)	
	 r12	 tp	 Thread data pointer	
	 r13	 gp	 Global data pointer	
	 r14	 lr	 Link register	
	 r15	 sp	 Stack pointer	

All registers are treated equally by the ISA, with the exception of r0. Their special
functions arise solely in how the programmer uses them in instructions.	

Register Usage Conventions	

The registers r1 … r7 are used to pass arguments to functions and methods and r1
is used to return results. Registers r1 … r7 are also used as general working registers
to hold local variables and intermediate results within a function or method. The
compiler or assembly language programmer is free to use them as desired within
functions or methods. If fewer than 7 arguments are passed, then the remaining
registers can be used as general work registers in the function/method. If more than
7 arguments are passed, or if any argument is larger than a doubleword, then those
arguments will be passed on the stack. If most of the registers are taken up with
argument passing and the function/method has immediate need for some
temporary work registers, then the function/method may, at its discretion,
immediately upon entry, store the less urgently needed arguments in the stack
frame, thereby freeing up registers for other uses.	

The Blitz-64 calling convention sets aside a fairly large number of registers for
argument passing. Each argument must be collected by the calling code and moved
into a known, agreed-upon location by the caller’s code. Even if the argument were

Blitz-64 Instruction Set Architecture / Porter	 Page of 	35 342

Chapter 3: Architectural Summary	

to be placed on the stack, the caller would at least need to move the argument into a
register temporarily to do this.	

When the compiler is compiling a function, it cannot know whether it is best for the
value to be placed in a register or written to the stack. Only the called function can
make an informed decision about this. Therefore, the Blitz convention is to place a
large number of arguments (up to 7) in registers and let the called function store
some of all of them to memory, at its discretion. Ideally, the called function can avoid
moving any arguments to memory.	

We considered allocating all available registers to carry arguments, but there are
rarely functions with more than 7 arguments and it may be convenient for a function
to have some registers free upon entry. We can assume a function with more than 7
arguments is big and complex; having three work registers available may allow the
function to achieve much of its task without having to spill registers to the stack
frame just to have some work registers to work with. Placing all arguments in
registers and therefore leaving no work registers available means that some spills
must occur immediately upon entry into the function.	

Therefore, we allocate three additional registers called s0, s1, and s2 (i.e., r9, r10,
and r11) as work registers.	

The “temporary register” (register t, i.e., r8) is used by the assembler for some
synthetic instructions. When describing the synthetic instructions, this document
indicates whether and how register t will be used. The use of register t is
“clandestine”, in the sense that t is not explicitly named in the synthetic instructions.
The programmer and compiler are free to use register t in a function/method, as
long as they realize that some synthetic instructions may alter t.	

The “caller” of a function/method should assume that registers r1…r7, t, and s0…s2
will trashed (i.e., altered or arbitrarily modified) by the “called” function/method. If
the contents are important, the caller should save their contents before calling the
function/method. In that sense, r1…r7, t, and s0…s2 are said to be “caller-saved”.	

A “callee-saved” register is one in which the caller can assume that the called
function will not modify the value. Or more accurately, if the called function needs to
use a callee-saved register, it will save it first and then restore it before returning.	

In some sense, the registers tp, gp, and sp are callee-saved, since the convention
states that they are to have the same value upon return that they had before the call.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	36 342

Chapter 3: Architectural Summary	

We considered setting aside some registers as “callee-saved”. 	1

In a program with multiple threads, each thread may have a block of data specific to
that thread. The “thread pointer register” (register tp, i.e., r12) points to this block
of data, making it easy for the thread to access its private data. Typically, this register
does not change and stays constant during the entire life of the thread. 	2

The “global pointer register” (register gp, i.e., r13) points to a block of memory
containing static global variables shared by all functions/methods in all threads,
making it easy for the code to access these variables with a single LOAD/STORE
instruction using a small offset. The 16 bit immediate offset in LOAD/STORE
instructions makes it easy to access data within a 4 page (i.e., 64 KiByte) range by
using offsets up to ±32 KiBytes.	

Typically, the global data will be placed at the beginning of the virtual address space,
i.e., at address 0x8_0000_0000. Therefore, register gp will contain 0x8_0000_8000
which is the start of virtual memory, plus 2 pages (i.e., plus 32 KiBytes), allowing
access to the first 4 pages of virtual memory. Register gp will remain constant during
the execution of the program.	

The “link register” (register lr, i.e., r14) is used in function/method invocation. The
CALL instruction will store the return address in register “lr” and the RET
instruction will jump back to that address. If the function/method is a leaf routine
(i.e., if it doesn’t invoke other functions/methods) then the return address can
remain in lr until the RET instruction causes the return. Otherwise, the value of lr
must be saved somewhere, typically on the stack, and retrieved before the return.	

The “stack pointer register” or “stack top” (register sp, i.e., r15) points to the
runtime stack. By convention, the stack grows downward from high memory (larger
addresses) toward low memory (smaller addresses). By convention, sp will point to
the first byte of the stack, i.e., the most significant byte of the doubleword sitting at
the top of the stack. By convention, the stack will always grow in multiples of 8. In
other words, sp will always contain a doubleword aligned address.	

 In fact, s0…s2 were originally callee-saved with the “s” standing for “saved”.1

 In programs which have only a single thread and no need for a thread pointer, this register might 2

instead be used as a callee-saved register. But beware that called functions will likely use this
register to locate various parameters; using register tp as a callee-saved register is not practical.

Blitz-64 Instruction Set Architecture / Porter	 Page of 	37 342

Chapter 3: Architectural Summary	

Although floating point instructions are defined, there are no separate floating
point registers. Instead, floating point data is kept and manipulated in the general
purpose registers.	

There is a program counter (PC) whose size is 36 bits.	

Thus, the PC can contain any number within 0x0_0000_0000 ... 0xF_FFFF_FFFF. Any
attempt to load the PC with a number outside this range is legal: bits [63:36] will be
ignored with no overflow exception signaled.	

Commentary Many processor ISAs include a “condition code register.” Such a
register usually contains bits such as:	

	 • Sign / Negative Value	
	 • Zero / Equal	
	 • Carry Bit	
	 • Overflow	

In such ISAs, there is usually a COMPARE instruction (which will set bits in the
status register) and several BRANCH instructions (which will test the status register
bits and conditionally jump).	

The normal pattern of most code is to execute a COMPARE instruction and,
immediately afterward, execute a BRANCH instruction. They go together and
effectively perform a single “test-and-jump” operation.	

Blitz-64 does not include a “condition code register.” Instead, the BRANCH
instructions will perform both the test and the conditional jump. By combining them
into a single instruction, greater performance efficiency can be achieved whenever
this “test-and-jump” operation must be performed.	

Control and Status Registers (CSRs)	

The “Control and Status Registers” (CSRs) are used by the protection and privilege
system. The privilege system is used by the OS kernel to protect itself and manage

Blitz-64 Instruction Set Architecture / Porter	 Page of 	38 342

Chapter 3: Architectural Summary	

user-level processes. The CSRs are also used for interrupt processing, thread
switching, and virtual memory manipulation.	

At any moment, the processor will be executing either in “user mode” or in “kernel
mode”. OS kernel code is executed in kernel mode and application programs are
executed in user mode.	

Each instruction is either “privileged” or “non-privileged”. When the core is
running in user mode, only non-privileged instructions may be executed. When
running in kernel mode, all instructions are usable.	

Changing the privilege mode is accomplished by writing to a CSR. A single bit in the
status register (csr_status) determines the current privilege mode.	

CSRs can only be read/written when running in kernel mode.	

There are 16 CSRs.	

Each CSR has a special name and each has a unique function. Reading and/or writing
a CSR will have an effect on the processor operation. The CSRs are read and written
with just a couple of general-purpose instructions. The instructions to read/write
the CSRs are privileged and can only be executed in kernel mode.	

In order to understand the user-mode instruction set and to create user-level code,
the CSRs can and should be ignored, especially on your first introduction to Blitz-64.	

Virtual Memory	

Blitz-64 supports virtual memory. For each virtual address space, there will be a
page table stored in memory. The page table is organized as a tree of nodes and, at
any time, the root of the current page table is pointed to by a control and status
register (CSR) named csr_pgtable.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	39 342

Chapter 3: Architectural Summary	

Pages in the virtual address space can be marked as	

	 • valid / invalid	
	 • writable	
	 • executable	
	 • copy-on-write	
	 • dirty	

Any attempt by user code to access a page in violation of the permissions for that
page will cause an exception.	

The virtual memory architecture and page tables are described in the chapter titled
“Memory, Address Spaces, and the Page Table”.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	40 342

Chapter 4: Instruction Formats	

Quick Summary	

• Machine instructions are 32 bits long.	
	 	 The 16 registers are encoded in fields of 4 bits.	
	 	 Immediate values occupy fields of either 16 or 20 bits.	
• There are 4 formats of instructions, called A, B, C, and D.	
• Assembly syntax is summarized.	
	 	 The destination register is schematically called “RegD”. 	
	 	 The operand registers are schematically called “Reg1”, “Reg3”, and “Reg3”. 	
• Compressed instructions will be defined and specified in the future.	
	 	 Compressed instructions are variable in length.	
	 	 Compressed and full-sized instructions can be distinguished by their opcodes.	

Compressed and Full-Sized Instructions	

There are two types of instructions:	

	 • Full-sized instructions (32 bits)	
	 • Compressed instructions (variable length)	

Each compressed instruction is exactly equivalent in function to a 32 bit full-sized
instruction. However, there may be many 32 bit instructions for which there is no
equivalent compressed version.	

A major performance bottleneck is the time required to fetch instructions from main
memory. The entire purpose of compressed instructions is to reduce the size of code.	

The full-sized and compressed instructions may be intermixed. There is no “mode”
bit to put the processor into “compressed instruction mode”, as there is in some
processors.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 41 342

Chapter 4: Instruction Formats	

Commentary Reducing the size of code results in increased processor
performance since it allows more instructions to be cached, reducing the time to
fetch instructions from main memory, which is often a performance bottleneck.	

In a typical hardware implementation, when a compressed instruction is fetched
and loaded into the Instruction Register (IR) prior to being executed, the hardware
will notice that it is a compressed instruction. At that time, the compressed
instruction will immediately be expanded into the equivalent 32 bit instruction.
Thereafter, there is no need for any additional hardware logic to support the
compressed instruction set.	

A sophisticated assembler will automatically generate compressed instructions
whenever it can. The idea is that the programmer (or compiler) will create only 32
bit instructions. Upon encountering a 32 bit instruction that can also be coded as a
compressed instruction, the assembler will choose the smaller instruction. Such an
assembler will relieve programmers (and compilers) from the burden of selecting
compressed instructions, although a sophisticated compiler may be able to
generate shorter code sequences if it is aware of which instructions can be
compressed.	

At this time, only the full-sized instructions are defined. The compressed
instructions will be defined in the future, based on which full-sized instructions are
most widely used.	

Opcode Encoding	

The first 2 bits in every instruction determine whether or not it is a compressed
instruction. All full-sized instructions begin with bits 00.	

	 00 - Full-sized instruction	
	 01 - Compressed instruction 	
	 10 - Compressed instruction	
	 11 - Compressed instruction	

From here on, we only discuss full-sized instructions.	

The instruction opcode is either 1 or 2 bytes. The opcode is in either the first byte or
the first two bytes of the instruction, i.e., the most significant byte or bytes.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	42 342

Chapter 4: Instruction Formats	

The first byte of every instruction is called “OP1” and the second byte of the opcode,
if present, is called “OP2”.	

If the first byte (OP1) is 0x00, then a second opcode byte (OP2) will be used. If the
first byte (OP1) is non-zero, then there will be no second byte.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	43 342

Chapter 4: Instruction Formats	

Instruction Fields	

We use the following notations to describe the various bit fields in an instruction.	

	 Reg1	 4 bits, indicating a source register	
	 Reg2 	 4 bits, indicating a source register	
	 Reg3 	 4 bits, indicating a source register	
	 RegD 	 4 bits, indicating the destination register	
	 immed3	 3 bits containing an immediate value	
	 immed6	 6 bits containing an immediate value	
	 immed10	 10 bits containing an immediate value	
	 immed16	 16 bits containing an immediate value	
	 immed20	 20 bits containing an immediate value	

The registers are encoded in the obvious way:	

	 r0 = 0000	
	 r1 = 0001	
	 …	
	 r15 = 1111	

The immed3 field is used in the CHECKADDR instruction and is interpreted as a
code indicating which sort of check to perform.	

The immed6 field is used in the shifting instructions and is interpreted as a positive
number, i.e., the number of bits to shift by.	

The immed10 field is only used in the SYSCALL instruction and is interpreted as a
positive number.	

The immed16 and immed20 fields are signed-extended to 64 bits, unless explicitly
noted otherwise.	

	 Smallest	 Largest	 Number 	
	 Value 	 Value 	 of Values 	 	
	 reg	 r0	 r15	 16	 = 24	
	 immed3	 0	 7	 8	 = 23	
	 immed6	 0	 63	 64	 = 26	
	 immed10	 0	 1,023	 1,024	 = 210	
	 immed16	 -32,768	 +32,767	 65,536	 = 216 = 64 Ki	
	 immed20	 -524,288	 +524,287	 1,048,576	 = 220 = 1 Mi	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	44 342

Chapter 4: Instruction Formats	

Instruction Formats	

FIGURE: Instruction Formats	

When giving the binary patterns for the various instruction formats below, we use
the following notation to represent bit fields.	

	 DDDD = RegD	
	 1111 = Reg1	
	 2222 = Reg2	
	 3333 = Reg3	
	 VVVVVVVV = Immediate value	
	 XXXXXXXX = Op-code	
	 00000000 = Zero bits	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	45 342

Chapter 4: Instruction Formats	

For some instructions, one or more of the fields may be unused.	

Unused fields are ignored. The assembler should fill them with zeros, but they do
not affect the core’s execution.	

For example, the ADD instruction is a Format-A instruction, which has room for 4
register operands. However the ADD instruction only uses 3 registers. The
remaining field is unused for ADD.	

The shorter immediate values (i.e., immed3, immed6, and immed10) are encoded
as 16 bit values with the upper bits being unused and ignored.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	46 342

Chapter 4: Instruction Formats	

	 Format-A instructions:	
	 	 Operands:	
	 	 	 RegD,Reg1,Reg2,Reg3	
	 	 Binary Encoding:	

0000 0000 XXXX XXXX 3333 2222 1111 DDDD
	 	 Examples:	

SYSRET # Return from trap handler
CHECKH r4 # Ensure r4 is within 16 bits
SEXTW r4,r6 # r4 ← SignExtend(r6)
ADD r4,r6,r7 # r4 ← r6+r7

	 Format-B instructions:	
	 	 Operands:	
	 	 	 RegD,Reg1,immed16	
	 	 Binary Encoding:	

00XX XXXX VVVV VVVV VVVV VVVV 1111 DDDD
	 	 Examples:	

ADDI r4,r6,1234 # r4 ← r6+1234
LOAD.B r6,1234(r4) # r6 ← Mem[1234+r4]

	 Format-C instructions:	
	 	 Operands:	
	 	 	 Reg1,Reg2,immed16	
	 	 Binary Encoding:	

00XX XXXX VVVV VVVV VVVV 2222 1111 VVVV
	 	 Examples:	

B.LT r4,r6,loop # if r4<r6, goto offset(pc)
STORE.B 1234(r4),r6 # Mem[1234+r4] ← r6

	 Format-D instructions:	
	 	 Operands:	
	 	 	 RegD,immed20	
	 	 Binary Encoding:	

00XX XXXX VVVV VVVV VVVV VVVV VVVV DDDD	
	 	 Examples:	

JAL lr,MyFunc # call: pc←offset+pc; lr←ret addr
UPPER20 r4,0x3A4B5 # r4 ← (0x3A4B5 << 16)

Blitz-64 Instruction Set Architecture / Porter	 Page of 	47 342

Chapter 4: Instruction Formats	

Operand Syntax	

In assembly language, the instruction operands are specified in several different
ways.	

	 General Form	 Example	
	 Format-A	
	 	 A-0	 OP <no operands>	 sysret	
	 	 A-1	 OP Reg1	 checkb r1	
	 	 A-2	 OP RegD,Reg1	 sextb r7,r1	
	 	 A-3	 OP RegD,Reg1,Reg2	 add r7,r1,r2	
	 	 A-4	 OP RegD,Reg1,Reg2,Reg3	 muladd r7,r1,r2,r3	
	 	 A-5	 < No longer used >	
	 	 A-6	 < No longer used >	
	 	 A-7	 OP RegD,CSRReg1,Reg2	 csrswap r7,csr1,r2	
	 	 A-8	 OP RegD,CSRReg1	 csread r7,csr1	
	 	 A-9	 OP RegD	 getstat r7	
	 Format-B	
	 	 B-1	 OP RegD,Reg1,immed16	 addi r7,r1,0x1234	
	 	 B-2	 OP RegD,immed16(Reg1)	 load.b r7,offset(r1)	
	 	 B-3	 OP RegD,Reg1,immed3	 checkaddr r7,r1,5	
	 	 B-4	 OP immed10	 syscall 123	
	 	 B-5	 OP RegD,Reg1,immed6	 slli r7,r1,5	
	 	 B-6	 OP CSRReg1,immed16	 csrset csr_status,0x1234	
	 Format-C	
	 	 C-1	 OP immed16(Reg1),Reg2	 store.b offset(r1),r2	
	 	 C-2	 OP Reg1,Reg2,immed16	 b.le r1,r2,MyLabel	
	 Format-D	
	 	 D-1	 OP RegD,immed20	 jal lr,MyLabel	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	48 342

Chapter 4: Instruction Formats	

Notice that the destination is almost always the first (leftmost) operand. This is easy
to remember since this order mimics the order of an assignment statement in a
high-level programming language.	

	 Typical assignment statement:	
	 	 destination = …expr… ;	
	 Blitz assembler:	
	 	 RegD, …other operands…	

For the branching instructions, the operand order mimics an “if” statement.	

	 Typical “if” statement:	
	 	 if (x <= y) then go to MyLabel	
	 Blitz assembler:	

B.LE r1,r2,MyLabel

Blitz-64 Instruction Set Architecture / Porter	 Page of 	49 342

Chapter 5: Instructions	

Don’t leave the classroom of pain without
gathering wisdom from its instruction.	

	 	 	 — Tim Hiller	

Machine Instructions versus Synthetic Instructions	

A machine instruction is implemented in hardware. Each machine instruction has
a single numeric opcode and, in assembly code, the opcode is indicated with a
symbolic name, such as “ADD” or “SLL”.	

Synthetic instructions are not implemented in hardware. Instead, each synthetic
instruction is processed by the assembler and/or linker and translated into machine
instructions.	

Each synthetic instruction has a symbolic opcode, such as “LOADD” or “CALL”, so the
synthetic instructions may be difficult to distinguish when looking at an assembly
code program.	

Typically, each synthetic instruction is translated into a single machine instruction,
but in some cases the translation will be 2, 3, or 4 machine instructions. The
processor core does not see or execute synthetic instructions.	

An Instruction Set Architecture (ISA) normally defines only machine instructions,
because that is all that hardware designers need in a specification of what to
implement. However, this document also includes descriptions of synthetic
instructions, alongside the machine instructions, making an easy reference for
programmers.	

In the instruction listings, synthetic instructions are identified by marking them
with an asterisk (*) prefixing the symbolic opcode, as in *LOADD or *CALL. This
asterisk is only used in this documentation to make it easy to identify the synthetic
instructions. The asterisk is not part of the assembly language.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 50 342

Chapter 5: Instructions	

All Instructions - Summary Listing	

Arithmetic	

	 ADD 	 RegD,Reg1,Reg2	
	 ADDI 	 RegD,Reg1,immed16	
	 ADDOK 	 RegD,Reg1,Reg2 	 RegD ← (Reg1+Reg2 overflows) ? 0 : 1	
	 ADD3 	 RegD,Reg1,Reg2,Reg3 	 RegD ← Reg1+Reg2+Reg3 (unsigned)	
	 SUB 	 RegD,Reg1,Reg2	
*	MUL	 RegD,Reg1,Reg2	
	 MULADD	 RegD,Reg1,Reg2,Reg3	 RegD ← (Reg1 × Reg2) + Reg3	
	 MULADDU	 RegD,Reg1,Reg2,Reg3	 RegD ← (Reg1 × Reg2) + Reg3 (unsigned)	
	 DIV 	 RegD,Reg1,Reg2	
	 REM 	 RegD,Reg1,Reg2	
*	NEG 	 RegD,Reg1	
*	ABS 	 RegD,Reg1	

Logical	

	 AND 	 RegD,Reg1,Reg2	
	 ANDI 	 RegD,Reg1,immed16	
	 OR 	 RegD,Reg1,Reg2	
	 ORI 	 RegD,Reg1,immed16	
	 XOR 	 RegD,Reg1,Reg2	
	 XORI 	 RegD,Reg1,immed16	
*	BITNOT 	 RegD,Reg1	 RedD ← Bitwise NOT (Reg1)	
*	LOGNOT 	 RegD,Reg1 	 RegD ← (Reg1 = 0) ? 1 : 0	

Move	

*	MOV 	 RegD,Reg1	
*	MOVI 	 RegD,immediate-64	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	51 342

Chapter 5: Instructions	

Shift	

	 SLL 	 RegD,Reg1,Reg2	 Shift left logical	
	 SLLI 	 RegD,Reg1,immed6	
	 SLA 	 RegD,Reg1,Reg2	 Shift left arithmetic	
	 SLAI 	 RegD,Reg1,immed6	

	 SRL 	 RegD,Reg1,Reg2	 Shift right logical	
	 SRLI 	 RegD,Reg1,immed6	
	 SRA 	 RegD,Reg1,Reg2	 Shift right arithmetic	
	 SRAI 	 RegD,Reg1,immed6	

	 ROTR 	 RegD,Reg1,Reg2 	 Rotate right (circular)	
	 ROTRI 	 RegD,Reg1,immed6	

Sign Extension	

	 SEXTB 	 RegD,Reg1	 Sign extend byte to 64 bits	
	 SEXTH 	 RegD,Reg1 	 Sign extend 16 bits to 64 bits	
	 SEXTW 	 RegD,Reg1 	 Sign extend 32 bits to 64 bits	

Range Checking	

	 NULLTEST 	 Reg1	 Trap if Reg1 is contains NULL	
	 CHECKB 	 Reg1	 Trap if Reg1 not within -128 … +127	
	 CHECKH 	 Reg1	 Trap if Reg1 not within -32768 … +32767	
	 CHECKW 	 Reg1	 Trap if Reg1 not within 32 bit range	
	 INDEX0 	 RegD,Reg1,Reg2,Reg3	 Reg1=arrayPtr, Reg2=header, Reg3=index	
	 INDEX1 	 RegD,Reg1,Reg2,Reg3	 . RegD ← Reg1 + 8 + (Reg3 * scale)	
	 INDEX2 	 RegD,Reg1,Reg2,Reg3	 . Reg2 = header = [ArrayMAX || ArrayCURR]	
	 INDEX4 	 RegD,Reg1,Reg2,Reg3	 . Trap if (Reg3 < 0) or (Reg3 ≥ ArrayCURR)	
	 INDEX8 	 RegD,Reg1,Reg2,Reg3	 . or (ArrayMAX = 0)	
	 INDEX16 	 RegD,Reg1,Reg2,Reg3	 .	
	 INDEX24 	 RegD,Reg1,Reg2,Reg3	 .	
	 INDEX32 	 RegD,Reg1,Reg2,Reg3	 .	

Byte Reordering	

	 ENDIANH 	 RegD,Reg1	 Reorder bytes in all 4 halfwords	
	 ENDIANW 	 RegD,Reg1 	 Reorder bytes in both words	
	 ENDIAND 	 RegD,Reg1 	 Reorder bytes in a doubleword	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	52 342

Chapter 5: Instructions	

Test and Set a Boolean	

	 TESTEQ 	 RegD,Reg1,Reg2 	 RegD ← (Reg1 = Reg2) ? 1 : 0	
	 TESTNE 	 RegD,Reg1,Reg2 	 RegD ← (Reg1 ≠ Reg2) ? 1 : 0	
	 TESTLT 	 RegD,Reg1,Reg2 	 RegD ← (Reg1 < Reg2) ? 1 : 0	
	 TESTLE 	 RegD,Reg1,Reg2 	 RegD ← (Reg1 ≤ Reg2) ? 1 : 0	
*	TESTGT 	 RegD,Reg1,Reg2 	 RegD ← (Reg1 > Reg2) ? 1 : 0	
*	TESTGE 	 RegD,Reg1,Reg2 	 RegD ← (Reg1 ≥ Reg2) ? 1 : 0	

	 TESTEQI 	 RegD,Reg1,immed16	 RegD ← (Reg1 = immed) ? 1 : 0	
	 TESTNEI 	 RegD,Reg1,immed16 	 RegD ← (Reg1 ≠ immed) ? 1 : 0	
	 TESTLTI 	 RegD,Reg1,immed16 	 RegD ← (Reg1 < immed) ? 1 : 0	
	 TESTLEI 	 RegD,Reg1,immed16 	 RegD ← (Reg1 ≤ immed) ? 1 : 0	 	
	 TESTGTI 	 RegD,Reg1,immed16	 RegD ← (Reg1 > immed) ? 1 : 0	 	
	 TESTGEI 	 RegD,Reg1,immed16	 RegD ← (Reg1 ≥ immed) ? 1 : 0	 	

*	TESTEQZ 	 RegD,Reg1 	 RegD ← (Reg1 = 0) ? 1 : 0, i.e., if zero	
*	TESTNEZ 	 RegD,Reg1 	 RegD ← (Reg1 ≠ 0) ? 1 : 0, i.e., if non-zero	
*	TESTLTZ 	 RegD,Reg1 	 RegD ← (Reg1 < 0) ? 1 : 0, i.e., if negative	
*	TESTLEZ 	 RegD,Reg1 	 RegD ← (Reg1 ≤ 0) ? 1 : 0, i.e., if non-positive	
*	TESTGTZ 	 RegD,Reg1 	 RegD ← (Reg1 > 0) ? 1 : 0, i.e., if positive	
*	TESTGEZ 	 RegD,Reg1 	 RegD ← (Reg1 ≥ 0) ? 1 : 0, i.e., if non-negative	

Branch - Limited Range	

	 B.EQ 	 Reg1,Reg2,immed16	 Branch if Reg1 = Reg2; Offset is PC-relative	
	 B.NE 	 Reg1,Reg2,immed16 	 Branch if Reg1 ≠ Reg2; Offset is PC-relative	
	 B.LT 	 Reg1,Reg2,immed16 	 Branch if Reg1 < Reg2; Offset is PC-relative	
	 B.LE 	 Reg1,Reg2,immed16 	 Branch if Reg1 ≤ Reg2; Offset is PC-relative	

Branch - General	

*	BEQ 	 Reg1,Reg2,address	 Branch if Reg1 = Reg2	
*	BNE 	 Reg1,Reg2,address 	 Branch if Reg1 ≠ Reg2	
*	BLT 	 Reg1,Reg2,address 	 Branch if Reg1 < Reg2	
*	BLE 	 Reg1,Reg2,address 	 Branch if Reg1 ≤ Reg2	
*	BGT 	 Reg1,Reg2,address	 Branch if Reg1 > Reg2	
*	BGE 	 Reg1,Reg2,address 	 Branch if Reg1 ≥ Reg2	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	53 342

Chapter 5: Instructions	

*	BEQI 	 Reg,value,address	 Branch if Reg = immediate value	
*	BNEI 	 Reg,value,address 	 Branch if Reg ≠ immediate value	
*	BLTI 	 Reg,value,address	 Branch if Reg < immediate value	
*	BLEI 	 Reg,value,address	 Branch if Reg ≤ immediate value 	
*	BGTI 	 Reg,value,address	 Branch if Reg > immediate value	
*	BGEI 	 Reg,value,address	 Branch if Reg ≥ immediate value	

*	BEQZ 	 Reg,address	 Branch if Reg = 0	
*	BNEZ 	 Reg,address 	 Branch if Reg ≠ 0	
*	BLTZ 	 Reg,address	 Branch if Reg < 0, i.e., if negative	
*	BLEZ 	 Reg,address	 Branch if Reg ≤ 0, i.e., if not positive 	
*	BGTZ 	 Reg,address	 Branch if Reg > 0, i.e., if positive	
*	BGEZ 	 Reg,address	 Branch if Reg ≥ 0, i.e., if not negative	

*	BFALSE 	 Reg,address	 Branch if Reg = 0, i.e., if “false”	
*	BTRUE	 Reg,address	 Branch if Reg ≠ 0, i.e., if “true”	

Larger Addresses	

	 UPPER20 	 RegD,immed20	 RegD ← (immed<<16)	
	 UPPER16 	 RegD,Reg1,immed16	 RegD ← (immed<<16) + Reg1	
	 SHIFT16 	 RegD,Reg1,immed16	 RegD ← (Reg1 + immed16) << 16	
	 ADDPC 	 RegD,immed20	 RegD ← immed + PC	
	 AUIPC 	 RegD,immed20	 RegD ← (immed<<16) + PC	

Jumping - Limited Range	

	 JAL 	 RegD,immed20	 RegD ← return addr; Target ← PC+offset	
	 JALR 	 RegD,immed16(Reg1)	 RegD ← return addr; Target ← offset+Reg1	

Call / Jump / Return - General	

*	CALL 	 address	 Jump to any address; save return addr in “lr”	
*	CALLR 	 Reg1	 Jump to address; save return addr in “lr”	
*	RET 	 <no operands>	 Return value is in link register “lr”	
*	JUMP 	 address	 Jump to any address	
*	JR 	 Reg1	 Indirect jump, via register	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	54 342

Chapter 5: Instructions	

Load - Limited Range	

	 LOAD.B 	 RegD,immed16(Reg1)	 Sign extend 8 bits to 64 bits	
	 LOAD.H 	 RegD,immed16(Reg1) 	 Sign extend 16 bits to 64 bits	
	 LOAD.W 	 RegD,immed16(Reg1) 	 Sign extend 32 bits to 64 bits	
	 LOAD.D 	 RegD,immed16(Reg1)	

Load - General	

*	LOADB 	 RegD,address	
*	LOADH 	 RegD,address	
*	LOADW 	 RegD,address	
*	LOADD 	 RegD,address	

*	LOADB 	 RegD,offset(Reg1)	
*	LOADH 	 RegD,offset(Reg1)	
*	LOADW 	 RegD,offset(Reg1)	
*	LOADD 	 RegD,offset(Reg1)	

Store - Limited Range	

	 STORE.B 	 immed16(Reg1),Reg2	 Ignore upper 56 bits	
	 STORE.H 	 immed16(Reg1),Reg2 	 Ignore upper 48 bits	
	 STORE.W 	 immed16(Reg1),Reg2 	 Ignore upper 32 bits	
	 STORE.D 	 immed16(Reg1),Reg2	

Store - General	

*	STOREB 	 address,Reg2	
*	STOREH 	 address,Reg2	
*	STOREW 	 address,Reg2	
*	STORED 	 address,Reg2	

*	STOREB 	 offset(Reg1),Reg2	
*	STOREH 	 offset(Reg1),Reg2	
*	STOREW 	 offset(Reg1),Reg2	
*	STORED 	 offset(Reg1),Reg2	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	55 342

Chapter 5: Instructions	

Support for Unaligned Loads and Stores	

	 ALIGNH 	 RegD,Reg1,Reg2,Reg3	
	 ALIGNW 	 RegD,Reg1,Reg2,Reg3	
	 ALIGND 	 RegD,Reg1,Reg2,Reg3	

	 INJECT1H 	 RegD,Reg1,Reg2,Reg3	
	 INJECT2H 	 RegD,Reg1,Reg2,Reg3	
	 INJECT1W 	 RegD,Reg1,Reg2,Reg3	
	 INJECT2W 	 RegD,Reg1,Reg2,Reg3	
	 INJECT1D 	 RegD,Reg1,Reg2,Reg3	
	 INJECT2D 	 RegD,Reg1,Reg2,Reg3	

Miscellaneous	

	 SYSCALL 	 immed10	 immed10 selects one of 1,024 syscalls	
	 SYSRET 	 <no operands>	
*	NOP 	 <no operands>	
	 ILLEGAL 	 <no operands>	
	 SLEEP1 	 <no operands>	 Enter light sleep state	
	 SLEEP2 	 <no operands>	 Enter deep sleep state	
	 RESTART 	 <no operands>	 Same as Power-On-Reset	
	 DEBUG 	 <no operands>	
	 BREAKPOINT 	<no operands>	
	 CONTROL 	 RegD,Reg1,immed16	
	 CONTROLU 	 RegD,Reg1,immed16	
	 CAS 	 RegD,Reg1,Reg2,Reg3 Compare and Set: If *r1=r2 then *r1←r3	
	 FENCE	 <no operands>	
	 PUSHFRAME 	 RegD,Reg1,immed16	 Save lr, push frame onto stack	
	 POPRET 	 RegD,Reg1,immed16	 Retrieve lr, pop frame, and return	

CSR Manipulation	

	 CSRSWAP 	 RegD,CSRReg1,Reg2	 RegD ← CSR; CSR ← Reg2	
	 CSRREAD 	 RegD,CSRReg1	 Reg1 encodes CSR; RegD ← CSR	
*	CSRWRITE 	 CSRReg1,Reg2	 Reg1 encodes CSR; CSR ← Reg2	
	 CSRSET 	 CSRReg1,immed16	 Set selected bits in CSR	
	 CSRCLR 	 CSRReg1,immed16 	 Clear selected bits in CSR	
	 GETSTAT 	 RegD	 RegD ← CSR_STATUS & 0x0000…03f8	
	 PUTSTAT 	 Reg1	 CSR_STATUS [9:3] ← Reg1 [9:3]	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	56 342

Chapter 5: Instructions	

Memory Management Unit	

	 TLBCLEAR	 <no operands>	 Invalidate all TLBs for current ASID	
	 TLBFLUSH 	 Reg1	 Invalidate TLB for virtual address in Reg1	
	 CHECKADDR	 RegD,Reg1,immed3	 Reg1 = virt addr; RegD ← except. code or 0	

Floating Point	

	 FADD 	 RegD,Reg1,Reg2	 RegD ← Reg1 + Reg2	
	 FSUB 	 RegD,Reg1,Reg2	 RegD ← Reg1 - Reg2 	
	 FMUL 	 RegD,Reg1,Reg2 	 RegD ← Reg1 × Reg2	
	 FDIV 	 RegD,Reg1,Reg2 	 RegD ← Reg1 / Reg2	
	 FMIN 	 RegD,Reg1,Reg2 	 RegD ← MIN (Reg1, Reg2)	
	 FMAX 	 RegD,Reg1,Reg2 	 RegD ← MAX (Reg1, Reg2)	
	 FNEG 	 RegD,Reg1 	 RegD ← -Reg1	
	 FABS 	 RegD,Reg1 	 RegD ← ABSOLUTE_VALUE (Reg1)	
	 FSQRT 	 RegD,Reg1 	 RegD ← SQUARE_ROOT (Reg1)	
	 FEQ 	 RegD,Reg1,Reg2 	 RegD ← (Reg1 = Reg2) ? 1 : 0 (float compare)	
	 FLT 	 RegD,Reg1,Reg2	 RegD ← (Reg1 < Reg2) ? 1 : 0 (float compare)	
	 FLE 	 RegD,Reg1,Reg2 	 RegD ← (Reg1 ≤ Reg2) ? 1 : 0 (float compare)	
*	FGT 	 RegD,Reg1,Reg2	 RegD ← (Reg1 > Reg2) ? 1 : 0 (float compare)	
*	FGE 	 RegD,Reg1,Reg2 	 RegD ← (Reg1 ≥ Reg2) ? 1 : 0 (float compare)	
	 FCVTFI 	 RegD,Reg1	 Convert: floating-point ← int	
	 FCVTIF 	 RegD,Reg1	 Convert: int ← floating-point	
	 FMADD 	 RegD,Reg1,Reg2,Reg3	 RegD ← (Reg1 × Reg2) + Reg3	
	 FNMADD 	 RegD,Reg1,Reg2,Reg3	 RegD ← (-(Reg1 × Reg2)) + Reg3	
	 FMSUB 	 RegD,Reg1,Reg2,Reg3	 RegD ← (Reg1 × Reg2) - Reg3	
	 FNMSUB 	 RegD,Reg1,Reg2,Reg3	 RegD ← (-(Reg1 × Reg2)) - Reg3	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	57 342

Chapter 5: Instructions	

Machine Instructions, Grouped By Format	

Here is a complete list of the Blitz-64 machine instruction set.	

The headers give the format that assembly language programmers will use. These
are followed by all the instructions that fit the pattern, with example operands and
comments, to give a hint at what each instruction does.	

	 Format A-0	 <no operands>	
	 	 ILLEGAL Canonical form of illegal instruction
	 	 SYSRET PC ← csr_prev; csr_status ← csr_stat2
	 	 SLEEP1 Enter light sleep state
	 	 SLEEP2 Enter deep sleep state
	 	 RESTART Same as Power-On-Reset
	 	 DEBUG
	 	 BREAKPOINT
	 	 FENCE 	
	 	 TLBCLEAR Invalidate all TLBs for current ASID	

	 Format A-1	 Reg1	
	 	 NULLTEST r1 Trap if reg contains NULL
	 	 CHECKB r1 Trap if reg not within -128 … +127
	 	 CHECKH r1 Trap if reg not within -32768 … +32767
	 	 CHECKW r1 Trap if reg not within 32 bit range

PUTSTAT r1 CSR_STATUS [9:3] ← Reg1 [9:3]
TLBFLUSH r1 Invalidate TLB for virtual address in Reg1

	 Format A-2	 RegD,Reg1	
	 	 ENDIANH r7,r1 Reorder bytes: 76543210 → 67452301
	 	 ENDIANW r7,r1 Reorder bytes: 76543210 → 45670123
	 	 ENDIAND r7,r1 Reorder bytes: 76543210 → 01234567
	 	 SEXTB r7,r1 Sign extend byte to 64 bits
	 	 SEXTH r7,r1 Sign extend 16 bits to 64 bits
	 	 SEXTW r7,r1 Sign extend 32 bits to 64 bits
	 	 FNEG r7,r1
	 	 FABS r7,r1
	 	 FSQRT r7,r1
	 	 FCVTFI r7,r1 Convert: floating-point ← int
	 	 FCVTIF r7,r1 Convert: int ← floating-point

Blitz-64 Instruction Set Architecture / Porter	 Page of 	58 342

Chapter 5: Instructions	

	 Format A-3	 RegD,Reg1,Reg2	
	 	 ADD r7,r1,r2
	 	 ADDOK r7,r1,r2
	 	 SUB r7,r1,r2
	 	 DIV r7,r1,r2
	 	 REM r7,r1,r2
	 	 AND r7,r1,r2
	 	 OR r7,r1,r2
	 	 XOR r7,r1,r2
	 	 SLL r7,r1,r2
	 	 SLA r7,r1,r2 Shift-left-arithmetic; checks for overflow
	 	 SRL r7,r1,r2
	 	 SRA r7,r1,r2
	 	 ROTR r7,r1,r2 Rotate right (circular)
	 	 TESTEQ r7,r1,r2 RegD ← (Reg1 = Reg2) ? 1 : 0
	 	 TESTNE r7,r1,r2 RegD ← (Reg1 ≠ Reg2) ? 1 : 0
	 	 TESTLT r7,r1,r2 RegD ← (Reg1 < Reg2) ? 1 : 0
	 	 TESTLE r7,r1,r2 RegD ← (Reg1 ≤ Reg2) ? 1 : 0
	 	 FADD r7,r1,r2
	 	 FSUB r7,r1,r2
	 	 FMUL r7,r1,r2
	 	 FDIV r7,r1,r2
	 	 FMIN r7,r1,r2
	 	 FMAX r7,r1,r2
	 	 FEQ r7,r1,r2 RegD ← (Reg1 = Reg2) ? 1 : 0 (float compare)
	 	 FLT r7,r1,r2 RegD ← (Reg1 < Reg2) ? 1 : 0 (float compare)
	 	 FLE r7,r1,r2 RegD ← (Reg1 ≤ Reg2) ? 1 : 0 (float compare)

	 Format A-4	 RegD,Reg1,Reg2,Reg3	
	 	 ADD3 	 r7,r1,r2,r3	 Reg3 ← Reg1+Reg2+Reg3 (unsigned)	
	 	 MULADD r7,r1,r2,r3 RegD ← (Reg1 × Reg2) + Reg3	
	 	 MULADDU r7,r1,r2,r3 RegD ← (Reg1 × Reg2) + Reg3 (unsigned)	
	 	 INDEX0 r7,r1,r2,r3 Reg1=arrayPtr, Reg2=header, Reg3=index	
	 	 INDEX1 r7,r1,r2,r3 . RegD ← Reg1 + 8 + (Reg3 * scale)	
	 	 INDEX2 r7,r1,r2,r3 . Reg2=header=[ArrayMAX||ArrayCURR]	
	 	 INDEX4 r7,r1,r2,r3 . Trap if (Reg3 < 0) or (Reg3 ≥ ArrayCURR)	
	 	 INDEX8 r7,r1,r2,r3 . or (ArrayMAX = 0)	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	59 342

Chapter 5: Instructions	

	 	 INDEX16 r7,r1,r2,r3 .	
	 	 INDEX24 r7,r1,r2,r3 .	
	 	 INDEX32 r7,r1,r2,r3 .	
	 	 ALIGNH 	 r7,r1,r2,r3	 Reg3 (unaligned addr) gives shift amount	
	 	 ALIGNW 	 r7,r1,r2,r3	 Reg3 (unaligned addr) gives shift amount	
	 	 ALIGND 	 r7,r1,r2,r3	 Reg3 (unaligned addr) gives shift amount	
	 	 INJECT1H 	 r7,r1,r2,r3	 RegD ← Reg1; inject Reg2 per addr in Reg3 	
	 	 INJECT2H 	 r7,r1,r2,r3	 RegD ← Reg1; inject Reg2 per addr in Reg3	
	 	 INJECT1W 	 r7,r1,r2,r3	 RegD ← Reg1; inject Reg2 per addr in Reg3	
	 	 INJECT2W	 r7,r1,r2,r3	 RegD ← Reg1; inject Reg2 per addr in Reg3	
	 	 INJECT1D 	 r7,r1,r2,r3	 RegD ← Reg1; inject Reg2 per addr in Reg3	
	 	 INJECT2D 	 r7,r1,r2,r3	 RegD ← Reg1; inject Reg2 per addr in Reg3	
	 	 CAS r7,r1,r2,r3 Compare and Set: If *r1=r2 then *r1←r3	
	 	 FMADD r7,r1,r2,r3 RegD ← (Reg1 × Reg2) + Reg3
	 	 FNMADD r7,r1,r2,r3 RegD ← (-(Reg1 × Reg2)) + Reg3
	 	 FMSUB r7,r1,r2,r3 RegD ← (Reg1 × Reg2) - Reg3
	 	 FNMSUB r7,r1,r2,r3 RegD ← (-(Reg1 × Reg2)) - Reg3	

	 Format A-5	 Reg1,Reg2	
	 	 < No longer used >	

	 Format A-6	 Reg2	
	 	 < No longer used >	

	 Format A-7	 RegD,Reg1,Reg2	
	 	 CSRSWAP r7,csr,r2 Reg1 encodes CSR; RegD ← CSR; CSR ← Reg2 	

	 Format A-8	 RegD,Reg1	
	 	 CSRREAD r7,csr Reg1 encodes CSR; RegD ← CSR;	

	 Format A-9	 RegD	
	 	 GETSTAT r7 RegD ← CSR_STATUS & 0x0000…03f8 	

	 	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	60 342

Chapter 5: Instructions	

Format B-1	 RegD,Reg1,immed16	
	 	 ADDI r7,r1,0x1234
	 	 ANDI r7,r1,0x1234
	 	 ORI r7,r1,0x1234
	 	 XORI r7,r1,0x1234
	 	 TESTEQI r7,r1,0x1234 RegD ← (Reg1=immed) ? 1 : 0
	 	 TESTNEI r7,r1,0x1234 RegD ← (Reg1≠immed) ? 1 : 0
	 	 TESTLTI r7,r1,0x1234 RegD ← (Reg1<immed) ? 1 : 0
	 	 TESTLEI r7,r1,0x1234 RegD ← (Reg1≤immed) ? 1 : 0
	 	 TESTGTI r7,r1,0x1234 RegD ← (Reg1<immed) ? 1 : 0
	 	 TESTGEI r7,r1,0x1234 RegD ← (Reg1≥ immed) ? 1 : 0
	 	 UPPER16 r7,r1,0x1234 RegD ← (immed<<16) + Reg1
	 	 SHIFT16 r7,r1,0x1234 RegD ← (Reg1+immed) << 16	
	 	 CONTROL r7,r1,0x1234
	 	 CONTROLU r7,r1,0x1234

ENTERFUN sp,sp,32	 	 Push frame onto stack, save lr in frame	
EXITFUN sp,sp,32	 	 Retrieve lr, pop frame, and return	

	 Format B-2	 RegD,immed16(Reg1)	
	 	 LOAD.B r7,offset(r1) Value is sign-extended to 64 bits
	 	 LOAD.H r7,offset(r1) . May cause unaligned exception
	 	 LOAD.W r7,offset(r1) . No overflow check on addr calculation
	 	 LOAD.D r7,offset(r1)
	 	 JALR lr,offset(r1) RegD ← return addr; Target ← offset+Reg1	

	 Format B-3	 RegD,Reg1,immed3	
	 	 CHECKADDR r7,r1,5 Reg1 = virt addr; RegD ← except. code or 0

	 Format B-4	 immed10	
	 	 SYSCALL 123 immed10 selects one of 1,024 syscalls	

	 Format B-5	 RegD,Reg1,immed6	
	 	 SLLI r7,r1,5
	 	 SLAI r7,r1,5 Shift-left-arithmetic checks for overflow
	 	 SRLI r7,r1,5
	 	 SRAI r7,r1,5
	 	 ROTRI r7,r1,5 Rotate right (circular)	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	61 342

Chapter 5: Instructions	

	 Format B-6	 Reg1,immed16	
	 	 CSRSET csr,0x1234 Reg1 encodes CSR; Set selected bits in CSR
	 	 CSRCLR csr,0x1234 Reg1 encodes CSR; Clear selected bits in CSR

	 Format C-1	 immed16(Reg1),Reg2	
	 	 STORE.B offset(r1),r2 Upper bits in reg are ignored
	 	 STORE.H offset(r1),r2 . May cause unaligned exception
	 	 STORE.W offset(r1),r2 . No overflow check on addr calculation
	 	 STORE.D offset(r1),r2

	 Format C-2	 Reg1,Reg2,immed16	
	 	 B.EQ r1,r2,MyLabel Branch if Reg1=Reg2; Offset is PC-relative
	 	 B.NE r1,r2,MyLabel Branch if Reg1≠Reg2; Offset is PC-relative
	 	 B.LT r1,r2,MyLabel Branch if Reg1<Reg2; Offset is PC-relative
	 	 B.LE r1,r2,MyLabel Branch if Reg1≤Reg2; Offset is PC-relative	

	 Format D-1	 RegD,immed20	
	 	 UPPER20 r7,MyLabel RegD ← (immed<<16)
	 	 ADDPC r7,MyLabel RegD ← immed+PC
	 	 AUIPC r7,MyLabel RegD ← (immed<<16) + PC
	 	 JAL lr,MyLabel RegD ← return addr ; Target ← PC+immed

Blitz-64 Instruction Set Architecture / Porter	 Page of 	62 342

Chapter 5: Instructions	

The Instruction Set	

Next, we list the Blitz-64 instructions, including both machine instructions and
synthetic instructions. In this document, synthetic instructions are identified with
“*”.	

ADD RegD,Reg1,Reg2
ADDI RegD,Reg1,immed16	
SUB RegD,Reg1,Reg2	
*MUL RegD,Reg1,Reg2	
DIV RegD,Reg1,Reg2	
REM RegD,Reg1,Reg2	
AND RegD,Reg1,Reg2	
ANDI RegD,Reg1,immed16	
OR RegD,Reg1,Reg2	
ORI RegD,Reg1,immed16	
XOR RegD,Reg1,Reg2	 	
XORI RegD,Reg1,immed16	

May cause an “Arithmetic Exception”, “Stack Overflow Exception”	

All computations are performed using 64 bit values and the arithmetic instructions
are performed with signed, two’s complement arithmetic.	

The operands are either in Reg1 and Reg2, or in Reg1 and an immediate value
embedded in the instruction. The result is placed into RegD.	

For the immediate-form instructions, the 16 bit immediate value is signed extended
to 64 bits. Thus, any value within the range -32,768 … 32,767 may be used.	

It is the assembly programmer’s or compiler’s responsibility to ensure that the
immediate value is within range. If the value is out of range, the assembler will issue
an error message. If necessary, the programmer can always use a MOVI instruction
to move a larger value into a temp register. (Register “t” is generally used for things
like this.)	

Overflow is always checked. The goal is to catch all program bugs and failures, and
not continue computing with incorrect values, as happens in other systems.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	63 342

Chapter 5: Instructions	

The following instructions will never cause an exception:	
	 AND, ANDI, OR, ORI, XOR, XORI	

The following instructions will cause an “Arithmetic Exception” whenever the
mathematically correct result is not representable.	
	 ADD, ADDI, SUB, MUL	

The following instructions will cause an “Arithmetic Exception” in the case of divide-
by-zero or attempt to evaluate MIN_64 / -1:	
	 DIV, REM	

The following instructions are candidates for emulation. Any attempt to execute an
unimplemented instruction will result in an “Emulation Exception”.	
	 DIV, REM	

The MUL instruction is synthetic and is shorthand for:	
	 MULADD	 RegD,Reg1,Reg2,r0	

In the case of ADD and ADDI, if the sp register is modified and the new value is less
than the StackLimit field in csr_status, a “Stack Overflow Exception” will occur.	

MULADD RegD,Reg1,Reg2,Reg3 RegD ← (Reg1 × Reg2) + Reg3
MULADDU RegD,Reg1,Reg2,Reg3 RegD ← (Reg1 × Reg2) + Reg3 (unsigned)

MULADD may cause an “Arithmetic Exception”; MULADDU causes no exceptions	

These instructions multiply the contents of Reg1 and Reg2, then add the contents of
Reg3, and finally place the result in RegD.	

In the case of MULADD, the arguments and the result are treated as 64 bit signed
integers. If overflow occurs on either the multiplication or addition, it will cause an
Arithmetic Exception.	

In the case of MULADDU, the arguments and the result are treated as 64 bit
unsigned integers. Overflow is ignored and no exception will be raised.	

Note that both instructions will produce the same 64-bit result, unless of course the
MULADD causes an exception, in which case it fails to produce any result at all.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	64 342

Chapter 5: Instructions	

If Reg1 is r0, then these instructions can be used to perform a simple multiply;
signed in the case of MULADD and unsigned in the case of MULADDU.	

The MULADD instruction is used to implement the synthetic MUL instruction. The
MULADDU instruction is useful for accessing arrays.	

Integer Division With Negative Operands	

Consider dividing a by n (that is, a/n).	

q ← a DIV n	 # compute quotient	
r ← a REM n	 # compute remainder	

The resulting quotient (q) and remainder (r) must obey these equations:	

a = nq + r	
	 |r| < |q|	

With positive operands, this specification is unambiguous. However, there always
remains a question about how negative operands are treated. There are several
competing definitions which meet the basic division definition given above.	

Many languages (C, C++, Java) perform “truncated division”:	

q ← trunc(a/n)	
r ← a - n trunc(a/n)	

which produces these results:	

 7 DIV 3 = 2 7 REM 3 = 1
-7 DIV 3 = -2 -7 REM 3 = -1
 7 DIV -3 = -2 7 REM -3 = 1
-7 DIV -3 = 2 -7 REM -3 = -1

A second reasonable definition is called “floored division”:	

q = ⌊a/n⌋	
r = a - n⌊a/n⌋	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	65 342

Chapter 5: Instructions	

which produces the following results. The dot (•) indicates differences with
truncated division.	

 7 DIV 3 = 2 7 REM 3 = 1
-7 DIV 3 = -3 • -7 REM 3 = 2 •
 7 DIV -3 = -3 • 7 REM -3 = -2 •
-7 DIV -3 = 2 -7 REM -3 = -1

There is also a third definition called “Euclidean division”, in which the remainder
is never negative. The dot (•) indicates differences with both previous definitions.	

 7 DIV 3 = 2 7 REM 3 = 1
-7 DIV 3 = -3 -7 REM 3 = 2	 same as “floored”
 7 DIV -3 = -2 7 REM -3 = 1	 same as “truncated”
-7 DIV -3 = 3 • -7 REM -3 = 2 • different from both	

Which definition is better? The following quote from Wikipedia is pertinent:	

“… Euclidean division is superior to the other ones in terms of regularity and
useful mathematical properties, although floored division … is also a good
definition. Despite its widespread use, truncated division is shown to be
inferior to the other definitions.”	

— Daan Leijen, Division and Modulus for Computer Scientists	

The Blitz-64 spec leaves this decision open as “implementation dependent”.	

We chose to name the instruction “REM” and not “MOD” because “MOD” is assumed
to mean “Euclidean division”, but this may not be the what the implementation
actually performs.	

Note that “truncated” and “Euclidean” have identical results as long as the number
on top (the “dividend”, which is defined as a in the operation a/n) is positive.	

Division by a power of 2 (i.e., when the divisor is 1,2,4,8,16,…) is sometimes
implemented as a right shift operation. For example, dividing by 4 is implemented
with a right shift of two bits. Shifting always works correctly if the dividend is
positive. For example, 21 DIV 4 = 21 >> 2 = 10101 >> 2 = 101 = 5.	

But note: If the dividend is negative, shifting may not be equivalent to the DIV
operation. The result of shifting is always the same as “floored” and “Euclidean”

Blitz-64 Instruction Set Architecture / Porter	 Page of 	66 342

Chapter 5: Instructions	

division. However shifting is not equivalent to “truncated” division. Truncated
division is used in “C” and may be the choice for some Blitz-64 implementations, so
care must be taken if the dividend can be negative.	

For example with truncated division:	
	 -21 DIV 4 = -5 with reminder -1.	
In binary:	
	 -21 >> 2 = …11101011 >> 2 = …11111010 = -6	

Division Overflow Conditions	

An attempt to divide by zero will cause an Arithmetic Exception. But there is another
possibility for overflow.	

Concerning the sizes of the result, note that the following must hold, since |n| ≥ 1:	

|q| ≤ |a|	
|r| < |a|	

Thus, if the operands (a and n) are 64 bits, then the results (q and r) will almost
always fit into 64 bits.	

There is exactly one exception in which the result will not fit.	

Let MIN_64 represent -263, which is the most negative number representable in 64
bits. If we divide MIN_64 by -1, the result is +263, which is one greater than the
largest positive 64 bit number.	

Note that “division overflow” can only occur with negative operands; there is no
need to worry if n>0 is guaranteed to hold when computing a/n.	

This computation will cause an Arithmetic Exception.	

Bottom Line Programmers computing a/n should take special care unless the
following are certain to hold:	

	 a ≥ 0	
	 n > 0	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	67 342

Chapter 5: Instructions	

*NEG RegD,Reg1	

Synthetic	

May cause an “Arithmetic Exception”	
	 	
Register t Usage: Not used; Okay to use as RegD and/or Reg1.	

Treating the value as a signed number, this instruction will flip the sign. This
instruction is implemented as:	
	 SUB	 RegD,r0,Reg1	

An “Arithmetic Exception” will be signaled for an attempt to negate the most
negative number.	

*BITNOT RegD,Reg1	

Synthetic	
	 	
Register t Usage: Not used.	

All 64 bits are flipped. This instruction is implemented as:	
	 XORI	 RegD,Reg1,-1	

*NOP <no operands>	

Synthetic	
	 	
Register t Usage: Not used.	

This is a no-op. This instruction is implemented as:	
	 ADDI	 r0,r0,0	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	68 342

Chapter 5: Instructions	

*ABS RegD,Reg1	

Synthetic	
	 	
Register t Usage: Not used.	

This instruction computes the absolute value. This instruction is implemented as:	
	 MOV	 RegD,Reg1	
	 BGEZ	 Reg1,Label	
	 SUB	 RegD,r0,Reg1	
	 Label:	 	

An “Arithmetic Exception” will be signaled for an attempt to compute the absolute
value of the most negative number.	

*MOV RegD,Reg1	

Synthetic	
	 	
Register t Usage: Not used.	

This instruction is implemented as:	
	 ORI	 RegD,Reg1,0	

Since OR-ing with a constant of 0 is not commonly done, it is reasonable for a
disassembler to render this instruction as MOV.	

This instruction may also be implemented as any of these.	
	 ADD	 RegD,Reg1,r0	
	 ADDI	 RegD,Reg1,0	
	 OR	 RegD,Reg1,r0	
	 ORI	 RegD,Reg1,0 	 	 This instruction is preferred.	
	 XOR	 RegD,Reg1,r0	
	 XORI	 RegD,Reg1,0	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	69 342

Chapter 5: Instructions	

*MOVI RegD,immediate	

Synthetic, Variable Length	
	 	
Register t Usage: Not used; Okay to use as RegD.	

An immediate 64 bit value is moved into register RegD.	

The implementation of this instruction depends on the value of the immediate
operand.	

If the value is within 16 bits (i.e., within -32,768 … 32,767):	
	 XORI	 RegD,r0,immed16	

If the value is an address near the MOVI instruction itself, i.e., within 20 bits
(-524,288 … +524,287) of the current PC:	
	 ADDPC	 RegD,immed20	

If the value is within 36 bits (e.g., any valid address, within -32Gi … +32Gi-1):	
	 UPPER20	 RegD,immed20	
	 XORI	 RegD,RegD,immed16	

If the value is an address and PC-relative instructions are required:	
	 AUIPC	 RegD,immed20	
	 XORI	 RegD,RegD,immed16	

If the value is within 52 bits:	
	 UPPER20	 RegD,immed20	
	 SHIFT16	 RegD,RegD,immed16	
	 XORI	 RegD,RegD,immed16	

Otherwise, to load an arbitrary 64 bit value:	
	 UPPER16	 RegD,r0,immed16	
	 SHIFT16	 RegD,RegD,immed16	
	 SHIFT16	 RegD,RegD,immed16	
	 XORI	 RegD,RegD,immed16	

Comment: If the immediate value in the XORI instruction is negative, all the upper
48 bits will be 1’s. This will flip any bits previously loaded into the upper 48 bits.

Blitz-64 Instruction Set Architecture / Porter	 Page of 	70 342

Chapter 5: Instructions	

Therefore, the assembler will need to compensate by flipping all the bits in the
immediate values used in the UPPER20, UPPER16, and SHIFT16 instructions.	

Since these instruction sequences are idiosyncratic and not likely to occur
elsewhere, it is reasonable for a disassembler to render them as a MOVI instruction.	

SLL RegD,Reg1,Reg2	 Shift left logical
SLLI RegD,Reg1,immed6	
SLA RegD,Reg1,Reg2 Shift left arithmetic
SLAI RegD,Reg1,immed6
SRL RegD,Reg1,Reg2	 Shift right logical
SRLI RegD,Reg1,immed6	
SRA RegD,Reg1,Reg2	 Shift right arithmetic
SRAI RegD,Reg1,immed6	
ROTR RegD,Reg1,Reg2 Rotate right (circular)	
ROTRI RegD,Reg1,immed6

May cause an “Arithmetic Exception”	

The 64 bit value in Reg1 is shifted/rotated and the result is placed in RegD. The
shift/rotate amount is specified in either Reg2 or as an immediate value.	

The logical shifts (SLL, SLLI, SRL, SRLI) will shift 0 bits in, and will discard the bits
shifted out.	

The Shift Right Arithmetic instructions (SRA, SRAI) are conventional. The sign-bit is
duplicated as necessary and shifted in on the most significant (left) end.	

However, Blitz-64 also includes Shift Left Arithmetic instructions (SLA, SLAI) which
are somewhat unusual. In the case of Shift Left Logical (SLL, SLLI), there is no
overflow check; bits are simply shifted out the most-significant end with no
consequences. However, in the case of Shift Left Arithmetic (SLA, SLAI), there is an
overflow check. For SLA and SLAI, if the bits shifted out do not all agree with the
final sign bit, then an “Arithmetic Exception” is signaled. This makes these
instructions usable as a way to multiply by a power of 2, which is required to cause
an Arithmetic Exception in the case of overflow.	

The shift amounts should be between 0 and 63. If an immediate value is provided in
SLLI, SLAI, SRLI, and SRAI, only the last 6 bits are examined. The upper bits are

Blitz-64 Instruction Set Architecture / Porter	 Page of 	71 342

Chapter 5: Instructions	

ignored and the immed6 value is treated as an unsigned value within the range 0 …
63. The value of 0 results in no shifting and is effectively a “nop”. 	3

The following instructions will cause an “Arithmetic Exception” whenever the shift
amount (i.e., the value in Reg2) is not within 0 … 63.	
	 SLL, SLA, SRL, SRA	

Except as mentioned above, the other instructions never cause exceptions.	

For bit rotations (ROTR and ROTRI), if the shift value N is larger than 63, it is
equivalent in meaning to a rotation of N mod 64. For ROTR and ROTRI, only the least
significant 6 bits of the shift amount are used; the upper bits are ignored.	

Note that there are no rotate-left instructions, since a rotate-left-by-N is equivalent
to a rotate-right with a shift amount of 64-N. Thus, we can use negative numbers to
achieve a left-rotation. This works because the rotate instructions ignore all but the
least significant 6 bits.	

For example, imagine that you wish to rotate left by 5. The number -5 is
0xFFFF_FFFF_FFFF_FFFB. But the ROTR and ROTRI only use the least significant 6
bits. In this example, the least significant 6 bits are 111011, which is interpreted as
+59. Rotating right by 59 achieves the same result as rotating left by 5.	

Thus, for ROTR, if register Reg1 contains a negative shift amount of -N, the effect will
be to rotate to the left by N bits.	

SEXTB RegD,Reg1 Sign extend byte to 64 bits
SEXTH RegD,Reg1 Sign extend 16 bits to 64 bits
SEXTW RegD,Reg1 Sign extend 32 bits to 64 bits	

These instructions sign-extend an 8, 16, or 32 bit value to 64 bits.	

For SEXTB, the upper 56 bits [63:8] are all set to the value of bit [7]. Likewise, for
SEXTH, the upper 48 bits [63:16] are all set to the value of bit [15]. For SEXTW, bits
[63:32] are set to the value of bit [31].	

 This range restriction is normally enforced by the assembler, so it is never as issue.3

Blitz-64 Instruction Set Architecture / Porter	 Page of 	72 342

Chapter 5: Instructions	

NULLTEST Reg1 Trap if reg contains NULL	

May cause an “Null Address Exception”	

This instruction checks to see whether the address in the register is null and signals
a “Null Address Exception” if so. More specifically, it signals an exception if and only
if bits [35…3] are zero.	

Recall that the upper 28 bits, i.e., bits [63…36] of a doubleword are ignored when
the value is used as an address. Also, the entire doubleword at address 0 is
inaccessible, so the least significant bits are ignored.

CHECKB Reg1 Trap if reg not within -128 … +127
CHECKH Reg1 Trap if reg not within -32768 … +32767
CHECKW Reg1 Trap if reg not within 32 bit range	

May cause an “Arithmetic Exception”	

These instructions look at the 64 bit signed integer stored in a register and test it. If
the value is out of range, an “Arithmetic Exception” will be signaled.	

CHECKB will ensure that the value is within the range representable as a signed
byte, namely within -128 … 127.	

CHECKH will ensure that the value is within the range representable as a signed
halfword, namely within -32,768 … 32,767.	

CHECKW will ensure that the value is within the range representable as a signed
word, namely within -2,147,483,648 … 2,147,483,647.	

ENDIANH RegD,Reg1 Reorder bytes in all 4 halfwords
ENDIANW RegD,Reg1 Reorder bytes in both words
ENDIAND RegD,Reg1 Reorder bytes in a doubleword	

These instructions are used for transforming data between “big endian” and “little
endian” byte ordering.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	73 342

Chapter 5: Instructions	

ENDIANH will swap the bytes in all halfwords in the register:	
	 0x7766_5544_3322_1100 → 0x6677_4455_2233_0011	

ENDIANW will swap the bytes in both words in the register:	
	 0x7766_5544_3322_1100 → 4455_6677_0011_2233	

ENDIAND will swap the bytes in a doubleword:	
	 0x7766_5544_3322_1100 → 0x0011_2233_4455_6677	

Note that ENDIANW can be used to swap the byte order in a word, but the sign bits
may not follow. For example, assume that the following 32 bit value from memory is
assumed to be stored in little endian order. Note that, as a signed valued, this
number is negative.	
	 55 66 77 88	
We would like to store the correct value in a register. First we load it, using LOADW,
giving:	
	 0x 0000_0000_5566_7788	
Then we execute the ENDIANW instruction, to get:	
	 0x 0000_0000_8877_6655	
Finally, we must execute the SEXTW instruction to sign extend it, giving:	
	 0x FFFF_FFFF_8877_6655	
However, if we only need to store the 32 bit word back to memory, the SEXTW is
unnecessary, since STOREW ignores the upper 32 bits in the register.	

The same issue applies to reversing the byte order of halfwords.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	74 342

Chapter 5: Instructions	

TESTEQ RegD,Reg1,Reg2 RegD ← (Reg1 = Reg2) ? 1 : 0
TESTNE RegD,Reg1,Reg2 RegD ← (Reg1 ≠ Reg2) ? 1 : 0
TESTLT RegD,Reg1,Reg2 RegD ← (Reg1 < Reg2) ? 1 : 0
TESTLE RegD,Reg1,Reg2 RegD ← (Reg1 ≤ Reg2) ? 1 : 0
TESTEQI RegD,Reg1,immed16 RegD ← (Reg1 = immed) ? 1 : 0
TESTNEI RegD,Reg1,immed16 RegD ← (Reg1 ≠ immed) ? 1 : 0
TESTLTI RegD,Reg1,immed16 RegD ← (Reg1 < immed) ? 1 : 0
TESTLEI RegD,Reg1,immed16 RegD ← (Reg1 ≤ immed) ? 1 : 0
TESTGTI RegD,Reg1,immed16	 RegD ← (Reg1 > immed) ? 1 : 0
TESTGEI RegD,Reg1,immed16	 RegD ← (Reg1 ≥ immed) ? 1 : 0	

These instructions compare two values using signed 64 bit arithmetic. The result, a
boolean value, is placed in register RegD as either 1 (true) or 0 (false).	

For the immediate values, the 16 bit immediate is sign-extended to 64 bits.	

It is the assembly programmer’s or compiler’s responsibility to ensure that the
immediate value is within range. If the value is out of range, the assembler will issue
an error message. The programmer is always free to use a MOVI instruction using
the temporary “t” register if necessary, to deal with a larger immediate value.	

*TESTGT RegD,Reg1,Reg2 RegD ← (Reg1 > Reg2) ? 1 : 0
*TESTGE RegD,Reg1,Reg2 RegD ← (Reg1 ≥ Reg2) ? 1 : 0

Synthetic	
	 	
Register t Usage: Not used; Okay to use as RegD, Reg1 and/or Reg2.	

The TESGT instruction is implemented as:	
	 TESTLT	 RegD,Reg2,Reg1	 Note that Reg1 and Reg2 are reversed	
The TESTGE instruction is implemented as:	
	 TESTLE	 RegD,Reg2,Reg1	 Note that Reg1 and Reg2 are reversed	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	75 342

Chapter 5: Instructions	

*TESTEQZ RegD,Reg1 RegD ← (Reg1 = 0) ? 1 : 0, i.e., if zero
*TESTNEZ RegD,Reg1 RegD ← (Reg1 ≠ 0) ? 1 : 0, i.e., if non-zero
*TESTLTZ RegD,Reg1 RegD ← (Reg1 < 0) ? 1 : 0, i.e., if negative
*TESTLEZ RegD,Reg1 RegD ← (Reg1 ≤ 0) ? 1 : 0, i.e., if non-positive
*TESTGTZ RegD,Reg1 RegD ← (Reg1 > 0) ? 1 : 0, i.e., if positive
*TESTGEZ RegD,Reg1 RegD ← (Reg1 ≥ 0) ? 1 : 0, i.e., if non-negative

Synthetic	

Register t Usage: Not used; Okay to use as RegD and/or Reg1.	

The value in a register is compared with zero and a boolean result (either 0 or 1) is
placed in register RegD. 	

The TESTEQZ instruction is implemented as:	
	 TESTEQ	 RegD,Reg1,r0	 	
The TESTNEZ instruction is implemented as:	
	 TESTNE	 RegD,Reg1,r0	 	
The TESTLTZ instruction is implemented as:	
	 TESTLT	 RegD,Reg1,r0	 	
TheTESTLEZ instruction is implemented as:	
	 TESTLE	 RegD,Reg1,r0	 	
The TESTGTZ instruction is implemented as:	
	 TESTLT	 RegD,r0,Reg1	 Note that the registers are reversed	
The TESTGEZ instruction is implemented as:	
	 TESTLE	 RegD,r0,Reg1 	 Note that the registers are reversed	

*LOGNOT RegD,Reg1 RegD ← (Reg1 = 0) ? 1 : 0

Synthetic	

Register t Usage: Not used; Okay to use as RegD and/or Reg1.	

The convention is to interpret 0 as “false” and any non-zero value as “true”, with 1
being the desired, canonical value for “true”. The LOGNOT instruction performs a
logical “not”. For input 0, it computes 1. For any other input, it computes 0.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	76 342

Chapter 5: Instructions	

The LOGNOT instruction is implemented as:	
	 TESTEQ	 RegD,r0,Reg1	 RegD ← (zero=Reg1) ? 1 : 0	

Note that the synthetic instruction:	
	 *TESTEQZ	 RegD,Reg1	
is implemented as:	
	 TESTEQ	 RegD,Reg1,r0	 RegD ← (Reg1=zero) ? 1 : 0	
which is slightly different. This allows a disassembler to differentiate them.	

ADDOK RegD,Reg1,Reg2 RegD ← (Reg1+Reg2 overflows) ? 0 : 1

This instruction adds the contents of Reg1 and Reg2 using 64 bit signed arithmetic.
If the addition results in overflow, then RegD is set to 0. Otherwise, if the addition
proceeds without overflow, RegD is set to 1. The sum is discarded. No exception will
be raised.	

ADD3 RegD,Reg1,Reg2,Reg3 RegD ← Reg1+Reg2+Reg3 (unsigned)

This instruction adds the contents of Reg1, Reg2, and Reg3 using 64 bit arithmetic,
placing the result in RegD. Overflow is ignored and no exceptions will be raised.	

Commentary Obviously, the ADD3 instruction can be used to add only two unsigned
values by using register r0 as the Reg3 argument.	

The ADD3 instruction can also be used to subtract two unsigned numbers. Recall
that to arithmetically negate a number, we flip the bits and add 1. Thus, the following
code sequence can be used to compute “r1 ← r1-r2” while ignoring overflow.	

	 BITNOT	 r2,r2	
	 MOVI	 t,1	
	 ADD3	 r1,r1,r2,t	

The result is identical and this works properly regardless of whether the numbers
are viewed as signed or unsigned values.	

Unsigned subtraction is not expected to be used much, so we accept the extra
instruction overhead. Note that if we have to do a large number of subtractions, the

Blitz-64 Instruction Set Architecture / Porter	 Page of 	77 342

Chapter 5: Instructions	

overhead is only one extra instruction (the BITNOT), since we assume that the +1
can be preloaded into a register so the MOVI instruction is not repeated.	

Note that with a “carry save adder” the microarchitecture gate delay time is minimal.
With a carry save adder, the gate delay for adding three numbers is substantially less
than twice the gate delay for adding two numbers.	

INDEX0 RegD,Reg1,Reg2,Reg3
INDEX1 RegD,Reg1,Reg2,Reg3
INDEX2 RegD,Reg1,Reg2,Reg3
INDEX4 RegD,Reg1,Reg2,Reg3
INDEX8 RegD,Reg1,Reg2,Reg3
INDEX16 RegD,Reg1,Reg2,Reg3
INDEX24 RegD,Reg1,Reg2,Reg3
INDEX32 RegD,Reg1,Reg2,Reg3

May cause an “Bad Array Index Exception”.	

This instruction is designed to facilitate array accessing.	

To understand these instructions, assume that Reg1 contains a pointer to the array,
Reg2 contains the array header, and Reg3 contains the desired array index. There
are eight INDEX instructions and each specifies a “scale”, which can be 0, 1, 2, 4, 8,
16, 24, or 32. The scale is the size of the array elements, in bytes.	

The instruction computes:	
	 RegD ← Reg1 + 8 + (Reg3 × scale)	
If rewritten as follows, we see the address of the desired element is computed:	
	 RegD ← arrayPtr + 8 + (index × scale)	

This computation is performed with unsigned arithmetic and overflow is ignored.	

In the KPL programming language every array begins with an 8 byte header, which
consists of the MAX array size (bits [63:32]) and the CURRENT size (bits [31:0]). The
MAX and CURRENT are unsigned values in the range 0 … 4,294,967,295. We assume
that the array header has been preloaded into Reg2.	

Each INDEX instruction also performs two tests. The first test is that the index is
legal. If ((Reg3 < 0) || (Reg3 ≥ CURRENT)), the instruction causes an “Bad Array

Blitz-64 Instruction Set Architecture / Porter	 Page of 	78 342

Chapter 5: Instructions	

Index Exception”. The second test is that the array is initialized. If (MAX = 0), the
instruction causes an “Bad Array Index Exception”.	

The CURRENT size of an array should always be ≤ the MAX array size, but these
instructions do not check for that.	

Commentary Many programs use arrays and access the elements a lot. An example
from KPL is:	

myArr [n+1] = myArr [i]

Such accesses are prone to program bugs. In the spirit of Blitz-64, the fullest possible
error-checking is desired and this sort of check must be performed since the
consequences of a program bug can be catastrophic. The purpose of the INDEX__
instructions is to reduce the overhead of this checking.	

While these instructions are not limited to checking array index values, it is
presumed that the software will respond to the exception with a message such as
“Array index out of bounds”, which could be confusing if the instruction is being used
for another purpose.	

Commentary Assume that “myArr” is an array of objects and consider the following
KPL statement:	

	 … = myArr [i] . someField	

To compile code for this expression, of course instructions to get the address of
array “myArr” and the value of the index expression “i” are needed. Let’s look at the
code after that.	

Assume that each array element is 24 bytes in size and that “someField”—the field
we are interested in—is a halfword at offset 18. Then the following instructions
suffice:	

	 r1 ← … address of myArr …	
	 r3 ← … index expression …	
	 LOADD r2,0(r1)	 Fetch array header	
	 INDEX24 r7,r1,r2,r3	 Compute address & check for errors	
	 LOADH …,18(r7)	 Fetch the halfword at offset 18	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	79 342

Chapter 5: Instructions	

If the access is in a loop, then a clever compiler might be able to pull some of these
instructions out of the loop body, resulting in this code:	

	 r1 ← … address of myArr …	
	 LOADD r2,0(r1)	 Fetch array header	

LOOP:
	 …	
	 r3 ← … index expression …	
	 INDEX24 r7,r1,r2,r3	 Compute address & check for errors	
	 LOADH …,18(r7)	 Fetch the halfword at offset 18	
	 …	

JUMP LOOP

In any other RISC computer, it is unlikely that a LOAD instruction would also be able
to multiply to perform the scaling, so at least one additional instruction would
probably be required, resulting in at least two instructions within the loop. So the
overhead of Blitz-64 to provide the bounds checking appears to be zero instructions,
at least in this example!	

If the size of the array elements is not 1, 2, 4, 8 16, 24, or 32, then the INDEX0
instruction can be used in conjunction with the MULADDU instruction. For example,
assume the element size is 80:	

	 r1 ← … address of myArr …	
	 r3 ← … index expression …	
	 LOADD r2,0(r1)	 Fetch array header	
	 INDEX0 r7,r1,r2,r3	 Check for errors, advance to element 0	
	 MOVI r4,80	 Size of elements is 80 bytes	
	 MULADDU r7,r3,r4,r7	 r7 = r7 + (index × scale)	
	 LOADH …,18(r7)	 Fetch the halfword at offset 18	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	80 342

Chapter 5: Instructions	

As before, if the access is within a loop, the compiler might pull the loop-invariant
instructions out of the loop, yielding:	

	 r1 ← … address of myArr …	
	 LOADD r2,0(r1)	 Fetch array header	
	 MOVI r4,80	 Size of elements is 80 bytes	

LOOP:
	 …	
	 r3 ← … index expression …	
	 INDEX0 r7,r1,r2,r3	 Check for errors, advance to element 0	
	 MULADDU r7,r3,r4,r7	 r7 = r7 + (index × scale)	
	 LOADH …,18(r7)	 Fetch the halfword at offset 18	
	 …	

JUMP LOOP

B.EQ Reg1,Reg2,immed16 Branch if Reg1 = Reg2; Offset is PC-relative
B.NE Reg1,Reg2,immed16 Branch if Reg1 ≠ Reg2; Offset is PC-relative
B.LT Reg1,Reg2,immed16 Branch if Reg1 < Reg2; Offset is PC-relative
B.LE Reg1,Reg2,immed16 Branch if Reg1 ≤ Reg2; Offset is PC-relative

May cause a “Null Address Exception”	

The values in Reg1 and Reg2 are compared. In the case of LT (less than) and LE (less
than or equal), the operand values are treated as signed integers.	

If the condition is satisfied, a branch is taken.	

To compute the target destination address, the 16 bit immediate value is sign-
extended to 64 bits and then added to the value of the PC (i.e., the address of the
BRANCH instruction itself).	

Overflow is ignored. The upper bits [63:36] of the target address are ignored. The
LSBit is set to 0, forcing halfword alignment.	

Any attempt to load the PC with zero will cause a “Null Address Exception”.
Exceptions will only occur if the jump is taken; if the jump is not taken, no exception
will occur.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	81 342

Chapter 5: Instructions	

In systems without compressed instructions and in which alignment is required for
instructions, there may be an “Unaligned LOAD/STORE Exception” if the target
address is not properly aligned. Alternatively, such systems may simply ignore the
final bits, rounding the target address down to force alignment.	

Commentary For the following instructions, we make a distinction between the
opcode names for machine instructions and synthetic instructions, even though
their functions are similar.	

	 Machine	 Synthetic	
	 Instruction	 Instruction	

B.EQ BEQ
B.NE BNE
B.LT BLT
B.LE BLE
LOAD.B LOADB
LOAD.H LOADH
LOAD.W LOADW
LOAD.D LOADD
STORE.B STOREB
STORE.H STOREH
STORE.W STOREW
STORE.D STORED

A machine instruction is always a single 32 bit instruction, implemented directly in
hardware.	

A synthetic instruction may be implemented with 1, 2, or 3 machine instructions,
depending on the value of the address operand. The assembler and linker make the
decision about which sequence of machine instructions to use.	

In most cases, a BRANCH, LOAD, or STORE synthetic instruction will be
implemented by a single machine instruction with the corresponding similar name.	

To make the distinction between machine instruction and synthetic instruction
explicit, we assign different names. But to keep the correspondence obvious and the
meaning clear, we use names that differ only by the presence of the period character.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	82 342

Chapter 5: Instructions	

We chose to use a period for the machine instructions on the assumption most
assembly programs will contain the synthetic instructions, not the machine variants.
The presence of periods (if any) will stand out. Also, programmers are more likely to
err by forgetting a period, rather than inserting one, so we chose a naming scheme
in which the programmer does not normally use the period character. 	

*BEQ Reg1,Reg2,address Branch if Reg1 = Reg2
*BNE Reg1,Reg2,address Branch if Reg1 ≠ Reg2
*BLT Reg1,Reg2,address Branch if Reg1 < Reg2
*BLE Reg1,Reg2,address Branch if Reg1 ≤ Reg2	
*BGT Reg1,Reg2,address Branch if Reg1 > Reg2
*BGE Reg1,Reg2,address Branch if Reg1 ≥ Reg2

Synthetic, Variable Length, May Overwrite “t” Register, May cause a “Null Address
Exception”	

Register t Usage: May be modified; Okay to use as Reg1 and/or Reg2.	

The values in Reg1 and Reg2 are compared. In the case of LT, LE, GT, and GE, the
operand values are treated as signed integers.	

If the condition is satisfied, a branch is taken.	

In these synthetic instructions, “address” may be any absolute or relocatable
address, except 0. (Any reference to address 0 always causes a Null Address
Exception.)	

Typically the programmer or compiler will use a symbolic label to stand for the
address, but a hard-coded number can be used, too.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	83 342

Chapter 5: Instructions	

Note that an integer value indicates an absolute address, not a relative address. For
example, the following will branch to location 0x0_0000_0008 and not to an
instruction located two instructions beyond the branch instruction itself.	

	 BEQ	 r1,r2,+8	

This is different behavior from the following machine instruction, which will skip
the instruction following the branch instruction.	

	 B.EQ	 r1,r2,+8	

In general, the actual target address will be a 36-bit address that is not known until
link-time. In such cases, the actual instruction sequence may not be determined until
link-time. (In many cases, the assembler will be able to safely produce the final
instruction sequence. This happens when the target address is nearby and there are
no intervening synthetic, variable length instructions.)	

The target of most branch instructions will be within the range of -32,768 … +32,766
from the address of the branch instruction. (Since the target address must be
halfword aligned, the high end of the range is 32,766, and not 32,767.)	

If the address is within this range, then a single instruction will be used, as follows.	

The BEQ instruction is implemented with:	
	 B.EQ	 Reg1,Reg2,immed16	
The BNE instruction is implemented with:	
	 B.NE	 Reg1,Reg2,immed16	
The BLT instruction is implemented with:	
	 B.LT	 Reg1,Reg2,immed16	
The BLE instruction is implemented with:	
	 B.LE	 Reg1,Reg2,immed16	

The BGT instruction is implemented by exchanging the registers and changing the
test condition:	
	 B.LT	 Reg2,Reg1,immed16	 Note: the test and registers are changed.	
The BGE instruction is implemented by exchanging the registers and changing the
test condition:	
	 B.LE	 Reg2,Reg1,immed16	 Note: the test and registers are changed.	

If the target is within the range of -524,288 … +524,286, then it can be reached with
a JAL instruction. However, the JAL instruction is unconditional. To use it, the

Blitz-64 Instruction Set Architecture / Porter	 Page of 	84 342

Chapter 5: Instructions	

assembler/linker must change the sense of the branch (i.e., negate the condition)
and use it to branch around the JAL instruction.	

The BEQ instruction is implemented with:	
	 B.NE	 Reg1,Reg2,+8 	 Note the test is reversed 	
	 JAL	 r0,address	
The BNE instruction is implemented with:	
	 B.EQ	 Reg1,Reg2,+8 	 Note the test is reversed	
	 JAL	 r0,address	
The BLT instruction is implemented with:	
	 B.LE	 Reg2,Reg1,+8 	 Note the condition & regs are changed	
	 JAL	 r0,address	
The BLE instruction is implemented with:	
	 B.LT	 Reg2,Reg1,+8 	 Note the condition & regs are changed	
	 JAL	 r0,address	
The BGT instruction is implemented with:	
	 B.LE	 Reg1,Reg2,+8 	 Note the test is reversed	
	 JAL	 r0,address	
The BGE instruction is implemented with:	
	 B.LT	 Reg1,Reg2,+8 	 Note the test is reversed	
	 JAL	 r0,address	

In the very rare cases where the target address is out of this range, a sequence of 3
instructions must be generated, as follows.	

The temp-register “t” is used to build a 36 bit value. In the code below, “upper-20”
indicates bits [35:16] of the address and “lower-16” indicates bits [15:0]. The JALR
instruction will sign-extend the immediate lower-16 value and add it to the register.
To compensate, the value used for upper-20 will have to be adjusted accordingly.	

The BEQ instruction is implemented with:	
	 B.NE	 Reg1,Reg2,+12	 Jump around next 2 statements	
	 AUIPC	 t,upper-20	 Execute a long jump if EQ	
	 JALR	 r0,lower-16(t)	
The BNE instruction is implemented with:	
	 B.EQ	 Reg1,Reg2,+12 	 Note the test is reversed	
	 AUIPC	 t,upper-20	
	 JALR	 r0,lower-16(t)	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	85 342

Chapter 5: Instructions	

The BLT instruction is implemented with:	
	 B.LE	 Reg2,Reg1,+12 	 Note the condition & regs are changed	
	 AUIPC	 t,upper-20	
	 JALR	 r0,lower-16(t)	
The BLE instruction is implemented with:	
	 B.LT	 Reg2,Reg1,+12 	 Note the condition & regs are changed	
	 AUIPC	 t,upper-20	
	 JALR	 r0,lower-16(t)	
The BGT instruction is implemented with:	
	 B.LE	 Reg1,Reg2,+12 	 Note the test is reversed	
	 AUIPC	 t,upper-20	
	 JALR	 r0,lower-16(t)	
The BGE instruction is implemented with:	
	 B.LT	 Reg1,Reg2,+12 	 Note the test is reversed	
	 AUIPC	 t,upper-20	
	 JALR	 r0,lower-16(t)

Commentary Since each instruction is only 32 bits, any operation involving
a 36 bit address will necessarily require at least 2 instructions.	

The Blitz-64 solution is to break a 36 bit address into two pieces, consisting
of the most significant 20 bits and the least significant 16 bits. In some cases,
we break a 32 bit value into two equal sized parts, of 16 bits each.	

To explain how the assembler/linker produces machine code, we use the
following notational abbreviations:	

	 upper-20	 The upper 20 bits of a 36 bit value	
	 upper-16 	 The upper 16 bits of a 32 bit value	
	 lower-16 	 The lower 16 bits of the value	

Generally, the first instruction in the sequence will load the upper 20 bits
and the second instruction will add in lower 16 bits.	

For example, the following code sequence stores a byte from register “r5”
into memory, using a 36 bit absolute address. The temporary register “t” is
used to build the memory address.	

UPPER20 t,upper-20	 t = upper 20 bits [35:16]
STORE.B lower-16(t),r5	 address is upper-20 + lower-16

Blitz-64 Instruction Set Architecture / Porter	 Page of 	86 342

Chapter 5: Instructions	

Note that the second instruction will sign-extended the lower-16 bit piece
and perform an addition.	

Therefore, the assembler/linker must be careful when computing the
“upper-20” and “lower-16” pieces from an arbitrary 36-bit value. Because the
lower-16 piece will be sign-extended by the second instruction, the
assembler/linker cannot use:	

	 upper20 = Value[35:16]	 Wrong!	
	 lower16 = Value[15:0]	

Instead, the assembler/linker must do this:	

	 Given:	
	 	 Value (a 36-bit quantity)	
	 Compute:	
	 	 lower16 = Value[15:0]	
	 	 x = Value – SignExtend (lower16)	
	 	 upper20 = (x >> 16) [19:0]	 i.e., grab upper 20 bits [35:16] from x	

The upper-16 value is computed the same way, with the last line modified to:	

	 	 upper16 = (x >> 16) [15:0]	 i.e., grab upper 16 bits [31:16] from x	

Note that overflow cannot occur either in the subtraction performed by the
assembler/linker, or the addition performed by the second instruction in the
code sequence (e.g., the STORE.B). This is assuming that the original “Value”
is limited to a quantity representable in 36 bits, which is true of all memory
addresses and offsets.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	87 342

Chapter 5: Instructions	

*BEQI Reg,value,address Branch if Reg = immediate value
*BNEI Reg,value,address Branch if Reg ≠ immediate value
*BLTI Reg,value,address Branch if Reg < immediate value
*BLEI Reg,value,address Branch if Reg ≤ immediate value
*BGTI Reg,value,address Branch if Reg > immediate value
*BGEI Reg,value,address Branch if Reg ≥ immediate value	

Synthetic, Variable Length, Will Overwrite “t” Register, May cause a “Null Address
Exception”	

Register t Usage: Will be modified; Must not use as Reg.	

Since these instructions are synthesized with a MOVI instruction, the value can be
any 64-bit value. Likewise, the address can be any address in memory, since BEQ/
BNE/BLT/BLE/BGT/BGE can handle any address.	

The BEQI instruction is implemented as:	
	 *MOVI	 t,value	
	 *BEQ	 Reg,t,address	
The BNEI instruction is implemented as:	
	 *MOVI	 t,value	
	 *BNE	 Reg,t,address	
The BLTI instruction is implemented as:	
	 *MOVI	 t,value	
	 *BLT	 Reg,t,address	
The BLEI instruction is implemented as:	
	 *MOVI	 t,value	
	 *BLE	 Reg,t,address	
The BGTI instruction is implemented as:	
	 *MOVI	 t,value	
	 *BGT	 Reg,t,address	
The BGEI instruction is implemented as:	
	 *MOVI	 t,value	
	 *BGE	 Reg,t,address	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	88 342

Chapter 5: Instructions	

*BEQZ Reg,address Branch if Reg = 0
*BNEZ Reg,address Branch if Reg ≠ 0
*BLTZ Reg,address Branch if Reg < 0, i.e., if negative
*BLEZ Reg,address Branch if Reg ≤ 0, i.e., if not positive
*BGTZ Reg,address Branch if Reg > 0, i.e., if positive
*BGEZ Reg,address Branch if Reg ≥ 0, i.e., if not negative	

Synthetic, Variable Length, May Overwrite “t” Register, May cause a “Null Address
Exception”	

Register t Usage: May be modified; Okay to use as Reg.	

Since these instructions are synthesized with BEQ/BNE/BLT/BLE/BGT/BGE, the
address can be any address in memory.	

The BEQZ instruction is implemented as:	
	 *BEQ	 Reg1,r0,address	
The BNEZ instruction is implemented as:	
	 *BNE	 Reg1,r0,address	
The BLTZ instruction is implemented as:	
	 *BLT	 Reg1,r0,address	
The BLEZ instruction is implemented as:	
	 *BLE	 Reg1,r0,address	
The BGTZ instruction is implemented as:	
	 *BGT	 Reg1,r0,address	
The BGEZ instruction is implemented as:	
	 *BGE	 Reg1,r0,address	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	89 342

Chapter 5: Instructions	

*BFALSE Reg,address Branch if Reg = 0, i.e., if “false”
*BTRUE Reg,address Branch if Reg ≠ 0, i.e., if “true”

Synthetic, Variable Length, May Overwrite “t” Register, May cause a “Null Address
Exception”	

Register t Usage: May be modified; Okay to use as Reg.	

The BFALSE instruction is implemented as:	
	 *BEQ	 Reg1,r0,address	
The BTRUE instruction is implemented as:	
	 *BNE	 Reg1,r0,address	

UPPER20 RegD,immed20 RegD ← (immed<<16)

The 20 bit immediate value is sign-extended. It is then shifted left by 16 bits. The
result is placed into register RegD.	

The UPPER20 instruction is useful for building any 36 bit value, which is the size of a
memory address. The UPPER20 instruction takes care of the most significant 20 bits.
The following instruction (e.g., LOAD or STORE) will typically add in the least
significant 16 bits and perform the access.	

UPPER16 RegD,Reg1,immed16 RegD ← (immed<<16) + Reg1

The 16 bit immediate value is sign-extended and then shifted left by 16 bits. This
value is added to the value in register Reg1 and the result is placed into register
RegD. There is no overflow check.	

The UPPER16 instruction is useful for building 32 bit offsets from a register such as
the stack pointer “sp”. The UPPER16 instruction takes care of the most significant 16
bits of the offset and the addition of the stack pointer. The following instruction (e.g.,
LOAD or STORE) will typically add in the least significant 16 bits of the offset and
perform the memory access.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	90 342

Chapter 5: Instructions	

Commentary Recall that the ADDI instruction is limited to an immediate value of
-32,768 … +32,767:	

	 ADDI RegD,Reg1,immed16	

In order to add a larger number, the following code sequence is recommended and
will work in all cases:	

	 MOVI t,value	
	 ADD RegD,Reg1,t	

However, for a 32-bit value (i.e., in the range -2,147,483,648 … +2,147,483,647),
notice that the synthetic MOVI will expand to two instructions, giving:	

	 UPPER20 t,upper-20	
	 XORI t,t,lower-16	
	 ADD RegD,Reg1,t	

However, you might consider achieving the same effect with this shorter code
sequence:	

	 UPPER16 t,Reg1,upper-16	
	 ADDI RegD,t,lower-16	

But beware: The overflow behavior is not equivalent! The UPPER16 instruction
performs an addition which ignores overflow. The UPPER16 instruction is meant for
addresses, so this is reasonable. UPPER16 is not meant for general purpose addition.	

SHIFT16 RegD,Reg1,immed16 RegD ← (Reg1 + immed16) << 16

This instruction combines the immed16 value and the value in register Reg1 and
places the computed result in register RegD. The 16 bit immediate value is injected
into the lower 16 bits of the value in register Reg1. The value is then shifted left by
16 bits. The result is stored into register RegD.	

By inject, we mean the 16 new bits overwrite the original bits [15:0] of the value
fetched from Reg1. The “+” in the summary above is a bit misleading. The following
is more precise:	
	 RegD ← Reg1[47:16] || immed16 || 0x0000	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	91 342

Chapter 5: Instructions	

The immediate value is not sign-extended and there is no overflow check.	

This instruction is useful in loading arbitrary 64 bit values into a register. See the
discussion for the MOVI instruction to see how this instruction is used.	

ADDPC RegD,immed20 RegD ← PC+immed

The 20 bit immediate value gives a PC-relative “target address” which is moved into
register RegD.	

The immediate value is sign-extended and added to the current value of the PC (the
address of the ADDPC instruction, not the following instruction).	

Since the PC and the offset are relatively small numbers, overflow is impossible. The
PC is a positive number; i.e., it is not sign-extended.	

This instruction is used in loading the address of a static variable or function into a
register, when that address is within -524,288 … +524,287 of this instruction.	

A program can determine its own address with this instruction. For example,
xecuting “ADDPC r1,0” will move the address of the ADDPC instruction into register
r1.	

AUIPC RegD,immed20 RegD ← (immed<<16) + PC

The AUIPC instruction is identical to the UPPER20 instruction, except that the PC is
also added in.	

In more detail, the 20 bit immediate value is sign-extended. It is then shifted left by
16 bits. This value is added to the current value of the PC (the address of this
instruction, not the following instruction) and the result is placed in register RegD.	

Since the PC and the offset are relatively small numbers, overflow is impossible. The
PC is a positive number; i.e., it is not sign-extended.	

The AUIPC instruction is useful for building any PC-relative relocatable address. The
AUIPC instruction takes care of the most significant 20 bits. The following

Blitz-64 Instruction Set Architecture / Porter	 Page of 	92 342

Chapter 5: Instructions	

instruction (e.g., JALR, LOAD.x, etc.) will then add in the least significant 16 bits and
perform the jump, load, etc.	

JAL RegD,immed20 RegD ← return addr; Target ← PC+offset

May cause a “Null Address Exception”	

The 20 bit immediate value gives a PC-relative “target address". The immediate
value is sign-extended and added to the current value of the PC (the address of the
JAL instruction, not the following instruction). The address of the instruction
following the JAL is stored into RegD, which is typically the link register, “lr”. Finally,
the PC is loaded with the target address, causing a jump.	

The upper 28 bits [63:36] of the target address are ignored, since addresses are 36
bits. The least significant bit of the address is ignored and 0 is assumed, forcing
halfword alignment. There is no overflow check.	

This instruction is used to implement the function CALL instruction. The return will
be made to the instruction following the JAL, and this address is exactly what this
instruction will save in the link register.	

This instruction can also be used to implement a PC-relative jump or goto, in which
case the zero register “r0” is used as the destination for the link value. Since there is
to be no return, there is no reason to save a return address.	

Any attempt to load the PC with zero will cause a “Null Address Exception”.
Exceptions will only occur if the jump is taken; if the jump is not taken, no exception
will occur.	

In systems without compressed instructions and in which alignment is required for
instructions, there may be an “Unaligned LOAD/STORE Exception” if the target
address is not properly aligned. Alternatively, such systems may simply ignore the
final bits, rounding the target address down to force alignment.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	93 342

Chapter 5: Instructions	

JALR RegD,immed16(Reg1) RegD ← return addr; Target ← offset+Reg1

May cause a “Null Address Exception”	

The 16 bit immediate value is sign-extended and added to the current value of
register Reg1, giving a “target address”. The address of the instruction following the
JALR is stored into RegD, which is typically the link register, “lr”. Finally, the PC is
loaded with the target address, causing a jump.	

The upper 28 bits [63:36] of the target address are ignored, since addresses are 36
bits. The least significant bit of the address is ignored and 0 is assumed, forcing
halfword alignment. There is no overflow check.	

This instruction can be used to implement an indirect jump, via register. It is also
used to implement the RETURN instruction. It is also used to implement the CALL
instruction when the target address exceeds the 20 bits accommodated by the JAL
instruction.	

Any attempt to load the PC with zero will cause a “Null Address Exception”.
Exceptions will only occur if the jump is taken; if the jump is not taken, no exception
will occur.	

In systems without compressed instructions and in which alignment is required for
instructions, there may be an “Unaligned LOAD/STORE Exception” if the target
address is not properly aligned. Alternatively, such systems may simply ignore the
final bits, rounding the target address down to force alignment.	

*CALL address Jump to address; save return addr in “lr”
*CALLR Reg1 Jump to address; save return addr in “lr”

May cause a “Null Address Exception”	

Synthetic, Variable Length.	

Register t Usage: May be modified (CALL); Okay to use as Reg1.	

In the case of the CALL instruction, the target is given by the “address” operand, and
may be any absolute or relocatable address. Typically the programmer or compiler

Blitz-64 Instruction Set Architecture / Porter	 Page of 	94 342

Chapter 5: Instructions	

will use a symbolic label to stand for the address, but a hard-coded number can be
used, too.	

In the case of CALLR, the target address is in register Reg1.	

Since all program-generated addresses are 36 bits, only the lower 36 bits of any
target address can affect the effective address. The upper 28 bits [63:36] of any
target address are always ignored.	

The CALLR instruction is implemented with:	
	 JALR	 lr,0(Reg1)	

In the case of CALL, the address will not normally be known until link-time.
Consequently, the actual instruction sequence may not be determined until link-
time. (However in some cases, the assembler will be able to produce the final
instruction sequence.)	

If address is within the range -524,288 … +524,287 from the CALL instruction (i.e.,
within the range of a 20-bit offset), then CALL is implemented with:	
	 JAL	 lr,address	

Otherwise (i.e., a full 36 bit relative offset from the PC is needed), then CALL is
implemented with:	
	 AUIPC	 t,upper-20	
	 JALR	 lr,lower-16(t)	

If the target address is an absolute address in the range -32,768 … +32,767 (i.e.,
within the lowest 32 GiBytes of the address space 0x0_0000_0000 … 0x0_0000_7FFF
or within the highest 32 GiBytes of the address space 0xF_FFFF_8000 …
0xF_FFFF_FFFF), then CALL is implemented with:	
	 JALR	 lr,address(r0)	

Otherwise (i.e., an absolute address is provided and a full 36 bits are required), CALL
is implemented with:	
	 UPPER20	 t,upper-20	
	 JALR	 lr,lower-16(t)	

In the above code, “upper-20” indicates bits [35:16] of the address and “lower-16”
indicates bits [15:0]. The JALR instruction will sign-extend the immediate lower-16
value and add it to the register. To compensate, the value used for upper-20 will have
to be adjusted accordingly.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	95 342

Chapter 5: Instructions	

*JUMP address Jump to address

Synthetic, Variable Length, May cause a “Null Address Exception”	

Register t Usage: May be modified.	

See the comments regarding “address” for the CALL instruction.	

This instruction is implemented exactly like the CALL instruction, except the register
r0 is used for the link register. In other words, the return address is discarded,
instead of saved.	

If address is within the range -524,288 … +524,287 from the JUMP instruction (i.e.,
within the range of a 20-bit offset), then JUMP is implemented with:	
	 JAL	 r0,address	

Otherwise (i.e., a full 36 bit relative offset from the PC is needed), then JUMP is
implemented with:	
	 AUIPC	 t,upper-20	
	 JALR	 r0,lower-16(t)	

If the target address is an absolute address in the range -32,768 … +32,767, then
JUMP is implemented with:	
	 JALR	 r0,address(r0)	

If an absolute addressing requiring 36 bits is given, then JUMP is implemented with:	
	 UPPER20	 t,upper-20	
	 JALR	 r0,lower-16(t)	

In the above code, “upper-20” indicates bits [35:16] of the address and “lower-16”
indicates bits [15:0]. The JALR instruction will sign-extend the immediate lower-16
value and add it to the register. To compensate, the value used for upper-20 will have
to be adjusted accordingly.

Blitz-64 Instruction Set Architecture / Porter	 Page of 	96 342

Chapter 5: Instructions	

*JR Reg1 Indirect jump, via register

Synthetic, May cause a “Null Address Exception”	

Register t Usage: Not used; Okay to use as Reg1.	

This instruction jumps to the address contained in the register.	

It is implemented with:	
	 JALR	 r0,0(Reg1)	

*RET <no operands> Return value is in link reg “lr”

Synthetic, May cause a “Null Address Exception”	

Register t Usage: Not used.	

A jump is made to the address saved in the link register.	

This instruction is implemented with:	
	 JALR	 r0,0(lr)	

Commentary The basic approach to function call and return is to store the return
address (i.e., the address of the instruction following the CALL instruction) in a
register. By convention, one register (named “lr”) is set aside for this purpose.	

A “leaf” function is a function that does not call any other functions. For leaf
functions, there is no need to save the return address on the stack, since it can
remain undisturbed in register “lr” until the function is ready to return. This avoids
two (costly) accesses to memory, one to save the return address and one to restore
it.	

Some functions can pass all arguments and return values in registers and can store
all local variables in registers. Such lucky functions can get by without needing to
use the stack and can execute without ever accessing memory, which enhances
execution speed.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	97 342

Chapter 5: Instructions	

In the case of non-leaf functions, this link register scheme will not work. Instead, the
function must explicitly save its return address, and this is normally done on the
stack. Thus, the function “entry prologue” will include a STORE instruction to save
the return address, while the function “exit epilogue” will include a LOAD instruction
directly before the RETURN instruction.	

ENTERFUN RegD,Reg1,immed16 Save lr, push frame onto stack
EXITFUN RegD,Reg1,immed16 	 	 Retrieve lr, pop frame, and return

May cause a page-related exception, “Unaligned LOAD/STORE Exception”, “Null
Address Exception”, “Arithmetic Exception”, or “Stack Overflow Exception”	

The ENTERFUN instruction has the same effect as the following instruction
sequence:	

STORED -8(sp),lr
ADDI RegD,Reg1,immed16

The EXITFUN instruction has the same effect as:	

ADDI RegD,Reg1,immed16
LOAD pc,-8(RegD)

Of course, the Program Counter (PC) is not a directly addressable register. The above
pseudo-code for EXITFUN is merely suggestive. In reality, a doubleword is simply
fetched from memory and used as the target address to jump to.	

In the case of ENTERFUN, when an exception arises from the store operation, the
destination register RegD may or may not be modified. If the addition causes
overflow, an Arithmetic Exception will occur. If the instruction modifies the sp
register and the new value is less than the StackLimit field in csr_status, a "Stack
Overflow Exception will occur. If the addition causes an exception, the store
operation may or may not be performed. These are implementation dependencies.	4

 If the instruction raise more than one exception, only one exception will occur, but we do not 4

specify which exception takes priority. This is an implementation dependency for both ENTERFUN
and EXITFUN.

Blitz-64 Instruction Set Architecture / Porter	 Page of 	98 342

Chapter 5: Instructions	

In the case of EXITFUN, when an Arithmetic Exception arises from the addition, the
load operation may or may not be performed and the PC may or may not be updated.
If the load operation causes an exception, the addition may or may not be
performed. Whenever an exception occurs, trap processing saves the previous value
of the PC in csr_prevpc. If the load operation completes without error, but the
addition results in an exception, it is indeterminate which value stored in
csr_prevpc. All these are implementation dependencies.	

The memory address is computed by adding -8 to the contents of a register
(normally sp). Overflow on this addition is ignored. The upper 28 bits [63:36] of the
address are ignored and only the lower 36 bits [35:0] are used. The resulting
address must be non-zero; any attempt to load or store into address zero will result
in a “Null Address Exception” being signaled. The resulting address must be
doubleword aligned; if not, a “Unaligned LOAD/STORE Exception” will be signaled.	

Both the addition and the memory operation are performed atomically. Assuming
there are no exceptions, if one operation is performed the other will also be
performed without the possibility of traps occurring between them, i.e., in the
middle of the instruction.	

Commentary To understand the purpose of ENTERFUN and EXITFUN, consider the
following example function, which allocates a frame of 24 bytes on the stack. The
return address along with a couple of registers are stored in the frame on entry and
then restored before returning.	

According to the standard program calling conventions, the return address must
always be stored in the top (i.e., highest) doubleword of the frame. Other locations in
the frame will be used in different ways, depending on the needs of the particular
function.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	99 342

Chapter 5: Instructions	

myFunc:
addi sp,sp,-24 # Function Prologue
store.d 0(sp),r1 # .
store.d 8(sp),r2 # .
store.d 16(sp),lr # .
...
load.d r1,0(sp) # Return Sequence
load.d r2,8(sp) # .
load.d lr,16(sp) # .
addi sp,sp,24 # .
ret # .

We can rewrite the above code as follows: 	5

myFunc:
store.d -8(sp),lr # Function Prologue
addi sp,sp,-24 # .
store.d 0(sp),r1 # .
store.d 8(sp),r2 # .
...
load.d r1,0(sp) # Return Sequence
load.d r2,8(sp) # .
addi sp,sp,24 # .
load.d lr,-8(sp) # .
ret # .

The highlighted code above can be replaced by the ENTERFUN and EXITFUN
instructions to give:	

 Note that the re-written version saves register lr at -8(sp), beyond and outside the stack (i.e., 5

“above” the “top” of the stack using a negative offset to sp). In certain situations, this may be risky.
If interrupts are possible and the interrupting trap handler saves things on the stack, disaster will
result if the trap occurs between saving lr and decrementing sp, since the saved lr will be
overwritten by the trap handler. With ENTERFUN and EXITFUN, interrupts cannot occur in the
middle between these two operations, so this problem is avoided. However, in certain situations,
the KPL compiler will nevertheless generate code that saves values using negative offsets from sp.

Blitz-64 Instruction Set Architecture / Porter	 Page of 	100 342

Chapter 5: Instructions	

myFunc:
enterfun sp,sp,-24 # Function Prologue
store.d 0(sp),r1 # .
store.d 8(sp),r2 # .
...
load.d r1,0(sp) # Return Sequence
load.d r2,8(sp) # .
exitfun sp,sp,24 # .

Normally, register sp will be used as both Reg1 and RegD in both ENTERFUN and
EXITFUN. It would be uncommon for any other register to be used.	

If the frame size exceeds what is representable in 16 bits, then we cannot use
ENTERFUN or EXITFUN or ADDI. In that case, the compiler will need to fall back on
a more general code sequence.	

Commentary The ENTERFUN and EXITFUN instructions are unusual in the
following ways:	

Two registers are implied — the sp and lr registers — in the load and store portions
of the ENTERFUN and EXITFUN functionality. In all other Blitz-64 instructions, if a
general purpose register is used, it will be specified explicitly in the instruction.
Furthermore, wherever a register is specified, any general purpose register can be
used. In this way, the sp and lr registers now have a special use that is not shared by
the other registers.	

The ENTERFUN and EXITFUN instructions each perform two very different
operations. The instruction performs both an addition to a register and a memory
operation. In all other Blitz-64 instructions, each instruction is limited to a single,
simple operation. For the most part, the Blitz-64 architecture is RISC, but these
instructions can reasonably be termed CISC instructions.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	101 342

Chapter 5: Instructions	

LOAD.B RegD,immed16(Reg1)
LOAD.H RegD,immed16(Reg1)
LOAD.W RegD,immed16(Reg1)
LOAD.D RegD,immed16(Reg1)
	 	
STORE.B immed16(Reg1),Reg2
STORE.H immed16(Reg1),Reg2
STORE.W immed16(Reg1),Reg2
STORE.D immed16(Reg1),Reg2	

May cause a page-related exception, “Unaligned LOAD/STORE Exception”, or “Null
Address Exception”	

The LOAD instructions transfer a byte/halfword/word/doubleword from main
memory to the destination register RegD.	

In the case of a LOAD of less than 64 bits, the value will be signed-extended to 64
bits.	

The STORE instructions transfer a byte/halfword/word/doubleword from register
Reg2 to main memory.	

In the case of a STORE of less than 64 bits, the upper bits of the register will be
ignored. There will not be a “Arithmetic Exception” signaled.	

The address is computed by sign-extending the 16 bit immediate value to 64 bits
and adding it to the contents of register Reg1. Overflow on this addition is ignored.
The upper 28 bits [63:36] of the address are ignored and only the lower 36 bits
[35:0] are used.	

The resulting address must be non-zero; any attempt to load or store into address
zero will result in a “Null Address Exception” being signaled.	

The resulting address must be properly aligned for the size being transferred; if not,
a “Unaligned LOAD/STORE Exception” will be signaled.	

Commentary The large size of the 16 bit immediate offset in the LOAD and STORE
instructions provides a lot of flexibility in addressing.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	102 342

Chapter 5: Instructions	

To access values stored on the stack using LOAD and STORE instructions, the stack
pointer register “sp” can be used as Reg1. The stack grows downward toward low
memory. Therefore, positive offsets from “sp” can be used to access any data within
the top 32KiBytes of the stack.	

Many language compilers maintain a “frame pointer” as well as a “stack pointer”. The
frame pointer (often called “fp”) is used in the implementation of stack frames for
storing local variables in a function invocation. The “fp” register will typically be
initialized to point to the boundary with the previous stack frame. That is, “fp” will
point to the top of the current frame and the bottom of the previous frame. As
always, the “sp” register points to the stack top, accommodating dynamically-sized
stack frames and ad hoc pushing and popping onto the stack.	

In this approach, negative offsets from “fp” will access variables in the current (top)
frame and positive offsets will access variable in the previous frames, such as
function arguments. Given the range of the immed16 offset, this method will
accommodate stack frames of up to 32 KiBytes in size. For stack frames larger than
this, an additional instruction may be required for some variables. Thus, in almost
all cases, stack frame variables will be accessible with a single instruction.	

The Blitz-64 calling conventions do not include a frame pointer register. In other
words, there is no register named “fp”. However, for functions that need a frame
pointer, the compiler can choose any register to use. Often, there will be no separate
thread data area, so register “tp” is normally the logical choice to use as a frame
pointer. By convention, the compiler will use “tp” as a frame pointer. To prevent
confusion, we intentionally do not give the “tp” a second name, such as “fp”.	

Data within the lower 32 KiBytes of main memory (addresses 0x0_0000_0000…
0x0_0000_7FFF, i.e., decimal 0…32,767) can be conveniently accessed by using the
zero register “r0” for Reg1.	

Due to the fact that the upper bits [63:36] of addresses are ignored, data within the
upper 32 KiBytes of addressable memory (i.e., addresses 0xF_FFFF_8000…
0xF_FFFF_FFFF) is also accessible with negative addresses (i.e., decimal -32,768 …
-1). This is achieved with a negative immed16 value.	

Assuming the global data pointer register “gp” has been initialized, a range of 64
KiBytes of static variable data can be accessed with a single LOAD or STORE
instruction. This can be achieved by initializing the global data pointer “gp” to point
to the center of the block of 64 GiBytes of global data. The first half of the global data

Blitz-64 Instruction Set Architecture / Porter	 Page of 	103 342

Chapter 5: Instructions	

will be accessed with a negative offset and the upper half will be accessed with a
positive offset.	

Assuming that some register points to an “object” (in the sense of object-oriented
programming), a single LOAD or STORE instruction can be used to access any field
within the object, as long as the object is not larger than 32 KiBytes.	

For data located at any other address, an additional instruction will be required. See
the UPPER20 and UPPER16 instructions.	

Concerning Atomicity of LOAD and STORE Instructions The following machine
instructions are atomic:	

	 LOAD.B	 LOAD.H	 LOAD.W	 LOAD.D	
	 STORE.B	 STORE.H	 STORE.W	 STORE.D	
	 CAS	

This means the memory operation occurs as a single, uninterruptible unit.
Conflicting memory operations which touch the same or overlapping memory
locations will be serialized, which means one operation will be executed to
completion entirely before the other operation begins execution.	

This assumes that LOADs and STOREs are aligned; if they are not aligned, then an
“Unaligned LOAD/STORE Exception” will occur and atomicity becomes a software
issue, and only if the instruction is to be emulated.	

Within the private memory of a single core, unaligned operations may be atomic;
this is implementation dependent. However, when performed on a shared memory
address in the presence of multiple processors, the programmer must be careful
when using unaligned operations. Consider two more-or-less simultaneous attempts
to STORE different values into a single doubleword that happens to cross a
boundary and involves two cache lines. Even if operations involving a single cache
line are atomic, an operation involving two cache lines is not normally atomic. 	

We chose the granularity of atomicity to be 64 bits on the assumption that all
memory busses and transfer paths to memory and caches will be at least 64 bits in
width, or at least all bus transactions will accommodate 64 bits. Thus, the atomicity
of LOADs and STOREs will “come for free”. Perhaps the system busses will transfer
data in larger units, such as cache lines of 128 bytes, but this should never be relied
upon.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	104 342

Chapter 5: Instructions	

Relying on the atomicity of memory operations is somewhat error prone. To guard
against race-related bugs, all potentially shared data should be protected by
software locks. However, for the efficient implementation of “mutex” locks, the
atomicity of LOAD.x, STORE.x, and CAS (compare-and-set) is critical.	

*LOADB RegD,address	 Where address is any value
*LOADH RegD,address	
*LOADW RegD,address	 	
*LOADD RegD,address	 	 	

*LOADB RegD,offset(Reg1) 	 Where offset is any value
*LOADH RegD,offset(Reg1)	
*LOADW RegD,offset(Reg1)	
*LOADD RegD,offset(Reg1)	 	

Synthetic, Variable Length, may cause a page-related exception, “Unaligned LOAD/
STORE Exception”, or “Null Address Exception”	

Register t Usage: Not used; Okay to use as RegD or Reg1.	

Register Note: RegD and Reg1 must be different !	

In these synthetic instructions, “address” may be any absolute or relocatable
address. Typically the programmer or compiler will use a symbolic label to stand for
the address, but a hard-coded number can be used, too. The “offset” operand may be
any absolute value.	

Both address and offset are limited to 36 bits. Since all program-generated addresses
are 36 bits, only the lower 36 bits of any address or offset can affect the effective
address. The upper 28 bits [63:36] of any address are always ignored.	

Normally, the address will not be known until link-time. The offset may also be
unknown until link-time. In such cases, the actual instruction sequence may not be
determined until link-time. (However in some cases, the assembler will be able to
produce the final instruction sequence.)	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	105 342

Chapter 5: Instructions	

In the following, we describe the sequence of machine instructions produced for a
LOADB instruction. The LOADH, LOADW, and LOADD instructions are handled
analogously.	

Consider an instruction of the form:	
	 LOADB	 RegD,address	

If the value of address is within the range of -32,768 … +32,767, then use:	
	 LOAD.B	 RegD,address(r0)	

If address is any other value, then use:	
	 UPPER20	 RegD,upper-20	
	 LOAD.B	 RegD,lower-16(RegD)	

The above code works for any absolute address. Normally the linker will convert
(i.e., “resolve”) all addresses to absolute numbers. But if PC-relative addressing is
demanded, the following sequence must be used, regardless of the size of the offset:	
	 AUIPC	 RegD,upper-20	
	 LOAD.B	 RegD,lower-16(RegD)	

Consider an instruction of the form:	
	 LOADB	 RegD,offset(Reg1)	

If offset is within the range of -32,768 … +32,767, then use:	
	 LOAD.B	 RegD,offset(Reg1)	

If offset is within 32 bits (i.e., within the range -2,147,483,648 … +2,147,483,647),
then use:	
	 UPPER16	 RegD,Reg1,upper-16	
	 LOAD.B	 RegD,lower-16(RegD)	

If offset is a value even larger than 32 bits, then use the following. (An offset larger
than 32 bits would be quite rare, so this sequence won’t be needed often.)	
	 UPPER20	 RegD,upper-20	
	 ADD	 RegD,RegD,Reg1 	 	
	 LOAD.B	 RegD,lower-16(RegD)	

(This sequence contains an ADD instruction; can this cause an “Arithmetic
Exception”? The UPPER20 instruction is only capable of loading a 36 bit value.

Blitz-64 Instruction Set Architecture / Porter	 Page of 	106 342

Chapter 5: Instructions	

Assuming that Reg1 contains a legal address (i.e., a value limited to 36 bits) the ADD
instruction cannot cause an Arithmetic Exception.)	

In the above code, “upper-16” indicates the upper 16 bits [31:16] of the value,
“upper-20” indicates the upper 20 bits [35:16] of the value, and “lower-16” indicates
bits [15:0]. The LOAD instruction will sign-extend the immediate lower-16 value and
add it to the register. To compensate, the value used for upper-16 and/or upper-20
will have to be adjusted accordingly.	

To understand why RegD and Reg1 must be different, consider the following when
the offset is large:	
	 LOADB	 r5,offset(r5)	

Here is the code generated; obviously it will not work correctly.	
	 UPPER20	 r5,upper-20	 Error: Original value of r5 is lost.	
	 ADD	 r5,r5,r5 	 	
	 LOAD.B	 r5,lower-16(r5)

*STOREB address,Reg2 	 Where address is any value
*STOREH address,Reg2	
*STOREW address,Reg2	
*STORED address,Reg2	 	

*STOREB offset(Reg1),Reg2 	 Where offset is any value
*STOREH offset(Reg1),Reg2	
*STOREW offset(Reg1),Reg2	
*STORED offset(Reg1),Reg2	

Synthetic, Variable Length, May cause a page-related exception, “Unaligned LOAD/
STORE Exception”, or “Null Address Exception”	

Register t Usage: May be modified; Must not use as Reg1 and/or Reg2 !	

Concerning “address” and “offset”, see the comments under the LOAD instructions.	

As with the LOAD instructions, we describe how the synthetic instruction can be
implemented with 1, 2, or 3 instructions.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	107 342

Chapter 5: Instructions	

In some cases we need a register in which to build a large address. In the case of the
LOAD instructions, we used the destination register RegD, since it was to be
overwritten anyway. In the case of the STORE instructions, this will not work.
Instead, we use the temporary register “t”.	

Consider an instruction of the form:	
	 STOREB	 address,Reg2	

If the value of address is within the range of -32,768 … +32,767, then use:	
	 STORE.B	 address(r0),Reg2	

If address is any other value, then use:	
	 UPPER20	 t,upper-20	
	 STORE.B	 lower-16(t),Reg2	

If PC-relative addressing is demanded, then use:	
	 AUIPC	 t,upper-20	
	 STORE.B	 lower-16(t),Reg2	

Consider an instruction of the form:	
	 STOREB	 offset(Reg1),Reg2	

If offset is within the range of -32,768 … +32,767, then use:	
	 STORE.B	 offset(Reg1),Reg2	

If offset is within 32 bits (i.e., within the range -2,147,483,648 … +2,147,483,647),
then use:	
	 UPPER16	 t,Reg1,upper-16	
	 STORE.B	 lower-16(t),Reg2	

If offset is a value even larger than 32 bits, then use:	
	 UPPER20	 t,upper-20	
	 ADD	 t,t,Reg1	
	 STORE.B	 lower-16(t),Reg2	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	108 342

Chapter 5: Instructions	

CAS RegD,Reg1,Reg2,Reg3 	 Compare and Set

May cause a page-related exception, or “Null Address Exception”	

Register Reg1 contains the address of a doubleword, Reg2 contains the expected
“old” value, and Reg3 contains the “new”value.	

This operation will load a doubleword from memory. If the value is equal to the
expected old value (in Reg2), then memory will be updated by storing the new value
(in Reg3) into memory and 1 will be moved into RegD. If not equal, memory will not
be updated and 0 will be moved into RegD.	

More precisely, this instruction does the following as one atomic operation:	

if *Reg1 == Reg2
 *Reg1 ← Reg3
 RegD ← true
else
 RegD ← false
endIf

The address in Reg1 is forced to be doubleword aligned by ignoring the final 3 bits.
Thus, an “Unaligned LOAD/STORE Exception” cannot occur.	

This instruction is not normally used on memory-mapped I/O devices. This
instruction is implementation dependent if performed on a memory-mapped I/O
address and may not work as expected.	

Commentary The compare-and-set (CAS) instruction is used for concurrency
control to allow synchronization between multiple threads which may be running
on different cores accessing shared memory.	

Consider implementing a mutex lock, which will be represented as a doubleword
with 0=unlocked and 1=locked. If it is currently locked, the following code will spin
in a tight loop continually executing the CAS instruction to check it.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	109 342

Chapter 5: Instructions	

To acquire the lock:	
 movi r1,…addressOfLock…
 movi r3,1
loop:
 cas r7,r1,r0,r3
 beqz r7,loop

To release the lock:	
 movi r1,…addressOfLock…
 store.d 0(r1),r0

Next, consider the case where we have several cores, each executing a thread with
the goal of selecting one of the cores as a “leader”. For example, we might want all
cores to agree on which core will act as “master”, with the others acting as “slaves”.	

Assume that each core has a unique ID number and the goal is for these concurrent
processes to select exactly one core. We will assume there is a shared memory
location (which we will name Leader) which will be used for the election. The Leader
variable is assumed to be a doubleword initialized to zero.	

Here is the code that each core will execute in order to chose their leader:	
 movi r1,…address of Leader…
 movi r3,…my core ID…
 cas r7,r1,r0,r3
 bnez r7,WeWon
WeLost:
 load.d …,0(r1) Load the ID of the leader

Commentary To use the CAS instruction, the KPL programming language has a
built-in function with this usage:	

	 function cas (p: ptr to int, old: int, new: int) returns bool	

Such a function could be implemented in assembly code as:	

casFunct:
 cas r1,r1,r2,r3
 ret

Blitz-64 Instruction Set Architecture / Porter	 Page of 	110 342

Chapter 5: Instructions	

However, the compiler will recognize this as a predefined function and insert the
CAS instruction inline.	

FENCE <no operands>	

No exceptions; Not privileged	

You might imagine that the processor fetches instructions in order and executes
them in sequence; this is the programming model that programmers and compilers
naturally adopt.	

However, to increase performance, modern processors will sometimes execute
instructions out of sequence. This is acceptable as long as the effect is identical to
executing them in the sequence they appear.	

In reordering instructions, the processor implicitly assumes that there are no other
processors. However, this may not be true and the results can be incorrect in a
multiprocessor system with shared memory. Programmers assume the operations in
their code are executed in the sequence written but, with concurrent algorithms,
violations of this assumption can cause race bugs.	

The FENCE instruction is used to ensure critical instructions complete before other
instructions begin. Therefore, FENCE constrains and limits out-of-order execution
and may introduce delays and pipeline bubbles.	

The FENCE instruction affects instructions that read or write to memory. This
includes:	

	 LOAD.B, LOAD.H, LOAD.W, LOAD.D	
	 STORE.B, STORE.H, STORE.W, STORE.D	
	 CAS, TLBCLEAR, TLBFLUSH, CHECKADDR	

The FENCE instruction requires that any of the above instructions that appear
before the FENCE instruction will be completed before the FENCE instruction. It
requires that any of the above instructions that appear after the FENCE instruction
will not be started until after the FENCE instruction.	

To say this another way, let’s call all memory-related instructions that appear in the
instruction stream before the FENCE as X and all memory-related instructions that

Blitz-64 Instruction Set Architecture / Porter	 Page of 	111 342

Chapter 5: Instructions	

appear after the FENCE as Y. The FENCE instruction says, “Finish executing all X
instructions before starting the execution of any Y instructions.”	

Commentary In some ISAs, a distinction is made between operations that read
memory and operations that write memory. Also a distinction can be made between
operations that affect memory and operations that affect I/O. RISC-V is an example.	

We chose to keep it simple and provide a single FENCE instruction for all cases.	

Commentary To use the FENCE instruction, the KPL programming language has a
built-in function which takes no arguments and returns no result:	

	 function fence ()	

Such a function could be implemented in assembly code as:	

fenceFunct:
 fence
 ret

However, the compiler will recognize this as a predefined function and insert the
FENCE instruction inline.	

Like an out-of-order processor, compilers also reorder instructions.	

In fact, the compiler can make major changes to improve performance, for example,
by keeping variables in registers and delaying writes to memory for long periods of
time. While these optimizations improve performance, they also open the door for
race bugs in concurrent programs. Thus, there must be a way to instruct the
compiler when to limit optimizations and execute the operations in the order
specified.	

In addition to inserting a FENCE instruction, the KPL compiler will also recognize
the use of the predefined “fence ()” function as a signal to avoid the sorts of
reordering and register caching that could confuse and break concurrent code.	

The Blitz approach may seem like a blunt force tool and it is certainly the case that
other ISAs and languages provide a finer-grained level of control. However, we chose
the simple approach of Blitz for two reasons.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	112 342

Chapter 5: Instructions	

First, since it is simpler, we may avoid a programmer’s failure to fully and adequately
constrain memory operations that could occur with a finer level of control. In other
words, a more complicated approach opens the way for the programmer to use it
incorrectly. We feel that race bugs are so problematic that anything we can do is
worthwhile.	

Second, the sections of code that will be affected by a particular use of “fence” will
probably be quite small. We do not expect many variables to be “in play” and subject
to movement around a particular use of “fence” beyond the variables that we are
intending to constrain, so the only optimizations that are eliminated are the ones we
need to eliminate. The overly blunt “fence” of Blitz will not cause many unwanted,
unintended inefficiencies. (There’s probably an entire PhD thesis to be had in
sorting this issue out.)	

Although this is never a good justification, the Blitz/KPL approach may be easier to
implement than the approach of declaring certain variables to be “volatile”.	

ALIGNH RegD,Reg1,Reg2,Reg3 Reg3 (unaligned addr) gives shift amount
ALIGNW RegD,Reg1,Reg2,Reg3 Reg3 (unaligned addr) gives shift amount
ALIGND RegD,Reg1,Reg2,Reg3 Reg3 (unaligned addr) gives shift amount

The ALIGN instructions support the emulation of memory LOADs in which the target
address is not properly aligned.	

The high-order portion of the data comes from Reg1, the low-order portion of the
data comes from Reg2. The least significant bits in Reg3 tell how to shift/combine
the portions. The result is sign-extended and placed in RegD.	

The ALIGN instructions use only the least signifiant bits of Reg3, so the (possibly
unaligned) target address itself can be used. These bits are the final bits of the
address and tell how “misaligned” the address is, i.e., how much shifting must be
done.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	113 342

Chapter 5: Instructions	

Commentary Let’s look at the operation of the ALIGN instructions in more detail.	

ALIGNW	

For the ALIGNW instruction, the goal is to select four bytes, which may be aligned in
any of four ways.	

Assume the memory contains the following sequence of bytes, where xx represents
one byte. Word alignment boundaries are indicated with a period, so words AA BB
CC DD and EE FF GG HH are properly aligned. The (possibly unaligned) target
address will fall into one of the four cases shown. 	

	 	 … xx xx xx xx.AA BB CC DD.EE FF GG HH.xx xx xx xx …	
	 0	 AA BB CC DD	
	 1	 BB CC DD EE	
	 2	 CC DD EE FF	
	 3	 DD EE FF GG	

The LOADW instruction only loads properly aligned words. In order to retrieve a
(possibly misaligned) word such as CC DD EE FF, we will LOAD two consecutive
words. Regardless of alignment, this guarantees that we will get all the bytes. 	

Assume that Reg1 and Reg2 have been loaded using the LOADW instruction from
two consecutive words in the memory that contain the desired word.	

	 Reg1	 xx xx xx xx AA BB CC DD	
	 Reg2	 xx xx xx xx EE FF GG HH	

The result placed in RegD will be determined by the least significant two bits in
Reg3, i.e., the final bits of the address. The resulting word will be sign-extended to fill
RegD.	

	 Reg3	 Result in RegD	
	 00	 ss ss ss ss AA BB CC DD	
	 01	 ss ss ss ss BB CC DD EE	
	 10	 ss ss ss ss CC DD EE FF	
	 11	 ss ss ss ss DD EE FF GG	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	114 342

Chapter 5: Instructions	

ALIGNH	

For the ALIGNH instruction, the goal is to select two bytes, which may be aligned in
any of two ways.	

Assume the memory contains the following sequence of bytes, where xx represents
one byte. Halfword alignment boundaries are indicated with a period, so words AA
BB and CC DD are properly aligned. The (possibly unaligned) target address will fall
into one of the two cases shown. 	

	 	 … xx.xx xx.AA BB.CC DD.xx xx.xx …	
	 0	 AA BB	
	 1	 BB CC	

The LOADH instruction only loads properly aligned halfwords. In order to retrieve a
(possibly misaligned) halfword such as BB CC, we will LOAD two consecutive
halfwords. Regardless of alignment, this guarantees that we will get all the bytes. 	

Assume that Reg1 and Reg2 have been loaded using the LOADH instruction from two
consecutive halfwords in the memory that contain the desired halfword.	

	 Reg1	 xx xx xx xx xx xx AA BB	
	 Reg2	 xx xx xx xx xx xx CC DD	

The result placed in RegD will be determined by the least significant bit in Reg3, i.e.,
the final bit of the address. The resulting halfword will be sign-extended to fill the
RegD.	

	 Reg3	 Result in RegD	
	 0	 ss ss ss ss ss ss AA BB	
	 1	 ss ss ss ss ss ss BB CC	

ALIGND	

For the ALIGND instruction, the goal is to select eight bytes, which may be aligned as
follows. The period indicates properly aligned doubleword boundaries. The
(possibly unaligned) target address will fall into one of the eight cases shown.	

	 	 … .AA BB CC DD EE FF GG HH.II JJ KK LL MM NN OO PP. …	
	 0	 AA BB CC DD EE FF GG HH	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	115 342

Chapter 5: Instructions	

	 1	 BB CC DD EE FF GG HH II	
	 2	 CC DD EE FF GG HH II JJ	
	 3	 DD EE FF GG HH II JJ KK	
	 4	 EE FF GG HH II JJ KK LL	
	 5	 FF GG HH II JJ KK LL MM	
	 6	 GG HH II JJ KK LL MM NN	
	 7	 HH II JJ KK LL MM NN OO	

The LOADD instruction only loads properly aligned doublewords. In order to
retrieve a (possibly misaligned) doubleword, we will LOAD two consecutive
doublewords.	

Assume that Reg1 and Reg2 have been loaded using the LOADD instruction from two
consecutive doublewords in the memory that contain the desired halfword.	

	 Reg1	 AA BB CC DD EE FF GG HH
	 Reg2	 II JJ KK LL MM NN OO PP	

The result placed in RegD will be determined by the least significant three bits in
Reg3, i.e., the final bits of the address.	

	 Reg3	 Result in RegD	
	 000	 AA BB CC DD EE FF GG HH	
	 001	 BB CC DD EE FF GG HH II	
	 010	 CC DD EE FF GG HH II JJ	
	 011	 DD EE FF GG HH II JJ KK	
	 100	 EE FF GG HH II JJ KK LL	
	 101	 FF GG HH II JJ KK LL MM	
	 110	 GG HH II JJ KK LL MM NN	
	 111	 HH II JJ KK LL MM NN OO	

Code Examples	

Here is an example of how to use the ALIGNW instruction. Assume that we wish to
load a word into register RegD from the (possibly unaligned) target address
contained in register “RegAddr”. This code requires two additional registers,
represented as RegLo and RegAlign.	

Registers “RegD” and “RegLo” will be used to contain two consecutive words from
memory, which will contain the target 4 bytes somewhere within them. First, we

Blitz-64 Instruction Set Architecture / Porter	 Page of 	116 342

Chapter 5: Instructions	

must modify the address to force alignment, to avoid a “Unaligned LOAD/STORE
Exception”, placing the rounded-down version of the address in register “RegAlign”.
Then we load two consecutive words from memory. Finally, we use the ALIGNW
instruction to compute the desired result.	

 ANDI RegAlign,RegAddr,0xFFFC
LOADW RegD,0(RegAlign)
LOADW RegLo,4(RegAlign)
ALIGNW RegD,RegD,RegLo,RegAddr

[Note that, in the case when the address happens to be correctly aligned, the second
LOAD instruction is unnecessary. Also note that if the target word happens to be the
last word in a page, the second LOAD will retrieve data on a different page than the
first LOAD. In rare cases, this second page could have different permissions or be an
unallocated page, causing an exception to occur. This exception is extraneous and
should be avoided since it could cause the program to fail. To avoid this, the
programmer could add an extra 8 bytes to the end of the data, which will guarantee
that an extraneous unnecessary LOAD will not cause problems. Or the programmer
could use the approach described next.]	

Here is a variation which avoids an unnecessary LOADW in the case where the
address happens to be correctly aligned.	

 ANDI RegAlign,RegAddr,0xFFFC
LOADW RegD,0(RegAlign)
ANDI t,RegAddr,0x03
BEQZ t,EndLabel
LOADW RegLo,4(RegAlign)
ALIGNW RegD,RegD,RegLo,RegAddr

 EndLabel:

To determine which of these sequences is superior will require a performance
analysis and depend on the relative costs of LOADW versus the ANDI/BEQZ/
ALIGNW instructions.	

Without the ALIGN instructions, the alternative to loading data from arbitrary,
unaligned addresses is to load individual bytes, one by one. For example, to load a
word, we could use a code sequence like this. For loading an unaligned doubleword,
the code sequence will be twice as long.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	117 342

Chapter 5: Instructions	

LOADB r1,0(RegAddr) # Get MSByte and sign bits
LOADB r2,1(RegAddr) # Get byte 2
ANDI r2,r2,0x0ff # .
SLL r1,r1,8 # Shift byte 2 into result
ORI r1,r1,r2 # .
LOADB r2,2(RegAddr) # Get byte 3
ANDI r2,r2,0x0ff # .
SLL r1,r1,8 # Shift byte 3 into result
ORI r1,r1,r2 # .
LOADB r2,3(RegAddr) # Get LSByte
ANDI r2,r2,0x0ff # .
SLL r1,r1,8 # Shift LSByte into result
ORI r1,r1,r2 # .

The hardware implementation of the ALIGN instructions is fairly simple and small.
The hardware will require some shifting of bits (no gates), several multiplexors to
select which result to use, and the circuitry to sign-extend either a halfword or a
word (which might already be present anyway).	

The benefit of the ALIGN instructions depends on how much unaligned data we
expect to encounter. The KPL language always places all variables, objects, and fields
on aligned boundaries, so there will be almost no unaligned data in KPL, unless the
programmer decides to do it explicitly with pointers. Occasionally, we will encounter
unaligned data from files read in, or data received over the Internet.	

INJECT1H RegD,Reg1,Reg2,Reg3 RegD ← Reg1; inject Reg2 per addr in Reg3
INJECT2H RegD,Reg1,Reg2,Reg3 RegD ← Reg1; inject Reg2 per addr in Reg3
INJECT1W RegD,Reg1,Reg2,Reg3 RegD ← Reg1; inject Reg2 per addr in Reg3
INJECT2W RegD,Reg1,Reg2,Reg3 RegD ← Reg1; inject Reg2 per addr in Reg3
INJECT1D RegD,Reg1,Reg2,Reg3 RegD ← Reg1; inject Reg2 per addr in Reg3
INJECT2D RegD,Reg1,Reg2,Reg3 RegD ← Reg1; inject Reg2 per addr in Reg3

The INJECT instructions support the emulation of memory STOREs in which the
destination address is not properly aligned.	

The contents of Reg1 are copied to RegD with no shifting. However, some bytes from
Reg2 may be injected into the copied data. By “injected”, we mean a byte from Reg2
will replace a byte being copied from Reg1 to RegD.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	118 342

Chapter 5: Instructions	

The value in Reg3 controls which bytes from Reg2 are injected into the data and
where in the data they are injected. The least significant bits in Reg3 tell how to
shift/combine the values in Reg1 and Reg2 to produce the value stored in RegD.	

The INJECT instructions use only the least signifiant bits of Reg3, so the (possibly
unaligned) destination address itself can be used. These bits are the final bits of the
address and tell how “misaligned” the address is, i.e., how much shifting must be
done.	

In the case of INJECT1H and INJECT2H, only the least significant bit of Reg3 is used.
In the case of INJECT1W and INJECT2W, the least significant 2 bits of Reg3 are used.
In the case of INJECT1D and INJECT2D, the least significant 3 bits of Reg3 are used.
The remaining bits in Reg3 are ignored.	

Details of the INJECT Instructions	

Let’s look at the operation of the INJECT instructions in more detail, starting with a
code sequence to show how they can be used. This example deals with doubleword-
sized data; the code for halfword or word data would be virtually identical.	

To store a doubleword “source value” into an unaligned memory address, the code
must first LOAD two aligned doublewords from memory, then use the source
doubleword to modify (i.e., “inject”) some bytes into each of these doublewords,
then issue two STORE instructions to store the updated doublewords back into
memory.	

Assume the unaligned address is in r4
Assume the source data to be stored is in r7
ANDI r5,r4,0xFFF8 # Compute an aligned address
LOAD.D r1,0(r5) # Read two doublewords from memory
LOAD.D r2,8(r5) # .
INJECT1D r1,r1,r7,r4 # Inject bytes into lefthand dword
INJECT2D r2,r2,r7,r4 # Inject bytes into righthand dword
STORE.D 0(r5),r1 # Store two dwords back to memory
STORE.D 8(r5),r2 # .

(It’s possible that the address happens to be aligned and, by adding a test and
branch, some LOADs and STOREs could be avoided. This optimization is not shown.)	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	119 342

Chapter 5: Instructions	

INJECT1D and INJECT2D	

The two INJECTD instructions will inject eight bytes in one of eight ways, depending
on the unaligned address, as shown next.	

Assume that the most significant doubleword fetched from memory is	
	 xx xx xx xx xx xx xx xx	
Assume the least significant doubleword fetched from memory is	
	 yy yy yy yy yy yy yy yy	
Assume that the source value to be stored is	
	 AA BB CC DD EE FF GG HH

The source doubleword will need to be injected into these two doublewords in one
of these 8 ways, where “..” means that the byte is unchanged.	

	 	 xx xx xx xx xx xx xx xx yy yy yy yy yy yy yy yy

	 0	 AA BB CC DD EE FF GG HH 	
	 1	 .. AA BB CC DD EE FF GG HH	
	 2	 AA BB CC DD EE FF GG HH	
	 3	 AA BB CC DD EE FF GG HH	
	 4	 AA BB CC DD EE FF GG HH	
	 5	 AA BB CC DD EE FF GG HH	
	 6	 AA BB CC DD EE FF GG HH	
	 7	 AA BB CC DD EE FF GG HH ..	

INJECT1D will perform the injection shown above on the left and INJECT2D will
perform the injection shown above on the right.	

To be more precise, assume that Reg1 and Reg2 contain the following bytes.	

	 Reg1	 X1 X2 X3 X4 X5 X6 X7 X8
	 Reg2	 AA BB CC DD EE FF GG HH	

INJECT1D will move the following values into RegD, based on the least significant 3
bits in Reg3, i.e., the final bits of the unaligned address.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	120 342

Chapter 5: Instructions	

	 Reg3	 Result in RegD	
	 000	 AA BB CC DD EE FF GG HH	
	 001	 X1 AA BB CC DD EE FF GG	
	 010	 X1 X2 AA BB CC DD EE FF	
	 011	 X1 X2 X3 AA BB CC DD EE	
	 100	 X1 X2 X3 X4 AA BB CC DD	
	 101	 X1 X2 X3 X4 X5 AA BB CC	
	 110	 X1 X2 X3 X4 X5 X6 AA BB	
	 111	 X1 X2 X3 X4 X5 X6 X7 AA	

Assume that Reg1 and Reg2 contain the following bytes.	

	 Reg1	 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8
	 Reg2	 AA BB CC DD EE FF GG HH	

INJECT2D will move the following values into RegD, based on the least significant 3
bits in Reg3, i.e., the final bits of the unaligned address.	

	 Reg3	 Result in RegD	
	 000	 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8	
	 001	 HH Y2 Y3 Y4 Y5 Y6 Y7 Y8	
	 010	 GG HH Y3 Y4 Y5 Y6 Y7 Y8	
	 011	 FF GG HH Y4 Y5 Y6 Y7 Y8	
	 100	 EE FF GG HH Y5 Y6 Y7 Y8	
	 101	 DD EE FF GG HH Y6 Y7 Y8	
	 110	 CC DD EE FF GG HH Y7 Y8	
	 111	 BB CC DD EE FF GG HH Y8

INJECT1W and INJECT2W	

When it comes to storing a word into an unaligned address in memory, we make the
assumption that it will be implemented in terms of aligned word LOADs and STOREs,
not doubleword LOADs and STOREs.	

The two INJECTW instructions will inject four bytes in one of four ways, depending
on the unaligned address, as shown next.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	121 342

Chapter 5: Instructions	

Assume that the most significant word fetched from memory is	
	 xx xx xx xx	
Assume the least significant word fetched from memory is	
	 yy yy yy yy	
Assume that the source value to be stored is	
	 AA BB CC DD

The source word will need to be injected into these two words in one of these 4
ways, where “..” means that the byte is unchanged.	

	 	 xx xx xx xx yy yy yy yy

	 0	 AA BB CC DD 	
	 1	 .. AA BB CC DD	
	 2	 AA BB CC DD	
	 3	 AA BB CC DD ..	

Assume that Reg1 and Reg2 contain the following bytes.	

	 Reg1	 X1 X2 X3 X4 X5 X6 X7 X8
	 Reg2	 ss ss ss ss AA BB CC DD	

where “ss” represents sign-extension bytes that will be ignored.	

INJECT1W will move the following values into RegD, based on the least significant 2
bits in Reg3, i.e., the final bits of the unaligned address.	

	 Reg3	 Result in RegD	
	 00	 X1 X2 X3 X4 AA BB CC DD	
	 01	 X1 X2 X3 X4 X5 AA BB CC	
	 10	 X1 X2 X3 X4 X5 X6 AA BB	
	 11	 X1 X2 X3 X4 X5 X6 X7 AA	

Assume that Reg1 and Reg2 contain the following bytes.	

	 Reg1	 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8
	 Reg2	 ss ss ss ss AA BB CC DD	

INJECT2W will move the following values into RegD, based on the least significant 2
bits in Reg3, i.e., the final bits of the unaligned address.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	122 342

Chapter 5: Instructions	

	 Reg3	 Result in RegD	
	 00	 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8	
	 01	 Y1 Y2 Y3 Y4 DD Y6 Y7 Y8	
	 10	 Y1 Y2 Y3 Y4 CC DD Y7 Y8	
	 11	 Y1 Y2 Y3 Y4 BB CC DD Y8

INJECT1H and INJECT2H	

When it comes to storing a halfword into an unaligned address in memory, we make
the assumption that it will be implemented in terms of aligned halfword LOADs and
STOREs, not word or doubleword LOADs and STOREs.	

The two INJECTH instructions will inject two bytes in one of two ways, depending on
the unaligned address, as shown next.	

Assume that the most significant halfword fetched from memory is	
	 xx xx	
Assume the least significant halfword fetched from memory is	
	 yy yy	
Assume that the source value to be stored is	
	 AA BB

The source halfword will need to be injected into these two hafwords in one of these
2 ways, where “..” means that the byte is unchanged.	

	 	 xx xx yy yy

	 0	 AA BB 	
	 1	 .. AA BB ..	

Assume that Reg1 and Reg2 contain the following bytes.	

	 Reg1	 X1 X2 X3 X4 X5 X6 X6 X7
	 Reg2	 ss ss ss ss ss ss AA BB	

where, “ss” is represents sign-extension bytes, which will be ignored.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	123 342

Chapter 5: Instructions	

INJECT1H will move the following values into RegD, based on the least significant bit
in Reg3, i.e., the final bit of the unaligned address.	

	 Reg3	 Result in RegD	
	 0	 X1 X2 X3 X4 X5 X6 AA BB	
	 1	 X1 X2 X3 X4 X5 X6 X7 AA	

Assume that Reg1 and Reg2 contain the following bytes.	

	 Reg1	 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8
	 Reg2	 ss ss ss ss ss ss AA BB	

INJECT2H will move the following values into RegD, based on the least significant bit
in Reg3, i.e., the final bit of the unaligned address.	

	 Reg3	 Result in RegD	
	 0	 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8	
	 1	 Y1 Y2 Y3 Y4 Y5 Y6 BB Y8

Commentary The assumption made by the INJECTD instructions is that unaligned
doubleword operations will be emulated by using aligned doubleword operations.
Underlying this approach is the implicit assumption that the implementation
naturally supports doubleword memory operations.	

However, the implementation may actually support only word-sized operations
directly and implement doubleword LOADs and STOREs by breaking each
instruction into two memory operations. A LOAD.D instruction will result in two
memory reads and a STORE.D instruction will result in two memory writes. Thus,
the approach outlined in the code example above (with 2 LOAD.D and 2 STORE.D
instructions) will actually result in 4 memory reads and 4 memory writes.	

The INJECTD operations will continue to work, but a better solution might be
desirable. Note that a doubleword, no matter how it is aligned, can only touch 3
words. To store a doubleword no matter how it is aligned, one only needs to read at
most two words and write at most three words.	

We also assume that unaligned word operations will be emulated with aligned word
operations. However, the implementation may not naturally support word-sized
LOADs and STOREs and may actually implement them as doubleword memory

Blitz-64 Instruction Set Architecture / Porter	 Page of 	124 342

Chapter 5: Instructions	

operations. This would mean that, for a word sized STORE instruction, the
implementation will be reading, injecting, and storing beneath the level of software,
similarly to what we are discussing doing in software.	

To store 4 bytes with a machine whose natural unit of transfer is 8 bytes, we only
require at most 1 read and 1 write in 5/8 of the cases and 2 reads and 2 writes in the
remaining 3/8 of the cases. This averages to 1.4 reads and 1.4 writes per operation.	

However, naïvely using the scheme suggested in the code snippet earlier would
result in duplicate effort and severely impact performance. There are two LOAD.W
instructions, resulting in 2 doubleword memory reads, and there are two STORE.W
instructions, resulting in 2 memory reads and 2 memory writes. This comes to 4
reads and 2 writes per operation, much worse than the optimal solution.	

A better approach would be to emulate an unaligned word operation using aligned
doubleword operations. The INJECTW instructions are not designed for this.	

Likewise, in the case of halfword data, we have the same issues.

ILLEGAL <no operands>	

Will cause “Illegal Instruction Exception”	

This is the canonical illegal instruction. Both OP1 and OP2 values are 0x00. Often,
uninstalled main memory will be read as containing all zeros. Thus, when fetched,
an instruction of 0x0000_0000 will be interpreted as an illegal instruction,
preventing the execution of uninstalled memory.	

Uninstalled main memory may also be read as all 1 bits. An instruction 0xFFFF_FFFF
will be interpreted as a pair of compressed instructions. For this reason, the pattern
0xFFFF will be interpreted as the compressed form of an illegal instruction.	

This instruction will cause an “Illegal Instruction Exception”.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	125 342

Chapter 5: Instructions	

SYSRET <no operands>	 	

Privileged	

This instruction is used to return from a trap handler. It performs the following
operations:	
	 PC = csr_prevpc	
	 csr_status = csr_stat2	

In other architectures, this instruction is often named “RETI”.	

Commentary Interrupts are disabled by the hardware whenever trap handlers are
invoked and they generally remain disabled throughout the trap handler code.
Interrupts should always be disabled at the time of the SYSRET at the end of the trap
handler. Here’s why.	

Note that the SYSRET instruction uses the CSRs — csr_stat2 and csr_prevpc in
particular. If interrupts happen to be enabled at the time the SYSRET instruction is
executed, there is a possibility that an interrupt might occur directly before the
SYSRET instruction.	

Trap handlers save the state of the general purpose registers, but the state of the
CSRs is not saved. As part of all trap invocation, the hardware will overwrite
csr_stat2 and csr_prevpc and their previous contents will be lost. Thus, if an
interrupt might occur directly before a SYSRET, upon return after the interrupt
processing, the SYSRET could not possibly function correctly.	

Thus, it is always a kernel bug to execute a SYSRET with interrupts enabled.
However, the hardware does nothing to enforce this.	

SLEEP1 <no operands> Enable interrupts; enter light sleep state
SLEEP2 <no operands> Enable interrupts; enter deep sleep state

Privileged	

These are the “wait” instructions, which put the core to sleep until the next interrupt
occurs. There are two levels of sleep state. “Light sleep” is intended to make wake-up

Blitz-64 Instruction Set Architecture / Porter	 Page of 	126 342

Chapter 5: Instructions	

faster. “Deep sleep” is intended to be a power saving state, which may require more
time and effort to recover from.	

In both cases, the following are preserved:	
	 • General Purpose Registers	
	 • CSR registers, PC	
	 • Main Memory	

The sleep state ends when an interrupt occurs. During the sleep state, the Program
Counter (PC) points to the instruction following the SLEEP instruction so, after the
interrupt trap handler returns, instruction execution will resume with the
instruction following the SLEEP instruction.	

These instructions will enable interrupts before entering the sleep state.	

These instructions should only be executed with interrupts disabled, for the
following reason. We only want to sleep when there are no runnable threads and the
only way to know that is to check first, before going to sleep. But an interrupt might
occur at any time (including directly before the SLEEP instruction is executed) and
this may cause some new thread to become runnable. To prevent going to sleep
when runnable threads exist, the software should disable interrupts, check to make
sure it is safe to sleep, then execute the SLEEP instruction. If interrupts have become
pending, then the sleep state will end immediately and the interrupt trap handler
will be invoked.	

In some implementations, there will be no difference between “light” and “deep”
sleeping. Thus, the instructions may function identically. A valid implementation is
to act as a sort of no-op, doing nothing more than enabling interrupts. In more
complex implementations, SLEEP1 and SLEEP2 may differ as follows: In the light
sleep state, the clock continues, csr_cycle is constantly incremented, and timer
interrupts occur. In the deep sleep state, csr_cycle is not incremented and therefore
timer interrupts do not occur; effectively, the clock is turned off.	

In the emulator, SLEEP2 will cause an immediate halt to emulation. If the emulator is
executing in auto-go mode (command line option -g), the emulator will terminate
and the value in register r1 will be returned as the Unix/Linux exit code (where
0=ok/no error). This is useful for KPL programs that are to be run under Unix/
Linux.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	127 342

Chapter 5: Instructions	

RESTART <no operands> Same as Power-On-Reset

Privileged	

The purpose of this instruction is to cause a full reboot of the system. This
instruction will have the same effect as cycling the power on the processor, namely:	

The following two registers will be set to their initial values:	

	 csr_inst ← 0x0000_0000_0000_0000	
	 csr_cycle ← 0x0000_0000_0000_0000	

	 csr_status ← 0x0000_0000_0000_0001	
	 Program Counter (PC) ← 0x4_0000_0000	

This means that the following conditions will be true:	

	 Kernel Mode: Enabled	
	 Interrupts: Disabled	

The PC is set to the first word of the memory-mapped I/O area, which is where the
“Boot ROM” is located.	

Any pending interrupts are cleared. All memory-mapped I/O devices are sent a
“reset” signal and will go into their initial states. In particular, the Secure Storage will
be reset and will be writable.	

All other other programmer-visible state of the core (i.e., the general purpose
registers and all other CSRs) will have undefined values.	

In a multi-core processor, this instruction will affect all cores. The execution of this
instruction by any one core will instantly kill all cores, which will all be restarted.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	128 342

Chapter 5: Instructions	

DEBUG <no operands>	
BREAKPOINT <no operands>	

Will cause “Debug/Breakpoint Exception”	

These instructions are used by the debugger. Each instruction will cause an
exception and there is a corresponding exception type for each:	

	 Debug Exception	
	 Breakpoint Exception	

It is intended that the DEBUG instruction will be inserted into code by the
programmer. When executed, the resulting exception will be used to invoke and start
up the debugger. This will allow the user to begin debugging his/her code.	

It is intended that the BREAKPOINT instruction will be inserted by a debugging tool
into the code being debugged.	

Typically, the user of the debugger will command the debugger to insert a
breakpoint a some point in the code being debugged. The debugger will replace the
instruction at the the target address with a BREAKPOINT instruction. Then later,
after execution is resumed and execution reaches the target address, the
BREAKPOINT instruction will be encountered. The resulting exception allows the
debugger to regain control. Typically, the debugger will save the instruction that was
replaced and, when the BREAKPOINT is removed, the instruction will be restored.	

These two instructions are almost identical, except (1) they each cause a different
exception, and (2) the value stored in csr_prevpc at the time of the exception is
different. 	6

These instructions are both Format-A instructions. The opcode occupies the first 16
bits of the instruction and the remaining 16 bits contain space for register fields.
However, since no registers are used, these 16 bits are unused and shall be ignored

 DEBUG stores the address of the following instruction, while BREAKPOINT stores the address of 6

the BREAKPOINT instruction itself.

Blitz-64 Instruction Set Architecture / Porter	 Page of 	129 342

Chapter 5: Instructions	

by the ISA. Bits [15:0] in the instruction are therefore available for use by a
debugger, to store additional information. 	7

If the Blitz-64 architecture is being emulated on a virtual machine, the DEBUG and
BREAKPOINT instructions may be unimplemented. In other words, they will not
cause exceptions. Instead, when encountered, they will be used by a debugger that is
built in to the emulator itself.	

These instructions are primarily expected to be used to debug code running in user
mode. However, they might also to debug code running in kernel mode.	

SYSCALL immed10 	

Will cause “SYSCALL Exception”	

The SYSCALL instruction is used by user mode code to invoke one of the 1,024
system calls.	

This instruction causes a “SYSCALL Exception”. More precisely, this instruction will
perform the following actions:	

csr_stat2 = csr_status	
csr_prevpc = PC	
csr_cause = immed10 × 8	

It will then initiate trap processing by performing these actions.	

csr_status[KERNEL_MODE] = 1	
csr_status[INTERRUPTS_ENABLED] = 0	
csr_status[SINGLE_STEP] = 0	
PC = csr_trapvec (the address of the global trap handler)	

The immediate value gives a number in the range 0 … 1,023. This number is shifted
left by 3 bits (i.e., multiplied by 8) and passed to the trap handler for use in

 For example, when the debugger sets a break point, it will replace some instruction by a 7

BREAKPOINT instruction. The debugger will need to remember which instruction was removed so
that when the break point is encountered it can replace the BREAKPOINT instruction with the
saved instruction. There may be a number of break points set and the debugger might use the 16
bits as an index into some record-keeping table it maintains.

Blitz-64 Instruction Set Architecture / Porter	 Page of 	130 342

Chapter 5: Instructions	

dispatching to the correct kernel function. The immediate value is not sign-
extended.	

The PC value copied to csr_prevpc is the address of the instruction after the
SYSCALL instruction, not the SYSCALL itself.	

Note that this instruction is normally executed in user mode. Whether execution of
the SYSCALL instruction in kernel mode is a bug or not is a software design decision;
however, the instruction will still function as described.	

CONTROL RegD,Reg1,immed16 	
CONTROLU RegD,Reg1,immed16 	

CONTROL: Privileged; CONTROLU: Not privileged	

The definition of these instructions is left unspecified here and is completely
implementation dependent.	

The idea is that an implementation of the Blitz-64 architecture is free to use these
instructions whenever it is necessary to supplement the instruction set with
instructions not included in the ISA specification.	

A specific implementation may need to add a large number of instructions to the ISA.
The immediate value is available to act as a sort of additional op-code. The idea is
that different values of immed16 will invoke different behaviors.	

These instructions may or may not access registers Reg1 and RegD. They may also
access other registers not directly mentioned; everything is left to the specific
implementation designers.	

We really want all User Mode programs to be fully portable between Blitz-64
implementations. To this end, we make a distinction between the CONTROL and
CONTROLU instructions.	

Implementation-dependent behavior really ought to be encapsulated within the
Kernel. Otherwise, a User Mode program that used the instruction would be tied to a
specific implementation. To support this, the CONTROL instruction is a privileged
instruction and an Illegal Instruction Exception will be raised if this instruction is
executed in User Mode.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	131 342

Chapter 5: Instructions	

On the other hand, some operations need to be usable in User Mode. For this, we
provide the CONTROLU instruction, which may be executed in User Mode. Note that
any program using a CONTROLU instruction will be implementation dependent and
may have completely unexpected results when executed on a different Blitz-64
processor.	

The implementation is free to define whether these instructions might raise other
exceptions. If the CONTROL or CONTROLU instruction is used incorrectly (for
example, with an undefined immed16 value), the implementation really ought to
raise an Illegal Instruction Exception.	

Commentary The memory-mapped I/O regions in the Blitz-64 architecture are
designed so they can be selectively mapped into the virtual address spaces of user
processes. However, the CONTROL/CONTROLU mechanism does not have this
flexibility.	

Whether additional functionality is added to the Blitz-64 architecture using
CONTROL/CONTROLU or by adding a new memory-mapped I/O region is an
engineering decision left to implementors.	

Example Uses for CONTROL and CONTROLU	

How might a Blitz-64 implementation use the CONTROL instruction? Let’s look at
several examples.	

Digital I/O Pins Imagine that the Blitz-64 chip has a number of digital I/O pins.
This might occur for a Blitz-64 processor used in an Arduino-like setting.	

For such a system, the CONTROL instruction will be defined to write values to
OUTPUT pins based on the contents of register Reg1. The instruction will also be
used to read in values on INPUT pins to register RegD. Each operation will both read
and the write the I/O pins simultaneously.	

If this is the only use of the CONTROL instruction, the immed16 value can be
ignored:	

controlu r7,r1,0 # Read inputs and change outputs

Blitz-64 Instruction Set Architecture / Porter	 Page of 	132 342

Chapter 5: Instructions	

In this case, the COLTROLU instruction was used, which means that user-mode
programs can control the digital pins directly, without needing kernel intervention.	

A slightly different implementation might be to separate the input and output
operations, using the immed16 value to distinguish between “read” and “write”
operations:	

DIGITAL_READ: .equ 0x0001
DIGITAL_WRITE: .equ 0x0002

To read and write the digital I/O pins, the operations would look like this:	

controlu r7,r0,DIGITAL_READ # sample the inputs
controlu r0,r1,DIGITAL_WRITE # update the outputs

LED Control LEDs are helpful for single-board computers. For example, as the
system boots, a green LEDs might turn on. If error conditions arise, the core can turn
on a red LED to signal that it is unhappy. In order to drive such LEDs, each chip will
need a couple of output pins dedicated to these LEDs.	

Such “status LEDs” are cheap and ought to be included in every single-board
computer.	

In such a system design, the CONTROL instruction could be used to control the
status LEDs. 	8

RED_LED_ON: .equ 0x0004
RED_LED_OFF: .equ 0x0008
GREEN_LED_ON: .equ 0x0010
GREEN_LED_OFF: .equ 0x0018
BLUE_LED_ON: .equ 0x0020
BLUE_LED_OFF: .equ 0x0028

To manipulate specific LEDs, the core can execute an instruction such as:	

control r0,r0,GREEN_LED_ON | RED_LED_OFF

 Note that we are defining the immediate values so that there is no overlap with the values used to 8

control the digital pins, so both could be used within the same system.

Blitz-64 Instruction Set Architecture / Porter	 Page of 	133 342

Chapter 5: Instructions	

Imagine a system with a large number of Blitz-64 cores, perhaps with hundreds of
processor blades mounted in racks, comprising a giant multi-processor system.
LEDS for each board (or processor or core) could be very helpful in detecting and
understanding faults.	

Flushing Caches The Blitz-64 instruction set includes a single instruction (namely
FENCE) that has the side-effect of flushing caches, if they exist. However the FENCE
instruction may be too course-grained for some system designs. In order to add the
ability to flush individual caches separate, the CONTROL instruction could be
employed.	

If, for example, the implementation needed several different “flush” operations, then
some bits in the immed16 field could be defined to indicate which cache flush
operation is intended. Perhaps the implementation has several caches:	

FLUSH_CACHE_L1_I: .equ 0x0001
FLUSH_CACHE_L1_D: .equ 0x0002
FLUSH_CACHE_L2: .equ 0x0004
FLUSH_CACHE_L3: .equ 0x0008

Then, to perform a cache-flush operation, the OS kernel might execute an instruction
such as:	

control r0,r0,FLUSH_CACHE_L1_D

Flushing the caches does not involve registers, so r0 is specified for both source and
destination.	

Encryption Support A common but time-consuming operation is to encode and
decode encrypted messages. A related function is computing message digests. The
algorithms are computationally intensive but it is desirable to perform these
operations quickly.	

The document “Blitz-64: Memory-Mapped I/O Devices” discusses using the DMA
memory-mapped I/O device to support SHA-256 and AES, but in some
implementations it may make sense to implement other, similar algorithms in
hardware, using the CONTROL instruction to access this special-purpose hardware.	

Typically, such algorithms involve the simultaneous manipulation of a number of
variables. For example, in the SHA-2 algorithm there are 8 variables, named a, b, c, …,

Blitz-64 Instruction Set Architecture / Porter	 Page of 	134 342

Chapter 5: Instructions	

h. During one iteration, all 8 variables are used as inputs to compute 8 new values
for the next iteration.	

Of course the function computed in each iteration can be done with existing Blitz-64
instructions, but it will take quite a few instructions for each iteration of the loop. To
support such an algorithm, the idea is that the entire loop body will be implemented
using a single new “instruction”. Imagine that an implementation decides to add a
single instruction which will perform the entire loop body computation in one step.	

Such a proposed new instruction will need 8 inputs and 8 outputs. Consider
SHA-256 which is a specific example of the SHA-2 class of algorithms. It uses eight
variables, each of 32 bits. We can pack these into four registers. In this hypothetical
implementation design, we will assign variables a, b, c, …, h to registers r1, r2, r3,
and r4. The new, hypothetical CONTROL instruction, which we are suggesting here,
will ignore the RegD and Reg1 specifiers in the instruction and will always operate
on registers r1-r4.	

There is no reason that such encryption operations can’t be done in User Mode, so
for these operations, it makes sense to use the CONTROLU instruction, instead of the
CONTROL instruction, which must be executed in Kernel Mode.	

Additional Floating Point Operations The Blitz ISA only requires support for
double precision floats. It might be desirable to provide support for single precision
or quad precision floats in some systems. Likewise, there might be special-purpose
numerical engines (e.g., neural net or graphic engines). This might be
accommodated with CONTROL instructions.	

Accessing the Micro-architecture Another possibility is that the CONTROL
instruction would be defined to access or modify internal core state. For example,
the CONTROL instruction might be used to read pipeline registers that are otherwise
invisible to the ISA.	

Flexibility Given that immediate field has 16 bits, the CONTROL instruction
framework can be employed to add many unique instructions and behaviors. The
immed16 field can be considered as a sort of secondary opcode and a large number
(up to 65,536) of additional implementation-dependent instructions can be added
to any core using the CONTROL instruction framework.

Blitz-64 Instruction Set Architecture / Porter	 Page of 	135 342

Chapter 5: Instructions	

TLBCLEAR <no operands> Invalidate all TLBs for current ASID
TLBFLUSH Reg1 Invalidate TLB for virtual address in Reg1

Privileged	

The TLBCLEAR instruction invalidates all TLB registers that apply to the Address
Space ID (ASID) in csr_pgtable. While the format of the TLB registers is
implementation dependent, it is assumed that each TLB register will contain a
“valid” bit. This instruction will clear this bit for all registers with ASIDs matching
the current ASID.	

The TLBCLEAR should be executed after any change to the page table for a specific
address space. This will force all subsequent FETCHes and LOAD, STORE, and CAS
instructions to this virtual address space to trigger a walk of the new page table.	

The TLBFLUSH instruction expects Reg1 to contain a virtual address. If the TLB
contains a register with a matching virtual address and an ASID matching the
current ASID (in csr_pgtable), then the “valid” bit for that TLB register will be
cleared to 0. The address in Reg1 need not be page aligned; only bits [35:14] are
used.	

If the address is a physical address (i.e., bit [35] is 0) or does not match any TLB
register, TLBFLUSH does nothing. If the system does not contain TLBs, these
instructions do nothing.	

Note	

In a multi-core system, the TLBCLEAR and TLBFLUSH instructions affect only the
TLB registers on the core executing the instruction. There is a potential a problem
when one virtual address space is shared across multiple cores and the kernel
running on one core wishes to alter the address space and will execute one of these
instructions to eliminate out-of-date information in the TLB registers. A change in
the current specification is contemplated.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	136 342

Chapter 5: Instructions	

CHECKADDR RegD,Reg1,immed3 Reg1 = virt addr; RegD ← except. code or 0

Privileged	

The CHECKADDR instruction requires an immediate value, which should be one of
the following values.	

	 immed3 	 Access Type 	
	 0	 LOAD.B	
	 1	 LOAD.H	
	 2	 LOAD.W	
	 3	 LOAD.D	
	 4	 STORE.B	
	 5	 STORE.H	
	 6	 STORE.W	
	 7	 STORE.D	

(Only the least significant 3 bits of the immediate 16 bit value are used; bits [15:3]
are ignored.)	

Register Reg1 will contain an address, which may be physical or virtual. The
CHECKADDR instruction determines what would happen if an instruction of the
indicated type were to be executed using that address. CHECKADDR will store the
following code in register RegD.	

	 Result 	 Outcome 	
0	 Success; no exception	
1	 Null Address Exception	
2	 Unaligned LOAD/STORE Exception	
3	 Page Illegal Address Exception	
4	 Page Table Exception	
5	 Page Invalid Exception	
6	 Page Write Exception	
7	 Page Copy-On-Write Exception	
8	 Page First Dirty Exception	

The hypothetical access is assumed to be performed in USER MODE, not KERNEL
MODE.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	137 342

Chapter 5: Instructions	

From time to time, a system call will be handled by kernel code. The user code will
pass a virtual address to the kernel. For example, the kernel may wish to retrieve
argument data from the user’s virtual address space or move result data into the
user’s virtual address space.	

Assuming csr_pgtable has been previously set, the kernel can simply use normal
LOAD and STORE instructions with virtual addresses to retrieve data from or store
data into the virtual address space.	

Of course the kernel cannot trust any address provided by user code. Executing a
LOAD or STORE instruction might cause an exception.	

The CHECKADDR instruction is provided so that the kernel can check (before the
LOAD or STORE operation is attempted) whether such an access would result in an
exception.	

More Detail	

If CHECKADDR indicates one of the following exceptions, the address is in error. If
passed from user code to the kernel, the kernel should not attempt to use the
address in a LOAD or STORE operation.	

	 Null Address Exception	
	 Unaligned LOAD/STORE Exception	
	 Page Illegal Address Exception	
	 Page Write Exception	

The following exception will probably never to occur, since we can assume that the
kernel has, at some earlier time, set csr_pgtable correctly:	

	 Page Table Exception	

The following exception types may occur in correct user mode code. Normally, they
would be serviced and the instruction re-tried. When CHECKADDR indicates this
sort of exception, some additional work may be required of the kernel before it can
perform the access to the virtual address space.	

	 Page Copy-On-Write Exception	
	 Page First Dirty Exception	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	138 342

Chapter 5: Instructions	

The following exception could be caused by a bad address, i.e., pointing to some
region of the virtual address space that is unallocated. Alternately, it might also point
to a region of the address space that is “allocate-on-demand”, and thus be perfectly
legitimate.	

	 Page Invalid Exception	

The following exception type cannot be returned by the CHECKADDR instruction:	

	 Page Fetch Exception	

It may be that a hardware fault occurs during the CHECKADDR instruction (or would
occur during a LOAD or STORE operation). The CHECKADDR instruction does not
report such a situation; instead the Hardware Fault Exception will simply occur.	

If the implementation uses TLB registers, the CHECKADDR instruction may alter
them.	

CSRSWAP RegD,CSRReg1,Reg2 RegD ← CSR; CSR ← Reg2
CSRREAD RegD,CSRReg1 Reg1 encodes CSR; RegD ← CSR	
CSRSET CSRReg1,immed16 Set selected bits in CSR
CSRCLR CSRReg1,immed16 Clear selected bits in CSR

Privileged	

These instructions each access one of the 16 CSR registers. The identity of the CSR is
encoded using 4 bits in the Reg1 field.	

The CSRSWAP instruction performs both a read and a write operation. If RegD and
Reg2 indicate the same register, the value in that register is swapped with the value
in the CSR register.	

The CSRREAD instruction reads a CSR and moves it into a general purpose register.	

For CSRSET and CSRCLR, the immediate field is sign-extended and forms a 64 bit
mask. Wherever there is a 1 bit in the mask, the corresponding bit in the CSR is
either set to 1 or cleared to 0. 	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	139 342

Chapter 5: Instructions	

It is the assembly programmer’s or compiler’s responsibility to ensure that the
immediate value is within the range -32,768 … 32,767 (0x8000 … 0x7FFF). If the
value is out of range, the assembler will issue an error message. This is not of great
concern, since none of the CSRs have individual bit fields, except in the least
significant bits.	

(But note that if the immediate value is negative, the assembler will not issue an
error and the mask will include 1 bits in the upper 48 bits, which may not be what is
intended. For example, CSRSET csrReg,0x8000 will set all bits in the register except
the least significant 15 bits, while CSRCLR csrReg,-4 will clear all bits except the least
significant 2 bits.)	

*CSRWRITE CSRReg1,Reg2 Reg1 encodes CSR; CSR ← Reg2	

Synthetic, Privileged	

Register t Usage: Not used; Okay to use as Reg2.	

The CSRWRITE instruction is implemented as.	
CSRSWAP r0,CSRReg1,Reg2 	

GETSTAT RegD RegD ← CSR_STATUS & 0x00000000000003f8
PUTSTAT Reg1 CSR_STATUS [9:3] ← Reg1 [9:3]

These instructions read and write the portions of the CSR_STATUS register that are
visible to User Mode code.	

GETSTAT will only return bits that should be visible to User Mode code; all other bits
will be masked and returned as 0. PUTSTAT will only modify bits that are modifiable
by User Mode code.	

The bits that can be read and written are the FLOAT_ROUND bits (i.e., [9:8]) and the
FLOAT_STATUS bits (i.e., [7:3]).	

Even though these instructions access a CSR register, they are not privileged.

Blitz-64 Instruction Set Architecture / Porter	 Page of 	140 342

Chapter 5: Instructions	

FADD RegD,Reg1,Reg2	 RegD ← Reg1 + Reg2
FSUB RegD,Reg1,Reg2	 RegD ← Reg1 - Reg2
FMUL RegD,Reg1,Reg2 	 RegD ← Reg1 × Reg2
FDIV RegD,Reg1,Reg2 	 RegD ← Reg1 / Reg2
FMIN RegD,Reg1,Reg2 	 RegD ← MIN (Reg1, Reg2)
FMAX RegD,Reg1,Reg2 	 RegD ← MAX (Reg1, Reg2)
FNEG RegD,Reg1 	 RegD ← -Reg1
FABS RegD,Reg1 	 RegD ← ABSOLUTE_VALUE (Reg1)
FSQRT RegD,Reg1 	 RegD ← SQUARE_ROOT (Reg1)
FEQ RegD,Reg1,Reg2 RegD ← (Reg1 = Reg2) ? 1 : 0 (float compare)
FLT RegD,Reg1,Reg2 RegD ← (Reg1 < Reg2) ? 1 : 0 (float compare)
FLE RegD,Reg1,Reg2 RegD ← (Reg1 ≤ Reg2) ? 1 : 0 (float compare)
FCVTFI RegD,Reg1 Convert: floating-point ← int
FCVTIF RegD,Reg1 Convert: int ← floating-point
FMADD RegD,Reg1,Reg2,Reg3 RegD ← (Reg1 × Reg2) + Reg3
FNMADD RegD,Reg1,Reg2,Reg3 RegD ← (-(Reg1 × Reg2)) + Reg3
FMSUB RegD,Reg1,Reg2,Reg3 RegD ← (Reg1 × Reg2) - Reg3
FNMSUB RegD,Reg1,Reg2,Reg3 RegD ← (-(Reg1 × Reg2)) - Reg3

May cause an “Emulated Instruction Exception”	

The comments above describe the computations performed by these instructions.	

All arithmetic is performed in double precision floating point, per the IEEE 754
standard. The FLOAT_STATUS bits in csr_status are set as required.	

With Blitz, all rounding is “to nearest, with ties to even”. The FLOAT_ROUND bits in
csr_status are ignored. 	9

Note that there are no FMOV, FLOAD, or FSTORE instructions. The instructions MOV,
LOADx, and STOREx will work fine.	

The test performed by FEQ is not the same as BEQ, due to facts like “+0.0 = -0.0” and
“NaN ≠ NaN”. Programmers should note that equality testing of floating point values
is especially risky, due to rounding errors.	

 At least in this version of the Blitz ISA; if the need should ever arise, this decision could be 9

revisited.

Blitz-64 Instruction Set Architecture / Porter	 Page of 	141 342

Chapter 5: Instructions	

The conversion instructions (FCVTFI and FCVTIF) are discussed below.	

The floating point instructions are candidates for emulation. Any attempt to execute
an unimplemented instruction will result in an “Emulation Exception”.	

Commentary The IEEE 754 specification requires single precision floating point to
be implemented whenever double precision is implemented. Blitz-64 does not
implement single precision floating point, as a conscious design decision. Therefore
Blitz-64 clearly does not conform to the IEEE 754 spec.	

That said, Blitz-64 “respects” and “follows" the IEEE 754 floating point specification.	

IEEE 754 is a complex specification and floating point math is a can of wriggling
worms. The Blitz-64 architecture intends and attempts to conform precisely and
accurately to the IEEE spec.	

To be honest, floating point is a bit out of my primary research expertise and I’d
really appreciate your help. If you see violations or other issues, you are encouraged
to speak up and email me.	

FCVTIF The FCVTIF instruction converts a double precision floating point number
into a 64 bit signed integer with about the same value.	

If the value to be converted is NaN, the instruction will set the NV-Invalid flag in the
CSR_STATUS register. The integer result will be “0”.	

If the value is +inf, the result will be 0x7FFF_FFFF_FFFF_FFFF and the OF-Overflow
and NX-Inexact flags will be set. If the value is -inf, the result will be
0x8000_0000_0000_0000 and the OF-Overflow and NX-Inexact flags will be set.	

Concerning overflow, here are the values around the largest signed integer
(0x7FFF_FFFF_FFFF_FFFF = 9,223,372,036,854,775,807) that can be represented
exactly with double precision floats:	

	 +9,223,372,036,854,774,784.0	
	 +9,223,372,036,854,775,808.0	
	 +9,223,372,036,854,777,856.0	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	142 342

Chapter 5: Instructions	

If the floating value to be converted is greater than +9,223,372,036,854,775,807.0
(including +inf) then the OF-Overflow and NX-Inexact bits will be set and the result
will be +9,223,372,036,854,775,807 (i.e., 0x7FFF_FFFF_FFFF_FFFF).	

If the floating value is more negative than -9,223,372,036,854,775,808.0 (including
-inf) then the OF-Overflow and NX-Inexact bits will be set and
-9,223,372,036,854,775,808 (i.e., 0x8000_0000_0000_0000) will be used.	

If the floating point value is not an integer (i.e., if it has non-zero digits to the right of
the decimal point, as in 4.5) then the NX-Inexact bit will be set and the value will be
rounded to the nearest integer, with ties to even.	

The UF-Underflow and DZ-Divide-by-zero bits in FLOAT_STATUS will be
unchanged.	

FCVTFI The FCVTFI instruction converts a 64 bit signed integer into a double
precision floating point number with about the same value.	

All integers within the following range can be represented exactly in double
precision floating point:	

	 -9,007,199,254,740,992 … +9,007,199,254,740,992	

In hex, this range is:	

	 0xFFE0_0000_0000_0000 … 0x0020_0000_0000_0000	

Some integers outside this range can be represented exactly, but most cannot be. If
the integer cannot be represented exactly, then the value will be rounded to the
nearest integer that can be represented, with ties to even, and the NX-Inexact flag in
FLOAT_STATUS will be set.	

There are no error or overflow conditions, so no other bits in FLOAT_STATUS will be
affected.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	143 342

Chapter 5: Instructions	

*FGT RegD,Reg1,Reg2 RegD ← (Reg1 > Reg2) ? 1 : 0 (float compare)
*FGE RegD,Reg1,Reg2 RegD ← (Reg1 ≥ Reg2) ? 1 : 0 (float compare)	

Synthetic	

Register t Usage: Not used; Okay to use as RegD, Reg1, and/or Reg2.	

The FGT instruction is implemented as:	
	 FLT	 RegD,Reg2,Reg1	 Note the reversal of the registers	
The FGE instruction is implemented as:	
	 FLE	 RegD,Reg2,Reg1	 Note the reversal of the registers	

Commentary Blitz-64 includes floating point instructions because there are
applications which require this functionality. We include only double precision
because (1) it fits the 64 bit size of the registers and (2) because it provides more
precision than single precision. Presumably, double precision can be substituted in
applications that require single precision, but not vice versa. If there is only one
precision (to keep the architecture simple), it seems that double precision is a better
choice.	

However, we make no great effort to design an architecture for high-performance
floating point computation. Applications that do lots of floating point calculations
and are dependent on floating point performance benefit from the sort of vector
architecture and parallelism that are commonplace in special purpose hardware, like
graphics coprocessors, neural net accelerators, etc. This is really where floating
point calculations should be done, not in a general purpose core.	

Commentary Whenever one or both of the arguments of FEQ, FLT, FLE, FGT, or FGE
is not-a-number (NaN), the result is false. This comes from the IEEE 754 spec.	

By true and false, we mean that either 1 or 0 is placed in the result register.	

Whenever one or both of the arguments to FEQ is not-a-number (NaN), the result is
false (0). Surprisingly, this means that when asking “NaN == NaN?”, that answer is
“no”!	

The definitions of “not equal” is “NOT(equal)”. Consequently, this means that when
asking “NaN ≠ NaN?”, that answer is “yes”!	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	144 342

Chapter 5: Instructions	

This happens regardless of the exact bit patterns used to represent NaN.	

We have not included an “FNE” instruction, but we could easily have included a
synthetic instruction, which would be translated to:	

	 FEQ	 RegD,Reg2,Reg1	 Store 0 if not equal	
	 TESTEQZ	 RegD,RegD	 	 Change 0 to 1	

But note that a test is typically followed by a branch, as in:	

	 FNE	 RegD,Reg2,Reg1	 	
	 BNEZ	 RegD,Label	 	 Branch if not equal, i.e., if RegD==1	

This would expand to:	

	 FEQ	 RegD,Reg2,Reg1	 	
	 TESTEQZ	 RegD,RegD	
	 BNEZ	 RegD,Label	 	 	

By not including an FNE instruction, we encourage the compiler writer to generate
the following superior code sequence:	

	 FEQ	 RegD,Reg2,Reg1	 	
	 BEQZ	 RegD,Label	 	 Instead, branch test is reversed	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	145 342

Chapter 5: Instructions	

Instruction Opcodes	

This list is provisional and subject to change in future versions.	

The Blitz-64 instruction encoding allows up to 256 Format-A instructions (including
ILLEGAL) and up to 63 instructions in other formats.	

	 Max Number of Format-A Instructions	 256	
	 Max Number of non-Format-A Instructions	 63	

	 Range of possible OP2 values	 0 … 255	
	 Range of possible OP1 values	 1 … 63	

Currently there are…	

	 Number of Format-A Instructions	 80	
	 Number of non-Format-A Instructions	 42	
	 Total Number of Machine Instructions	 120	

	 Current range of OP2 values 	 0 … 79	10

	 Current range of OP1 values	 1 … 42	

Commentary The process of decoding machine opcodes involves circuitry that will
transform the OP1 and OP2 fields (i.e., bits [31:16]) into a collection of control
signals. 	

The opcode assignment given here is done without any attempt to make instruction
decoding via combinational circuitry easier. Instead, we assume that all opcodes are
decoded using lookup tables.	

The number of OP1 values is less than 64 and the number of OP2 values is also less
than 64. Therefore, decoding the can be done with two lookup tables, each with no
more than 64 entries, along with a multiplexor to differentiate Format A instructions
(with OP1=00000000) from the others.	

In all “Format A” instructions, the value of OP1 is 0x00; to avoid clutter in the list
below, OP1 is not shown.	

 There may be some gaps in the numbering, as a result of previously deleted instructions. These 10

counts count the ILLEGAL instruction.

Blitz-64 Instruction Set Architecture / Porter	 Page of 	146 342

Chapter 5: Instructions	

Illegal	
	 OP1 	 OP2 	
	 hex	dec	 hex	dec	 format	
	 	 	 00	 0	 A	 ILLEGAL	

Arithmetic	
	 OP1 	 OP2 	
	 hex	dec	 hex	dec	 format	
	 	 	 01	 1	 A	 ADD	
	 01	 1	 	 	 B	 ADDI	
	 	 	 02	 2	 A	 ADDOK	
	 	 	 03	 3	 A	 ADD3	
	 	 	 04	 4	 A	 SUB	
	 	 	 05	 5	 A	 MULADD	
	 	 	 06	 6	 A	 MULADDU 	
	 	 	 07	 7	 A	 DIV	
	 	 	 08	 8	 A	 REM	

Logical	
	 OP1 	 OP2 	
	 hex	dec	 hex	dec	 format	
	 	 	 09	 9	 A	 AND	
	 02	 2	 	 	 B	 ANDI	
	 	 	 0A	 10	 A	 OR	
	 03	 3	 	 	 B	 ORI	
	 	 	 0B	 11	 A	 XOR	
	 04	 4	 	 	 B	 XORI	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	147 342

Chapter 5: Instructions	

Shift	
	 OP1 	 OP2 	
	 hex	dec	 hex	dec	 format	
	 	 	 0C	 12	 A	 SLL	
	 05	 5	 	 	 B	 SLLI	
	 	 	 0D	 13	 A	 SLA	
	 06	 6	 	 	 B	 SLAI	
	 	 	 0E	 14	 A	 SRL	
	 07	 7	 	 	 B	 SRLI	
	 	 	 0F	 15	 A	 SRA	
	 08	 8	 	 	 B	 SRAI	
	 	 	 10	 16	 A	 ROTR	
	 09	 9	 	 	 B	 ROTRI	

Sign Extension	
	 OP1 	 OP2 	
	 hex	dec	 hex	dec	 format	
	 	 	 11	 17	 A	 SEXTB	
	 	 	 12	 18	 A	 SEXTH	
	 	 	 13	 19	 A	 SEXTW	

Range Checking	
	 OP1 	 OP2 	
	 hex	dec	 hex	dec	 format	
	 	 	 14	 20	 A	 NULLTREST 	
	 	 	 15	 21	 A	 CHECKB	
	 	 	 16	 22	 A	 CHECKH	
	 	 	 17	 23	 A	 CHECKW	
	 	 	 18	 24	 A	 INDEX0	
	 	 	 19	 25	 A	 INDEX1
	 	 	 1A	 26	 A	 INDEX2
	 	 	 1B	 27	 A	 INDEX4
	 	 	 1C	 28	 A	 INDEX8
	 	 	 1D	 29	 A	 INDEX16
	 	 	 1E	 30	 A	 INDEX24
	 	 	 1F	 31	 A	 INDEX32

Blitz-64 Instruction Set Architecture / Porter	 Page of 	148 342

Chapter 5: Instructions	

Byte Reordering	
	 OP1 	 OP2 	
	 hex	dec	 hex	dec	 format	
	 	 	 20	 32	 A	 ENDIANH	
	 	 	 21	 33	 A	 ENDIANW	
	 	 	 22	 34	 A	 ENDIAND	

Test and Set a Boolean	
	 OP1 	 OP2 	
	 hex	dec	 hex	dec	 format	
	 	 	 23	 35	 A	 TESTEQ	
	 	 	 24	 36	 A	 TESTNE	
	 	 	 25	 37	 A	 TESTLT	
	 	 	 26	 38	 A	 TESTLE	
	 0A	 10	 	 	 B	 TESTEQI	
	 0B	 11	 	 	 B	 TESTNEI	
	 0C	 12	 	 	 B	 TESTLTI	
	 0D	 13	 	 	 B	 TESTLEI	
	 0E	 14	 	 	 B	 TESTGTI	
	 0F	 15	 	 	 B	 TESTGEI	

Branch	
	 OP1 	 OP2 	
	 hex	dec	 hex	dec	 format	
	 10	 16	 	 	 C	 B.EQ	
	 11	 17	 	 	 C	 B.NE	
	 12	 18	 	 	 C	 B.LT	
	 13	 19	 	 	 C	 B.LE	

Larger Addresses	
	 OP1 	 OP2 	
	 hex	dec	 hex	dec	 format	
	 14	 20	 	 	 D	 UPPER20	
	 15	 21	 	 	 B	 UPPER16	
	 16	 22	 	 	 B	 SHIFT16	
	 17	 23	 	 	 D	 ADDPC	
	 18	 24	 	 	 D	 AUIPC	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	149 342

Chapter 5: Instructions	

Jump	
	 OP1 	 OP2 	
	 hex	dec	 hex	dec	 format	
	 19	 25	 	 	 D	 JAL	
	 1A	 26	 	 	 B	 JALR	

Load & Store	
	 OP1 	 OP2 	
	 hex	dec	 hex	dec	 format	
	 1B	 27	 	 	 B	 LOAD.B	
	 1C	 28	 	 	 B	 LOAD.H	
	 1D	 29	 	 	 B	 LOAD.W	
	 1E	 30	 	 	 B	 LOAD.D	
	 1F	 31	 	 	 C	 STORE.B	
	 20	 32	 	 	 C	 STORE.H	
	 21	 33	 	 	 C	 STORE.W	
	 22	 34	 	 	 C	 STORE.D	

Align	
	 OP1 	 OP2 	
	 hex	dec	 hex	dec	 format	
	 	 	 27	 39	 A	 ALIGNH	
	 	 	 28	 40	 A	 ALIGNW	
	 	 	 29	 41	 A	 ALIGND	
	 	 	 2A	 42	 A	 INJECT1H	
	 	 	 2B	 43	 A	 INJECT2H	
	 	 	 2C	 44	 A	 INJECT1W	
	 	 	 2D	 45	 A	 INJECT2W	
	 	 	 2E	 46	 A	 INJECT1D	
	 	 	 2F	 47	 A	 INJECT2D	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	150 342

Chapter 5: Instructions	

Miscellaneous	
	 OP1 	 OP2 	
	 hex	dec	 hex	dec	 format	
	 23	 35	 	 	 B	 SYSCALL	
	 	 	 30	 48	 A	 SYSRET	
	 	 	 31	 49	 A	 SLEEP1	
	 	 	 32	 50	 A	 SLEEP2	
	 	 	 33	 51	 A	 RESTART	
	 	 	 34	 52	 A	 DEBUG	
	 	 	 35	 53	 A	 BREAKPOINT	
	 24	 36	 	 	 B	 CONTROL 		
	 25	 37	 	 	 B	 CONTROLU	
	 	 	 36	 54	 A	 CAS		
	 	 	 37	 55	 A	 FENCE 	
	 29	 41	 	 	 B	 ENTERFUN	 (Note that OP1 is out of order)	
	 2A	 42	 	 	 B	 EXITFUN 	 	 	

CSR Manipulation	
	 OP1 	 OP2 	
	 hex	dec	 hex	dec	 format	
	 	 	 38	 56	 A	 CSRSWAP 		
	 	 	 39	 57	 A	 CSRREAD	
	 26	 38	 	 	 B	 CSRSET	
	 27	 39	 	 	 B	 CSRCLR	
	 	 	 3A	 58	 A	 GETSTAT	
	 	 	 3B	 59	 A	 PUTSTAT	

Memory Management Unit	
	 OP1 	 OP2 	
	 hex	dec	 hex	dec	 format	
	 	 	 3C	 60	 A	 TLBCLEAR	
	 	 	 3D	 61	 A	 TLBFLUSH	
	 28	 40	 	 	 B	 CHECKADDR	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	151 342

Chapter 5: Instructions	

Floating Point	
	 OP1 	 OP2 	
	 hex	dec	 hex	dec	 format	
	 	 	 3E	 62	 A	 FADD	
	 	 	 3F	 63	 A	 FSUB	
	 	 	 40	 64	 A	 FMUL	
	 	 	 41	 65	 A	 FDIV	
	 	 	 42	 66	 A	 FMIN	
	 	 	 43	 67	 A	 FMAX	
	 	 	 44	 68	 A	 FNEG	
	 	 	 45	 69	 A	 FABS	
	 	 	 46	 70	 A	 FSQRT	
	 	 	 47	 71	 A	 FEQ	
	 	 	 48	 72	 A	 FLT	
	 	 	 49	 73	 A	 FLE	
	 	 	 4A	 74	 A	 FCVTFI	
	 	 	 4B	 75	 A	 FCVTIF	
	 	 	 4C	 76	 A	 FMADD	
	 	 	 4D	 77	 A	 FNMADD	
	 	 	 4E	 78	 A	 FMSUB	
	 	 	 4F	 79	 A	 FNMSUB

Unused Opcodes	
	 OP1 	 OP2 	
	 hex	dec	 hex	dec	 format	
	 2B	 43	 	 	 -	 (Next unused OP1)	
	 	 	 50	 80	 A	 (Next unused OP2)

Blitz-64 Instruction Set Architecture / Porter	 Page of 	152 342

Chapter 5: Instructions	

Miscellaneous Remarks	

Commentary: The COPY and CLEAR Instructions	

It is useful to be able to copy bytes quickly, or to clear large blocks of memory to
zero. For example, an operating system must be careful to initialize newly allocated
memory pages, in order to prevent data leakage from one address space into
another. The OS will also need the ability to copy pages quickly, whenever the “copy-
on-write” technique is used. Plus, there just seems to be a lot of data copying, no
matter how much programmers try to eliminate it.	

We considered adding the following instructions, but did not.	

	 COPY Reg1,Reg2,Reg3	 This is not a Blitz-64 instruction!	
	 	 while Reg3>0 repeat:	
	 	 	 *(Reg1++) ← *(Reg2++) [8 bytes]	
	 	 	 Reg3--	

	 CLEAR Reg1,Reg2,Reg3 	 This is not a Blitz-64 instruction!	
	 	 while Reg3>0 repeat:	
	 	 	 *(Reg1++) ← Reg2 [8 bytes]	
	 	 	 Reg3--	

There are several problems with these instructions. First, these instructions require
many clock cycles to execute and this doesn’t fit within the RISC philosophy. In
particular, a lengthy operation will effectively disable interrupts for a long time.	

Second, these instructions access memory. When executed in user mode, it is
possible there could be a virtual memory fault (i.e., one of the page-related
exceptions). There is no clean way to handle this situation.	

Finally, there is the possibility that the counter register, Reg3, is inordinately large
due to a bug, and this will effectively bring the core to a stop as the instruction takes
forever to execute.	

Instead, we opt for coding these operations as functions, which solves all these
problems.	

In many systems, a Direct Memory Access (DMA) controller will be present as an I/O
device. If present, the DMA controller can be employed to perform the “copy” and

Blitz-64 Instruction Set Architecture / Porter	 Page of 	153 342

Chapter 5: Instructions	

“clear” memory operation at a higher speed. If a DMA controller with this capability
is present, then it makes sense to add a system call to access this functionality. The
user-level functions will handle boundary cases and then use the system call to
invoke the DMA controller to do the bulk of the work.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	154 342

Chapter 6: Privileged Instructions
and Kernel Mode	

Quick Summary	

• There are two privilege modes: kernel and user.	
• Privileged instructions may only be executed in kernel mode.	
• There are 16 Control and Status Registers (CSRs).	

Privileged Instructions	

At all times, the processor is executing in one of two possible modes:	

	 • Kernel Mode	
	 • User Mode	

The current mode is determined by a single bit within the status register csr_status.
Upon power-on-reset, the processor begins execution in kernel mode.	

Some instructions are privileged instructions; these may only be executed when
running in kernel mode. Any attempt to execute a privileged instruction when
running in user mode will signal a “Illegal Instruction Exception”.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	155 342

Chapter 6: Privileged Instructions and Kernel Mode	

Control and Status Registers	

There are 16 Control and Status Registers (CSRs):	

	 0	 r/o	 csr_version	 Version of the BLITZ-64 architecture ISA	
	 1	 r/o	 csr_prod	 Product Info	
	 2	 r/o	 csr_core	 Core number	
	 3	 r/o	 csr_instr	 Instruction counter (Reset upon power-on-reset)	
	 4	 r/o	 csr_cycle	 Cycle counter (Reset upon power-on-reset)	
	 5	 r/w	 csr_timer	 Time until next interrupt, in cycles	
	 6	 r/w	 csr_status	 System status register	
	 7	 r/w	 csr_stat2	 Used during trap invocation and return	
	 8	 r/w	 csr_trapvec	 Pointer to trap handler code	
	 9	 r/w	 csr_pgtable	 Pointer to page table root node	
	 10	 r/w	 csr_prevpc	 Previous PC (for trap handler)	
	 11	 r/w	 csr_cause	 A code indicating which trap just happened	
	 12	 r/w	 csr_bad	 Offending instruction	
	 13	 r/w	 csr_addr	 Bad Address	
	 14	 r/w	 csr_ptr	 Used during trap invocation and return	
	 15	 r/w	 csr_temp	 Temp work register	

The following instructions are used to access the CSRs:	

	 CSRREAD	 Retrieve data from a CSR	
	 CSRWRITE	 Move data into a CSR	
	 CSRSWAP	 Simultaneous read and write to/from a CSR	
	 CSRSET	 Set selected bits to 1	
	 CSRCLR	 Clear selected bits to 0	

These instructions reference a CSR, which is encoded using 4 bits in the Reg1
register field within the instruction:	

	 0000 = csr_version	
	 0001 = csr_prod	
	 …	
	 1111 = csr_temp	

These instructions are all privileged, which means that they cannot be used by user
mode code. Thus, the CSRs are hidden and inaccessible from user programs.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	156 342

Chapter 6: Privileged Instructions and Kernel Mode	

Some CSRs, as marked above, are read-only. Any attempt to store data into these
registers is legal, but the data will simply be discarded.	

Next, we discuss the function of each CSR.	

Each CSR is a 64 bit register. All 64 bits can be set and cleared like any normal
register, with these exceptions:	

— 	Unused bits in csr_status are always zeros; they cannot be altered.	
—	The registers csr_version, csr_intsr, csr_cycle, csr_prod, and csr_core are
read-only.	

csr_version	

This CSR is read-only. Its value is fixed and will never change. Any attempt to update
this CSR is ignored.	

The uppermost 32 bits [63:32] indicate the number of cycles per millisecond that
the core normally runs at. This number need not be perfectly accurate; the actual
processor speed may be more or less with under- and over-clocking. (This value
might be used, for example, to control the flashing of LEDs at a rate appropriate for
humans or for initializing the default time-slice size.)	

Bit [31] indicates whether this core fully conforms to an official Blitz-64 ISA
specification. If the core meets all the requirements given in an officially sanctioned
Blitz-64 specification—either this one or some future specification—this bit will be

Blitz-64 Instruction Set Architecture / Porter	 Page of 	157 342

Chapter 6: Privileged Instructions and Kernel Mode	

1 and bits [30:16] will contain a version number indicating exactly which
specification it conforms to.	

Bits [30:16] of this CSR contain a version number of the architecture. The version
documented here is 0x0002. It is intended that version numbers will be
incremented sequentially as changes are made to the official Blitz-64 ISA.	

A core can be said to be “in full conformance” (i.e., “compliance”) to this version of
the Blitz-64 specification if and only if all instructions, registers, and behaviors
documented here are implemented exactly as described.	

However, the inclusion of additional, novel instructions is acceptable and is not
cause for bit [31] to be zero. If an opcode that is defined as an “illegal instruction” in
this document is assigned to a newly created instruction, then it will not affect bit
[31].	

If the architecture of a core fails to meet any official Blitz-64 ISA specification, bit
[31] must be zero. We presume that if a Blitz core fails to fully conform, then it will 11

at least implement “a lot of” the Blitz specification. In particular, we assume the
version number (bits [30:16]) will still contain the version number of the Blitz-64
ISA that is most closely implemented by the core, such as 0x0001.	

Bits [15:0] is the “implementor/organization” field and contains a value which
identifies a specific implementor (e.g., a person, group, or corporation). These
numbers are to be assigned centrally and are not to be created independently. The
current assignment is:	

	 0x0000	 All other implementors / organizations	
	 0x0001	 Harry Porter	
	 0x0002	 HDL Express	

Values 0x0003 … 0xFFFF are reserved for future assignment; do not use them.	

NOTE: The csr_prod register (“product info”) is intended to be defined by a specific
implementor/organization. Software recognizing a particular implementor/

For example, if the MULADD instruction causes an Emulated Instruction Exception, bit [31] must 11

be 0. As another example, if FDIV causes an Emulated Instruction Exception, it is not cause for bit
[31] to be 0. But is FDIV is implemented but fails to round ties to even, then the entire core fails to
conform and bit [31] must be 0.

Blitz-64 Instruction Set Architecture / Porter	 Page of 	158 342

Chapter 6: Privileged Instructions and Kernel Mode	

organization may wish to examine csr_prod to gather more info about the specific
capabilities of the core.	

csr_prod	

This CSR is read-only. Its value is fixed and will never change. Any attempt to update
this CSR is ignored.	

The definition of this register is left up to the specific implementation. The
implementor /organization is identified in csr_version, which should be consulted
before any attempt to decipher the contents of this register.	

The intent is that a particular implementor or organization may create several
implementations of the Blitz-64 architecture. Each might be considered a unique
“product”. This register is intended to contain a number that identifies the product.
The implementor is free to define certain bits in this register to indicate the
presence or absence of certain features. For example, certain bits might indicate
whether some special instruction is available, or whether the core is optimized for
“low power” or for “high performance”.	

It may also be the case that each part has a serial number hardwired into it and a
part’s serial number can be obtained by reading this register. For example, the upper
16 bits might contain a product number and the lower 48 bits might contain a serial
number. 	12

csr_core	

This CSR is read-only. Its value is fixed and will never change. Any attempt to update
this CSR is ignored. This register is divided into these fields:	

	 bits [63:48]	 Number of columns (0 … 65536)	
	 bits [47:32]	 Number of rows (0 … 65536)	
	 bits [31:16]	 Number of planes (0 … 65536)	
	 bits [15:0]	 Number of this core (0 … 65536)	

 Of course current technology may make it impractical to hardwire unique serial numbers 12

directly into each core. Thus, an implementation may choose to reveal serial number information
in other ways, such as through a memory-mapped I/O device created for this purpose, or a
number written into Secure Storage and therefore not updatable.

Blitz-64 Instruction Set Architecture / Porter	 Page of 	159 342

Chapter 6: Privileged Instructions and Kernel Mode	

In a multi-core processor, the lower 16 bits [15:0] of this CSR give the core number
and will be within 0 … 65536. Core number 0 is considered the “primary core”.	

In a multi-core system, the cores can be arranged either linearly, in a 2 dimensional
array, or in a 3 dimensional array. The upper 48 bits describe the arrangement of the
cores.	

In a 1D arrangement, the number of rows and the number of planes will be 1. In a
2D arrangement, the number of planes will be 1.	

In a uni-core processor, this register will contain 0x0001_0001_0001_0000. In a
multi-core system with NNNN cores in which the cores are not organized as an array,
this register will contain:	

	 0xNNNN_0001_0001_KKKK	

where KKKK is the number of a particular core (within 0…NNNN-1).	

csr_instr	

This CSR is set to zero upon power-on-reset. It is incremented by one for every
instruction executed. It can be used for performance measurement.	

This CSR is read-only; any attempt to update this CSR is ignored.	

csr_cycle	

This CSR is set to zero upon power-on-reset. It is incremented by one for every clock
cycle. It can be used for performance measurement.	

(Assuming the processor runs at 10 gigahertz, the csr_cycle will run for about 30
years before overflowing. Thus, a problem will only arise in a processor core which
runs non-stop for decades. The workaround is to reboot every decade.)	

This CSR is read-only; any attempt to update this CSR is ignored.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	160 342

Chapter 6: Privileged Instructions and Kernel Mode	

csr_timer	

The processor has a built-in timer. This timer is used by the kernel to implement
time-slicing. When the timer expires (i.e., when the time-slice ends), a “Timer
Interrupt” will be signaled.	

This CSR controls when the timer will cause the interrupt. This register is
decremented on every clock cycle, with no check for overflow. A “Timer Interrupt”
will be signaled when this CSR goes negative. The trap handler should reset this CSR
before reenabling interrupts to avoid an infinite chain of timer interrupts.	

If no interrupt is wanted, the value MAX_64 (0x7FFF_FFFF_FFFF_FFFF) can be used.
The maximum time interval is measured in decades, but normally it will be reset
after every time-slice, e.g., every millisecond.	

Commentary The timer is specified in terms of clock cycles, rather than real-time,
since it is easier to implement. A real-time clock may exist, but it will be
implemented as a separate I/O device, probably with a separate power supply and
independent frequency generator, so that it continues to operate even when the
processor is powered down and can measure time accurately, regardless of which
frequency the processor is clocked.	

The purpose of the cycles-per-millisecond field of csr_version is so that a real-time
clock can be approximated from the processor cycle frequency, if no real-time clock
is present.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	161 342

Chapter 6: Privileged Instructions and Kernel Mode	

csr_status	

This CSR is broken into the following fields:	

	 [63:28]	 36	 StackLimit	
	 [27:10]	 18	 < unused / zero >	
	 [9:8]	 2	 FLOAT_ROUND — the rounding mode for float operations	
	 [7:3]	 5	 FLOAT_STATUS — the error status of recent float operations	
	 [2]	 1	 SINGLE_STEP (1=enabled, 0=disabled)	
	 [1]	 1	 INTERRUPTS_ENABLED (1=enabled, 0=disabled)	
	 [0]	 1	 KERNEL_MODE (1=Kernel Mode, 0=User Mode)	

FIGURE: CSR_STATUS Register	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	162 342

Chapter 6: Privileged Instructions and Kernel Mode	

There are 2 bits (FLOAT_ROUND) which should be set by software to control which
rounding mode to be used when the need arises during floating point computations:	

	 00	 RN — Round to nearest. Tie goes to value with 0 in LSB.	
	 01	 RZ — Round toward zero, i.e., truncate.	
	 10	 RD — Round down, i.e., round toward -inf.	
	 11	 RU — Round up, i.e., round toward +inf.	

There are 4 bits (FLOAT_STATUS) which are set by hardware to reflect recent
floating point computations. Here is the meaning of these bits:	

	 bit	
	 3	 NX — Inexact results were produced	
	 4	 DZ — Divide by zero has occurred	
	 5	 UF — Underflow has occurred 	13

	 6	 OF — Overflow has occurred	
	 7	 NV — Invalid operation has been attempted	

A value of 00000 indicates that no problems have occurred. These bits are “sticky”,
once set to 1 they remain set until explicitly cleared by software.	

The floating bits (FLOAT_ROUND and FLOAT_STATUS) must be saved and restored
upon any context switch. This is why they are in the status register.	

In general , non-privileged instructions are not allowed to read or write the CSR
registers. However, the GETSTAT and PUTSTAT instructions (which are not
privileged) can be used to read and write bits [9:3]. This allows user programs to
make use of the FLOAT_ROUND and FLOAT_STATUS bits.	

The INTERRUPTS_ENABLED bit determines whether an interrupt will cause an
immediate trap or not. If set to 1, any interrupt will cause trap processing to occur
after the current instruction completes execution. If the bit is 0, the signaling of an
interrupt will not cause trap handling. Instead, that interrupt type will become
pending. The interrupt will remain pending until the bit is set to 1, at which time
trap processing will occur.	

 The “underflow” (UF) bit is set when the result of an operation is both a subnormal number 13

(including zero) and the result is inexact.

Blitz-64 Instruction Set Architecture / Porter	 Page of 	163 342

Chapter 6: Privileged Instructions and Kernel Mode	

The KERNEL_MODE bit determines whether the processor is in kernel mode or user
mode. The mode determines whether privileged instructions can be executed and
determines whether addresses below 0x8_0000_0000 (i.e., physical memory and
memory mapped I/O) can be used directly.	

Code running in user mode, but with interrupts disabled, is particularly risky since
an infinite loop would freeze the system: even timer interrupts would not stop the
looping. The kernel will normally not run user mode code with interrupts disabled.	

The SINGLE_STEP bit is used to invoke a trap handler after each instruction. This
functionality is used by a debugger to single-step the code being debugged.	

Bits [63:28] contain a 36 bit address called the “StackLimit”. The StackLimit is the
smallest address which is allowed; attempting to grow the stack beyond the value
(i.e., below, with smaller addresses) will cause a Stack Overflow Exception. This is
discussed more fully in the section on the “Stack Overflow Exception”.	

Bits [27:10] are unused. Attempts to set these bits are ignored and reads always
return zeros. 	14

csr_stat2	

The csr_status CSR must be saved and restored at context switches and this is the
function of csr_stat2. During the hardware phase of trap invocation for interrupts
and exceptions, the status register csr_status is copied to this CSR. This allows the
software trap handler to return to the interrupted code at some later time.	

This process is discussed more fully later, when trap processing is described.	

csr_trapvec	

This CSR will contain the address of the function that will handle traps. When a trap
(i.e., an interrupt or exception) occurs, the program counter will be loaded with the
address in csr_trapvec as part of trap handling. Execution of the trap handler will
then begin with the next instruction FETCH.	

 If, in the future, a new version of the architecture defines some meaning for an unused bit, then 14

we must ask whether the bit will be visible to User Mode programs or not. If visible to User Mode,
then it would make sense to redefine the GETSTAT and PUTSTAT instructions to include the newly
defined bit, along with the FLOAT_ROUND and FLOAT_STATUS bits.

Blitz-64 Instruction Set Architecture / Porter	 Page of 	164 342

Chapter 6: Privileged Instructions and Kernel Mode	

Only 35 bits — i.e., bits [34:0] — of csr_trapvec will be used, giving an address in
the kernel address space; the upper bits will be ignored. If csr_trapvec is not a valid
address — for example 0, which would normally cause a Null Address Exception —
the results are undefined.	

csr_pgtable	

This CSR will point to the current page table. That is, csr_pgtable will contain the
address of the root node of the page table tree. In addition, this register will contain
the address space’s ID (ASID).	

The address of the root of the page table tree is a 44 bit address in the physical
memory space. The root of the page table must be page aligned. A page-aligned
address will contain zeros in the lower 14 bits. As such, only bits [43:14] are used,
constituting the Physical Page Number (PPN) of the page containing the root node.
The offset bits [13:0] are ignored and zeros are assumed. This results in a page-
aligned address in the 16 TiByte physical address space.	

The Address Space Identifier (ASID) is a 16 bit number which identifies the virtual
address space. Each virtual address space should have a unique ASID, so there is a
one-to-one correspondence between virtual address spaces and ASIDs.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	165 342

Chapter 6: Privileged Instructions and Kernel Mode	

The ASID from csr_pgtable will be used by the Memory Management Unit (MMU)
during address translation during any LOAD, STORE, or FETCH. It will be matched
against the ASID value stored in the Translation Lookaside Buffer (TLB) registers. 	15

csr_prevpc	

This CSR is used to save the value of the Program Counter (PC) during trap
processing. During the hardware phase of trap invocation for interrupts and
exceptions, this CSR is set to point to either the instruction causing the exception or
the following instruction (depending on exactly which interrupt or exception has
occurred). This allows the software trap handler to return to the interrupted code at
some later time.	

This process is discussed more fully later, when trap processing is described.	

The PC is only 36 bits, yet csr_prevpc is a 64 bit register. When the PC is copied to
this register, the upper 28 bits will be set to zero. When csr_prevpc is copied to the
PC, the upper 28 bits will be ignored.	

csr_cause	

This CSR is set by the hardware during trap processing to a code to indicate which
exception/interrupt caused the trap.	

csr_bad	

This CSR is set by the hardware during the trap processing to contain the instruction
that caused the exception.	

When an instruction is copied to csr_bad, the upper bits will be set to zero.	

 It is assumed that the Translation Lookaside Buffer (TLB) will cache page table entries in an 15

associative memory, in order to reduce the number of page table lookups. Each TLB entry will be
keyed on both ASID and virtual page number. Presumably, each virtual address space will be
assigned and associated with a unique ASID.	

The purpose of the ASID is to make sure that code running in one virtual address space will only
use TLB entries that are associated with the correct virtual address space. If, for some reason, the
TLB registers are not implemented (meaning every FETCH, LOAD, and STORE requires a page
table lookup), the ASID becomes unnecessary and will be ignored.

Blitz-64 Instruction Set Architecture / Porter	 Page of 	166 342

Chapter 6: Privileged Instructions and Kernel Mode	

csr_addr	

This CSR is set by the hardware during trap processing of certain exceptions to
contain additional information about the exception. For example, in the case of page-
related exceptions, this CSR is set to the program-generated address causing the
problem.	

When the hardware stores an address in csr_addr during an exception, the upper 28
bits will be set to zero.	

csr_ptr	

This CSR is intended to be used by the kernel to store a pointer to a “thread control
block” while a user mode program is running. During trap handling and/or context
switches the kernel must save user mode state, including registers, and this CSR is
intended to contain a pointer to where in memory that saving should be done.	

This CSR is neither set nor queried by the hardware, except by the CSR instructions.	

csr_temp	

This CSR is available for use as needed by trap handler and/or kernel code. It is
neither set nor queried by the hardware, except by the CSR instructions.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	167 342

Chapter 7: Exceptions, Interrupts,
and Trap Handling	

Quick Summary	

• There are two kinds of traps: exceptions and interrupts.	
	 • Exceptions are synchronous and include the “syscall” trap.	
	 • Interrupts are asynchronous and come from I/O devices.	
• All trap processing invokes a single Global Trap Handler.	
• The trap cause code can be used as an index into a jump table.	
• A single timer is specified, which will signal a “Timer Interrupt”.	
• Up to 1,024 different SYSCALLs are supported in the jump table.	
• A novel approach for null pointer exceptions is used.	

Traps, Exceptions, and Interrupts	

There are two sources of “traps”, namely exceptions and interrupts.	

	 • Trap	
	 	 • Exception — synchronous, caused by an instruction	
	 	 • Interrupt — asynchronous, caused by an external source	

An “exception” is caused by and related to a specific instruction. In that sense,
exceptions are synchronous.	

An “interrupt” is caused by the arrival of a signal from an external source.
Interrupts are asynchronous, which means their timing is unrelated to instruction
execution. Interrupts can occur at any time during execution.	

Exceptions and interrupts are said to be signaled or raised. (We use the terms
“signaled” and “raised” synonymously.)	

Blitz-64 Instruction Set Architecture / Porter	 Page of 168 342

Chapter 7: Exceptions, Interrupts, and Trap Handling	

In response to an exception or interrupt, the hardware will invoke a trap handler.	

Exceptions	

An exception is raised by the execution of an instruction and is therefore directly
related to one particular instruction.	

In some cases, exceptions are caused by a problem in the instruction which prevents
it from executing. In other cases, the instruction requires kernel attention and will
be re-executed after the kernel handles the exception. A system call (raised by the
“syscall” instruction) is considered to be a type of exception.	

When an exception occurs, trap handling will always be invoked directly after the
instruction. Trap handling for exceptions will never be delayed, become pending, or
be ignored.	

Interrupts	

An interrupt is signaled when an external source sends a hardware signal to the
processor. The device is requesting attention. An interrupt has nothing to do with
the instruction currently being executed.	

When an interrupt is signaled, the interrupt becomes pending. Trap processing will
occur at some future time. The interrupt remains pending until trap handling occurs.
The interrupt may be handled immediately after the completion of the current
instruction, or it may be postponed until later. Either way, the interrupt will remain
pending until trap handling is invoked.	

Once handled, the interrupt will cease being pending.	

Interrupts are masked by the INTERRUPTS_ENABLED bit in the status word
csr_status. If 0, then any interrupt that occurs will remain pending until interrupts
are once again enabled. Trap processing will not occur until this time.	

Exceptions may not be masked. Any exception will cause trap processing
immediately after the current instruction (i.e., the instruction which caused the
exception) has finished execution. In that sense, we might say that exceptions
remain pending only a very short time, until the current instruction is completed.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	169 342

Chapter 7: Exceptions, Interrupts, and Trap Handling	

Interrupt handling is only masked by the INTERRUPTS_ENABLED bit in the
csr_status register. Unlike other ISAs, Blitz-64 has no additional masking
mechanisms. 	16

There are several different types of interrupt (e.g., Timer Interrupt, Serial Device
Interrupt, etc.). If interrupts of two or more types are pending then, when trap
processing occurs, the one with the higher priority will be selected and the others
will remain pending during the execution of the trap handler. At some later time, the
other interrupts will be processed.	

If there are multiple interrupts of the same type signaled before trap handling
occurs, then they are combined. In other words, only one trap of each interrupt type
can be pending at once. If an interrupt of type X is signaled and is still pending at the
time a second interrupt of the same type X is signaled, the second interrupt is
combined with the first interrupt, which means it is effectively ignored and lost.	

Trap Handlers	

When an interrupt or exception occurs, a trap handler will be invoked. An interrupt
may remain pending for some time, but eventually it will be handled. An exception
will be handled immediately, before the next instruction is executed.	

Trap handling has two components: the hardware component and the software
component. When the trap handling is invoked, the processor will perform several
simple actions. These actions will occur between instructions. In other words, the
previous instruction will complete processing, and then the hardware component
will execute.	

Basically, the hardware phase will save some processor state, clear the
INTERRUPTS_ENABLED bit in csr_status, and set the Program Counter (PC) to point
to the trap handler.	

After the hardware component has completed, instruction processing will resume,
with the first instruction in a kernel function known as a “trap handler”.	

 However, the Platform-Level Interrupt Controller (PLIC) can be used to mask interrupts from 16

various selected devices to various selected cores.

Blitz-64 Instruction Set Architecture / Porter	 Page of 	170 342

Chapter 7: Exceptions, Interrupts, and Trap Handling	

Here are the types of trap:	

	 Exceptions	
	 	 SYSCALL (multiple types, determined by immed10 in SYSCALL instruction)	
	 	 Arithmetic Exception (integer overflow, divide-by-zero, …)	
	 	 Unaligned LOAD/STORE Exception	
	 	 Null Address Exception	
	 	 Illegal Instruction Exception (including privileged instruction violation)	
	 	 Page Illegal Address Exception (attempt to access kernel space)	
	 	 Page Table Exception (bad csr_pgtable)	
	 	 Page Invalid Exception (either index page or PTE)	
	 	 Page Write Exception	
	 	 Page Fetch Exception	
	 	 Page Copy-On-Write Exception	
	 	 Page First Dirty Exception	
	 	 Debug Exception	
	 	 Breakpoint Exception	
	 	 Singlestep Exception	
	 	 Emulated Instruction Exception	
	 	 Hardware Fault Exception	
	 	 Bad Array Index Exception	
	 	 Stack Overflow Exception	

 	 Interrupts	
	 	 Timer Interrupt	
	 	 DMA Complete Interrupt	
	 	 Platform Level Interrupt Controller (PLIC) Interrupt	
	 … Interrupt details are implementation dependent …	

When a trap occurs, a transfer of control is made to the address in csr_trapvec. In
other words, the value in csr_trapvec is copied into the Program Counter (PC) as
part of the trap processing.	

Thus, there is a single trap handler for all trap types, which we call the “global trap
handler”. This function is responsible for determining the nature of the trap and
jumping to individual trap handlers to finish the handling of the trap.	

Generally speaking, we expect there will be several individual trap handler
functions, one for each type of trap. Trap handlers will typically end with a SYSRET

Blitz-64 Instruction Set Architecture / Porter	 Page of 	171 342

Chapter 7: Exceptions, Interrupts, and Trap Handling	

instruction, which will be used to resume execution in the interrupted code
sequence.	

Upon trap handling, the hardware will cause a jump to the global trap handler by
loading the PC with the address of the the global trap handler, i.e., the contents of
csr_trapvec. Presumably, this CSR has been previously loaded with the address of
the global trap handler.	

It is intended that the global trap handler will begin by saving additional state of the
interrupted process (such as the general purpose registers) and then jump, via a
trap dispatch table, to the desired individual trap handler. 	17

This dispatch vector is entirely in software. This global trap handler, which may be
written in assembler, will perform an indirect jump through the jump table. The
individual target trap handlers will typically be written in high-level KPL.	

The trap dispatch table will contain one entry for each type of trap and each entry is
8 bytes. With 8 bytes, there is enough room for two instructions, so, if necessary,
each entry can contain a long absolute jump (UPPER20+JALR). However, many trap
handler functions may be close and reachable with a single instruction. Although all
table entries are 8 bytes, some will be padded with unused bytes.	

There are approximately 1100 types of traps, since there are 1024 different syscall
traps. So the trap vector will consume about 8,800 bytes.	

At the time a trap is handled, the hardware will set the csr_cause register to a code
indicating which sort of trap is being handled. Each code is divisible by 8, which
makes trap dispatching simpler.	

 Of course, the global trap handler may be written in an entirely different style, avoiding the jump 17

table altogether. Instead, such a global trap handler would contain special case testing to
determine which particular trap has occurred.

Blitz-64 Instruction Set Architecture / Porter	 Page of 	172 342

Chapter 7: Exceptions, Interrupts, and Trap Handling	

	 Code	 Code	
	 (decimal)	 (hex)	 Trap Type	
	 0	 0000	 Syscall 0	
	 8	 0008	 Syscall 1	
	 16	 0010	 Syscall 2	
	 …	 …	 …	
	 8184	 1FF8	 Syscall 1023	

	 8192	 2000	 Arithmetic Exception	
	 8200	 2008	 Unaligned LOAD/STORE	
	 8208	 2010	 Null Address Exception	
	 8216	 2018	 Illegal Instruction, privilege violation	
	 8224	 2020	 Page Illegal Address Exception	
	 8232	 2028	 Page Table Exception	
	 8240	 2030	 Page Invalid Exception	
	 8248	 2038	 Page Write Exception	
	 8256	 2040	 Page Fetch Exception	
	 8264	 2048	 Page Copy-On-Write Exception	
	 8272	 2050	 Page First Dirty Exception	
	 8280	 2058	 Debug Exception	
	 8288	 2060	 Breakpoint Exception	
	 8296	 2068	 Singlestep Exception	
	 8304	 2070	 Emulated Instruction Exception	
	 8312	 2078	 Hardware Fault Exception	
	 8320	 2080	 Bad Array Index Exception	
	 8328	 2088	 Stack Overflow Exception	

	 8336	 2090	 Timer Interrupt	
	 8344	 2098	 DMA Complete	
	 8352	 20A0	 PLIC Platform Level Interrupt Controller	

	 … Codes for asynchronous interrupts are implementation dependent …	

Note that bit 13 (8192=0x2000) of csr_cause indicates whether this is a syscall or
not.	

Cause codes are zero-extended to 64 bits whenever the hardware writes them into a
CSR register.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	173 342

Chapter 7: Exceptions, Interrupts, and Trap Handling	

Interrupt Processing	

Interrupt processing occurs between instructions.	

If the previous instruction happens to have caused an exception, then that exception
will be processed first. Processing an exception will always have the effect of
disabling interrupts. Then, since interrupts are disabled, any pending interrupt will
remain pending until after interrupts are re-enabled, at which time the interrupt
processing will occur. But assuming there is no exception, the interrupt will be
processed.	

If multiple interrupts are signaled, then one will be selected. The order of preference
among the different interrupt types is implementation dependent.	

The previous instruction will complete execution before an interrupt is processed. If
there are any future, partially-executed instructions in the pipeline, they will be
cancelled and will have no effect.	

When an interrupt is processed, the register csr_prevpc will be set to the address of
the next unexecuted instruction, which is just the value of pc (the Program Counter).
The registers csr_bad and csr_addr will be set to zero.	

	 csr_prevpc = the address of the next instruction	
	 csr_bad = 0	
	 csr_addr = 0	

We next discuss the individual types of asynchronous interrupts.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	174 342

Chapter 7: Exceptions, Interrupts, and Trap Handling	

Timer Interrupt	

The register csr_timer is decremented on every clock cycle. If it is negative and
interrupts are enabled, then a “Timer Interrupt” will be signaled.	

If interrupts are disabled, this interrupt will not be signaled. When interrupts are
once again enabled, this interrupt will occur if and only if csr_timer is still negative
at that time. 	18

Presumably the trap handler that deals with timer interrupts will reset csr_timer in
preparation for the next time-slice. But before it can do this, there will several cycles
in which the csr_timer remains negative. However, the negative value of csr_timer
will not cause an interrupt since interrupts are disabled during the handler, thus
avoiding an infinite cascade of interrupts.	

If another interrupt is signaled simultaneously to a Timer Interrupt, then the
determination of which interrupt is handled first is implementation dependent.	

If another interrupt has priority and is handled before the Timer Interrupt, then the
Timer Interrupt does not remain pending; instead it will be re-signaled when
interrupts are once again enabled if and only if csr_timer is still negative. 	19

DMA Complete Interrupt	

When the DMA Controller device completes an operation, it will signal this
interrupt.	

If interrupts are disabled, this interrupt will remain pending.	

 Previously we said that an interrupt, once signaled, remains pending until interrupts are again 18

enabled. What if a Timer Interrupt becomes pending while interrupts are disabled, i.e., during the
trap handler for some other trap? What if that trap handler subsequently resets csr_timer, in an
attempt to reschedule the Timer Interrupt? Shall the Timer Interrupt, once raised, remain pending
or shall it be checked anew during the execution of each instruction?	

Here we specify that the core will check csr_timer for each instruction. It will not remain pending.

 The idea is that the other interrupt’s handler may invoke the scheduler and cause a different 19

thread to be scheduled, thereby terminating the previous thread’s time-slice. Such a thread-switch
would naturally cause csr_timer to be reset to a new value. Allowing an earlier Timer Interrupt to
remain pending and to occur later once interrupts are re-enabled would effectively terminate the
new thread’s time-slice the moment it starts, before it has a chance to do anything.

Blitz-64 Instruction Set Architecture / Porter	 Page of 	175 342

Chapter 7: Exceptions, Interrupts, and Trap Handling	

PLIC Complete Interrupt	

Various I/O devices will interrupt the core from time to time. In a multi-core system,
we need to have exactly one core service each interrupt. The duty of the Platform-
Level Interrupt Controller (PLIC) is to channel each interrupt to a single core and
moderate between multiple cores that are each willing and able to service
interrupts.	

When the PLIC wishes to interrupt a core, the interrupt will be raised. If interrupts
are enabled, a trap will occur. The core will then communicate directly with the PLIC
— which is a memory-mapped device — to determine which device in interrupting
and to claim the interrupt.	

If interrupts are disabled, this interrupt will become pending and trap processing
will not occur until interrupts are re-enabled. However, if some other core claims the
interrupt in question, the PLIC may cause the pending interrupt to disappear so that
trap processing will not interrupt the core once it re-enables interrupts.	

The details of the Platform-Level Interrupt Controller (PLIC) are discussed
elsewhere.	

Additional Devices	

There may be additional devices that interrupt. Details are implementation
dependent.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	176 342

Chapter 7: Exceptions, Interrupts, and Trap Handling	

Description of Exceptions	

SYSCALL Exception	

This exception is caused by the execution of the SYSCALL instruction.	

The SYSCALL machine instruction is used in the implementation of a “system call”
to a kernel function. By convention, the standard calling conventions are used, which
means that all arguments and returned results are passed in registers r1, r2, …
There will be many system calls and the global trap handler must be able to quickly
dispatch to the correct individual trap handler (i.e., to the desired kernel system
function).	

The SYSCALL instruction takes a 10 bit immediate value which is interpreted as an
integer in the range 0 … 1,023. This integer is used in dispatching to the individual
syscall trap handlers. The integer is multiplied by 8 (since each dispatch table entry
is 8 bytes) and is placed in csr_cause.	

Otherwise, exception processing occurs just like other exceptions.	

The Blitz-64 design facilitates fast dispatching for the most commonly used system
call functions. If there are more than 1,024 system calls, one of the code numbers
(e.g., the last code number) can be used to implement a second level of dispatching
for functions that are not commonly used and not performance-critical.	

This exception will set…	
	 csr_prevpc = the address of the instruction following the SYSCALL	
	 csr_bad = the syscall instruction	
	 csr_addr = 0	

Commentary Here are the programming conventions that will be followed by user
mode code making a system call to the kernel:	

•	There can be up to 6 arguments. Arguments are passed in registers r1 … r6.
(Recall that the normal calling conventions allow up to 7 arguments in
registers.) Any additional argument data must be passed in user memory,
placing a pointer to the memory area (i.e., a virtual address) in r1 … r6.	
•	A value will be returned in register r1. Zero will be returned for system calls
that have no meaningful return value. If additional return data is required, the

Blitz-64 Instruction Set Architecture / Porter	 Page of 	177 342

Chapter 7: Exceptions, Interrupts, and Trap Handling	

kernel will place it in memory at the virtual address supplied by one of the
arguments. 	
•	Upon return, registers r2 … r7, and r8 (t) will be zero.	
•	Registers r9 … r15 (i.e., s0, s1, s2, tp, gp, lr, and sp) will be unchanged.	

Arithmetic Exception	

This exception can be caused by the following operations:	

	 Integer arithmetic :	 ADD, ADDI, SUB, MULADD, DIV, REM	
	 Shift operations:	 SLA, SLAI, SRA, SRL, SLL	
	 Size checking:	 CHECKB, CHECKH, CHECKW	

The instruction may have modified RegD but the result computed is not
“mathematically correct.”	

This exception will set…	
	 csr_prevpc = the address of the offending instruction	
	 csr_bad = the offending instruction	
	 csr_addr = 0	

Unaligned LOAD/STORE Exception	

This exception can be caused by the following instructions:	

	 LOAD.H, LOAD.W, LOAD.D	
	 STORE.H, STORE.W, STORE.D	

This exception will be signaled whenever the program-generated address is not
properly aligned. The instruction may have modified RegD but any value stored is
incorrect.	

This exception will set…	
	 csr_prevpc = the address of the offending instruction	
	 csr_bad = the offending LOAD or STORE instruction	
	 csr_addr = the program-generated address	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	178 342

Chapter 7: Exceptions, Interrupts, and Trap Handling	

Emulation of Unaligned LOAD and STORE Instructions	

Perhaps unaligned data will be simply banned by fiat. Whenever it might occur, we
shall make it the responsibility of compiler/programmer to use properly aligned
operations to read and write data to/from memory. Note that the descriptions
earlier in this document for the machine instructions LOAD.H, LOAD.W, LOAD.D,
STORE.H, STORE.W, and STORE.D included the requirement that the addresses must
be properly aligned. With this approach, this restriction is enforced.	

If this approach is to be taken, then, whenever this exception occurs, it indicates a
program error. The trap handler will probably just terminate the offending process.	

However, the Blitz-64 ISA is designed to support another more complex approach, in
which the compiler/programmer is relieved of the responsibility to always use
aligned addresses. With this approach, the compiler/programmer is free to use
LOAD and STORE instructions with addresses that are not properly aligned.	

Next we describe this approach.	

It is assumed that the majority of LOAD and STORE operations will be properly
aligned, but unaligned data will occasionally occur and the compiler/programmer
will not take special action to check alignment.	

Instead, the Unaligned LOAD/STORE Exception is designed to allow a trap handler
to intervene and deal with unaligned data addresses by completing the operation
(using only aligned LOAD and STORE instructions) and returning to the interrupted
code. To the programmer of the original code, it will simply appear that the LOAD
and STORE instructions work just fine with improperly aligned addresses.	

In reality, the unaligned LOAD or STORE will invoke a handler that will run in Kernel
Mode and will ultimately return to the interrupted user code.	

The ALIGN and INJECT instructions are specifically designed to be used in such a
trap handler to support unaligned LOAD or STORE operations.	

Generally speaking, the trap handler for the Unaligned LOAD/STORE Exception will
need to make two accesses to memory. For example, to load a doubleword from 8
bytes that spans two properly aligned doublewords, the handler will need to load
two aligned doubleword and extract the initial bytes from the first and the final

Blitz-64 Instruction Set Architecture / Porter	 Page of 	179 342

Chapter 7: Exceptions, Interrupts, and Trap Handling	

bytes from the second. (Example code sequences are discussed in detail elsewhere
in this document.)	

When an unaligned LOAD or STORE operation also causes a page-related exception,
the Unaligned LOAD/STORE Exception will have priority, Thus, the trap handler
code for Unaligned LOAD/STORE Exception will be invoked.	

Once invoked, the trap handler will then go on to perform two aligned operations.
One or both of these may cause a page-related exception. Such exceptions could 20

either be fatal to the LOAD/STORE or repairable. For example, if the operation is a
STORE into a page that is not writable, then it is fatal; the “Page Write Exception”
needs to happen and the STORE aborted. On the other hand, a “Page Copy-On-Write
Exception” should be transparent; it may require the kernel to copy a page, but the
STORE operation should complete with no consequence to the user code.	

There are two approaches the kernel programmer can take.	

In the first approach, the trap handler code can use the CHECKADDR instruction
before accessing data in the user’s virtual address space. If a page-related exception
would occur, the handler can directly invoke whatever kernel functions are required.
Once complete and the handler code is assured that access to the memory is safe, it
can proceed.	

But if CHECKADDR indicates that a fatal page-related exception would occur, the
trap handler for the Unaligned LOAD/STORE Exception will need abandon the
operation and end by simulating the page-related exception. In any case, interrupts 21

remain disabled throughout the handler.	

In the second approach, interrupts are reenabled. The handler code for the
Unaligned LOAD/STORE Exception becomes interruptible. Then it simply performs
the necessary memory operations without first checking, possibly causing a page-

 The first memory access might not cause an exception while the second access — falling within 20

a different page — might cause an exception.

 An exception can be “simulated” or “faked” as follows. The kernel code must set csr_stat2, 21

csr_prevpc, csr_cause, csr_bad, and csr_addr as they would be if the faked exception had actually
occurred. Then it must jump to the start of the global trap handler, i.e., to the address in
csr_trapvec. From then on, the trap handler will deal with the exception just as it normally does
with all exceptions, without knowing that it was tricked.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	180 342

Chapter 7: Exceptions, Interrupts, and Trap Handling	

related exception. If such a page-related exception occurs, it will be handled (since
interrupts are enabled) by the appropriate handler. Assuming the exception is not
fatal, there will be a return to the interrupted handler and the handler will then run
to completion. 	22

If the page-related exception is fatal, then the user thread must be terminated. The
kernel will need to detect that the problem occurred during the emulation of a LOAD
or STORE so that it can report it correctly. The real error location is within the user
code at the instruction that caused the Unaligned LOAD/STORE Exception, not
within the trap handler that actually caused the fatal exception.	

Concerning Atomicity	

Note that the emulation of unaligned LOAD and STORE operations differs in an
important way from aligned operations. Aligned LOAD and STORE instructions are
guaranteed to be atomic, which means that the entire operation is either executed or
not. With regard to other unrelated memory operations, the LOAD/STORE
instruction either occurs before or occurs after the other operation. There is no
interleaving.	

With a single-core processor, it might seem like there is no risk concerning atomicity.
If there is only one core that can be issuing LOADs and STOREs to memory, you
might assume an unaligned memory operation is effectively atomic, because the trap
routine that emulates unaligned operations runs with interrupts disabled. Nothing
can interrupt the core between the first memory operation and the second memory
operation and there is no second core capable of touching memory.	

However, the kernel programmer must think carefully. What if the second memory
operation entails a page-related exception? The thread might get rescheduled and
other threads might run while the trap handler is waiting for a page to be read in
from disk. Or, what if there is an I/O device that is also accessing memory? For
example, a DMA controller might be copying a block of memory at the same time the
unaligned LOAD/STORE is being emulated.	

 Is it guaranteed that there will not be additional page-related exceptions? Might it be necessary 22

to pin the pages to prevent an infinite chain of page-related exceptions? These are the challenges
that make kernel hacking fun!

Blitz-64 Instruction Set Architecture / Porter	 Page of 	181 342

Chapter 7: Exceptions, Interrupts, and Trap Handling	

Practically speaking, the problems associated with non-atomic memory operations
should be dealt with in other ways. Typically, the kernel will lock shared data, thus
enforcing the constraint that only one “customer” is allowed to touch the shared
memory at any time. The use of locks can enforce data consistency. However, within
the code to implement the locks themselves, it may be necessary to use atomic
operations, so care must be taken.	

Null Address Exception	

This exception can be caused by the following instructions:	

	 Store to memory :	 STORE.B, STORE.H, STORE.W, STORE.D	
	 Read from memory:	 LOAD.B, LOAD.H, LOAD.W, LOAD.D	
	 Jumping:	 JAL, JALR, B.EQ. B.NE, B.LE, B.LT	
	 Other:	 NULLTEST, CAS	

This exception will set…	
	 csr_prevpc = the address of the offending instruction	
	 csr_bad = the offending instruction	
	 csr_addr = 0	

Any attempt to use an address in the range 0…7 as the target for a LOAD, STORE,
jumping, NULLTEST, or CAS instruction will cause a “Null Address Exception”.	

A LOAD.X instruction may have modified RegD but the value is “undefined.” A
STORE.X instruction may or may not have modified the first 8 bytes of physical
memory (i.e., the doubleword at address 0); this behavior is undefined.	

If any jumping instruction sets the PC to zero, there will be no effect on the PC
because the trap handling will immediately overwrite the PC. The PC value saved
into csr_prevpc will be the address of the jumping instruction itself.	

Note that the machine instructions for jumping are used in the implementation of a
number of synthetic instructions, including CALL, CALLR, JR, RET, and the branch
instructions.	

Commentary “Null” pointers are widely used in programming. Ideally programs
are either bug-free or will always test pointers before use, so that there will never be
any attempt to dereference a null pointer. But alas, we live in a difference universe.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	182 342

Chapter 7: Exceptions, Interrupts, and Trap Handling	

The Blitz manifesto dictates that we should try to catch and handle every error.
Catching null pointer dereferencing must be done. We considered requiring the
compiler to implicitly insert a test for every pointer dereference. In fact, we took this
approach in Blitz-32 and came to appreciate the testing enormously. However, there
was a huge performance hit: a test and branch for every pointer use. We also
considered adding a new instruction, whose sole purpose is to cause an exception if
necessary. But the overhead of even a single instruction is too much.	

The novel approach we are introducing with Blitz-64 is an unusual innovation.	

In code such as:	
i = *p

the compiler will produce a single instruction, such as:	
LOADD r1,0(r2)

With our approach, no additional test is necessary.	

In other situations, an offset from the pointer is needed, as in:	
i = p.field

For this, the compiler might produce an instruction sequence such as:	
NULLTEST r2
LOADD r1,48(r2)

With Blitz-64, the 8 bytes at location 0 are forever inaccessible, unused, and wasted.	

Any attempt to read or write location zero will cause a “Null Address Exception”. If
the programmer ever attempts to use a NULL pointer, the program will undergo
controlled exception handling. The payoff is that every use of a pointer will be
checked in hardware, in parallel to other execution. Thus, we expect no performance
penalty.	

This particular sort of error is unique and important enough to be handled specially.
The programmer deserves an error message that says “NULL pointer used” instead
of the legacy incantation “segmentation fault”.	

We should note that one approach taken in traditional OSes is to reserve an entire
virtual page. Page number zero in the user’s address space is not mapped, and any
attempt to read/write to it will cause a virtual memory exception. Our approach

Blitz-64 Instruction Set Architecture / Porter	 Page of 	183 342

Chapter 7: Exceptions, Interrupts, and Trap Handling	

uses a separate type for this error; it is not piggybacked onto a more general error
condition.	

We also want to catch null pointer use in kernel code.	

In traditional systems, null pointer use within the kernel can be trapped by
executing the kernel with virtual memory mapping turned on. Page zero in the
kernel’s virtual address mapping would be marked as invalid. If the kernel’s page
table maps all of physical memory to virtual memory in a one-to-one manner, then,
marking page zero as invalid will waste an entire page of physical memory. The
Blitz-64 approach wastes only 8 bytes.	

The Blitz approach seeks to improve the performance of kernel code by avoiding the
necessity of mapping the kernel address space. Thus, Blitz kernel code can
potentially execute faster than in other ISAs, since address mapping is not used for
kernel code. However, since the kernel’s address space is not mapped into a virtual
address space, catching null pointers by using a mapping in which the page at virtual
address 0x0_0000_0000 is invalid is not possible in Blitz-64. But the Null Address
Exception works better anyway.	

With a 1 GiByte physical memory, the sacrifice of 8 bytes is an insignificant, trivial
overhead.	

The memory at location 0 can, in fact, be read and written. Physical page zero can be
mapped into a virtual page, and the first byte of this page can be read/written with a
non-zero virtual address, effectively accessing byte 0. Recall that the first pages of
physical memory are intended to contain the kernel’s static data. So mapping these
into a virtual address space for use by user-level code would be foolish and risky.	

Illegal Instruction Exception (including Privilege Violations)	

Any attempt to execute an instruction with an undefined OPCODE will cause this
exception. Any attempt to execute a privileged instruction while running in user
mode will also cause this instruction. The instruction named ILLEGAL will cause this
exception.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	184 342

Chapter 7: Exceptions, Interrupts, and Trap Handling	

The privileged instructions are:	

	 SYSRET	
	 SLEEP1	
	 SLEEP2	
	 CONTROL	
	 CSRSWAP	
	 CSRREAD	
	 CSRWRITE (a synthetic form of CSRSWAP)	
	 CSRSET	
	 CSRCLR	
	 TLBCLEAR	
	 TLBFLUSH	
	 CHECKADDR	

This exception will set…	
	 csr_prevpc = the address of the offending instruction	
	 csr_bad = the offending instruction	
	 csr_addr = 0	

Page-Related Exceptions	

	 Page Illegal Address Exception	Attempt to access kernel space in User Mode	
	 Page Table Exception	 Bad csr_pgtable	
	 Page Invalid Exception	 VALID bit = 0 either at level 1 or 2	
	 Page Write Exception 	 Write to a page which is not marked writable	
	 Page Fetch Exception 	 Fetch from a page not marked executable	
	 Page Copy-on-Write Exception	Page is not dirty and marked copy-on-write	
	 Page First_Dirty Exception	 Writing to page which is not marked dirty	

The page-related exceptions occur when the Memory Management Unit (MMU) has
a problem translating a virtual address to a physical address. They are discussed
more fully later.	

A page-related exception can occur during the FETCH phase of execution, whenever
an instruction is read from memory. It can also occur during LOAD and STORE
instructions. These situations are the only ones that can cause a page-related
exception.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	185 342

Chapter 7: Exceptions, Interrupts, and Trap Handling	

Page-related exceptions may be caused by code running in either user mode or
kernel mode.	

For code running in user mode, all program-generated addresses (whether FETCH,
LOAD, or STORE) should be in the upper, virtual address range. In other words, all
program-generated addresses should have bit [35] set to 1. Any problem with an
address will cause one of the page-related exceptions.	

For code running in kernel mode, addresses in the physical address region (that is,
within the lower 32 GiBytes, i.e., addresses with bit [35] cleared to 0) will never
cause page-related exceptions. Addresses in upper virtual address range will cause
the exact same page-related exceptions they would cause if executed in user mode.	

Thus, address translation and page-related exceptions work the same for both user
code and kernel code, with one difference: Program-generated addresses in the
physical address region are perfectly okay for kernel code, but will cause a Page
Illegal Address Exception in user mode.	

The csr_prevpc is set to the address of the instruction causing the problem. The
csr_addr is set to the program-generated address that caused the exception. (In the
case of a problem with fetching, both CSRs will contain the same value.)	23

The general purpose registers will be unchanged. The assumption is that, in many
cases, the kernel trap handler will fix the memory problem and execution will be
resumed, starting with the faulting instruction which will be re-executed.	

These exceptions will set…	
	 csr_prevpc = the address of the offending instruction	
	 csr_bad = 0	
	 csr_addr = the program-generated address causing the problem	

Debug Exception	

This exception is used in debugging programs.	

This exception is caused by the execution of the DEBUG instruction. If instruction
execution is resumed, it will occur after the DEBUG instruction.	

 For example, if a SYSRET instruction loads a bad value into the PC, then car_prevpc will contain 23

that bad address, not the address of the SYSRET instruction.

Blitz-64 Instruction Set Architecture / Porter	 Page of 	186 342

Chapter 7: Exceptions, Interrupts, and Trap Handling	

The DEBUG instruction uses only the OP1 and OP2 fields. The remaining 16 bits of
the instruction [15:0] are left undefined and may be used by software to store
additional information.	

This exception will set…	
	 csr_prevpc = the address of the instruction after the DEBUG instruction	
	 csr_bad = the offending instruction, i.e., the DEBUG instruction itself	
	 csr_addr = 0	

Breakpoint Exception	

This exception is used in debugging programs.	

This exception is caused by the execution of the BREAKPOINT instruction. If
instruction execution is resumed, it will occur by attempting to re-execute the
instruction.	

It is assumed that a BREAKPOINT instruction replaces some other valid instruction.
After the breakpoint is reached, the BREAKPOINT instruction will be removed and
the original instruction will be restored. After execution is resumed, the restored
instruction will be executed.	

The BREAKPOINT instruction uses only the OP1 and OP2 fields. The remaining 16
bits of the instruction [15:0] are left undefined and may be used by software to store
additional information.	

This exception will set…	
	 csr_prevpc = the address of the BREAKPOINT instruction	
	 csr_bad = the offending instruction, i.e., the BREAKPOINT instruction itself	
	 csr_addr = 0	

Singlestep Exception	

The purpose of this exception is to allow debugging software to single-step
execution, that is, to execute a single instruction of the target program and then
regain control.	

Whenever single-stepping is turned on (i.e., when the Singlestep bit in csr_status is
set to 1) then a Singlestep Exception will be signaled following the execution of any

Blitz-64 Instruction Set Architecture / Porter	 Page of 	187 342

Chapter 7: Exceptions, Interrupts, and Trap Handling	

instruction, as long as interrupts were enabled during the instruction execution and
no other exceptions were signaled.	

This exception is described more fully in a later section.	

This exception will set…	
	 csr_prevpc = the address of the next instruction to be executed	
	 csr_bad = the instruction just executed	
	 csr_addr = 0	

The csr_prevpc is set to the address of the next instruction to execute after the
instruction that caused the exception. For example, if a jump instruction causes the
exception, csr_prevpc will be set to the jump target address.	

Emulated Instruction Exception	

This exception is caused by an attempt to execute a machine instruction which is
defined but not implemented. The hardware will set csr_bad to the instruction that
is not implemented, as it was fetched from memory. The csr_prevpc will be set to
the address of the instruction following the unimplemented instruction.	

The following instructions are candidates for emulation. The algorithms are complex
and will require complex hardware. It may be preferable to perform these
operations in software, especially on smaller, simpler implementations of the
Blitz-64 architecture.	

	 DIV, REM	
	 All floating point instructions	

Emulated instructions may be used in either user mode or kernel mode.	

This exception will set…	
	 csr_prevpc = the address of the following instruction	
	 csr_bad = the offending instruction	
	 csr_addr = 0	

Hardware Fault Exception	

Some implementations of the Blitz-64 ISA will include circuitry that detects errors.
For example, a core might include circuitry for:	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	188 342

Chapter 7: Exceptions, Interrupts, and Trap Handling	

	 • Additional error checking bits for register contents	
	 • Additional error checking bits for main memory data	
	 • Additional error checking bits for bus data	
	 • Duplication of ALU circuitry, to catch errors	

When circuitry such as the above detects that an error has occurred, a Hardware
Fault Exception will be triggered.	

Presumably a single hardware error will directly affect only the thread in execution.
That thread can no longer be considered reliable and correct. Presumably, the kernel
will never ignore a hardware fault. Instead the kernel might take actions such as:	

	 Log the error	
	 Notify the affected thread	
	 Abort the thread	
	 Restart the affected thread	

This exception will set…	
	 csr_prevpc = the address of the offending instruction	
	 csr_bad = the offending instruction	
	 csr_addr = 0	

A hardware error may be “transient” in which case it was a one-time event and there
will be no further malfunctions in the core. Or it may be an ongoing problem and the
same error will be detected again in the future, whenever a similar operation is
performed. The error may also be the result of a physical insult, such as the power
supply falling below specifications. In such cases, we might encounter an increasing
number of hardware faults with total failure being imminent.	

In some cases, the “error detection and correction” (EDC) codes will be used. Such
codes are capable of not only detecting that a bit has erroneously flipped in value,
but also of determining which bit is in error, thus allowing the bit to be corrected.	

Commentary In some ISAs, hardware faults are treated like asynchronous
interrupts. However in Blitz-64, a hardware fault causes an exception, not an
interrupt.	

Interrupts can and are masked at various times. However, hardware faults should
never be masked. Also, exceptions are tied to a particular instruction; this may be

Blitz-64 Instruction Set Architecture / Porter	 Page of 	189 342

Chapter 7: Exceptions, Interrupts, and Trap Handling	

needed for hardware faults, since the kernel may need to identify which thread was
executing at the moment the fault was detected so that the kernel can abort the
thread. 	24

In the case when a hardware fault is persistent and recurs repeatedly, what will
happen? A second Hardware Fault Exception will occur on the heels of the first
Hardware Fault Exception, before the trap handler has completed. Since the
exception handler is unable to complete before getting restarted, presumably the
core will go into an infinite loop and freeze up. 	25

Bad Array Index Exception	

This exception can be caused by the following instructions:	

	 INDEX0, INDEX1, INDEX2, INDEX4,	
	 INDEX8, INDEX16, INDEX24, INDEX32	

The purpose of these instructions is to verify that an array index is legal and within
range and cause this exception if there is a problem. Presumably the software will
react to this exception by printing a message to the effect that there was an array
index error.	

This exception will set…	
	 csr_prevpc = the address of the INDEX__ instruction	
	 csr_bad = the INDEX__ instruction	
	 csr_addr = 0	

Commentary There is no “Illegal Address” exception.	

All upper bits [63:36] in a program-generated address (i.e., above the normal 36 bits
in every address) are ignored.	

If a program-generated address is in the upper half of the 36 bit address range, the
address goes through the Memory Management Unit (MMU) which performs virtual-

 This would be appropriate for a one-time, non-recurring fault which only impacts a single user-24

mode thread.

 We considered a design in which hardware exceptions could be masked in an attempt to prevent 25

such looping. However, the added complexity doesn’t seem worth its cost.

Blitz-64 Instruction Set Architecture / Porter	 Page of 	190 342

Chapter 7: Exceptions, Interrupts, and Trap Handling	

to-physical address translation. If there is a problem with the address, one of the
page-related exceptions will be generated.	

If the address is in the lower half of the 36 bit address range, the address is a
physical address and will be used without translation.	

Regardless of whether any address translation was performed, the full 35 bit
physical address is sent to the main memory and the memory-mapped I/O devices
“as is”.	

Physical address violations (i.e., attempts to access an uninstalled address in the
physical memory region) are not checked and the consequences are undefined. If an
attempt is made to access uninstalled memory, then writes are likely to be ignored
and reads are undefined, and likely to return garbage values. In any case, no
exception will occur. It is the kernel’s responsibility to access only installed memory
and defined memory-mapped I/O addresses.	

Stack Overflow Exception	

The Stack Overflow Exception can be caused by the following instructions:	

	 ADD, ADDI, ENTERFUN	

The exception is caused when one of these instructions attempts to store a value
into the sp register which is less than the StackLimit field in csr_status.	

If this exception occurs, the instruction will not modify the sp register.	

This exception will set…	
	 csr_prevpc = the address of the offending instruction	
	 csr_bad = the offending instruction	
	 csr_addr = 0	

Philosophy Behind Checking the Stack Limit	

In Blitz-64, the stack grows downward from high memory to smaller addresses. The
purpose of the StackLimit field is to catch errors where the stack grows too much
and exceeds the space allocated for it.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	191 342

Chapter 7: Exceptions, Interrupts, and Trap Handling	

In one common arrangement, the OS will place the heap and the stack in the same,
shared region of memory. The heap will grow up from the lower addresses and the
stack will grow downward from higher addresses. When they meet, memory is
exhausted. The stack limit check makes it possible to catch this error.	

In multithreaded programs, each thread will require its own stack. Typically, the
space for each stack will be preallocated and each stack will be limited to a region
and incapable of growing further. In fact, each stack may be located within a single
object that is allocated on the heap. Thus, a comparison against the heap limit
pointer will not work.	

In a virtual memory system, one typical practice is to allocate each thread’s stack
“very” far apart in the address space, thus hoping to avoid the possibility of a stack
out-growing its region. But “hope” is not a viable strategy for systems requiring
high-reliability. 	26

In a smaller embedded application, there might be no virtual memory and the heap
and the stack will occupy a not-huge region of memory. A stack-heap collision is
possible.	

A stack can outgrow its allocated region either because the region was just too small
to begin with or because an algorithm recurses too deeply. In any case, when a stack
outgrows its region without triggering an error, it typically causes the overwriting of
some other, random memory locations. Often, the stack will subsequently shrink
after doing this damage and the problem will, in some sense, disappear. The
overwritten memory will cause a failure at a later time in a some completely
unrelated section of code or — what’s worse — the program’s output will simply be
incorrect. Errors from stack overflow are insidious since the site of the failure is
usually unrelated to the function causing the problem.	

The Blitz-64 philosophy is to try to catch all errors, whenever reasonably possible.
To be sure, checking the sp register against a limit requires a little more hardware,

 In this approach, a buffer (also called a “sentinel”) page is allocated for each stack. This page will 26

be marked as invalid or unwritable. The idea is that if the stack grows into this page, a page fault
will occur and the kernel can take appropriate action. To be 100% reliable, this technique would
place a requirement that writes to the stack must not be spread too far apart. Otherwise, a really
large stack allocation might fail to cause the expected page fault. This technique works with high
reliability for stacks in virtual space but can be problematic for stacks allocated dynamically in the
heap or in systems that do not use virtual memory.

Blitz-64 Instruction Set Architecture / Porter	 Page of 	192 342

Chapter 7: Exceptions, Interrupts, and Trap Handling	

although not much. The overhead in execution speed is expected to be negligible. We
recognize this, but believe the benefit exceeds the cost.	

When checking the value to be stored in the sp register, the core will only look at the
lower 36 bits; the upper bits of sp are ignored. Both sp and the StackLimit field are
treated as unsigned 36 bit values and the exception occurs when sp < StackLimit.	

If no limit enforcement is desired, a value of 0 can be stored in the StackLimit field
in csr_status. This will prevent the exception from occurring.	

Details on Stack Limit Checking	

In typical code, the stack is only used for stack frames. A stack frame is allocated at
the beginning of every function or method and the frame is removed from the stack
when the function or method returns.	

The “prologue” code at the beginning of a function or method will allocate a frame
by adjusting the sp register using one of these instructions:	

ADD	
ADDI	
ENTERFUN	

As such, it is only necessary to check for a stack overflow condition when these
instructions are executed.	

The Blitz-64 specification requires that the condition is checked whenever one of
these instructions modifies the sp register. It would seem that checking at other
times might be reasonable, but this is not allowed. 	27

It may be that the OS kernel will respond to a Stack Overflow Exception by enlarging
the stack region, adjusting the StackLimit within csr_status, and then re-executing
the instruction that caused the exception. For this reason, we want to ensure that the

 We considered an alternative ISA design in which the limit check was performed on the STORE.x 27

instructions. The idea was to check any STORE.x instruction that uses the sp register, comparing
the target memory address against the StackLimit. However, the compiler can generates code to
address data on the stack in which the final STORE.x instruction uses another register besides sp.
Thus the design adopted is expected to be more reliable.

Blitz-64 Instruction Set Architecture / Porter	 Page of 	193 342

Chapter 7: Exceptions, Interrupts, and Trap Handling	

exception is only possible under known conditions, that is, under the conditions
described here.	

The ADD, ADDI, and ENTERFUN instructions can be used to add a (negative) value to
sp, triggering the exception. It is conceivable that the addition operation will trigger
both a Stack Overflow Exception as well as an Arithmetic Exception. Adjusting sp
should never result in an overflow, so the Arithmetic Exception will take priority and
the Stack Overflow Exception will be lost.	

In the case of ENTERFUN, the instruction normally stores the return address (from
the lr register) into memory. If the instruction causes a Stack Overflow Exception,
this memory operation must not occur. If there are exceptions related to the store
operation (such as page-related exceptions), the Stack Overflow Exception takes
priority and the other exceptions are ignored and lost.	

Occasionally, code will store values above the stack top (i.e., using negative offsets
from sp). This is frowned upon, since this might store data beyond the StackLimit.
The stack limit is not checked when data is stored, so this error would not be caught.	

The Singlestep Exception	

Programmers may want to debug user mode programs with a “debugger” which will
allow them to examine variables and execute instructions in a controlled manner.
The single-stepping facility is designed for use by such a debugger. 	28

The status register csr_status contains a single bit named SINGLE_STEP. When set to
1, there will be a “Singlestep Exception” signaled immediately after the completion
of the next instruction. When cleared to 0, no such exception will be signaled.	

 This approach described here requires the execution of privileged instructions, such as 28

modifying the SINGLE_STEP bit in csr_status. We make no assumptions about whether the
debugger is running as a separate process, or running within the virtual address space of the
target program as a separate thread, or whether the debugger code is entirely integrated with the
kernel code. If the debugger is not integrated with the kernel code, then the debugger process will
need to make specific requests of the kernel to perform the privileged operations and take the
actions discussed in this section.

Blitz-64 Instruction Set Architecture / Porter	 Page of 	194 342

Chapter 7: Exceptions, Interrupts, and Trap Handling	

The Singlestep Exception will only occur if the previous instruction was executed
with interrupts enabled and no other exceptions were generated by the
instruction. 	29

The purpose of this exception is to allow a debugger to execute a single instruction
of the target code and then regain control immediately afterward.	

In order for the debugger to execute a single-step operation, the debugger will
execute a SYSRET instruction in which the new value of csr_status has SINGLE_STEP
= 1. A “return” (which you can think of as a “jump”) will be effected to the code
sequence being debugged and a single instruction will be executed.	

After that instruction, a Singlestep Exception will be signaled. The Singlestep
Exception has a priority below all other exceptions. If the instruction causes another
exception, the Singlestep Exception will not occur and will be effectively ignored and
lost.	

Assuming that no other exceptions occurred for that instruction, the Singlestep trap
handler will be invoked and the debugger will regain control.	

If the target instruction caused another exception, then the Singlestep Exception will
not occur. It is assumed that the debugger will regain control through the trap
handler for whatever other exception occurred. 	30

Normally, interrupts will be disabled at the time the SYSRET instruction is executed,
so the SYSRET will not itself cause a Singlestep Exception. (However, if a SYSRET is
executed with interrupts disabled — a buggy scenario — a Singlestep Exception will
occur.)	

 More precisely, a Singlestep Exception may only occur after an instruction for which interrupts 29

were enabled directly prior to instruction execution. This distinction makes a difference for a
couple of privileged instructions which may alter the INTERRUPTS_ENABLED bit.

 If the other exception was due to a programming error (e.g., a Null Address or Arithmetic 30

Exception), then the kernel should deliver this information to the debugger, along with the address
of the instruction causing the exception, so the debugger can report it. But the other exception
might not indicate a program error. For example, some STORE instruction might cause a Page First
Dirty Exception, which would be handled by the kernel by updating the in-memory page table. The
kernel can then return to the user code, which will naturally re-attempt to execute the instruction.
On the second execution, the singlestep exception will finally happen, and the debugger can be
notified.

Blitz-64 Instruction Set Architecture / Porter	 Page of 	195 342

Chapter 7: Exceptions, Interrupts, and Trap Handling	

What about the presence of interrupts occurring around the time of a single-step
operation?	

The trap handler for the Singlestep Exception will run with interrupts disabled. The
timing of an incoming asynchronous interrupt determines whether it will be
handled before the Singlestep Exception handler runs or whether it must wait until
after the Singlestep Exception handler completes.	

Interrupts are disabled before and through the execution of the SYSRET instruction.
An interrupt may have been signaled, but the interrupt will remain pending until the
SYSRET instruction is executed.	

Immediately after the SYSRET instruction is executed and interrupts are re-enabled,
a pending interrupt X may exist. Interrupt processing effectively occurs between the
execution of instructions, not during them. After the SYSRET, but before the next
instruction, the hardware will initiate trap processing to invoke the trap handler for
interrupt X. The Singlestep Exception will not occur, since no instructions were
executed in user mode before code in the interrupt handler runs.	

Presumably, all interrupt handlers will save csr_status and, upon completion of the
trap handler, the handler will restore it (with its own SYSRET instruction). This time
— assuming no more interrupts are pending — a single instruction will be executed
and the Singlestep Exception will finally occur.	

Because the Singlestep Exception cannot occur when interrupts are disabled, it is
impossible to single-step though trap handers, using the Singlestep Exception
mechanism.	

A Singlestep Exception will never occur immediately after a SYSCALL instruction,
since the Singlestep Exception is overridden by the SYSCALL Exception. This makes
it moderately tricky to perform single-stepping at a SYSCALL. A Singlestep Exception
may occur directly before the SYSCALL, but the next opportunity will not be until
after the instruction following the SYSCALL completes execution. Of course, the trap
handler for SYSCALL may be aware of the presence of a debugger and the single-
stepping activity.	

There is also an issue with emulated instructions. If an instruction (e.g., FMUL)
causes an Emulation Exception, it cannot also cause a Singlestep Exception. Thus,
the FMUL instruction will invoke a trap handler which will return to the instruction
following the FMUL, call it X. The Singlestep Exception will occur after the execution

Blitz-64 Instruction Set Architecture / Porter	 Page of 	196 342

Chapter 7: Exceptions, Interrupts, and Trap Handling	

of instruction X. There will be no Singlestep Exception associated with the FMUL
instruction. 	31

Instructions that cause page-related exceptions should not present a single-stepping
problem. Typically, an instruction (e.g., LOAD or STORE) will cause a page-related
exception. After the trap handler deals with the problem, the instruction will be re-
tried. The Singlestep Exception will then occur after the second attempt succeeds
with no exception.	

Value of Saved PC	

During trap handling, the hardware will begin by saving the program counter (PC) in
csr_prevpc. This allows the trap handler software to locate the instruction causing
the trap and, in many cases, to resume execution of the interrupted code upon
completion of the trap handler function.	

For the following trap types, the address of the instruction causing the trap is saved.	

In the case of some exceptions, the SYSRET instruction at the end of the trap handler
will resume execution by attempting to re-execute the offending instruction again. In
the case of other exceptions, the instruction has a fatal problem that requires
debugging. In either case, pointing to the offending instruction makes sense.	

 Perhaps the Emulated Instruction Exception will check to see if the interrupted code is actively 31

being debugged. If so, the handler can end by “faking” a Singlestep Exception, rather than simply
returning to instruction X. We discuss “faking” an exception elsewhere in this document.

Blitz-64 Instruction Set Architecture / Porter	 Page of 	197 342

Chapter 7: Exceptions, Interrupts, and Trap Handling	

	 csr_prevpc points to offending instruction:	
	 	 Exceptions	
	 	 	 Arithmetic Exception	
	 	 	 Unaligned LOAD/STORE Exception 	32

	 	 	 Null Address Exception	
	 	 	 Illegal Instruction Exception (including privilege violation)	
	 	 	 Page Illegal Address Exception	
	 	 	 Page Table Exception	
	 	 	 Page Invalid Exception	
	 	 	 Page Write Exception	
	 	 	 Page Fetch Exception	
	 	 	 Page Copy-On-Write Exception	
	 	 	 Page First Dirty Exception	
	 	 	 Breakpoint Exception	
	 	 	 Hardware Fault Exception	
	 	 	 Bad Array Index Exception	
	 	 	 Stack Overflow Exception	
	 	 Interrupts	
	 	 	 … all interrupt types …	

For the following trap types, the address to be saved in csr_prevpc will be the next
instruction to execute. It is assumed that the previous instruction executed to
completion and re-executing that instruction would be in error. The SYSRET
instruction will resume by executing the following instruction.	

	 csr_prevpc points to the following instruction:	
	 	 Exceptions	
	 	 	 SYSCALL	
	 	 	 Debug Exception	
	 	 	 Singlestep Exception	
 	 	 	 Emulated Instruction Exception	

 For an Unaligned LOAD/STORE Exception, csr_prevpc will point to the LOAD or STORE 32

instruction. If this exception is to be treated as an error, then pointing at the instruction causing
the problem makes sense. But if this exception is handled by emulating the operation, then the
emulation handler will need to increment PC so that, on execution of SYSRET, the same instruction
will not be re-executed, causing an infinite chain of exceptions.

Blitz-64 Instruction Set Architecture / Porter	 Page of 	198 342

Chapter 7: Exceptions, Interrupts, and Trap Handling	

Traps Related to Instruction Fetching	

The following instructions can modify the Program Counter (PC) :	33

B.EQ	
B.NE	
B.LT	
B.LE	
JAL	
JALR	
SYSRET	

Keep in mind that a number of synthetic instructions (such as JUMP, JR, CALL, RET,
BEQ, …) are translated into one of the above instructions.	

Furthermore, trap processing will modify the PC by copying csr_trapvec into the PC.
Sequential program execution also modifies the PC by incrementing it.	

Whenever an instruction is fetched, one of the following exceptions may arise:	

Null Address Exception	
Page Illegal Address Exception	
Page Table Exception	
Page Invalid Exception	
Page Fetch Exception	

Since compressed instructions may be as short as a single byte, there is no
alignment requirement for instructions. Therefore, the Unaligned LOAD/STORE
Exception cannot occur. 	34

The Null Address Exception will occur at the time the PC is loaded, by the jumping
instruction. The “offending instruction” is the jumping instruction itself.	

The remaining exceptions (that is, the page-related exceptions) occur when the
memory operation to fetch the instruction is performed. As such, the “offending
instruction” is the instruction being fetched. No information about where the jump
“came from” is captured.	

 We ignore power-on-reset and the RESTART instruction, since exceptions do not occur then.33

 In earlier versions of the ISA, there was an alignment requirement on instructions.34

Blitz-64 Instruction Set Architecture / Porter	 Page of 	199 342

Chapter 7: Exceptions, Interrupts, and Trap Handling	

In some cases, the Null Address Exception may not be detected until the instruction
fetch occurs. For example, if a trap occurs at a time when csr_trapvec happens to be
null, the problem is really that someone failed to load csr_trapvec. In such a case,
there is no identifiable “offending instruction”. As another example, a user-mode
program might take a branch to some random address in a page that is invalid.	

In such cases, csr_bad and csr_addr may not be set to the values that were
mandated in the above description of the Null Address Exception.	

As another example, a CALL instruction (i.e., JALR) could load the PC with a
problematic PC that results in an exception during the fetch. Normally, when
exceptions occur, the offending instruction will be completely aborted and have no
effect. However, in the case of the JALR, the return address may be saved (e.g.,
register LR will be modified) before the exception is discovered. 	35

Trap Priority and Simultaneous Exceptions	

The occurrence of an interrupt or exception will invoke hardware trap processing,
which initiates the execution of a software trap handler. Conceptually, hardware trap
invocation occurs between the execution of instructions; it is not done concurrently
with instruction execution (at least as far as functionality observable by software).	

More precisely, interrupts are checked for before each instruction is executed and, if
triggered, hardware trap invocation occurs prior to the instruction execution. On the
other hand, exceptions are checked for during the execution of instructions and, if
triggered, hardware trap invocation occurs after instruction execution is terminated.	

If an interrupt is pending before an instruction X begins execution, then the
hardware interrupt processing will occur immediately. This will cause a change in
the flow of control and the next instruction to execute will be the first instruction of
the interrupt handler. Instruction X will be delayed and will not be executed until the
interrupt handler completes and ends by executing a SYSRET instruction.	

 If the kernel repairs the problem and re-executes the instruction, there will be no harm done by 35

moving the return address into the LR register a second time.

Blitz-64 Instruction Set Architecture / Porter	 Page of 	200 342

Chapter 7: Exceptions, Interrupts, and Trap Handling	

On the other hand, if the interrupt arrives a little later, then instruction X will
execute. If instruction X causes an exception, then that exception will cause trap
handling. The next instruction after X will be the first instruction of the trap handler
for that exception. The interrupt will not invoke a trap handler and the interrupt will
remain pending.	

As a result of the exception and trap processing, the hardware will clear the
INTERRUPTS_ENABLED bit in csr_status to disable interrupts. Therefore, the
handler for the interrupt will not run until after the trap handler for the exception
completes.	

At some later time, the trap handler for the exception will end by executing a
SYSRET instruction. At this time, interrupts will become re-enabled. As a result, the
trap handler for the interrupt will be invoked immediately after the SYSRET
instruction and before any instruction in the original, interrupted code sequence is
executed.	

Commentary Conceptually, interrupt processing occurs before the execution of an
instruction, and exception processing occurs during and after the processing of an
instruction. 	

It may seem that our model somehow gives priority to exceptions over interrupts,
but this is not necessarily accurate. In fact, any core will check for and accept
interrupts at only certain moments in execution. During other times, instruction
execution will occur.	

Machine instructions atomic, in the sense that instructions either execute
completely or do not execute at all. In other words, the instructions following an
instruction causing an exception are not executed at all. The Blitz-64 architecture
requires that any partial or incomplete instruction execution (for example,
instructions further ahead in the pipeline) shall not be visible to the programmer.	

The Blitz-64 model does not preclude a pipelined implementation in which
interrupts are accepted and processed with alacrity. For example, a pipelined
implementation might accept and process interrupts immediately, even though
there are several instructions at varying stages of the pipeline. When an interrupt
arrives, trap processing would be begin immediately, which will force the emptying
of whatever is in the pipeline and an immediate switchover to the trap processing
sequence. However, any and all partially executed instructions must be abandoned
and any possible effects must be avoided or undone.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	201 342

Chapter 7: Exceptions, Interrupts, and Trap Handling	

On the other hand, an implementation may delay an interrupt for several cycles, in
order to allow all instructions currently in the pipeline to complete execution. The
key constraint imposed by the ISA is that the interrupt processing must occur
discretely between two instructions. The instruction before the trap handling will
complete fully and all instructions after the interrupt must not begin execution.	36

Our model gives only a semantics for interrupt acceptance and processing. Any
Blitz-64 implementation must have the the same behavioral result as a simple, non-
pipelined implementation in which instructions are executed serially, one after the
other, and interrupt processing occurs between two instructions.	

It is possible that some instruction will cause more than one exception. Only one
exception will be signaled. All other other exceptions for that instruction will be
ignored and forgotten.	

For example, consider a LOADD instruction attempting to load from address 1. Both
the Unaligned LOAD/STORE Exception and the Null Address Exception apply. For
such a conflict, the Null Address Exception shall occur and the Unaligned LOAD/
STORE Exception shall be ignored. 	37

 This includes exception processing associated with the instructions. If the previous instruction 36

causes an exception, then trap handling for that exception will occur. Trap handling for the
interrupt will be delayed and the interrupt will remain pending.

 In this example, the decision about precedence is more-or-less arbitrary. While an Unaligned 37

LOAD/STORE Exception might invoke emulation, a Null Address Exception always indicates a
program bug. For this reason, we chose to give the Null Address Exception priority. However, this
distinction only affects error reporting and should not affect correct code.

Blitz-64 Instruction Set Architecture / Porter	 Page of 	202 342

Chapter 7: Exceptions, Interrupts, and Trap Handling	

Here is a summary of how multiple simultaneous exceptions are handled:	

	 Highest priority →	 Hardware Fault Exception	

	 	 Illegal Instruction Exception (including privilege violation)	
	 	 Debug Exception	
	 	 Breakpoint Exception	
	 	 Syscall	
	 	 Arithmetic Exception	
	 	 Emulated Instruction Exception	
	 	 Bad Array Index Exception	
	 	 Stack Overflow Exception	

	 	 Null Address Exception	
	 	 Unaligned LOAD/STORE Exception	

	 	 Page Illegal Address Exception	
	 	 Page Table Exception	
	 	 Page Invalid Exception	
	 	 Page Write Exception	
	 	 Page Fetch Exception	
	 	 Page Copy-On-Write Exception	
	 	 Page First Dirty Exception	
	 	
	 Lowest priority →	 Singlestep Exception	

The following rules apply when there are multiple exceptions and interrupts.	

•	If an instruction causes more than one exception, then only one exception will
be chosen for trap processing. All other exceptions will be lost.	

•	Exceptions have priority over interrupts. If an exception is signaled, any and all
pending interrupts will remain pending and the exception will be chosen for
trap processing.	

•	If a “Hardware Fault Exception” is signaled, it will have the next highest priority.
Any and all exceptions of lower priority will be ignored and lost.	

•	A “Null Address Exception” overrides an “Unaligned LOAD/STORE Exception”
and all Page-Related exceptions.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	203 342

Chapter 7: Exceptions, Interrupts, and Trap Handling	

•	An “Unaligned LOAD/STORE Exception” overrides all Page-Related exceptions.	

•	The following exceptions are all mutually exclusive and cannot co-occur with
other exceptions types: 	38

	 Illegal Instruction Exception	
	 Debug Exception	
	 Breakpoint Exception	
	 Syscall	
	 Arithmetic Exception	
	 Emulated Instruction Exception	
	 Bad Array Index Exception	
	 Stack Overflow Exception	

•	A “Page Illegal Address Exception” overrides all other Page-Related exceptions.	

•	The following Page-Related exceptions are mutually exclusive; at most only one
of these can occur.	

	 Page Table Exception	
	 Page Invalid Exception	
	 Page Write Exception	
	 Page Fetch Exception	
	 Page Copy-On-Write Exception	
	 Page First Dirty Exception	

•	During an instruction FETCH a Page-Related exception can occur. However, if
such an exception occurs, then the instruction is not fetched and instruction
execution is not begun. Any other exception that the instruction might have
caused never happens.	

•	A “Singlestep Exception” has a priority below all other exceptions. If, for
example, the debugger is single-stepping some code and an ADD instruction
causes an “Arithmetic Exception”, the “Arithmetic Exception” will be chosen.	

 Except “Hardware Fault Exception”, which has higher priority, and “Singlestep Exception”, which 38

has lower priority.

Blitz-64 Instruction Set Architecture / Porter	 Page of 	204 342

Chapter 7: Exceptions, Interrupts, and Trap Handling	

•	Interrupts have the lowest priority and will only be handled if there are no
exceptions.	

• If there are several interrupts pending, then one will be chosen for processing.
That interrupt will cause trap processing and the others will remain pending.	

Commentary The logic behind choosing one exception and ignoring all others is
this.	

A Hardware Fault Exception has the highest priority since it precludes correct
operation of at least some code. The hardware fault may be a transient, one-time
event, in which case the kernel might get by with only terminating a single thread;
the kernel itself might be able to continue. For example, a Hardware Exception
occurring in user mode code might be dealt with by simply terminating the affected
process; it is not necessarily a cause for crashing the kernel. However, a Hardware
Exception occurring in when in Kernel Mode is more serious (compromising the
kernel itself) and is probably a good reason for a kernel crash / reboot.	

A Page Illegal Address Exception and a Page Table Exception conflict would occur if
user code attempts to access kernel memory at the same that the csr_pgtable
register is uninitialized. However, it is impossible to FETCH an instruction from user
space without a page table, so this conflict could only arise when the kernel jumps to
user code with both csr_pgtable and the PC being invalid. Thus, the Page Illegal
Address Exception is given higher priority. A Page Illegal Address Exception cannot
co-occur with any other Page-Related exception.	

The decision about precedence between the Null Address Exception and the
Unaligned LOAD/STORE Exception is more-or-less arbitrary. While Unaligned
LOAD/STORE Exceptions might sometimes be legitimate (invoking emulation), a
Null Address Exception always indicates a program bug. For this reason, we chose to
give the Null Address Exception priority.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	205 342

Chapter 7: Exceptions, Interrupts, and Trap Handling	

Pending Interrupts	

Once an interrupt is signaled by a device, it becomes “pending” and remains pending
until it is accepted for trap processing. At the time it is accepted, the program 39

counter (PC) is set to csr_trapvec, the status word is saved in csr_stat2, an interrupt
code is loaded into csr_cause, and the first instruction of the trap handler will be
executed next.	

If the previous instruction caused an exception, any interrupt that occurs will
remain pending during the execution of the trap handler for the exception. The only
information that must be kept is the identity of the interrupt type, i.e., the fact that
an interrupt is pending. 	40

With this approach, an interrupt can only be serviced after the execution of an
instruction which causes no exception. Note that the SYSRET will not cause an
exception. Thus, immediately after the trap handler returns, a pending interrupt will
be handled, before the next instruction is executed. 	41

Any instruction which causes an exception will invoke a trap handler and during the
entire execution of the handler, interrupts will be disabled. If an interrupt arrives
early enough — that is, before the excepting instruction begins execution — the
interrupt will be handled before the exception’s trap handler runs. On the other
hand, if the interrupt happens to be signaled a little bit later, it will miss its window
of opportunity and will be delayed until after the exception’s trap handler completes
and re-enables interrupts. 	42

 Some pending interrupts can disappear, such as an interrupt from the Platform-Level Interrupt 39

Controller (PLIC) that has been claimed by another core.

 In the case of a conflict between an exception and interrupt occurring simultaneously, we 40

considered a design in which the exception is made pending and the interrupt is handled.
However, an exception involves more information (such as the values of the Program Counter,
csr_cause, csr_bad, and csr_addr). Instead of keeping this info, the exception is handled and the
interrupt remains pending.

 Well, a SYSRET might theoretically cause an exception if it is executing in a virtual address space 41

and a page-related exception arises for the FETCH. But kernel code should never be placed in
virtual pages that are not pinned and exception-proof, and probably not even then, so this is not
expected to occur.

 This is a simplification. A real-world kernel will sometimes reenable interrupts before returning 42

to the interrupted code sequence. The point is that the pending interrupt will occur at the moment
interrupts are re-enabled.

Blitz-64 Instruction Set Architecture / Porter	 Page of 	206 342

Chapter 7: Exceptions, Interrupts, and Trap Handling	

To summarize, with the design of Blitz-64, an interrupt occurring during an
exception-causing instruction is effectively treated as if it came a little later and
simply missed its window of opportunity. It will get serviced immediately after the
trap handler finishes and reenables interrupts, which is what must happen anyway
if the interrupt had arrived one instruction later.	

Commentary We considered a design in which a trap handler for one exception or
interrupt could, itself, be interrupted. For example, a scheme with multiple levels of
interrupt execution might provide more responsiveness for some interrupt types.
Such a design might be necessary to handle interrupts that always require a
immediate, super-fast response.	

Such was the case in the old days, when the CPUs were relatively slow and they had
to manage a rotating disk drive directly. The CPU was interrupted when the disk
platter rotated into position and data was ready to be transferred. The CPU needed
to pay attention quickly and, if it failed to, the disk would continue rotating and the
opportunity for data transfer would be lost. A similar situation arose with
communication links, where an incoming message had to be moved into memory as
the bits arrive, or else the message was lost.	

We’ve come a long way and interrupting devices generally have their own
controllers. Device-specific controllers handle most of the time-critical operations of
peripheral hardware and allow the primary core to merely transfer data and high-
level logical commands back and forth to the controller. Nowadays, the interrupt
primarily serves the function of letting the core know that the some peripheral
operation is complete and the core is now free to make use of the results. In other
words, interrupts now serve primarily to send information to the core, allowing the
core to take action when it is ready, not to demand the core perform some time-
critical action. 	

Blitz-64 is designed to be a general purpose operating system core, not a
microcontroller. Accommodating interrupts during trap handling would require the
addition of another level of complexity, perhaps necessitating a third mode or a trap
priority scheme or a mechanism for selectively masking interrupts. This is just too
complicated. The simplicity and limitations of the Blitz-64 interrupt mechanism are
an intentional and logical manifestation of the overall project objectives.	

That said, it is critical that all trap handlers keep interrupts disabled for as short a
time as possible. The expectation is that any trap handler unable to return quickly

Blitz-64 Instruction Set Architecture / Porter	 Page of 	207 342

Chapter 7: Exceptions, Interrupts, and Trap Handling	

will do something — such as simply signal a semaphore in order to wake up another
thread or immediately go to sleep, waiting on some condition. In any case, the
handler will effectively branch into to the scheduler to resume execution of user
threads as quickly as possible, thereby re-enabling interrupts in short order.	

Delegation to User Mode Error Handlers	

Typically, when exceptions occur in user code (such as “Illegal Instruction
Exception”), the kernel will abort the process without further ado. However, there is
the possibility that some exceptions will be handled a little differently by invoking a
“user mode error handler”.	

There is no support for this user mode exception delegation in the hardware; the
delegation is handled entirely by the kernel software. When an exception occurs in
user mode code, the kernel will get control through the trap handling mechanisms
discussed above. The kernel may then, at its option, notify the user process in some
way or another. This notification is entirely a software operation since there is no
special hardware involved.	

We specifically use the term “error handler” rather than “trap/exception/interrupt
handler”, since the mechanisms are quite different.	

The following types of exception are candidates for software delegation to user
mode code, when they arise in that code:	

	 • Hardware Fault Exception	
	 • Arithmetic Exception	
	 • Illegal Instruction Exception	
	 • Null Address Exception	
	 • Bad Array Index Exception	
	 • Unaligned LOAD/STORE Exception	
	 • Privilege Exception	
	 • Bad Array Index Exception	
	 • Stack Overflow Exception	
	 • Debug Exception	
	 • Breakpoint Exception	
	 • Singlestep Exception	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	208 342

Chapter 7: Exceptions, Interrupts, and Trap Handling	

	 • Page-related exceptions, under certain conditions such as:	
	 	 — Attempt to access an unallocated page	
	 	 — Attempt to STORE to a read-only page	
	 	 — Attempt to FETCH from a non-executable page	

After the exception occurs and the corresponding trap handler is invoked, it will see
that the processor was running in user mode when the exception occurred. It will
then return to the user code but will modify the PC to cause a forced jump to the
user error handler’s address.	

The kernel may maintain flags associated with each address space so the kernel
mode trap handler can optionally either (1) abort the process, or (2) pass control to
the user mode error handler.	

Then, the user code will presumably invoke the “throw-error” sequence in the KPL
language. But if nothing else, the user code can simply abort the offending thread. In
any case, this mechanism makes possible the creation of user mode programs that
can address their own bugs, including the support of debugging and error reporting,
and potentially fault tolerance and error recovery. Support for error reporting and/
or debugging will likely be included in the shared core function library, as so will be
available to all processes at no extra cost.	

Trap Processing and Handler Startup	

When a trap is processed, the hardware will take a number of simple, fixed actions.
These actions are performed between the execution of the previous machine
instruction and the first instruction of the global trap handler.	

Interrupts are either “enabled” or “disabled” and this is controlled by the
INTERRUPTS_ENABLED bit in the status register csr_status.	

When an interrupt is signaled, it remains pending until the hardware invokes trap
handling. Interrupts may not be masked, other than by the INTERRUPTS_ENABLED
bit in the csr_status. Pending interrupts remain pending while interrupts are
disabled. Once interrupts are re-enabled, one interrupt will be selected and the
corresponding trap handler is invoked.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	209 342

Chapter 7: Exceptions, Interrupts, and Trap Handling	

Exceptions cannot be masked: If an instruction causes an exception, then hardware
trap invocation will be immediately performed.	

When a trap handling is invoked, the hardware will perform the following actions:	

	 Invocation (Hardware Phase):	

	 	 csr_prevpc ← PC	
	 	 PC ← csr_trapvec	
	 	 csr_stat2 ← csr_status	
	 	 csr_status [INTERRUPTS_ENABLED] ← 0	
	 	 csr_status [KERNEL_MODE] ← 1	
	 	 csr_status [SINGLE_STEP] ← 0	
	 	 csr_cause ← <trap code>	
	 	 csr_bad ← <additional trap info; e.g., the offending instruction>	
	 	 csr_addr ← <additional trap info; e.g., the virtual address>	

The PC is copied to csr_prevpc so that it can be saved by the trap handler software
so that after the trap handler finishes, a return can be made to the interrupted code.	

The PC is loaded with the value in csr_trapvec, the address of the global trap
handler.	

The csr_status is copied to csr_stat2. If a return is made to the interrupted code, the
status register will need to be restored.	

Interrupts are disabled and the mode is switched to “kernel mode”. The global trap
handler begins with interrupts disabled, since it needs to perform operations (such
as saving the general purpose registers and some CSRs) which cannot be
interrupted. Some individual trap handlers may choose to re-enable interrupts.
However, the final sequence of returning to the interrupted code (ending with a
SYSRET instruction) must be performed with interrupts disabled.	

Single-stepping is turned off. Since the global trap handler runs with interrupts
disabled, this is not strictly necessary, but is a convenience for those individual trap
handlers which will re-enable interrupts during their execution.	

A code indicating the type or nature of the trap is written to csr_cause. The global
trap handler is expected to use this information to dispatch to the individual trap
handlers.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	210 342

Chapter 7: Exceptions, Interrupts, and Trap Handling	

In the case of several exceptions, additional information is written to csr_bad and
csr_addr. For example, during a page-related exception, the program-generated
virtual address causing the problem in written to csr_addr.	

Saving State During Thread Switching	

When trap processing occurs as a result of an interrupt, an executing thread will be
interrupted. Generally speaking, the trap handler will return to that thread after trap
handling is complete. As such, the state of the general purpose registers must be
saved and restored so that the interrupted thread is unaffected by the trap handler.	

In some cases such as a timer interrupt, the registers associated with the thread will
be saved for a longer period of time, and the return is made to a different thread. The
interrupted thread will be delayed for quite some time while other threads are run.	

Next, we discuss how the kernel software is expected to use the Blitz-64 hardware.
This discussion motivates and explains the Blitz-64 ISA; it should not be confused
with a description of any specific kernel code.	

It is assumed that each thread will have an area of memory, which we call a Thread
Control Block (TCB), that will contain important information about the thread and
that will be used to save the general purpose registers and other state during an
interruption.	

[In the discussion of page tables later in this document, we will see that the root
page will be half used, leaving 8,192 bytes of unused and available space. This area is
an ideal place in which to store information about the processes, perhaps including
one or more Thread Control Blocks.]	

When a thread is interrupted, the first thing that must be done is to save the
registers and these will be saved in the Thread Control Block (TCB). We expect
csr_ptr to be used to point to the Thread Control Block of the running thread.	

For any thread running with interrupts enabled — whether in user mode or kernel
mode — we assume that the following will contain valid state information:	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	211 342

Chapter 7: Exceptions, Interrupts, and Trap Handling	

	 The State of the Currently Running Thread:	
 	 	 csr_status — The status register	
 	 	 csr_ptr — A pointer to the TCB	
 	 	 csr_pgtable — A pointer to the root of the page table	
 	 	 csr_trapvec — Address of the trap handler to be used for traps	
	 	 … all general purpose registers …	

In this discussion, we make no assumptions about the other CSR registers. They are
not assumed to contain state information and may be used as work registers by the
trap handler. (But of course, this discussion is hypothetical. Kernel programmers
may elect to use other CSRs as they see fit.)	

Some threads will never use virtual memory, so csr_pgtable is not needed for them.
Such threads — kernel threads — are not associated with any particular address
space and have no use for a page table.	

Other threads (which we call user threads) will have an associated virtual address
space. They run in user mode and all addresses are translated from the virtual
address space to the physical address space, with the assistance of the page table.	

The Translation Lookaside Buffer (TLB) registers — if they exist — serve as a cache
of Page Table Entries (PTEs). If there is no TLB, the page table must be walked on
every access to memory. The TLB registers dramatically reduce the need to access
the page table. For a running user mode thread, the TLB registers contain the
working set, i.e., information about pages that have been recently used and can be
expected to be needed in the near future.	

Each TLB is tagged with an Address Space Identifier (ASID). At context switches,
there is no need to flush the TLB since the ASIDs will function to distinguish the TLB
registers associated with one process’s address space from the registers for another
process’s address space. Only when pages tables are modified or deleted is there any
need to flush the TLB.	

When a context switch occurs and a new process begins execution, it is likely that
the existing TLB registers used by the previous process will gradually be evicted and
replaced with the working set of the newly executing process. As the new process
begins execution, several walks of the page table will be necessary until the new
process’s working set has been loaded into the TLB.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	212 342

Chapter 7: Exceptions, Interrupts, and Trap Handling	

However, if the TLB is large enough and there are not too many addresses spaces, it
is possible that the working sets of several processes can all coexist in the TLB. In
such a scenario, at context switches, evictions will be rare and the walking of the
page tables will be reduced.	

Consider what happens when a user thread makes a system call. The thread will be
running in user mode before the SYSCALL and then will be running trap handler
code in kernel mode. Since it is the same thread and since the TLB registers continue
to contain important values, we will refer to this as a “user thread running in kernel
mode”. But regardless of what we call it, any code running in kernel mode will need
to use its own stack. It must be careful not to rely on the correctness of any user
mode register values and be careful to restore any user mode registers that were
used. Of course information must not be allowed to not leak from the kernel back to
the user mode code.	

There are several cases to be considered:	

	 For user threads…	
	 	 The thread performs a SYSCALL	
	 	 The thread causes an exception	
	 	 The thread is suspended by an interrupt	
	 For kernel threads…	
	 	 The thread performs a SYSCALL	
	 	 The thread causes an exception	
	 	 The thread is suspended by an interrupt	
	 Upon completion of the trap handler…	
	 	 The interrupted thread is resumed.	
	 	 The interrupted thread is suspended and another thread is scheduled.	

Global Trap Handler — Dispatching and Return	

Once the core has completed the hardware phase of trap invocation, the first
instruction of the Global Trap Handler will be fetched and executed.	

In this section, we sketch out algorithms and code sequences for how the Global
Trap Handler might be coded. The goal is to give some idea about how the various
architectural features of the Blitz-64 architecture might be used. We also want to get
a rough idea of how many machine instructions are involved.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	213 342

Chapter 7: Exceptions, Interrupts, and Trap Handling	

This discussion is speculative and kernel programmers may take a different
approach.	

We assume the Global Trap Handler is written in assembler and will invoke
functions written in the KPL language. We look at handling syscalls (where the
arguments are passed in registers) and we look at all other traps (where we assume
that all user registers must be saved and restored before the SYSRET). We assume
that interrupts will remain disabled for the duration of all handler code and each
handler will terminate by returning to the interrupted code. 	43

First, let’s look at a possible algorithm for the Global Trap Handler, which is invoked
after any trap. Its duty is to save the state of the interrupted process and then
dispatch to function that will handle the particular trap encountered.	

Global Trap Handler - Algorithm	

	 // We assume the following have just been set by the hardware:	
	 //	 	 csr_stat2, csr_prevpc, csr_cause, csr_bad, csr_addr	
	 // We also assume: 	
	 //	 	 csr_ptr points to the Thread Control Block (TCB)	
	 //	 	 csr_pgtable points to a page table	
	 //	 	 csr_trapvec points to this Global Trap Handler	

	 Save general purpose registers in the TCB:	
	 	 Swap csr_ptr with register r7.	
	 	 Save r12-r15 (i.e., “tp”, “gp”, “lr” and “sp”) in the TCB.	
	 	 	 	 (About 5 instructions)	 	

 	 Determine if this is a SYSCALL Exception.	
	 	 	 	 (About 3 instructions, using only r12-r15)	
	 	

 Realistically, a kernel will invoke the scheduler at timer interrupts, if not during other traps as 43

well. So interrupts will be enabled at some point before return to the interrupted code, but this is
beyond the scope of the discussion here.

Blitz-64 Instruction Set Architecture / Porter	 Page of 	214 342

Chapter 7: Exceptions, Interrupts, and Trap Handling	

	 If this is a SYSCALL Exception…	

	 	 Prepare to execute a kernel-mode function written in high-level KPL:	
	 	 	 Load r15 (the kernel stack pointer “sp”) from the TCB.	
	 	 	 Load r12-r13 (i.e, “tp”, “gp”) from the TCB.	
	 	 	 Copy r7 (the ptr to the TCB) back into csr_ptr.	
	 	 	 	 (About 4 instructions)	

	 	 Dispatch to the individual SYSCALL handlers:	
	 	 	 Dispatch on csr_cause, i.e., jump through the trap vector to a KPL function.	
	 	 	 	 (About 4 instructions, using register “t”, including the indirect jump)	

	 	 Upon entry to the KPL function to handle the SYSCALL…	
	 	 	 • Registers r1 … r6 contain arguments to the system function.	
	 	 	 • Register r7 contains a pointer to the TCB.	
	 	 	 • Registers r8-r11 (“t, s0, s1, s2”) are work registers.	
	 	 	 • Registers r1 will contain a return value to the user code.	
	 	 	 • Registers r2-r11 should be zeroed before return.	
	 	 	 • User-mode registers r12-r15 have been saved in the TCB.	
	 	 	 • CSRs csr_stat2, csr_prevpc, csr_ptr, csr_pgtable, csr_trapvec	
	 	 	 	 will remain unchanged throughout the handler function.	

	 If this is NOT a SYSCALL Exception…	

	 	 Save the user mode registers:	
	 	 	 Save r1-r6, r8-r11 in the TCB.	
	 	 	 Read csr_ptr (i.e., previous value of r7) into a reg.	
	 	 	 Store it in the TCB.	
	 	 	 	 (About 12 instructions)	

	 	 Prepare to execute kernel-mode functions written in high-level KPL:	
	 	 	 Load r15 (the kernel stack pointer “sp”) from the TCB.	
	 	 	 Load r12-r13 (i.e, “tp”, “gp”) from the TCB.	
	 	 	 Copy r7 (the ptr to the TCB) back into csr_ptr.	
	 	 	 	 (About 4 instructions)	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	215 342

Chapter 7: Exceptions, Interrupts, and Trap Handling	

	 	 Prepare the arguments to the individual trap handler.	
	 	 	 r1 ← csr_cause	
	 	 	 r2 ← csr_addr	
	 	 	 r3 ← csr_bad	
	 	 	 r4 ← csr_prevpc	
	 	 	 r5 ← csr_stat2	
	 	 	 // r6 ← <nothing>	
	 	 	 // r7 ← addr of TCB from above	
	 	 	 	 (About 5 instructions)	

	 	 Dispatch to the individual trap handlers:	
	 	 	 Using r1 (csr_cause), jump through the trap vector to a KPL function.	
	 	 	 	 (About 3 instructions, using register “t”, including indirect jump)	

	 	 Upon entry to the KPL function to handle the interrupt / exception…	
	 	 	 • Registers r1 … r7 contain arguments, see above.	
	 	 	 • Register r8 (“t”) can be trashed.	
	 	 	 • Registers r1-r15 should be restored from the TCB before return.	
	 	 	 • CSRs csr_stat2, csr_prevpc, csr_ptr, csr_pgtable, csr_trapvec	
	 	 	 	 will remain unchanged throughout the handler function	

So we may be looking at about 16 instructions for dispatching to a SYSCALL function
and about 32 instructions to dispatch to any other trap handler.	

After completely dealing with the trap, the individual KPL handler routines will not
return. Instead, they will call one of two assembler functions. In either case, this is
effectively a jump, since these routines do not return.	

The KPL functions for handling SYSCALL traps will invoke a function named
“SyscallHandlerReturn”. The KPL function for handling all other exceptions and
interrupts will invoke a function called “TrapHandlerReturn”.	

The SyscallHandlerReturn function is passed a value which it leaves in register r1
before executing the SYSRET. All other caller-saved regs should be zeroed or
restored to prevent information leakage from the kernel.	

Here are the final steps of a SYSCALL trap handler, which must be coded in assembly
language:	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	216 342

Chapter 7: Exceptions, Interrupts, and Trap Handling	

Syscall Handler Return - Algorithm	

	 // At this point, we assume…	
	 // 		 r1 contains the value to be returned to the user mode code.	
	 //	 	 CSRs csr_stat2, csr_prevpc, csr_ptr, csr_pgtable, csr_trapvec	
	 	 	 	 have remained unchanged throughout the handler function.	
	 //	 	 csr_ptr still points to the Thread Control Block (TCB).	
	 // 		 csr_prevpc still contains the PC.	
	 // 		 csr_stat2 still contains the status register.	
	 // 		 csr_pgtable and csr_trapvec are unchanged.	
	 // 		 User-mode registers r12-r15 have been saved in the TCB.	

	 r7 ← 0.	
	 Swap r7 with csr_ptr.	
	 // r7 now points to the TCB.	
	 // csr_ptr now contains 0.	

	 // We assume that nothing of value remains on the kernel stack,	
	 //	 	 so we can avoid saving the value of “sp”.	
	 // We assume that the kernel “tp” and “gp” registers never change,	
	 //	 	 so we can avoid saving their values.	
	 // Register r14 (“lr”) is meaningless, so we don’t need to save it.	

	 // Values of user registers “tp, gp, lr, sp” were saved at the time of the trap.	
	 Fetch the saved registers from the TCB and move into r12…r15.	

	 Set registers r2-r6,r8-r11 to 0 // To prevent info leakage from the kernel.	
	 Swap csr_ptr with r7.	
	 Execute the SYSRET instruction, which will…	
	 	 PC ← csr_prevpc.	
	 	 csr_status ← csr_stat2.	

	 (About 17 instructions)	

The TrapHandlerReturn function is passed no args. All the registers are restored
before the SYSRET is executed. The TrapReturn function will take the following
actions, performed in assembly code:	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	217 342

Chapter 7: Exceptions, Interrupts, and Trap Handling	

Trap Handler Return - Algorithm	

	 // On entry, we assume…	
	 //	 	 csr_ptr still points to the Thread Control Block (TCB).	
	 // 		 csr_prevpc still contains the PC.	
	 // 		 csr_stat2 still contains the status register.	

	 r7 ← csr_ptr	

	 // We assume that nothing of value remains on the kernel stack,	
	 //	 	 so we can avoid saving the value of “sp”.	
	 // We assume that the kernel “tp” and “gp” registers never change,	
	 //	 	 so we can avoid saving their values.	
	 // We assume their values of sp, tp, and gp were placed in the TCB	
	 //	 	 when it was initialized.	
	 // Register r14 (“lr”) is meaningless, so we don’t need to save it.	

	 Fetch the “saved r7” from the TCB and move it into csr_ptr.	
	 Fetch the saved registers from the TCB and move into r1…r6, r8…r15.	

	 Swap csr_ptr with r7.	
	 Execute the SYSRET instruction, which will…	
	 	 PC ← csr_prevpc.	
	 	 csr_status ← csr_stat2.	

	 (About 19 instructions)	

A typical trap handler will perform its work and complete, returning to the
interrupted code without reenabling interrupts. However, in many cases the handler
will be unable to return immediately and will need to block the thread. In such cases,
the trap handler might perform a “wait” operation on a semaphore, or sleep on a
lock, or simple invoke the scheduler directly. Often, an interrupt handler will need to
wake up a process to service the interrupt. This could be done by performing a
“signal” operation on a semaphore.	

The algorithms sketched above are provisional. For example, it may be the case that
the kernel will make use of additional CSRs (e.g., csr_temp) for storing registers,
rather than saving the register in the TCB. This may improve trap invocation by
replacing memory STORES and LOADs with CSR_SWAP instructions, at the cost of

Blitz-64 Instruction Set Architecture / Porter	 Page of 	218 342

Chapter 7: Exceptions, Interrupts, and Trap Handling	

requiring these registers to be saved before re-enabling interrupts. Or, alternatively,
csr_stat2 and csr_prevpc may be saved to the TCB immediately within the global
trap handler, removing the need to save/restore them when enabling interrupts.	

It will often be the case that after a trap has occurred, but before a SYSRET has been
executed, the kernel code will need to re-enable interrupts.	

The above algorithms assume the interrupted thread was running in user mode. The
global trap handler saves the user mode registers in the TCB in an area reserved for
the user mode registers. However, if the interrupted thread is running in kernel
mode, there could be issues. If, for example, the interrupted thread is a user thread
currently running in kernel mode (for example, in the middle of servicing a
SYSCALL) and it has reenabled interrupts, then an interrupt or exception will be
catastrophic. The TCB register save area already contains the value of user mode
registers. The global trap handler (as coded above) will blindly overwrite those,
resulting in disaster when, at some future time, the thread tries to return to user
mode.	

The above algorithms are only intended to give you an idea of how the hardware
could be used. Your kernel-hacking skills will be needed to figure out how to actually
use the Blitz-64 ISA. 	44

 Another issue is the FENCE instruction, which may be needed.44

Blitz-64 Instruction Set Architecture / Porter	 Page of 	219 342

Chapter 8: Memory, Address Spaces,
and Page Tables	

Quick Summary	

• Program-generated address range: 64 GiBytes (36 bit addresses)	
	 — Maximum Virtual Address Space: 32 GiBytes (35 bits)	
	 — Max size of physical memory: 16 GiBytes (34 bits)	
	 — Memory-mapped I/O region: 16 GiBytes (34 bits)	
• The current page table’s address is in csr_pgtable.	
• Page table architecture:	
	 — Page size: 16 KiBytes.	
	 — Page offset (to access a byte within a page): 14 bits.	
	 — Page table entry (PTE): 8 bytes.	
	 — Each page holds 2Ki entries.	
	 	 	 2Ki x 8 bytes = 16 KiBytes.	
	 	 	 11 bits to index into a page (recall 211 = 2,048).	
	 — Page table has two levels.	
	 — Virtual addresses are 35 bits.	
	 	 	 VPN[1]: 10 bits. VPN[2]: 11 bits. Offset: 14 bits.	
	 — With a two level table…	
	 	 	 Only half of the top-level page is used.	
	 	 	 1Ki x 2Ki = 2Mi pages per address space.	
	 — Maximum size of virtual address space:	
	 	 	 2Mi pages x 16 KiBytes/page= 32 GiBytes.	
	 — Maximum size of supported, mappable memory:	
	 	 	 244 = 16 TiBytes.	
• The address translation cache (TLB registers): invisible to the ISA.	
	 — Each TLB entry is tagged with an Address Space ID (ASID).	
	 — ASID is 16 bits; maximum number of address spaces: 65,536.	
	 — ASID of current process is in csr_pgtable register.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 220 342

Chapter 8: Memory, Address Spaces, and Page Tables	

Memory Organization	

All program-generated addresses are 36 bits. This allows a program to address up to
64 GiBytes.	

This total 64 GiByte address space is divided into the following ranges:	

	 size 	 	
	 16 GiBytes	 Physical memory	
	 16 GiBytes	 Memory mapped I/O devices	
	 32 GiBytes	 Virtual address space	

FIGURE: Program Generated Addresses	

Any address in the lower 32 GiBytes is said to be a physical address. Any address in
the upper 32 GiBytes is said to be a virtual address.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	221 342

Chapter 8: Memory, Address Spaces, and Page Tables	

Blitz-64 instructions can generate both physical addresses and virtual addresses.
However, the processor core will only generate physical address for use in accessing
the installed main memory and I/O devices.	

The first 32 GiBytes (i.e., physical memory and memory-mapped I/O) is the kernel’s
address space and can only be accessed in kernel mode. User mode code cannot use
addresses in this range. Any attempt by user mode code to use a physical address
will cause a “Page Illegal Address Exception”.	

Of course, the kernel is free to map virtual addresses to physical addresses via the
page table scheme. This allows user mode programs to access physical memory and
memory-mapped I/O devices.	

The upper 32 GiBytes can be accessed regardless of the privilege mode. Any address
in this range is a virtual address and memory mapping will be performed to convert
the address into a physical address in the lower 32 GiBytes.	

Bit 35 of the address determines whether the access is allowed only in kernel mode
or whether it will be mapped as a virtual address.	

	 0 = Kernel access only; no memory mapping	
	 1 = The address is virtual; memory mapping always performed	

As mentioned above, any attempt to LOAD, STORE, or FETCH instructions using an
address in the lower 32 GiBytes while executing in user mode will cause an
exception. But any attempt to LOAD, STORE, or FETCH instructions using an address
in the lower 32 GiBytes will be allowed when running in kernel mode, and the
program-generated address will be used “as is”. All bytes in the lower 32 GiBytes are
considered to have full read/write/fetch privileges and no checking is performed.	

A program-generated address is considered to be “virtual” and will be mapped to a
physical address if and only if the address is within upper half of the address range.
In other words, any address with bit 35 set to 1 (i.e., within the range
0x8_0000_0000 … 0xF_FFFF_FFFF) will be mapped.	

Any attempt to LOAD, STORE, or FETCH instructions using an address in the upper
32 GiBytes will be processed by the Memory Management Unit (MMU). The MMU
will translate a virtual address into a physical address. The mode is irrelevant for
this range.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	222 342

Chapter 8: Memory, Address Spaces, and Page Tables	

Tasks, Address Spaces, and the User Mode Viewpoint	

A user mode program in execution (i.e., a running program) is called a “task”. A task
consists of a virtual address space and one or more threads. (The term “process” is
often defined as a task with exactly one thread. The “task” concept is more general
and useful.)	

A user mode program runs within a “virtual address space”. Each byte has an
address and a virtual address space appears to behave very similarly to a chunk of
physical main memory. Generally speaking, each byte of the virtual address space
will be implemented (i.e., “backed”) by a byte of physical main memory.	

Virtual address spaces are, of course, subtly different from physical memory. For one
thing, virtual addresses are mapped into physical addresses in such a way that the
user program has no way of determining which physical addresses are being used.
Also, each virtual address space is independent; a user program has no way to
access bytes in the kernel space or in other address spaces.	

Here is one way a kernel might organize a virtual address space for user tasks,
although this particular organization is not mandated by the ISA.	

FIGURE: User Mode Virtual Address Space	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	223 342

Chapter 8: Memory, Address Spaces, and Page Tables	

Every virtual address space is broken into a number of pages.	

In Blitz-64, the page size is 16 KiBytes. Each page starts on a 16 KiByte boundary:
pages are always properly aligned. Since 214 = 16,384 = 16 Ki, the last 14 bits [13:0]
of the page address will always be 00000000000000.	

Each page of the virtual address space will be either:	

	 •	Allocated	
	 •	Not allocated	

Typically, most of the pages in the address space will be unallocated. Any attempt by
the user program to access an unallocated page will cause an exception. Typically
the user program will be aborted; that is random memory accesses to unallocated
areas normally cause the kernel to terminate the program. However, it may also be
the case that the kernel throws (i.e.., signals or forwards) a user mode error.	

(There may also some pages in the virtual address space that are not allocated until
there is a demand for them. For example, as the stack grows, pages will be allocated
as necessary. However, this is transparent to the user program. When an attempt is
made by a user program to access such a page, the kernel will quietly allocate a new
page and retry the instruction. Such dynamic allocation is solely a kernel function.)	

From the viewpoint of the running user mode program, each allocated page will
have certain privileges. Every page is:	

	 • Writable or not	
	 • Executable or not	

Therefore, the following combinations are allowed:	

	 • Unallocated	
	 • Read-only	
	 • Read/write	
	 • Read/executable	
	 • Read/write/executable	

Every allocated page is readable; there is not a separate privilege status for this.
Pages containing executable code are always readable.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	224 342

Chapter 8: Memory, Address Spaces, and Page Tables	

Every thread within a task will see the exact same address space. Each page will
have the same privileges, regardless of which thread within the task is accessing it. 	45

Any attempt by a thread to LOAD from a page that is not allocated will cause an
exception. Any attempt by a thread to STORE to a page that is not allocated or not
writable will cause an exception. Any attempt to FETCH instructions from a page
that is not allocated or not executable will cause an exception.	

Presumably, the kernel will treat such accesses as a program error.	

Note that here we are talking about the viewpoint of the user mode program. There
are cases in which such attempts will cause exceptions but the kernel will take
actions, change the status of pages, and restart the user program. The instruction
will then execute and the user program will be unaware that there was ever an
exception.	

For example, imagine a situation where a page is allocated but is not currently
resident in memory. Instead, the page has been written out to disk (i.e., backing
store). Any attempt to access that page (FETCH, LOAD, or STORE) will cause an
exception. The kernel will respond by reading the page’s contents from disk into
physical memory and resuming execution of the user program. Another example is
when a page is marked “copy-on-write”; any attempt to STORE to the page will cause
an exception; then the kernel will copy the page and the user program will be
resumed.	

In some cases, a page may be shared by two different address spaces. The page will
be backed by a single page of physical memory. Thus, a page can be mapped into two
(or more) address spaces. All tasks will see the same contents of the page. A WRITE
by any task can be observed by a READ or FETCH performed in any other task. A
single page of physical memory may be mapped into pages in multiple virtual
address spaces at either the same or different virtual addresses. A single physical
page may have the same or different permissions in the different address spaces.	

 It may be desirable for two threads to share most of an address space, but have some 45

differences. For example, the pages of the stack might need to be mapped into different physical
pages. In order to achieve this, the kernel must create a separate address space for each thread and
mark all pages except the stack pages as “shared” in both address spaces. However, since address
spaces can be up to 32 GiBytes, the preferred solution is to use a single address space and place
the stacks in separate, non-overlapping memory regions.

Blitz-64 Instruction Set Architecture / Porter	 Page of 	225 342

Chapter 8: Memory, Address Spaces, and Page Tables	

In some cases, a virtual page may be mapped, not onto physical memory, but onto a
location in the memory-mapped I/O region. In such a case, when the user mode
program WRITEs to an address in the page (i.e., executes a STORE instruction), the
data will be sent to the I/O device. When the user mode program READs from an
address in the page (i.e., executes a LOAD instruction), data will be transferred from
the I/O device.	

Page Tables	

For each address space, the kernel will create, build, and update a page table.
Blitz-64 uses a two level page table.	

Diagram: “Page Table Tree”	

Each page table index node and each data page is stored in a single 16 KiByte page.
Both index and data pages must at page-aligned addresses. 	

A page table tree consists of a root node and up to 1,024 second level index nodes.
Each second level node can point to up to 2,048 data pages.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	226 342

Chapter 8: Memory, Address Spaces, and Page Tables	

There can be up to 2,097,152 data pages in a virtual address space. Since each data
page is 16 KiBytes, this exactly accommodates the largest virtual address space,
which is 32 GiBytes. 	46

Each page table entry is 8 bytes. 	47

The root node contains 1,024 entries pointing to second level nodes. A page can
accommodate up to 2,048 entries, but only the first half of the page is used. The
second half of the root page is not used.	

 Notice that	46

	 221 = 1,024 × 2,048 = 2,097,152	
and	
	 235 = 2 Mi × 16 Ki = 32 Gi

 Notice that	47

	 8 × 2,048 = 16,384	
	 211 = 2,048	
So up to 2,048 PTE’s will fit into a single page. And to address any one of 2,048 entries, 11 bits are
required.

Blitz-64 Instruction Set Architecture / Porter	 Page of 	227 342

Chapter 8: Memory, Address Spaces, and Page Tables	

Each second level node contains 2,048 entries.	

Diagram: “Page Table Detail”	

The smallest address space would require a single root node and 2 nodes at the
second level (one for low memory and one for high memory). A page table for the 48

largest address space will require 1,024+1 nodes in the page table tree. 	49

 Such a minimal page table will accommodate a virtual address space up to 64 MiBytes (i.e., 48

4,096 pages). This would easily include enough space for entries for the 32 pages required for the
shared core functions, as described elsewhere.

 The maximum virtual address space has a size of 32 GiBytes (i.e., 2,097,152 pages). The page 49

table for such an address space requires 1,024 + 1 pages (i.e., 16.02 MiBytes).

Blitz-64 Instruction Set Architecture / Porter	 Page of 	228 342

Chapter 8: Memory, Address Spaces, and Page Tables	

The memory overhead for page tables is roughly 8 bytes per 16 KiByte data page, in
other words, the ratio of page table memory to data memory is less than 1 :: 2,000.	

Each index page in the page table is stored in a single 16 KiByte page. Each index
page is organized as an array of “page table entries” (PTEs). Each page table entry
will be 8 bytes in length. Thus, a single page can contain 2,048 PTEs.	

As mentioned, the top-level (root) node of the page table will only contain 1,024
PTEs so only the first half of the page is used. The kernel is free to use the second
half of the page to store additional information about the address space, the task,
and/or the threads running in that address space.	

Conceptually, every time a virtual memory address is accessed, the page table will be
walked to locate the data page and translate the virtual page number into a physical
page number.	

However, actually walking the page table to retrieve the page table entry (PTE)
requires two additional memory accesses for every “real” memory access. This
would impose an intolerable performance penalty.	

Instead, it is assumed that the processor will cache recently used page table entries
in order to avoid accessing the index pages for most memory operations. To improve
performance, we assume Page Table Entries (PTEs) from the page table are cached
in a set of special purpose registers designed for the purpose. This cache is called the
Translation Lookaside Buffer (TLB).	

For the most part, the TLB is invisible to the kernel programmer. The caching is
transparent and the result is exactly the same as if no TLBs are implemented.	

Just as with main memory caches, the TLB registers are loaded automatically by the
hardware, with no special attention required of the software. The presence or
absence of a TLB cache will not change the correctness or functionality of the
software, only its performance.	

Whenever a memory operation (LOAD, STORE, or FETCH) is attempted using a
virtual address, the page table must be consulted — at least in theory. If a matching
entry is cached in a TLB register, then that can be used instead and the hardware can
avoid the two additional memory operations that would be necessary to access the
page table.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	229 342

Chapter 8: Memory, Address Spaces, and Page Tables	

However, from time to time, the page tables will be modified by the kernel software.
This may invalidate the information previously cached in the TLB registers. It is
crucial that any PTEs cached in the TLB registers contain only valid and current
information.The Blitz-64 ISA provides instructions to flush (i.e., modify or
invalidate) selected TLB registers. 	50

An OS kernel will implement a number of virtual address spaces, with one address
space for each task. Associated with every address space is a page table. At any one
time, a core is executing code within one address space, so there is always a “current
page table.”	

The current page table is pointed to by the Control and Status Register named
csr_pgtable. More precisely, csr_pgtable contains the address of the root index page
of the page table. 	51

When the kernel switches from one task to another (i.e., from one address space to a
new address space), it will modify csr_pgtable to point to the page table of the new
address space.	

Given that there are many address spaces and many page tables, it is crucial that the
cached page table entries (PTEs) in the TLB for the old address space not be
confused with PTEs for the new address space.	

To facilitate this, each address space is assigned a unique number called the
Address Space Identifier (ASID). This is a 16 bit value, accommodating up to
65,536 different address spaces. It is assumed that each PTE cached in a TLB
register will be marked with the ASID of the address space to which it belongs.	

The ASID of the currently executing task is kept in the csr_pgtable register.	

The idea is that whenever the TLB is consulted to see if there is a cached PTE, the
ASID is checked. Each TLB register will contain an ASID, along with the cached

 These instructions are named TLBFLUSH and TLBCLEAR.50

 The csr_pgtable register contains a 44 bit page-aligned address within the physical main 51

memory, i.e., anywhere within the 16 TiByte address space. Addressing memory within the lower
16 GiBytes can be done directly and easily when running in Kernel Mode, so it is likely that most
OSes will choose to place all page table nodes within the first 16 GiBytes of main memory. Of
course, page table nodes can be placed elsewhere, but in order to accommodate this, the kernel
itself will need to set up and use a second virtual address space, solely for accessing such page
table nodes.

Blitz-64 Instruction Set Architecture / Porter	 Page of 	230 342

Chapter 8: Memory, Address Spaces, and Page Tables	

mapping information. If there is an entry with a matching ASID, then the cached PTE
can be used and the core can avoid accessing the index pages altogether. But if the
ASID doesn’t match, the cached value applies to a different address space and the
cached PTE cannot be used.	

If there is no cached PTE in the TLB registers, then the core is forced to access the
page table in main memory. This will require the core to perform two additional
LOADs to read from the index pages in order to retrieve the desired PTE. But once a
PTE is retrieved from the in-memory page table, that PTE will be cached in the TLB.
This means that future accesses will hit the TLB cache and all page table accesses for
any addresses within the same data page can be avoided in the future. Whenever a
PTE cached (i.e., the PTE is written to the TLB), the TLB register will be marked
with the ASID of the current task, which is the ASID currently stored in csr_pgtable.	

A General Overview of TLBs	

To accommodate virtual memory, program-generated “virtual addresses” are
translated into “physical addresses” in hardware by address translation
hardware. This circuitry is called the Memory Management Unit (MMU) and it
uses a page-table (stored in memory) to perform the translation from virtual to
physical addresses.	

To make address translation fast enough for virtual memory to be feasible, page
table entries must be cached in an “address translation cache”. Such a cache is
traditionally called a “Translation Lookaside Buffer”, or “TLB”.	

The TLB will contain a small number of page table entries. When a FETCH, LOAD
or STORE to memory occurs, the address translation hardware (the MMU) will
check the address translation cache (the TLB). If the TLB contains a matching
entry, the address translation hardware will use it to generate a physical address
immediately, which is much faster because the core can avoid going to main
memory to read the page table tree to locate the data page.	

The TLB is organized as an associative memory, keyed on virtual page number
(VPN). If a TLB entry is present, then the entry will contain the physical page
number. The MMU will then concatenate the physical page number to the offset
within the page to build a physical address. It will then proceed directly to
performing the FETCH, LOAD, or STORE operation.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	231 342

Chapter 8: Memory, Address Spaces, and Page Tables	

However, if the entry is absent, the address translation process must go to
memory to locate and fetch the appropriate entry from the page table. Some TLB
entry will be evicted and the new entry will be placed in the TLB. The address
translation will then proceed.	

From the Memory Management Unit’s perspective, the in-memory page table is
considered to be read-only. Thus, the values stored in the TLB never need to be
updated by the hardware whenever a FETCH, LOAD, or STORE occurs.	

When a memory access is attempted but the TLB contains no matching entry, the
MMU will need to cache a new entry in the TLB. To make room, it must “evict”
some existing entry. Since the TLB contains only copies of entries from the in-
memory page table, the MMU has no need to update the in-memory page table.	

However, from time-to-time, the kernel will modify the address space and update
the page table. When this happens, the cached entries in the TLB can become out
of date. To handle this, the hardware must include instructions that can be used to
invalidate some or all entries in the TLB. The simplest approach is to include an
instruction that will invalidate all TLB entries. A more targeted approach is to
include an instruction that can be used to invalidate selected pages, possibly also
including information about which address space is affected.	

Megapages	

Due to the large (16 KiByte) page size used in Blitz-64, the overhead of the page
table is less than with the typical 4 KiByte page size of traditional architectures.
Roughly speaking, a page that is 4 times as large could cut the number of page
table walks by a factor of 4 and reduce the number of TLB registers by the same
amount. The large page size also allows each page walk to require only two
memory LOADs, instead of three, which are needed for a system with three level
page tables. 	

We considered defining a “megapage” as a chunk of memory of size 32 MiBytes.
This is exactly 2,048 pages in size. The idea is that a single entry in the root page
of the page table would point directly to the megapage, instead of pointing to a
second-level node in the page table.	

With megapages, we would be able to accommodate very large address spaces
with almost no page table overhead. The maximal address space with 32 GiBytes
would require only a single root page table node.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	232 342

Chapter 8: Memory, Address Spaces, and Page Tables	

It should be noted that with megapages, a single PTE will suffice for a very large
amount of memory. Without megapages, many more PTE entries may be required
to support the same algorithm. Thus, support for megapages reduces the number
of PTEs, therefore reducing access to the in-memory page table and contention for
TLB registers.	

If a process’s working set is not too large and changes slowly, then occasional page
table walks and TLB loads will not be a great overhead, and a small number of TLB
registers will support good performance. We believe that a system with (say) a
dozen 16 KiByte pages should be adequate to cover the working set of many
typical programs and thus provide good performance.	

Of course, support for megapages will reduce the number of page table accesses
and could be critical in programs that would otherwise have a lot of page table
accesses.	

As a general principle, complex algorithms with complex behavior tend to exhibit
complex (i.e., seemingly random) memory patterns. In other words, modern
programs bounce around a lot. For processes like this, there can be much more
pressure on the TLB.	

Megapages may become necessary to enable acceptable performance for complex
algorithms that consume a lot of memory, exhibit little locality of reference, and
bounce all around memory quickly.	

At this time, Blitz-64 does not support megapages, but this decision may be
revisited. An unused bit in the PTE entry might be defined to flag megapages. The
PTE entry will either point to a second level page table node, or to a megapage, as
determined by this bit.	

Why Only Two Levels?	

Most computer architectures use 3 or 4 level page tables. Blitz-64 was carefully
designed to use only 2 levels. This mandated a limit on the maximum address
space size; is it worth this cost?	

For programs that exhibit very good locality of reference — that is, that have very
small working sets — the TLBs will work well and the in-memory page tables will

Blitz-64 Instruction Set Architecture / Porter	 Page of 	233 342

Chapter 8: Memory, Address Spaces, and Page Tables	

need to be consulted rarely. So it will matter less if the table is one level deeper:
the additional memory operation will not often be needed.	

However, we expect modern programs to often be more complex, such as object-
oriented programs which bounce around large heaps or complex algorithms that
exhibit minimal locality. Each time such an algorithms follows a pointers to a new
area, a new pages is touched and another page table lookup is required. In the
extreme, each and every memory reference could be a TLB miss and require a
page table lookup. Going from 3 to 2 levels implies turning an operation that
requires 4 memory references into one requiring only 3 memory operations, a
huge performance gain.	

While such completely degenerate programs may be rare, the general idea
remains. Page table lookups are very, very costly and reducing each lookup from 3
memory accesses to 2 accesses will improve overall performance, although we
cannot yet say by how much.	

Another consideration is time-slicing. Every time the kernel’s scheduler is
invoked, a new thread is selected and initiated. The execution of the new thread
may have the effect of entirely flushing the TLB, which means that every time the
scheduler runs (i.e., every time-slice), the entire TLB will need to be reloaded. This
means a page table lookup is required for each TLB register.	

This cost can potentially be large. Of course, there are techniques to mitigate this
problem, such as distributing the threads across cores in such a way that the
scheduler will likely choose to run a thread that lives in the same address space as
the thread previously scheduled.	

A final issue is that address spaces will sometimes be changed and modified. With
message passing kernels, we expect to see large amounts of data passed by the
manipulation of page tables. For example, to pass data from one task to another, a
page may be deallocated from one address space and mapped into another
address space.	

Each time such an operation is done, it may be necessary to flush the entire TLB,
this requiring a reloading the TLB registers, with multiple page table lookups.
Again, there may be techniques to reduce this cost. For example, Blitz-64 provides
an instruction (TLBFLUSH) to clear a single entry cached in the TLB.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	234 342

Chapter 8: Memory, Address Spaces, and Page Tables	

Although a 2 level page table is conceptually simpler than a 3 level table, the
performance around virtual memory must be the overriding concern.	

Some architectures have a flexible design. For example, the RISC-V can
accommodate 2, 3, or 4 level page tables. Accommodating multiple depths
introduces quite a bit of complexity into an ISA.	

Finally, we note that 2 level page tables seem adequate, so there is no reason for a
3 level table. Of course this is closely tied to the decision to limit the maximum
size of a virtual address space to 32 GiBytes.	

Will the address space limitation prove to be a problem in practice? Are 3 levels
clearly a better approach? Time will tell.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	235 342

Chapter 8: Memory, Address Spaces, and Page Tables	

Virtual Addresses	

Program-generated addresses are 36 bits, as shown in this diagram :	52

FIGURE: “Virtual Address”	

The upper bits [63:36] are always ignored. This means that any address outside of
the basic 64 GiByte range is mapped into the lower 64 GiByte area.	

The most significant bit [35] selects for virtual/kernel mode. If the bit is 1 (virtual
address space), then memory mapping (i.e., address translation) will occur. If the bit

 Here is the same information, expressed differently:	52

	 bits	 size	 field	
	 [35]	 1		 mapped or unmapped	
	 [34:14]	 21	 VPN: virtual page number	
	 	 [34:25]	 	 10	 	 VPN[1]: First level	
	 	 [24:14]	 	 11	 	 VPN[2]: Second level	
	 [13:0]	 14	 byte offset (14 bits)	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	236 342

Chapter 8: Memory, Address Spaces, and Page Tables	

is 0 (kernel/physical space), then mapping does not occur and the address is used,
as is.	

Memory is broken into pages. The page size is 16 KiBytes. To access a byte within a
page, the page offset is 14 bits.	

Within a virtual address, 21 bits, namely bits [34:14], indicate the Virtual Page
Number (VPN). This is further broken into fields VPN[1] and VPN[2], which are
used to index into the two-level page table tree.	

Page Table Entries	

Each entry in the page table is called a Page Table Entry (PTE). Each entry is 8
bytes and has this format:	

FIGURE: “Page Table Entry”	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	237 342

Chapter 8: Memory, Address Spaces, and Page Tables	

Here the same information:	

	 bits 	 width 	
	 [63:34]	 30	 Physical Page Number 	53
	 [33:5]	 29	 < unused, available for kernel use >	
	 [4]	 1	 C bit (1 = Copy-on-write)	
	 [3]	 1	 D bit (1 = Dirty)	
	 [2]	 1	 W bit (1 = Writable)	
	 [1]	 1	 X bit (1 = Executable)	
	 [0]	 1	 V bit (1 = Valid)	

Commentary We do not include a “Referenced Bit” as is done in some systems. The
purpose of the Referenced Bit is to allow software to implement a least-recently-
used algorithm (or more likely, an approximation thereto), in order to select which
pages are candidates for paging out to backing store. However, updating and
maintaining such a least recently used bit requires the MMU to write PTEs back to
the page table. In Blitz-64, the MMU only reads from the page table.	

When an executing program attempts to access memory, it will generate a 36-bit
“program-generated address” and will use it to:	

	 • LOAD	
	 • STORE	
	 • FETCH (i.e., read an instruction for execution)	

 With 30 bits of physical page number and 14 bits of offset, this allows addressing up to 16 53

TiBytes of physical memory, since	
	 244 = 17,592,186,044,416	

However, in the basic implementation, physical addresses are limited to 35 bits and only 32
GiBytes can be addressed, since	
	 235 = 34,359,738,368	
This range accommodates 16 GiBytes of physical memory followed by 16 GiBytes of memory-
mapped I/O. As such, only the lower 35-14=21 bits of the Physical Page Number will be non-zero,
i.e., bits [54:34]. The upper 9 bits [63:55] should be zero and will be ignored on systems that don’t
exceed 32 GiBytes of installed physical main memory.	

In systems accommodating more main memory than this, the upper 9 bits of a Physical Page
Number can be non-zero. However, program-generated addresses are still limited to 36 bits and
virtual addresses are still limited to 35 bits. This limits every virtual address space to 32 GiBytes.

Blitz-64 Instruction Set Architecture / Porter	 Page of 	238 342

Chapter 8: Memory, Address Spaces, and Page Tables	

The Memory Management Unit (MMU) sits between the core and main memory. The
program-generated address will be put through the MMU along with the type of
access required (LOAD/STORE/FETCH) and the current privilege mode (kernel or
user).	

The MMU will either generate an exception or will translate the address into a
physical address. (If a TLB is implemented, the translation may be performed using
the TLB registers.)	

MMU: Basic Operation	

We next describe the operation of the Memory Management Unit (MMU). We begin
by describing the MMU as if there is no TLB cache and each memory access requires
a page table lookup.	

The MMU starts with a virtual address and the type of operation requested (LOAD,
STORE, or FETCH). It may generate any one of these exceptions:	

• Unaligned LOAD/STORE Exception	
• Page Illegal Address Exception	
• Page Table Exception	
• Page Invalid Exception	
• Page Fetch Exception	
• Page Write Exception	
• Page Copy-On-Write Exception	
• Page First Dirty Exception	

If the operation is LOAD.H, LOAD.W, LOAD.D, STORE.H, STORE.W, or STORE.D and the
address is not aligned properly, then an “Unaligned LOAD/STORE Exception” will be
triggered. Whenever an exception is triggered, the instruction execution is aborted
and a trap occurs.	

If the core is currently running in user mode and the address has bit [35] = 0, then
we have an illegal attempt to access a physical memory or memory-mapped I/O
address. A “Page Illegal Address Exception” will be triggered.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	239 342

Chapter 8: Memory, Address Spaces, and Page Tables	

Otherwise, the MMU will walk the page table in order to obtain the address of the
data. This involves first reading a page table entry (PTE) from the root page and then
reading a PTE from the second level index page, as shown in the following diagram.	

FIGURE: “Mapping”	

First, the csr_pgtable register is used to obtain the address of the root index page.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	240 342

Chapter 8: Memory, Address Spaces, and Page Tables	

If csr_pgtable contains 0, a “Page Table Exception” will be signaled. But assuming 54

csr_pgtable is not 0, the address it contains will used to locate and read an entry
from the root index page. 	55

The VPN[1] field of the virtual address will be used to select a PTE within the root
page and that PTE will be read from physical memory.	

Within the root page, each entry will use only the following two fields. (The other
fields will be ignored by the MMU and will presumably be zero.)	

	 Physical Page Number	
	 Valid Bit	

The VALID (V) bit will be 1 if the PTE points to a second level index page, and 0 if
not. If the MMU encounters a 0 valid bit, it will trigger a “Page Invalid Exception”.	

In the second step, the MMU will extract the physical page number of the second
level index page and will use the VPN[2] field to select a PTE within the second level
page. That PTE will be read from memory.	56

If the VALID (V) bit of the second PTE is 0, a “Page Invalid Exception” will be
triggered.	

The address of the data page will be extracted from this PTE and a physical address
will be constructed using the offset field from the virtual address.	

 Presumably this is a kernel bug; a virtual address should not be generated unless the kernel has 54

already created a page table and set csr_pgtable to point to it. The test for null only checks bits
[43:14], i.e., the Physical Page Number (PPN) of the root node.

 Within csr_pgtable, the upper 20 bits (which include the ASID) will be ignored, to form an 55

address of 44 bits, i.e., an address within the 16 TiByte physical memory area. The lower 14 bits
will also be ignored and zeros will be used. This forces the address of the root page to be page-
aligned, regardless of what csr_pgtable contains.

 More precisely, 30 bits are extracted from bit positions [63:34] in the “Physical Page Number” in 56

the top level PTE. These upper 30 bits are used to construct the address of the second level PTE.
The 10 bits of the VPN[1] field are shifted 3 bits to give a doubleword aligned offset. This is
extended to 14 bits [13:0] by adding a zero for bit [13]. Together, the 30 bit page number [43:14]
and the offset [13:0] give a 44 bit, doubleword aligned address in physical memory, which will
contain the second level PTE.

Blitz-64 Instruction Set Architecture / Porter	 Page of 	241 342

Chapter 8: Memory, Address Spaces, and Page Tables	

If the requested operation is LOAD, then the operation will read from memory with
no further ado.	

If the requested operation is FETCH and the EXECUTE (X) bit is 1, the MMU will read
from memory. If the EXECUTE (X) bit is 0, a “Page Fetch Exception” will be triggered.	

Finally, if the requested operation is STORE then the W, C, and D bits will be checked,
as follows:	

W: Writable	 C: Copy-on-write	 D: Dirty	 	
0	 …	 …	 Page Write Exception	
1	 0	 0	 Page First Dirty Exception	
1	 0	 1	 The operation is performed	
1	 1	 0	 Page Copy-On-Write Exception	
1	 1	 1	 The operation is performed	

We can explain this as follows:	

If the page is not writable (W=0) and the user tries to write into it, then it is a user
error and the kernel will need to deal with the error (Page Write Exception). When
the page is first written (D=0), it may be necessary for the kernel to update the page
table in memory to indicate that if the page is to be evicted, it must first be saved to
the backing storage (Page First Dirty Exception). Otherwise if the page has already
been marked dirty, the operation can be performed without kernel involvement.	

If the page is shared using copy-on-write (C=1), then upon the first write (D=0) it is
necessary for the kernel to make a copy of that page (Page Copy-On-Write
Exception). After that, the kernel can mark the page as having been copied by setting
the D bit. Otherwise (D=1), the page has already been copied, so the operation can
proceed without kernel involvement.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	242 342

Chapter 8: Memory, Address Spaces, and Page Tables	

We can summarize the MMU interface as follows:	

Memory Management Unit (MMU)	

	 Input:	
	 	 The current mode (Kernel or User)	
	 	 The 36 bit program-generated address:	
	 	 	 MSBit:	 Bit [35]	
	 	 	 	 	 	 0=kernel region, i.e., unmapped	
	 	 	 	 	 	 1=virtual region, i.e., mapped	
	 	 	 VPN:	 Bits [34:14] page number (21 bits)	
	 	 	 Offset:	 Bits [13:0] offset into page (14 bits)	
	 	 Is this a FETCH attempt? (1 bit)	
	 	 Is this a STORE attempt? (1 bit)	
	 	 Alignment requirement:	
	 	 	 • Doubleword	
	 	 	 • Word	
	 	 	 • Halfword	
	 	 	 • None	
	 	 csr_pgtable	
	 	 	 • ASID (Address Space ID)	
	 	 	 • Address of the page table root node	

	 Output:	
	 	 Status:	
	 	 	 • Null Address Exception (Address < 8)	
	 	 	 • Unaligned LOAD/STORE Exception (Address not properly aligned)	
	 	 	 • Page Illegal Address Exception (User mode to access kernel space)	
	 	 	 • Page Table Exception (Bad csr_pgtable)	
	 	 	 • Page Invalid Exception (Either index page or PTE has V=0)	
	 	 	 • Page Write Exception (Attempt to write an unwritable page)	
	 	 	 • Page Fetch Exception (Attempt to execute an un-executable page)	
	 	 	 • Page Copy-On-Write Exception (Attempt to write a copy-on-write page)	
	 	 	 • Page First Dirty Exception (Write to a previous unmodified page)	
	 	 	 • All okay	
	 	 The physical address (35 bits)	
	 	 	 (If there is an exception, we don’t care about the address returned.)	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	243 342

Chapter 8: Memory, Address Spaces, and Page Tables	

The precedence of the exceptions is:	

• Null Address Exception	 ← highest	
• Unaligned LOAD/STORE Exception	
• Page Illegal Address Exception	
• Page Table Exception	
• Page Invalid Exception	
• Page Fetch Exception	
• Page Write Exception	
• Page Copy-On-Write Exception	
• Page First Dirty Exception	

What if we have several violations at once? For example, what if there is an
alignment violation, and the address falls in kernel space while running in user
mode, and the csr_pgtable register is null? We’ve got 3 things wrong. In such a case,
only the Unaligned LOAD/STORE Exception will be signaled. The Page Table
Exception and Page Illegal Address Exception will be ignored.	

The last 6 exceptions are mutually exclusive and these errors cannot arise
simultaneously. 	57

Here are some example scenarios:	

Conflict: Null Address and Unaligned LOAD/STORE	
Example: A LOADD instruction attempting to load from address 0x0_0000_0001
while running in kernel mode.	
Result: Null Address Exception	

Conflict: Null Address and Page Illegal Address	
Example: A LOADD instruction attempting to load from address 0x0_0000_0000
while running in user mode.	
Result: Null Address Exception	

Conflict: Unaligned LOAD/STORE and Page Illegal Address	

 If there is a Page Table Exception, then there is no Page Table Entry (PTE), so the remaining 5 57

exceptions cannot occur. If the PTE is invalid, then the flags (Copy-on-write, Dirty, Writable,
Executable) do not exist, so the remaining 4 exceptions cannot occur. If there is a Fetch Exception,
the operation is a FETCH and not a STORE, so the remaining 3 exceptions cannot occur. Finally, if
one of the last there exceptions is signalled, then the operation must have been a STORE and the
outcome — which was described above — can result in at most one of the final 3 exceptions.

Blitz-64 Instruction Set Architecture / Porter	 Page of 	244 342

Chapter 8: Memory, Address Spaces, and Page Tables	

Example: A LOADD instruction attempting to load from address 0x0_0000_1111
while running in user mode.	
Result: Unaligned LOAD/STORE 	58

NOTE: The following exceptions are not suppressed when running in Kernel Mode:	

Page Fetch Exception	
Page Write Exception	
Page Copy-On-Write Exception	
Page First Dirty Exception	

TLB: Translation Lookaside Buffer	

Previously, we described the MMU as if there is no TLB cache, but there would
almost certainly be a Translation Lookaside Buffer (TLB).	

Although the presence of a TLB is theoretically optional, in practice each core will
have its own set of TLB registers to reduce accesses to memory that would
otherwise be needed to fetch Page Table Entries (PTEs) from the in-memory page
table.	

The discussion below is intended to give you an idea of how a TLB would work.	

Each core contains a private set of TLB registers. These registers constitute the TLB
cache and are not directly accessible by software.	

The number of TLB registers associated with one core is implementation dependent.
For example, there might be 128 TLB registers.	

 This decision is arbitrary; it is hard to say which exception is more applicable in this case.58

Blitz-64 Instruction Set Architecture / Porter	 Page of 	245 342

Chapter 8: Memory, Address Spaces, and Page Tables	

Each TLB register contains a TLB entry, which has the fields shown in the following
diagram :	59

FIGURE: “TLB Entry”	

The TLB is a set-associative memory, keyed on “ASID || VirtPageNumber”, i.e., the
most significant 37 bits of the TLB entries.	

Whenever a LOAD, STORE, or FETCH operation occurs, the MMU will first consult
the TLB cache to see if it contains a matching PTE. If so, the MMU uses that and
avoids reading from the in-memory page table.	

The MMU uses the Address Space Identifier (ASID) from csr_pgtable and the virtual
page number from from virtual address, to construct a “search key”. The TLB cache
is an associative memory and this key is used to retrieve a TLB entry with a
matching key.	

 This layout is merely a suggestion and implementations may lay out the TLB entry differently.59

Blitz-64 Instruction Set Architecture / Porter	 Page of 	246 342

Chapter 8: Memory, Address Spaces, and Page Tables	

If a matching TLB entry is found, then it is used. This is called a cache hit. A 60

physical address is constructed and the bits (Copy-On-Write, Dirty, Writable,
Executable, and Valid) are used as described earlier. Either an exception is signaled
or the memory operation is performed.	

However, if no matching entry is found, the MMU will then access the in-memory
page table. This was described above. In addition, the MMU will construct an TLB
entry and add it to the cache. Since the TLB cache is a fixed small size, this means
that an existing entry must be evicted.	

The TLB cache — at least as we are describing it here — will implement the least-
recently-used algorithm in hardware.	

To do this, the TLB will operate as a stack. In other words, the TLB registers are
organized as a stack of memory registers, with TLB register 0 at the top of the stack
and TLB register 127 at the bottom (assuming 128 registers in the cache).	

Entry 0, at the top of the stack, will be the most recently used entry. The entry at
the bottom of the stack (e.g., entry 127) is the least-recently-used entry, and will be
the entry that gets evicted (i.e., discarded) when a new entry is pushed onto the
stack top.	

When there is a cache miss, the entire TLB register array will be shifted down. The
last entry (e.g.., entry 127) will be discarded. The newly constructed entry will be
added as entry 0. In other words, the new entry is pushed onto the top of the stack.	

Furthermore, in order to maintain the proper order, any time a cache hit occurs, the
matching entry must be removed from its place in the stack and moved to the top of
the stack. All entries from the previous top, down to the matching entry, are shifted
one position down, making room for the matching entry to be moved into the top
position.	

The TLB entries contain a VALID bit and, upon power-on-reset all VALID bits are set
to 0. Whenever the VALID bit is 0 (indicating the entry is invalid), the entry is
ignored. A cache hit can only return a valid entry.	

 The TLB registers (which are a cache of page table entries) should not be confused with memory 60

caches, such as L1, L2, and L3 which are a cache of main memory data. A hit in the cache of page
table entries has nothing to do with a hit in the L1, L2, or L3 memory caches, although both can be
said to be “cache hits”.

Blitz-64 Instruction Set Architecture / Porter	 Page of 	247 342

Chapter 8: Memory, Address Spaces, and Page Tables	

There is an important difference between the VALID bit in a PTE in the in-memory
page table and the VALID bit in a TLB entry. For the page table, an invalid entry
means the page is not mapped into the virtual address space. Any attempt to access
that page will require the kernel to determine whether a page should be allocated or
whether the thread should be aborted. For the TLB entries, an invalid entry just
means that the TLB register is not in use. When there is a cache hit for the TLB, the
returned entry will always be valid.	

Whenever the MMU performs a walk of the in-memory page table and retrieves an
invalid PTE, it will signal a “Page Invalid Exception”. The MMU will not update the
TLB cache.	

Whenever the kernel updates a PTE in the in-memory page table, we have a
situation where the cached TLB entry becomes out-of-date. To deal with this, the
kernel must invalidate the old TLB entry by setting its VALID bit to 0.	

This is the purpose of the TLBFLUSH instruction. This instruction will mark any
matching TLB entry as invalid . Later, when the same virtual address is used, the 61

MMU will get a cache miss and will respond by reading the PTE from the in-memory
page table and adding to the TLB cache. 	62

From time to time, the kernel may wish to make major changes to an in-memory
page table. Perhaps the virtual address space is deleted altogether, or perhaps a
large number of PTEs are modified. In such a case, it will be necessary for the kernel
to invalidate all the cached entries for a given address space. This is accomplished
with the TLBCLEAR instruction. This instruction simply marks as invalid all TLB
entries that have an ASID that matches the ASID from the csr_pgtable register.	

 There can be at most one matching entry; the cache should never contain more than one valid 61

entry with the same key.

 Ideally, when a new entry must be added to the TLB stack (evicting an existing entry from the 62

cache), we’d like to reuse an entry that was previously marked invalid. So, whenever a cache miss
occurs and a new entry is to be pushed onto the TLB stack top, instead of shifting all entries down
and discarding the last entry, the shifting should only occur above the first invalid entry, thereby
evicting and discarding the invalid entry.	

An alternative approach to the TLBFLUSH instruction would be to move the invalidated entry to
the bottom of the TLB stack, so that whenever an entry must be evicted in the future, the invalid
entry will be discarded. However, this is impractical for the TLBCLEAR operation, which must
invalidate a number of entries all at once.

Blitz-64 Instruction Set Architecture / Porter	 Page of 	248 342

Chapter 8: Memory, Address Spaces, and Page Tables	

When a LOAD, STORE, or FETCH occurs, the MMU will check the TLB. If the TLB
contains a matching entry, then that PTE will be used and a walk of the page table is
avoided. Whenever a TLB entry is successfully retrieved, it’s also possible that the
csr_pgtable register happens to contain zero, which would normally cause a Page
Table Exception. Whether or not an exception will occur in this situation is
specifically left unspecified and implementation dependent. 	63

It is also possible that the TLB cache becomes “out of synch” with the page table. For
example, this could happen if the kernel failed to flush the TLB after switching to a
new task and reloading csr_pgtable. In such a case, the TLB would return a PTE that
is completely different from the PTE in the in-memory page table. Or perhaps a walk
of the page table pointed to by csr_pgtable might encounter a missing index page
and cause a Page Invalid Exception, while the TLB returns a perfectly serviceable
PTE.	

Obviously, in such cases, the contents of the TLB will be used. No walk of the in-
memory page table will occur and such discrepancies would never be detected.	

To summarize: If a TLB cache is implemented and a cached entry in the TLB
provides a different result than a walk of the page table would provide, the in-
memory page table is ignored and the TLB result prevails.	

Comments	

Kernel Access to User’s Virtual Memory	

Note that the kernel always has access to a user’s virtual address space. This is
convenient for a trap handler that implements a system call. For example, a user
process may pass pointers to memory buffers through the syscall to the kernel code.
When servicing the syscall, the kernel can simply LOAD and STORE from the virtual

 Normally, the csr_pgtable register will be zero only after power-on-reset until initialization is 63

complete. From then on, only valid pointers would ever be stored into the register. Null would
never be stored, so this situation is unlikely to occur in practice.

Blitz-64 Instruction Set Architecture / Porter	 Page of 	249 342

Chapter 8: Memory, Address Spaces, and Page Tables	

addresses that were provided. However, since the user mode process has passed in
virtual addresses, the kernel must go through memory mapping.	

In the Blitz-64 design, this is accomplished easily and naturally. The kernel simply
uses the virtual address pointer as is. Virtual memory mapping occurs regardless of
the current privilege mode.	

Of course, the user code may pass illegal pointers to the kernel. The kernel really
ought to check any virtual address before using it, to see what sort of an exception
might be triggered if the access is attempted. The CHECKADDR instruction is
provided for exactly this purpose.	

As another example, a debugger process may wish to write to a user page that is
otherwise not writable. This would be necessary when the debugger writes a
BREAKPOINT instruction into a page of code that is marked executable, but not
writable. Clearly, this must involve some sort of kernel involvement.	

Perhaps the page in question is simply mapped into the debugger space as writable.
But if the action is to be done directly by the kernel, it must temporarily change the
page to writable. In more detail, the kernel must change the PTE entry in the page
table to writable and execute the TLBFLUSH instruction in case the PTE was
previously cached. Then the kernel can issue the STORE, change the PTE back to not-
writable, and re-execute the TLBFLUSH instruction.	

(Why did we not just specify in the Blitz-64 ISA something like “write permission
checking is disabled whenever the core is running in kernel mode”? Because the
core might be using separate data and instruction caches and an inconsistency might
arise. Scenarios like this are explored in detail in a later section concerning caches.) 	

Regarding the 16 KiByte Page Size	

Several page sizes were considered in the design of Blitz-64. Traditionally, pages
have been 4 KiBytes; the selection of 16 KiBytes is somewhat radical.	

Here are some arguments in favor of the larger page size:	

• TLB entries need only be loaded ~¼ times as often, compared to systems with
page size of 4 KiBytes. 	64

 Assuming good locality-of-reference, of course.64

Blitz-64 Instruction Set Architecture / Porter	 Page of 	250 342

Chapter 8: Memory, Address Spaces, and Page Tables	

• Fewer TLB registers are needed. A TLB cache with ¼ the size will cover the
same amount of virtual address space. 	

• A two level page table becomes feasible. In other systems with a smaller page
size, a page table of at least three levels is required.	

• With a two level page table, the hardware response to a TLB cache miss is
substantially faster, requiring 2 memory LOADs, versus 3 LOADs.	

• Whenever a page-related exception occurs, the kernel must search the in-
memory page table. The algorithm to search the page table will be faster with
a two level table than a three-level table, but the difference is minimal.	

• For large processes, the page table takes ~¼ the space, since it only needs ¼ as
many PTEs. Furthermore, initializing such a page table will be 4 times faster.	

• Internal fragmentation (i.e., lost space inside the last page at the end of
sections) is not much of a problem. Assuming 3 sections per process
(i.e., .data, .text, and stack), 8 KiBytes on average lost per page, and 200
processes, we only lose 0.5% of 1 GiByte.)	

• The total size of page tables is small. (Assuming 3 pages per process × 16
KiBytes per page × 200 processes = 1% of 1 GiByte.)	

• Every process with data plus code size under 32 MiBytes requires only 3 pages
(48 KiBytes) for its page table. 	65

On the other hand, there are some drawbacks to a larger page size:	

• Each virtual address space will consume (i.e., waste) more physical memory
with a larger page size, than with a smaller size. Let’s assume that most
programs have three sections/segments (.code and .data in low memory and
stack in high memory). On average, half of the last page in these segments will
be wasted. So, about 3 × 16,384 × ½ = 24,576 bytes of virtual memory will be
unnecessarily added to each address space. There is also waste in the second
level index-pages, the amount of which is dependent on the size of the virtual

 One second-level index page covering the bottom of the virtual address space (where the .data 65

and .text sections reside) will cover 2,048 × 16,385 = 32 MiBytes. Along with a page to cover high
memory and the root index page, we have a total of 3 pages in the page table.

Blitz-64 Instruction Set Architecture / Porter	 Page of 	251 342

Chapter 8: Memory, Address Spaces, and Page Tables	

address space. If we assume that, on average, half a page is wasted in both
high and low memory, we have 2 × 16,384 × ½ = 16,384. Thus, we estimate the
total waste to be 40,960 bytes per process. In a system with (say) 200
processes, this will waste about 8,000,000 bytes. In a system with 2 GiBytes of
main memory, this is less than 0.5%.	

• Copying / initializing data pages each time a virtual address space is created
will require more time. Assume two data sections (.text and .data) in low
memory, with half of the last page being unused. We must initialize 2 × 2,048
bytes for 4 KiByte pages and 2 × 8,192 bytes for 16 KiByte pages. Assuming we
need to initialize /clear the entire page for the stack section, we must initialize
4,096 bytes for 4 KiByte pages and 16,384 bytes for 16 KiByte pages. In
summary, for each new address space, we will need to initialize 8,192 versus
32,768 bytes, which is 4 times as many bytes for the larger page size. To create
a new address space, we are presumably reading in several kilobytes of code
and data from a file. It is unclear whether the cost of zeroing an additional
24,576 bytes is significant.	

• Many address spaces will be very small. Creating a mostly empty page table
requires more space and more time with a larger page size, compared to a
smaller page size. Roughly speaking, we can say a larger page size will waste
as much as 4 times as much memory with additional, unused page table
entries . Since we need to initialize these unused PTEs, up to 4 times as much 66

time will be required to setup the virtual address space.	

Examples of System Memory Requirements	

To give a feel for potential Blitz-64 usage, we show some example virtual address
spaces.	

Minimal process (112 KiBytes)	
	 1 page for code and constants = 16 KiBytes (~1K lines of code)	
	 1 page for data = 16 KiBytes	
	 1 page for stack = 16 KiBytes	
	 3 pages for page table = 48 KiBytes	
	 1 page for kernel data and stack = 16 KiBytes	
	 	 ⇒ 7 pages (working set cannot exceed 3 TLB entries)	

 In other words, many entries in the lowest level index pages will be unused and will need to be 66

initialized to “invalid”.

Blitz-64 Instruction Set Architecture / Porter	 Page of 	252 342

Chapter 8: Memory, Address Spaces, and Page Tables	

Small process (512 KiBytes)	
	 16 pages for code and constants = 256 KiBytes (~10K lines of code)	
	 8 pages for data = 128 KiBytes	
	 4 pages for stack = 64 KiBytes	
	 3 pages for page table = 48 KiBytes	
	 1 page for kernel data and stack = 16 KiBytes	
	 	 ⇒ 32 pages	

Large process (48 MiBytes)	
	 2048 pages for code and constants = 32 MiBytes (~1M lines of code)	
	 1024 pages for data = 16 MiBytes	
	 16 threads @ 4 pages per stack = 1 MiBytes	
	 4 pages for page table = 64 KiBytes	
	 1 page for kernel data and stack = 16 KiBytes	
	 	 ⇒ ~3200 pages	

Mega process (400 MiBytes)	
	 16Ki pages for code and constants = 256 MiBytes (~10M lines of code)	
	 8Ki pages for data = 128 MiBytes	
	 128 threads @ 4 pages per stack = 8 MiBytes	
	 16 pages for page table = 256 KiBytes (< 0.1%)	
	 1 page for kernel data and stack = 16 KiBytes	
	 	 ⇒ ~25,000 pages	

Examples of installed physical memory	
 1 MiByte	
	 	 = 64 pages (0 megapages)	
	 	 Accommodates 8 minimal processes.	
 512 MiBytes	
	 	 = 32Ki pages (or 16 megapages).	
	 	 Accommodates 1,000 small processes.	
	 	 Accommodates 200 small, 8 large processes.	
 4 GiBytes	
	 	 = 256 Ki pages (or 128 megapages).	
	 	 Accommodates 5 mega, 20 large, 2,000 small processes.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	253 342

Chapter 8: Memory, Address Spaces, and Page Tables	

Shared Core Functions	

The Blitz-64 design is tuned to support a set of globally shared functions. The idea is
that a collection of functions is so widely used by user programs that it makes sense
to make these functions available to all tasks in a uniform way, as a sort of universal,
shared library.	

These are called the “shared core functions” and the pages containing the
functions will be mapped into every virtual address space, whether or not the
functions are used. The maximum virtual address space is so large that a small
number of pages set aside for the shared core functions does not make a significant
difference.	

In this discussion, we describe how functions are shared. We can also place heavily
used methods into the shared core function library. Thus, commonly used classes
need not be included in every executable program.	

It is envisioned that there will be several hundred shared functions/methods. As an
example, imagine that 2,500 functions are placed in the shared core library, with
each consuming and average of 200 bytes each. This number of functions can be
accommodated with 32 pages, consuming 512 KiBytes of the virtual address space.	

The shared core functions will be placed in the very uppermost pages of the address
space, which end at address 0xF_FFFF_FFFF. In our example, setting aside 32 pages
out of 2,097,152 possible pages in the address space has no significant cost.	

The pages of the shared core functions will be marked “read/execute” so that they
can be freely shared by all virtual address spaces. Since the pages are shared and
assumed to be memory-resident at all times anyway, there is essentially no overhead
for individual tasks.	

Regardless of how many pages are consumed by the shared core functions, when
loading a program to be executed, the kernel will typically initialize the stack pointer
to somewhere below the shared core function area.	

To facilitate linking and the dynamic connection between separately compiled
programs and the shared library functions, there will be a “dispatch table” (i.e., a
branch or jump table) which will consist of one entry per shared core function.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	254 342

Chapter 8: Memory, Address Spaces, and Page Tables	

Each entry of the dispatch table is 8 bytes. Each entry will contain a JUMP to the first
instruction of the function. If the function itself is located close enough (i.e., within
32 pages, or 512 KiBytes), a single JAL instruction will suffice. Otherwise, the JUMP
will require two instructions, i.e., 8 bytes.	

The dispatch table will occupy the last page of the address space. If the number of
functions exceeds 2,048, the dispatch table will occupy the last two pages.	

	 First page of dispatch table:	
	 	 Number of entries:	 2,048	
	 	 Entry 0:	 F_FFFF_C000	
	 	 Entry 2047:	 F_FFFF_FFF8	
	 Additional page (if necessary):	
	 	 Number of entries:	 2,048	
	 	 Entry 2,048:	 F_FFFF_8000	
	 	 Entry 4,095:	 F_FFFF_BFF8	

To call (i.e., invoke) a shared core function, user code can contain a CALL instruction
to the dispatch table address. From there, the JUMP instruction will take execution to
the first instruction of the function.	

The purpose of using a dispatch table is to allow simple linking between arbitrary
user mode programs and the shared core function library. Each shared core function
is assigned an offset in the dispatch table which will never change. There will be a
KPL header file declaring each of the shared core functions as an “external” function.
This allows the KPL compiler to perform type checking on the function invocations.
A simple assembly file will equate each function name with the address of the
corresponding dispatch table entry. The user mode programs do not need to know
the exact location or size of the functions themselves, and these can be changed
without needing to recompile user mode programs. Functions can be modified and
new functions can be added to the shared core function library without requiring
user mode programs to be recompiled.	

To invoke a share core function, the code will first “call” to an address in the dispatch
table and, from there, a JUMP instruction will take execution to the first instruction
of the function.	

Notice that a CALL to a shared core function can always be implemented with a
single JALR instruction. (This is because, using register “r0” and a negative offset,
each of the 4,096 entries in the dispatch table can be reached with a single

Blitz-64 Instruction Set Architecture / Porter	 Page of 	255 342

Chapter 8: Memory, Address Spaces, and Page Tables	

instruction.) From there, a single instruction will take execution to the function
itself. (This is because the JALR instruction contains a 20 bit offset and can jump
-524,288 … +524,287 bytes relative to the PC.)	

Thus, the overhead for invoking a shared core function is a single instruction! 	67

 Since some function invocations might be far away and require two instructions, we can actually 67

say the overhead is at most one instruction for shared core functions.

Blitz-64 Instruction Set Architecture / Porter	 Page of 	256 342

Chapter 9: Multi-Core Issues	

Quick Summary	

• Cores may have private memory and/or shared memory.	
• LOAD and STORE instructions are always atomic.	
• Cores are assumed to have caches, which may contain out-of-date values.	
• Blitz-64 uses a relaxed memory model.	
	 — STOREs do not propagate instantly to all caches in the system.	
	 — STOREs do not necessarily propagate in the same order to other cores.	
• The FENCE instruction is provided to force change propagation.	
	 — Blitz-64 uses a single, coarse-grained FENCE semantics for all purposes.	
• Programmers must use locks to ensure correctness and protect shared data.	
• Lock ACQUIRE and RELEASE must use the FENCE instruction.	
• A FENCE on one core may require cache lines on other cores to be invalidated.	
• A modification to an address space on one core may invalidate remote TLBs.	

Private and Shared Memory	

A multi-core system in which all cores share a common block of main memory is
called a Shared Memory Multiprocessor (SMP). In a typical multi-core system, 68

there is a single large block of physical memory and this block is mapped to the
same location in all cores, thus making it fully and symmetrically shared.	

The Blitz-64 architecture supports both private and shared memory.	

A multi-core system may have only shared memory and have no private memory.
This is expected to be a common design choice, mirroring other SMP computers. The
shared physical memory will be located at the same physical addresses in all cores.	

 Other authors use SMP to stand for “Symmetric Multiprocessing”, where all cores are identical 68

and connected symmetrically.

Blitz-64 Instruction Set Architecture / Porter	 Page of 257 342

Chapter 9: Multi-Core Issues	

On the other hand, a multi-core system may have only private memory and no
shared memory. In this design, each core will have its own block of private memory.	

Finally, a Blitz-64 system may have a mix of both private and shared memory. In such
a design, the private memory might be devoted to containing the kernel code and the
code of the share core functions. The benefit of this is that any cache loads from this
region will be entirely local and therefore faster. 	69

Private memory, if present, will always start at address 0. The cores need not have
the same amount of private memory, although we normally expect all cores in a
given computer to have the same amount.	

Shared memory, if it exists, will always follow private memory. The shared memory
will be located at the same address in all cores. If no cores have private memory, the
shared physical memory will be placed at address 0.	

LOAD / STORE Atomicity	

In Blitz-64, all LOAD and STORE operations are required to be properly aligned. This
means that the data involved can never cross a cache line . Since the data in 70

question will reside entirely within a single cache line,	

Every LOAD and STORE instruction is atomic.	

One core (call it “A”) may STORE a value and another core (call it “B”) may LOAD or
FETCH from the same address. By “atomic”, we mean that if another core looks at the
same address, it will either see the data as it was before the modification or as it is

 If all private memories contain the identical data, then these addresses can be mapped into 69

virtual space with no problem. For example, the shared core functions would typically be mapped
into the highest pages of the virtual address spaces. When a cache fault occurs and the data must
be loaded, the virtual address will be mapped into a physical address within private memory. It
will not matter which core is executing, since all private memories contain identical data.

 In this section, the terms “cache line” and “cache block” are used synonymously. Elsewhere, 70

“cache block” is used to refer only to the data in a cache line, while a “cache line” includes address
key and control bits as well as the block of data.

Blitz-64 Instruction Set Architecture / Porter	 Page of 	258 342

Chapter 9: Multi-Core Issues	

after the modification. But it will never retrieve a value that is partly modified and
partly unmodified. 	71

If instead, some data value is not aligned, it might possibly cross a cache line
boundary. In other words, the value could reside partly in one cache line and partly
in the following cache line. An update to the data value by core A will need to modify
both cache lines. Now consider what might happen at core B. It may be that one of
the cache lines is present in the cache of B, but the other line is not present.	
Of course the updates will not be instantaneous. If core B looks at the data in a given
cache line, it will either see the data before a change or after the modification.	

As an example, assume that some data item crosses a cache boundary. When core A
updates the data value, the modifications to the cache lines must propagate to other
cores.	

Blitz-64 allows for a relaxed memory model, which means these changes may
propagate at different speeds. Thus it is possible that core B will see part of the data
as it was before the modification and the other part of the data as it was after the
modification. Thus, core B could effectively retrieve a value that was never actually
stored by any core!	

Of course some shared data is sometimes very large and must necessarily lie in
multiple cache lines.	

To control synchronization, we assume the kernel uses locks and respects the
locking protocol . Before accessing any shared data, we assume the kernel has 72

acquired the appropriate lock, giving the core exclusive use of that data.	

But even though locks are used, we still have the problem of cache lines being out-
of-date, which we now turn our attention to in the following sections.	
core.	

 We are implicitly mandating that cache lines must be at least 8 bytes long.71

 The locking protocol requires that a lock is acquired before the shared data is read or 72

modified and the lock is released afterwards. The code between the acquire and the release
operations is called a critical section and the shared data is only accessed within a critical section,
i.e., when the relevant lock is held.

Blitz-64 Instruction Set Architecture / Porter	 Page of 	259 342

Chapter 9: Multi-Core Issues	

A Relaxed Memory-Model	

In a Shared Memory Multiprocessor (SMP) model, several cores share physical
memory. In this section, we’ll ignore private memory, since the issues to be
discussed do not arise.	

In the basic, simplest model of memory, every memory location has exactly one
value — or at least behaves in a functionally equivalent way. Any STORE to some
location (say X) will become immediately visible to all cores. Any subsequent LOAD
or FETCH from address X by any core can only return the most recent value, and
never any prior value. If one core updates two locations one after the other (say X
first, followed by a STORE to Y), then all cores must observe those updates in that
order.	

In short, such a system behaves as if there are no caches. Every address is stored in
only one location and every memory operation is executed in linear order, one after
the other. But of course caches — which complicate things — are necessary for
performance.	

To improve efficiency, the same cache block will often be held in multiple caches at
different cores. To deal with this, many common cache protocols (such as MSI, MESI,
MOESI, …) are designed to preserve the invariants discussed above, allowing the
programmer to ignore cacheing, without risking incorrect results. In other words,
the caching is transparent. While caches will affect performance, they will not affect
functionality or results.	

But there is a cost to making cacheing fully transparent . To address this, Blitz-64 73

adopts a relaxed memory model.	

The Blitz-64 Memory Model: Blitz-64 accommodates a relaxed
memory model. Local caches are assumed to exist and the results of
updates to memory (i.e., STOREs) are not assumed to propagate to
other cores instantly or in the order actually executed.	

The relaxed memory model of Blitz-64 does not assume a memory in which each
address contains exactly one value at any instant or that all cores see exactly the
same value. This is different from systems with transparent caching, which require a

 Generally speaking, this cost is in additional bus traffic imposed by the cache coherence protocol 73

and the additional overhead of the snooping required of the individual caches.

Blitz-64 Instruction Set Architecture / Porter	 Page of 	260 342

Chapter 9: Multi-Core Issues	

cache protocol that guarantees that it appears to all cores that, at every instant,
every memory location has exactly one value.	

Instead, Blitz-64 assumes that cores have local caches which are not transparent.
Although any update to a memory address by one core will eventually be seen by
other cores, cache propagations take non-zero time. Some cores may still see the old
values while other cores are already seeing the new value.	

Since cache propagation is not instant, some cache lines may contain older values
and still remain valid in the Blitz-64 memory model. As a result, one core may fetch
data that is old, out-of-date, and seemingly made in an inconsistent order with
respect to other cores and other memory locations.	

Like all systems, Blitz-64 requires the cache protocol to implement a coherent
memory model.	

By “coherent”, we mean that a sequence of writes of different values by one core to
any single location must be observed by all cores as happening in the same order,
i.e., in the order they were actually performed. Basically, if any core sees the new
value in location X, it can never subsequently retrieve an old value from that
location.	

The behavior of LOADs, STOREs, and FETCHes made exclusively by one core must
always respect the order in which they appear, at least to that core. By “respect”, we
mean that any reordering performed by the compiler or an out-of-order core must
be transparent and will never be observable by that core.	

However, since the core doing the reordering may not fully understand the
interdependencies of the data, the reordering may be visible at other cores.	

Consequently, an additional mechanism — the FENCE instruction — is required to
prevent a core from reordering certain operations and to constrain the order in
which changes are propagated to other cores.	

With the Blitz-64 relaxed memory model, if multiple addresses are involved, it is
possible and acceptable that the updates made by one core (call it A) do not appear
to another core (B) as being made in the same order. For example, if core A writes a
new value to address X followed by writing a new value to address Y, some other
core (such as B) might see the new value when reading from Y but subsequently see
the old value when reading from X!	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	261 342

Chapter 9: Multi-Core Issues	

Of course, the software really ought to use locks and the FENCE instruction (as
discussed below) to prevent such confusing scenarios.	

FENCE and Memory Synchronization	

An out-of-order core (which is sometimes called a superscalar core) may execute
the instructions in a slightly different order than they actually appear in the
instruction stream. This dynamic rescheduling of instructions is done to improve
performance and more efficiently utilize the hardware’s circuits and functional
units. The execution of the reordered instructions must be transparent and the
results indistinguishable. Reordering by the core is allowable only when there are no
data dependencies between the reordered instructions.	

For example, consider this instruction sequence:	

movi r7,0x1234567890
div r1,r2,r3
addi r1,r1,r7

Since there are no registers used in common by both the MOVI and DIV instructions,
the order of these two instructions doesn’t matter. The core is free to begin the DIV
instruction first. In fact, this is probably a good idea since DIV will take longer than
MOVI to complete. But the ADD cannot begin until both MOVI and DIV have
completed.	

However, the core may not fully understand all data dependencies, especially in the
presence of concurrent algorithms and multiple cores.	

On a single core system, the FENCE instruction can be used to make sure that an
out-of-order core (which might be reordering instructions for the sake of
performance) does not violate some ordering and/or synchronization requirements
that must be respected, but which cannot be inferred from a myopic analysis of the
instruction stream.	

The FENCE instruction requires that any instruction that occurs
before the FENCE is completed before beginning the execution of any
instruction after the FENCE.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	262 342

Chapter 9: Multi-Core Issues	

FENCE instructions can be used to limit and restrict any instruction reordering an
out-of-order core or compiler might otherwise attempt. 	74

For multi-core systems, the FENCE requirement is expanded to include inter-core
interactions. The FENCE instruction affects the instructions on the core that
executes the FENCE, but the FENCE instruction is required to do more in multi-core
systems.	

To address the problem of some data being old and out-of-date in the caches of other
cores, the following additional requirement is added:	

The FENCE instruction requires all memory updates performed by
the core to be fully propagated to other cores before execution
proceeds.	

In other words, after the FENCE instruction is completed, it must be impossible for
any other core to see an old, out-of-date value for any memory location that was
updated by the core before that core executed the FENCE instruction. All STORE
operations must be fully performed and all old, out-of-date values must be purged
from all caches before the FENCE instruction can be retired. 	75

Note that we specifically do not place the following requirement on the FENCE: “All
LOADs and FETCHes that occur after the FENCE must retrieve the most recent, up-
to-date value.” Such a requirement would impose an additional burden on the 76

implementation. Assuming that locks are used rigorously and properly to protect
shared data in a multi-core system, the requirement to propagate STOREs is
sufficient to ensure the shared data is always accessed exclusively.	

 We also assume that a “fence statement” is available to the compiler. This is true in the KPL 74

programming language. The presence of a fence statement in the KPL code will restrict the
reorderings that the compiler might consider, as well as insert a FENCE instruction.

 For example, a write buffer must be emptied and STORES must be propagated before execution 75

proceeds.

 In other words, a core executing a FENCE instruction must propagate all prior STOREs it made 76

to all other cores. But, any STOREs made on other cores, need not be propagated to the core
executing the FENCE instruction.

Blitz-64 Instruction Set Architecture / Porter	 Page of 	263 342

Chapter 9: Multi-Core Issues	

Commentary The specification of FENCE, as given above, imply that the following
are true:	

(1)	All memory operations that appear before the FENCE are truly completed
before the FENCE.	

(2)	All memory operations that appear after the FENCE are truly not started
until after the FENCE.	

These requirements impact changes to shared memory and the timing of when
those changes become visible to other cores.	

Transparent Cache Protocol	

Imagine a very simple multi-core system in which private caches do not exist: there
is only main memory. This is a perfectly reasonable implementation for smaller 77

systems where simplicity is favored over performance. Every time a FETCH, LOAD,
or STORE is executed, the operation is performed directly on the main memory. In
such a simple system, it is not possible for an address to simultaneously contain two
values, since there is only one location in which the value can be stored. In such a
system, the problem of out-of-date data is impossible. The requirement that “all
previous memory operations become visible to all cores” happens implicitly with
every STORE operation.	

Some computer designs include private, per-core local caches, but the cache
protocol will be designed in such a way that all updates to data are immediately
propagated to other caches. Such an “instant propagation” protocol will guarantee
that every memory address will appear to have exactly one value. In this design
approach, cacheing is entirely transparent — data is never out-of-date — and its

 A memory-side cache (often called the L3 cache) is a cache which sits between main memory 77

and the bus that connects to the private caches. All accesses to main memory must pass though the
L3 cache. In our discussion of cache synchronization, we are focussing on private, per-core caches
and we ignore memory-side caches. While the L3 cache can contain a different value than main
memory — implying that one value is out-of-date — all cores will always see the same value, and
that will be the value in the L3 cache, which is the most current value.

Blitz-64 Instruction Set Architecture / Porter	 Page of 	264 342

Chapter 9: Multi-Core Issues	

presence does not affect the result. Aside from performance impacts, the behavior is
identical to the simpler design without any private caches at all. 	78

Linearizability	

A strictly linearizable cache protocol is defined as follows. Although the actual
order in which operations occur is not fully constrained, there must exist a total
order for all LOADs and STOREs. The results of a strictly linearizable protocol are 79

the same as if all operations had been performed sequentially, one after the other in
that order, on a system without any cacheing.	

The “no cache” and the “instant propagation” protocols described in previous
paragraphs are strictly linearizable. However the strictly linearizable protocol
allows added flexibility in the ordering of two operations that are performed by
different cores. Another way to say this is that cache propagations can be delayed, as
long as the outcome is guaranteed to be the identical to the result on a no-cache
system in which the cores run at variable and indeterminate speeds.	

While a linearizable cache protocol is ideal, there is a cost to making cacheing
entirely transparent.	

So in some modern systems — including Blitz-64 — strict linearizability is
sacrificed. Updates to the cache are not required to propagate immediately. The
cache at some core can continue to use out-of-date data at the same time that the
core is seeing and using updated values in other cache lines.	

 Imagine a program that goes through memory byte-by-byte writing to sequential bytes, one-by-78

one. Each STORE instruction updates a single byte within some cache line. For each STORE, it is
necessary to notify all other caches to make certain they invalidate any copy of this cache line they
hold in their private caches. This overhead can impose a huge burden on bus traffic.

 Of course this total order must respect the order in which the LOADs and STOREs on any one 79

core are performed.

Blitz-64 Instruction Set Architecture / Porter	 Page of 	265 342

Chapter 9: Multi-Core Issues	

The relaxed memory model of Blitz-64 allows the same cache line in the caches at
two different cores to contain different data. In short, the cache protocol can allow 80

some core to continue to see an old, out-of-date value for some time, while other
cores are seeing the new, updated value. This allows for improved performance, but
opens the door to confusion when two cores are accessing the same address in a
shared address space. 	81

Locking Example	

To perform synchronization and concurrency control, all shared data really ought to
be protected by locks. Program correctness cannot be guaranteed without proper
locking.	

To accommodate the Blitz-64 memory model, a FENCE instruction
should be used within the locking functions.	

The FENCE is used to make sure that all operations which are to be done after a lock
is acquired are truly not begun until after the lock has been properly acquired.
FENCE is also used before a lock is released to ensure that all instructions that
should be executed in the critical section (i.e., before the release) are truly
completed before the lock is freed.	

This is required to prevent an out-of-order processor or the relaxed cache protocol
from violating the locking protocol that programmers depend on.	

 In Blitz-64, the following restriction holds: It must be clear which value is most recent. We do 80

not allow two cores to STORE into a single location where neither STORE has precedence. While
changes may not propagate immediately, the values retrieved from a single location are required to
be sequentially ordered. Assume that one core stores 6 while another core stores 7 into the same
location. Then either the 6 is stored first (in which case it is never possible for any core to read 7
followed by reading 6) or 7 is stored first (in which case it is never possible for any core to read 6
followed by reading 7).

 It would get even more problematic if the cache protocol allowed the updates to be propagated 81

in an unconstrained, arbitrary order. It would then become possible that one core can see changes
made in an order that is different from the order in which the other core actually made them. But
as mentioned, this is not allowed in the Blitz-64 memory model.

Blitz-64 Instruction Set Architecture / Porter	 Page of 	266 342

Chapter 9: Multi-Core Issues	

As an example, consider the following code:	

Acquire Lock 	82

	 Wait for lock to become 0	
	 lock ← 1	
	 FENCE	

Critical Section	
	 Access shared variable X	

Release Lock	
	 FENCE	
	 lock ← 0	

Let’s assume some shared data (which we will call X) is protected by a lock,
represented by variable lock. We assume the usual locking convention that any core
wishing to examine or modify X must first acquire the lock. 	

Imagine that core A grabs the lock and updates X. While the lock is held, the value of
X will pass through some “inconsistent states”, but before the lock is released, the
core will set X to a “consistent state”, ready for other cores to see and use.	

So what happens after core A releases the lock? It is perfectly legitimate for some
other core (call it B) to acquire the lock and then retrieve the value of X. But core B
must not see an out-of-date value; it must see the final value of X and not some
earlier, inconsistent state.	

Updates to lock and updates to the shared variable X must propagate and become
visible to all cores in a timely, controlled, and correct way. The FENCE instruction
must be used to guarantee this.	

What would happen without the FENCE instructions? The locking will not work
properly, given the relaxed memory model of Blitz-64. Core A (which we assume
initially holds the lock) will update X before releasing the lock and updating lock.
Unfortunately, core B might observe the update to lock before the update to X. Such
a scenario could allow core B to see a premature, inconsistent state of X. This defeats
the idea of locking and would be a total disaster.	

 The “wait” and the “set lock” operations must be done together atomically, but those details are 82

ignored here.

Blitz-64 Instruction Set Architecture / Porter	 Page of 	267 342

Chapter 9: Multi-Core Issues	

The FENCE instruction requires that all changes by one core must be propagated to
all cores at the time of the FENCE.	

In the code above, any core (such as A) acquiring the lock must set lock to 1 before X
can be accessed. The FENCE instruction in the acquire code guarantees that all other
cores will see the lock as being set — and must therefore be outside of their critical
sections — before core A can proceed to access X.	

At the end of its critical section, core A updates X and then executes a FENCE before
updating and releasing the lock. The FENCE in the release code guarantees that all
changes to X will be propagated to other cores before core A can proceed to the
instruction after the FENCE which then releases the lock. All changes to X must be
delivered to other cores before the code can begin to release the lock. Therefore, 83

no other core can observe an older value of X after observing the updated (released)
value of lock.	

In conclusion, if FENCE is used within the code to acquire and release locks as
shown above, and if locks are always used to protect all shared data, then
concurrently accessed data will be properly protected and behave as expected. The
results obtained will be consistent with a linearizable memory model and the fact
that the memory model is relaxed will become invisible.	

More Discussion / Implementation	

Clearly, the FENCE instruction must prevent any reordering of instructions on the
core executing the FENCE. More precisely, memory operations (LOAD, STORE,
FETCH) that appear before the FENCE instruction must not be moved past the
FENCE instruction and memory operations that occur after the FENCE must not be
initiated before the FENCE. In other words, the core executing the FENCE must not
reorder instructions around the FENCE instruction. 	84

 Or, at least any old values must be made invisible and inaccessible.83

 In theory, any data pre-fetched into the core’s pipeline must be flushed whenever a FENCE is 84

encountered since that might be out-of-date. But we can avoid clearing the instruction prefetch
buffer as long as the prefetch buffer is cleared whenever the core issues a STORE that invalidates
any line in the core’s i-cache.

Blitz-64 Instruction Set Architecture / Porter	 Page of 	268 342

Chapter 9: Multi-Core Issues	

We must also ensure that any STORE appearing before a FENCE will be propagated
to other cores so that no other LOAD or FETCH on any core after the FENCE is
encountered can possibly retrieve an earlier, out-of-date value.	

On the other hand, there is no possibility of another core prematurely getting a value
STOREd after the FENCE, since the STORE instruction is not permitted to begin until
after the FENCE.	

We must also ensure that any LOAD or FETCH that occurs after a FENCE must
retrieve the most up-to-date copy of any data. Obviously, there is no danger of a
LOAD or FETCH that occurs before the FENCE getting a value that was STORED any
time after the FENCE.	

Both may require invalidating any cache lines that could possibly contain old, out-of-
date data.	

To illustrate, imagine a cache line that is held both in the cache of core A and in the
cache of some other cores. Imagine that this line is updated by A before a FENCE
instruction. (For example, the shared data might be a lock which is getting set,
followed by a FENCE instruction before the critical section is entered.) The FENCE
must cause any cache line that A updated to be either updated or invalidated in all
other private caches that happen to contain that same line, since the other cores’
caches might previously have contained different (i.e., older) values. (For example,
they might have previously seen the lock as “unset” , but they must now see the lock
as being “set”.) After that, the only value observable by any core will be the value
held in A’s cache, which is necessarily up-to-date. This new value may or may not
also appear in other caches — depending on whether the FENCE is implemented by
invalidating the other cores’ caches or by updating them with the new value — but
no older value will be present in any cache.	

The implementation gets more complex if it allows the possibility that a cache line
updated by core A can subsequently migrate to another cache before the FENCE
without invalidating some other, older copies in other cores. Failure to invalidate the
contents in these other cores would violate the requirements of FENCE.	

For example, there may be several variables coincidentally occupying the same
cache line. Assume that, after A updates the cache line, some other core (call it B)
grabs the line for some unrelated usage, thereby invalidating A’s copy. Now B has the
most recent copy and A no longer contains the line. On top of this, imagine that some
other core (C) may happen to contain an older version of this very same cache line.

Blitz-64 Instruction Set Architecture / Porter	 Page of 	269 342

Chapter 9: Multi-Core Issues	

The cache line at C is old and out-of-date, but since no FENCE has occurred, this old
cache line has not been invalidated. C is just looking at an older copy of the data.
(Perhaps the cache line contains several variables, each protected by different locks.
Since the locking protocols are respected, the data that C is seeing is not, itself, out-
of-date at all. Only the data elsewhere on the line is out-of-date.)	

Now assume A issues a FENCE operation. It required that this old, out-of-date cache
line in core C must be invalidated, even though this cache line is no longer present in
A.	

In order to implement the Blitz-64 requirements correctly, it seems necessary to do
one of the following:	

(1)	Invalidate any and all cache lines that could possibly be out-of-date in
any core, whenever a FENCE instruction is executed on any core.	

(2)	Never migrate an updated cache line from one core to another without
updating or invalidating any and all other copies. More precisely, if
other private caches may contain older, out-of-date copies of the cache
line, these same cache lines must either be updated or invalidated at
the time the current, most recent value of the cache line is migrated
from one core to another.	

Option (2) is preferable in terms of performance.	

Self-Modifying Code	

Another issue that can arise with caches is the fact that cores often have separate
caches for instructions and data. The so-called i-cache holds instructions and the d-
cache holds data.	

A program that does instruction modification alters its own code during execution.
In other words, the code will STORE into some memory location and then FETCH
from that same location at some later time, possibly on the very next instruction.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	270 342

Chapter 9: Multi-Core Issues	

The kernel regularly writes data to pages that will be subsequently executed, so we
must consider it to be self-modifying. . It is not entirely uncommon for a user mode 85

process to modify its own code while it executes, although this is often frowned
upon. In some cases, user mode code might even be prohibited from instruction 86

modification. 	87

In any case, we could now have a situation in which data from the same address is
held simultaneously in two different caches (the i-cache and the d-cache).
Consequently, there is a need to synchronize these caches from time to time.	

The FENCE instruction also guarantees that any writes to the d-cache will be
propagated to the i-cache. After a FENCE, the i-cache must never hold out-of-date
values. The FENCE instruction must also flush and invalidate any instruction that

 One example is the “exec” syscall, in which the kernel loads an executable file into memory, 85

treating it as data. Later, the instructions that were loaded will be executed.	

Another example is dynamically loaded I/O drivers. A kernel may download code from the internet
to deal with some new device and, after moving this code into memory, invoke this code. Since no
kernel rebuild or reboot is required, this is an example of self-modifying code.	

A kernel capable of downloading kernel patches and dynamically applying them — while very
risky from a security viewpoint — is a third example.

 One example involves the implementation of dynamically loaded library functions. The idea is 86

that the CALL to such a function is actually directed at a dynamic loader; upon the first invocation,
the function is loaded and the site of the CALL instruction is overwritten so that subsequent
invocations go directly to the now-resident function.	

Another example involves just-in-time compilation. The idea is that the original code is expressed
in some high-level form; upon the first invocation, a resident compiler is called to generate
machine code, which will then be executed. Both the code and the compiler might live and run
within a single user mode address space.	

Another more esoteric example might involve some research-oriented simulation program that
uses a genetic algorithm to evolve code via natural selection, treating the address space as a
sandbox environment. I’m sure there are other ideas I don’t know.

 In the case of malware, a virus might enter the virtual address space of some innocent process 87

as data and subsequently get executed. If the user process has some critical security clearance,
then the malware code can do its dirty-work. This is an excellent reason to forbid security-critical
processes from containing pages that are both writable and executable or ever adding “writable”
privileges to any page.

Blitz-64 Instruction Set Architecture / Porter	 Page of 	271 342

Chapter 9: Multi-Core Issues	

was previously fetched and sitting in the pipeline (or some prefetch buffer) awaiting
execution.	

In a multi-core system, any modifications by the core executing the FENCE must be
propagated to the i-caches — as well as the d-caches — of all other cores. This 88

includes instructions sitting in the pipelines of other cores. 	89

Within a single core, this could be implemented by having the i-cache constantly
snooping. Whenever the CORE executes a STORE to a line that happens to be held in
the i-cache, that line must be invalidated. Whenever an invalidate or update comes
in from another core, the i-cache must respond, just as the d-cache must. Finally,
whenever the i-cache must FETCH a new line, it must look in the d-cache as well as
the L2 cache.	

Invalidating Data in the Pipeline	

At any moment in time, a core will contain a number of instructions which are in
various stages of decoding and execution within the instruction pipeline. In
particular, a core will normally contain an instruction prefetch buffer which
contains a number of instructions which have been fetched from the i-cache but
whose execution has not yet begun, as well as instructions that are in various stages
of execution within the execution pipeline.	

The instructions in the prefetch buffer may or may not ultimately get executed,
depending on branch instructions and conditional execution, but they have been
FETCHed from main memory, so they are effectively cached.	

In this section, we talk more generally about all instruction and data bytes anywhere
within the instruction pipeline of a core. The instruction prefetch buffer is one

 Since the i-cache cannot be written to, propagation in the reverse direction is not an issue.88

 It is a far-fetched example, but consider a scenario where core A modifies an instruction in 89

memory and executes a FENCE. Assume that core B has already fetched the previous value of this
same instruction and it is already in core B’s pipeline awaiting execution. A correct multi-core
system must make sure that the old instruction is not executed after the FENCE has completed. A
design in which the FENCE instruction simply delays enough cycles for the pipelines on all other
cores to be completely exhausted is adequate to handle this, as long as the i-caches are also flushed
as discussed.

Blitz-64 Instruction Set Architecture / Porter	 Page of 	272 342

Chapter 9: Multi-Core Issues	

example of data effectively pre-cached in a core’s pipeline. A core may also
speculatively prefetch data from the d-cache. In either case, the core’s pipeline may
contain a value that is effectively cached and may differ from values for that same
byte that have been modified by other cores and held in other caches.	

Of course, it is unacceptable to execute an instruction on core B after core A has
modified that instruction and a FENCE instruction has been executed. Therefore
when discussing the FENCE instruction, we must consider data present in pipelines.	

Given that the instruction prefetch buffer has a finite size, we can assume that any
data within the pipeline will be consumed within the execution of a small number of
instructions. For example, let us assume that the prefetch buffer can hold 10
instructions and the execution pipeline can hold up to 5 instructions in various
stages of execution. Then after the execution of 15 instructions, any old, out-of-date
data in the pipeline will necessarily be consumed and subsequent instructions and
data must be fetched from the i-cache and d-cache.	

We expect the execution of the FENCE instruction to be fairly common; after all, the
kernel must use it on every lock “acquire” and “release” operation and it’s
reasonable to assume that a minimum of four FENCEs are required on every core at
every timer interrupt (i.e., every “tick”). 	90

In the simplest design approach, the cache protocol would clear every core’s
pipeline for each and every FENCE operation on any core. It’s probably unacceptable
to introduce a 15 instruction delay into all cores whenever any single core issues a
FENCE, but definitely not out of the question for simpler systems.	

In another approach, the FENCE instruction would be implemented by simply
making the core that executed the FENCE wait. The idea is that all processing on the
core must be suspended until all inconsistencies involving that core’s caches have
had a chance to propagate. This gives any changes made by the core enough time to
propagate to other caches so that no cache can contain an old, out-of-date values.
Also, the core will need to wait until the other cores have had a chance to exhaust

 For example, the previously executing process must acquire a lock before changing its status 90

from RUNNING to READY; the scheduler releases that lock and acquires the lock of another
process in order to change its status from READY to RUNNING; and finally the new process must
release that lock.

Blitz-64 Instruction Set Architecture / Porter	 Page of 	273 342

Chapter 9: Multi-Core Issues	

and consume all the pre-fetched data in their pipelines. So one core must wait for 15
instructions. 	91

If the implementation assumes that all data in a core’s prefetch buffer is always
present in its i-cache, a third, more sophisticated implementation of FENCE would
be to empty the prefetch buffer only whenever any line in the core’s i-cache is
invalidated. That is, whenever a FENCE instruction from another core forces any line
in a core’s i-cache to be invalidated, then that core must also unconditionally empty
its entire prefetch buffer.	

An even more complex implementation might involve keeping track of which cache 92

lines are represented in the core’s prefetch buffer. The idea is that the prefetch
buffer would only be cleared when one of those particular lines is invalidated. 	93

Summary	

We risk correctness unless we empty the caches and the execution pipeline of any
core whose local, private caches might possibly contain an out-of-date data at the
time of a FENCE.	

We stipulate the following:	

A FENCE instruction on any core must invalidate out-of-date data
kept in the private caches (both d-caches and i-caches) of all other
cores. If data is invalidated in a core’s private cache, and there is any
possibility that the same data is also sitting in the core’s execution
pipeline, execution must stop and the pipeline must be cleared.	

 More precisely, the core must first wait until all cache inconsistencies are eliminated, then it 91

must wait additional time (such as 15 instructions) giving the pipelines on other cores a chance to
finish, so that no out-of-date data can possibly exist anywhere in any other core.

 Since code modification is fairly rare, the approach described in this paragraph seems like 92

overkill.

 An even more targeted implementation would involve adding hardware to remember, for each 93

byte in the pipeline, from exactly which cache line it originated. Then we could use this to limit
pipeline flushing even further. The idea is that a “FENCE bubble” would be inserted into the
pipeline of every core whenever a FENCE is executed on any core. If the pipeline contains a
prefetched byte before that FENCE bubble which came from a cache line that has since been
invalidated, we would only need to flush the pipeline from that point on, forcing a reload of the
byte and its the new value. However, this sounds overly expensive and complicated.

Blitz-64 Instruction Set Architecture / Porter	 Page of 	274 342

Chapter 9: Multi-Core Issues	

More precisely, we are referring to any instructions (FETCHed from the i-cache) and
any data (LOADed from the d-cache) present in the pipeline at any stage of
incomplete, non-retired execution. This includes the prefetch pipeline as well as any
data speculatively prefetched. The invalidated bytes and everything behind them in
the pipeline must be removed. Instructions and data prefetched and sitting in front
of the invalidated data is allowed to remain in the pipeline.	

The simplest implementation is to clear every core’s pipeline every time there is any
FENCE operation. However, this could result in an unacceptable slowdown, since
there might be a lot of unnecessary pipeline flushing.	

We described a more reasonable implementation, which is to clear the entire
pipeline but only whenever any line in the d-cache or i-cache is invalidated as a
result of a FENCE operation on a remote core. If no line in the private caches is
invalidated, there is no reason to clear the pipeline. 	94

Out-of-Date TLB Registers	

The Translation Lookaside Buffer (TLB) registers are effectively a cache of data
retrieved from memory, namely page table entries (PTEs) that have been cached in
the TLB to improve performance. As such, the TLB may become out-of-date
whenever changes are made to the in-memory page table.	

The FENCE operation is not required or expected to affect the TLB
registers.	

Instead, the instructions — TLBFLUSH and TLBCLEAR — are used to invalidate TLB
entries.	

 It is crucial to note that this assumes that any byte in the pipeline that came from the core’s 94

local d- or i-caches must still be resident in the local cache and therefore subject to potential
invalidation by some other core’s FENCE operation. Fortunately, this requirement is easily met. If
instructions and data in the pipeline always come from the i-cache and d-cache and lines in these
caches are evicted based on the least-recently-used algorithm, then this requirement will be met.
Since the pipeline is not too large, the relevant lines can not yet have been evicted.

Blitz-64 Instruction Set Architecture / Porter	 Page of 	275 342

Chapter 9: Multi-Core Issues	

At this time, the Blitz-64 ISA only mandates that the TLBFLUSH and
TLBCLEAR instructions only affect the TLB registers on the current
core. However, this is still under consideration and the ISA may be
modified.	

The alternative is to require a TLBFLUSH or TLBCLEAR operation to affect the TLB
registers on all cores.	

Consider the following scenario. Two user mode threads are executing
simultaneously using a single, shared address space. Assume each thread is
executing on a different core. Imagine that one thread requests a kernel operation
that causes a change to the address space. As part of the operation, the kernel will
naturally issue a TLBFLUSH or TLBCLEAR operation to get rid of old, out-of-date
Page Table Entries (PTEs) cached in the TLB. But what about the TLB resisters on
the other core? They must also be invalidated! Perhaps the first core must interrupt
all other cores to request they execute TLBFLUSH/TLBCLEAR operations. But the
other cores are most likely not using the affected address space. Such interruptions
would be very common but will result in nothing but wasted time on all other cores!	

Unfortunately, the obvious solution — to put all threads operating within a given
address space on the same core — tends to defeat the very purpose of having more
than one core.	

To deal with multiple threads executing within the same virtual address space,
another approach might be to create a unique address space for each thread. These
address spaces will simply share all pages, although they each have a unique address
space identifier (ASID). But this doesn’t really solve the problem: when one thread
modifies the address space, the other threads (running on other cores) must still be
notified so the same modifications can be made to their address spaces.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	276 342

Chapter 10: Power-On-Reset	

Quick Summary	

• After power-on, certain registers will be initialized before execution begins.	
• Execution begins with the BootLoader program in the Boot ROM Area.	

Power-On-Reset	

A “power-on-reset” occurs whenever:	

• The processor core is first powered up	
• The RESET button (if one exists) is pressed	
• The RESTART machine instruction is executed	

Before the first instruction is executed, hardware will set the following registers to
these initial values:	

	 csr_instr ← 0x0000_0000_0000_0000	
	 csr_cycle ← 0x0000_0000_0000_0000	
	 csr_status ← 0x0000_0000_0000_0001	
	 Program Counter (PC) ← 0x4_0000_0000	

With this value for csr_status, we have:	

	 Kernel Mode:	 Enabled	
	 Interrupts:	 Disabled	
	 StackLimit:	 0 (i.e., any value of sp is okay)	

The PC is set to the first word of the Boot ROM Area, which is the memory-mapped
I/O area where the BootLoader program is stored.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 277 342

Chapter 10: Power-On-Reset and the Boot Sequence	

All memory-mapped I/O devices will be sent a reset signal and will go into their
initial states. Any pending interrupts will be cleared at power-on-reset.	

If the core contains a Secure Storage Area, the Secure Storage Limit Register will
be set to 0.	

All other other programmer-visible state of the core (i.e., the general purpose
registers and all other CSRs) will have undefined values. 	95

 Of course the read-only CSRs will have their expected values.95

Blitz-64 Instruction Set Architecture / Porter	 Page of 	278 342

Chapter 11: Memory-Mapped I/O	

Quick Summary	

• Each I/O device is allocated one or more pages.	
• The memory-mapped I/O pages are located in a dedicated region of addresses.	
• The memory-mapped I/O region is 16 GiBytes (1 Mi Pages).	
• The memory-mapped I/O region begins at address 0x4_0000_0000.	
• Code running in kernel mode has full access to the memory-mapped I/O region.	
• The I/O pages may optionally be mapped into virtual address spaces.	
• The Boot ROM Area is treated as a memory-mapped I/O region.	

Overview	

The Blitz-64 architecture does not contain instructions that are dedicated to input or
output.	

Instead, all I/O devices are memory-mapped, which means they are accessed using
LOAD and STORE instructions. Instructions can also be FETCHed from memory-
mapped I/O regions. For example, instructions are fetched from the Boot ROM Area.	

Each device is assigned to, and located within, one or more pages. In other words,
the starting address for a device’s address range will be page-aligned and the
amount of address space the device consumes will be a multiple of the page size,
which is 16 KiBytes.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 279 342

Chapter 11: Memory-Mapped I/O	

In the layout of the memory-mapped I/O region, the various I/O devices will be
ordered and laid out sequentially, one after the other. They will not overlap and
different devices will be on different pages. 	96

The exact layout of the memory-mapped I/O regions is implementation-dependent.	

Allocating the memory-mapped I/O address space in units of pages is mandated for
the following reason: it allows the kernel to use address translation to map the
pages into various virtual address spaces. At runtime, the Memory Management Unit
will use page tables to map a LOAD or STORE from a virtual address to the physical
address of the device. Thus, the kernel can use the paging mechanism to make an
individual memory-mapped I/O device available to one address space, but hidden
and invisible to all other address spaces.	

In most cases, the device driver for a particular device will run as a user-mode
program. The pages for the device being managed are mapped into the address
space of the driver program. This approach frees the kernel from the overhead of
dealing with many devices. More importantly, it allows device drivers to be
dynamically loaded, started, and stopped in a safe fashion. If a device driver is buggy
or contains malicious code, the damage is limited to the device in question; it cannot
modify other devices or corrupt kernel memory. Moving most device drivers out of
the kernel is critical for security, as well as flexibility.	

Nevertheless, a few devices will undoubtedly be managed directly by the kernel. The
pages for such a device would not be mapped into any virtual address space and the
kernel code would address the pages directly.	

Like normal memory pages, I/O pages that are mapped into virtual spaces may have
any combination of permissions.	

By not mapping a memory-mapped I/O page into a virtual address space, the kernel
prevents user mode code from accessing the device. If a page is mapped, then it will
be readable. In addition, the kernel may mark the page as writable and/or
executable. Normally, the pages for I/O devices would be marked writable (allowing
the code to update/alter/command the device) but not executable.	

 It is allowed for implementation to place unused gaps between the regions, if this is convenient. 96

If there is an expectation that a region will grow in subsequent implementations or that some
devices may be implemented optionally in different versions, then those pages should be pre-
allocated, set aside, and documented as such.

Blitz-64 Instruction Set Architecture / Porter	 Page of 	280 342

Chapter 11: Memory-Mapped I/O	

In this document, we do not fully specify the nature of all I/O devices available on a
Blitz-64 system. In fact, different implementations will have different devices. In
other words, which devices are present and how they function will vary between
implementations.	

Each implementation must specify:	

	 • Which I/O devices are present	
	 • Where each device is located in the physical address space	
	 • How many pages are allocated to each device	
	 • Exactly how the device functions and how it is used	

Below is an example placement of memory-mapped I/O devices. (This happens to be
the default memory map for the devices implemented by the Blitz-64 emulator.)	

	 Size 	 	 	
	 Device 	 Starting Addr	 Hex 	 Bytes 	 Pages	 	 	
	 Boot ROM Area	 4_0000_0000	 10_0000	 1 MiBytes	 64	 	 	
	 Secure Storage Area	 4_0010_0000	 10_0000	 1 MiBytes	 64	 	 	
	 PLIC	 4_0020_0000 	 4000	 16 KiBytes	 1		 	 	
	 UART	 4_0020_4000	 4000	 16 KiBytes	 1		 	 	
	 DISK	 4_0020_8000 	 4000	 16 KiBytes	 1		 	 	
	 DMA Device	 4_0020_c000 	 4000	 16 KiBytes	 1		 	 	
	 Host Device	 4_0021_0000 	 4000	 16 KiBytes	 1		 	 	

The mapping of I/O devices is implementation dependent and will vary. For
example, an implementation might also include mappings for devices such as:	

• Digital I/O Pins	
• MicroSD Card	
• HDMI	
• USB	
• WiFi	
• Adjacent Core Links	
• Lock Controller	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	281 342

Chapter 11: Memory-Mapped I/O	

Typical I/O Devices	

The following devices are common and expected to be implemented on all or almost
all Blitz-64 systems. For greater detail on the devices mentioned in this section,
consult the document	

	 “Blitz-64: Memory-Mapped I/O Devices”	

The Boot ROM Area contains the code that will be executed on startup. Upon
power-on-reset, the program counter (PC) is set to the first address in this area. This
area is populated with preset memory bytes (i.e., ROM) which cannot be altered.	

The Secure Storage Area would be present in any complex system and contains
additional code used during the bootstrapping process. It contains firmware, which
means that the bytes are retained when the power is off, but which are also
updatable (e.g., EEPROM).	

The Platform-Level Interrupt Controller (PLIC) device manages interrupts
coming other devices (such as the UART or DISK devices) and channels interrupts to
one or more cores.	

The Universal Asynchronous Receive Transmit (UART) device allows individual
8-bit characters to be sent and received over a serial channel.	

This DISK device implements some form of long-term stable storage, such as a disk
or flash drive.	

The Direct Memory Access (DMA) controller is capable of the following tasks:	

• Move a large block of memory	
• Zero a large block of memory	
• Perform secure hashing (using SHA-256)	
• Perform AES encryption and decryption	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	282 342

Chapter 11: Memory-Mapped I/O	

The Host Device is implemented only in the Blitz-64 emulator. It provides a sort of
“back-door” to the underlying Unix/POSIX system running the emulator. This
“device" would not be included in a physical implementation. The Host Device
provides the following functionality:	

• Ability to access command line arguments	
• Ability to access the date and time	
• Ability to perform file I/O (fopen, fgetc, ungetc, fputs, fseek, ...)	

Boot ROM Area	

This is the location of the “BootLoader”, the initial program which is executed when
the core is powered up. As read-only-memory, all LOAD and FETCH operations
function the same as any memory, but STORE operations are ignored.	

The BootLoader program and the exact contents of this area are implementation
dependent. The BootLoader program will be tailored to the system containing the
Blitz-64 core.	

The starting address for this region is mandatory and fixed. The number of bytes
actually implemented may be less than the 1 MiByte range — this is implementation
dependent — although setting aside the entire region as specified above is strongly
recommended.	

In a multi-core system, there may be one Boot ROM Area shared by all cores or each
core may have its own separate Boot ROM Area. This is implementation dependent.	

The intended use of this area and various considerations are discussed in the
chapter “The Secure Boot Sequence”. That chapter explains why the Boot ROM Area

Blitz-64 Instruction Set Architecture / Porter	 Page of 	283 342

Chapter 11: Memory-Mapped I/O	

should be implemented with ROM and why this area should not implemented with 97

flash memory, which can be updated. 	98

Secure Storage Area	

The Secure Storage Area is used to make certain the boot process is secure and that
malicious code cannot gain a foothold during the boot process.	

The Secure Storage Area should be implemented if secure booting is wanted.
However, simpler systems may leave this area unimplemented.	

With secure booting, the boot process is a two-step process. The first stage is the
Low Level Boot Loader (LLBL), which is the program residing in Boot ROM. The
LLBL will invoke the Second Stage Boot Loader (SSBL), which is a program
residing in flash memory, and more particularly in the Secure Storage area described
here.	

It is the SSBL that will actually access the file system, locate the OS kernel’s
executable image file, load it, and jump to the kernel’s entry point. The SSBL is
considered to be “firmware”, since it can be updated.	

The LLBL is only concerned with managing security and the Secure Storage Area,
including updates to the Secure Storage Area and the SSBL.	

The Secure Storage functions much like main memory: It is a large chunk of byte-
addressable memory that can be read and written, and instructions can be fetched
from this area, as well. The number of bytes actually implemented may be less than

 Read-Only Memory (ROM) is memory whose contents are fixed and cannot be altered.97

 As a practical manufacturing concern, the Boot ROM Area might be implemented with flash-type 98

memory that can be loaded when the system is manufactured. The key point is that once written
and released into the field, the Boot ROM Area should not be modified by instruction execution or
any programmatic behavior of the system.	

For example, the Boot ROM Area might be writable using an electrical connection that is made
during the manufacturing process. But once the product is delivered, the Boot ROM Area must not
be modifiable without physical contact to directly manipulate the device. The inviolability of the
Boot ROM Area is crucial for system security and integrity. However, the measures described in
this ISA do not attempt to protect a Blitz-64 system against direct physical meddling.

Blitz-64 Instruction Set Architecture / Porter	 Page of 	284 342

Chapter 11: Memory-Mapped I/O	

the 1 MiByte range — this is implementation dependent — although the range itself
is mandatory and fixed.	

In terms of reading data and fetching instructions, it functions exactly like other
memory: there are no special restrictions and any byte can be retrieved.	

In terms of writing, there is a crucial difference with main memory. The Secure
Storage area has a lock capability which allows bytes to be “write-protected”. The
bytes can be written until they become locked and after that, writes are ignored.
From that time on, the memory functions like ROM.	

The write protection is controlled by a special register called the “Secure Storage
Limit Register”. This is a 64 bit register containing an address. Any byte located
below the Secure Storage Limit is locked and cannot be updated. Any byte whose
address is greater than or equal to the Secure Storage Limit may be updated freely
and without restriction.	

The Secure Storage Limit Register is set to zero on startup. That is, a power-on-reset
will initialize the Secure Storage Limit Register to 0x0000_0000_0000_0000. A value
of zero implies that the entire Secure Storage area is unlocked. Any byte can be
written.	

The Secure Storage Limit register is mapped to the first doubleword of the Secure
Storage Area. That is, the first 8 bytes of the Secure Storage Area are special in that
any write to them is a write to the Secure Storage Limit Register. The remaining
bytes of the Secure Storage Area function as described above. The Secure Storage
Limit Register is readable and can be obtained at any time by reading the first 8
bytes of the Secure Storage Area. 	99

Note that since the Secure Storage Limit Register is at the beginning of the Secure
Storage area, if any of the Secure Storage area is locked, then the Secure Storage
Limit Register itself will be locked. The first write to the Secure Storage Limit

 The Secure Storage Limit register is a 36-bit doubleword aligned address. Any other bits outside 99

of [35:3] shall be ignored for the purpose of imposing write-protection. Presumably, all 64 bits will
be written into the first 8 bytes of flash and all bits will be retrievable, but this is not required.

Blitz-64 Instruction Set Architecture / Porter	 Page of 	285 342

Chapter 11: Memory-Mapped I/O	

register will lock some or all of the Secure Storage area, but will surely lock the
Secure Storage Limit Register itself. 	100101102

In a multi-core system, there may be one Secure Storage area shared by all cores or
each core may have its own separate Secure Storage area. This is implementation
dependent.	

The intended use of this area and various considerations are discussed in the
chapter “The Secure Boot Sequence”.	

 A write to the register with an address below the start of the Secure Storage area would be 100

possible, but would accomplish nothing, so we ignore such a thing.

 We envision that the Stack Limit Register will be implemented as follows. The core will contain 101

a separate register, which is not a Command and Status Register (CSR) and which is not directly
accessible. Whenever a STORE to the Secure Storage Area is attempted, the core will check the
target address against this register and inhibit the operation if it violates the constraint. Otherwise
the STORE will function like any memory STORE. Additionally, if a STORE is attempted in which the
target address happens to be the first address of the Secure Storage Area and the constraint is not
violated, the Stack Limit Register will also be updated, in additional to the normal writing of the
data to the Secure Storage Area itself. With no loss of generality, the Stack Limit Register can be
limited to 35 bits.

 A specific implementation may limit the Secure Storage Limit Register to holding only certain 102

values. For example, the register may be required to be (say) page aligned. Such a restriction is an
implementation dependency. If a write is made to such register, then the actual value stored will be
rounded up to the next legal value. In this example, the value will be rounded up to the next page
boundary. Such a limitation might be useful to accommodate the nature of the non-volatile storage
being used.

Blitz-64 Instruction Set Architecture / Porter	 Page of 	286 342

Chapter 12: The Secure Boot
Sequence	

Quick Summary	

• After power-on, certain registers will be initialized before execution begins.	
• Execution begins with the BootLoader program in the Boot ROM Area.	
• Details of the BootLoader program are implementation dependent.	
• Security issues around the boot process are discussed.	

The BootLoader Program	

It is assumed that a program (called the BootLoader) has been pre-installed in the
Boot ROM Area.	

Upon start-up (i.e., a “power-on-reset”), instructions will be fetched from the Boot
ROM Area, beginning with the instruction stored in the first word of the Boot ROM
Area. Thus the entry point of the BootLoader after a power-on-reset is its first word,
located at address 0x4_0000_0000.	

A “warm reboot” (also called a “soft reset”) occurs when the kernel branches into
the BootLoader directly, with the intent to reboot exactly as if a power-on-reset had
occurred. This branch is made to a second entry point, in case there are subtle
distinctions between cold and warm booting.	

After a kernel crash (e.g., a “Hardware Exception”), the trap handler may end by
branching directly to the BootLoader. In this case, a third entry point is used. This is
called the “kernel-crash” entry point.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 287 342

Chapter 12: The Boot Sequence	

	 BootLoader Entry Points	
	 	 Power-on-reset entry point:	 0x4_0000_0000	
	 	 Warm-reboot entry point:	 0x4_0000_0008	
	 	 Kernel-crash entry point:	 0x4_0000_0010	

In all cases, the behavior of the BootLoader will be almost identical. 	103

Commentary Since instructions can be fetched from the Memory Mapped I/O area,
there is no need to remap the physical address space, as is done in some systems.
Also, there is no particular reason to make the BootLoader code relocatable. 	104

We don’t specify the exact behavior of the BootLoader program here, but perhaps it
will begin by probing the physical memory to determine the size of installed
physical main memory.	

 To support kernel development, the code at the “kernel-crash entry point” might be specially 103

tailored for debugging.

 Relocatable code is code that will run correctly regardless of where it is placed in memory. This 104

is done by making all addresses PC-relative. For the purposes of debugging, it may be useful to
make the BootLoader relocatable. During debugging of the BootLoader itself, it might be
convenient to place the BootLoader in a writable area of main memory, to accommodate
breakpoints, and so forth.

Blitz-64 Instruction Set Architecture / Porter	 Page of 	288 342

Chapter 12: The Boot Sequence	

Probing Memory to Find Its Size	

The size of installed physical memory is assumed to be a power of two, e.g., 256
MiBytes. Thus, it will take about 34 probes to determine the installed memory size:	

	 211 = 2 Ki	
	 212 = 4 Ki	
	 213 = 8 Ki	
	 214 = 16 Ki	
	 	 …	
	 244 = 16 Ti	

To probe a memory doubleword, the BootLoader should:	

	 • Read the previous existing value and save it.	
	 • Write 0xFFFF_FFFF_FFFF_FFFF.	
	 • Read the value back & check that it is unchanged.	
	 • Write 0x0000_0000_0000_0000.	
	 • Read the value back & check that it is unchanged.	
	 • Restore the previous value. 	105

By convention, the BootLoader is free to use the uppermost 1 MiByte of physical
memory for its R/W data. The kernel image will be loaded into low physical memory
so there should be no overlap.	

 The reason for saving the pre-existing value is that the BootLoader may be invoked after a 105

kernel crash and the pre-existing memory contents may be important. For example, the
BootLoader may be passed a pointer to an area of memory where the kernel has stored
information about the crash. This may include register state, as well as other data. The BootLoader
may be tasked with displaying this info before rebooting. The BootLoader might also need to pass
this information on to the reincarnated kernel after the reboot. The re-incarnated kernel may
enter a “kernel debugging mode” in which the previous contents of the memory can be queried. In
either case, the BootLoader must preserve the pre-existing memory contents.

Blitz-64 Instruction Set Architecture / Porter	 Page of 	289 342

Chapter 12: The Boot Sequence	

Before loading the kernel, the BootLoader may perform other operations, such as:	

	 • Check and verify that all physical memory bytes function correctly.	
	 • Initialize various memory-mapped I/O devices.	
	 • Turn on LEDs, e.g., to indicate the core is booting.	
	 • Print messages on the display or serial UART line.	
	 • Allow for interactive use, debugging, selection of kernel source, etc.	

The BootLoader will determine on which device the kernel image is stored (e.g., on
internal flash memory or on an external microSD card) and read the kernel into
main memory.	

Presumably, the kernel will be loaded starting at location 0x0_0000_0008. Note 106

that there is no privilege checking for physical memory: All pages have FETCH,
READ, and EXECUTE permission.	

By convention, the kernel will contain the following entry points:	

	 	 Power-on-reset entry point:	 0x0_0000_0008	
	 	 Warm-reboot entry point:	 0x0_0000_0010	
	 	 Kernel-crash entry point:	 0x0_0000_0018	

The kernel (as stored in an executable file to be loaded), will contain additional
information, generally including:	

	 • size	
	 • entry point 	107

	 • error checking code	

The BootLoader will check to make sure the kernel was loaded correctly and the
computed error checking code matches the expected value. Note that the error
checking mentioned here (in which the expected code value is read in from an
external source along with the kernel image) is only useful in guarding against
accidental, non-malicious errors, such as data corruption due to transient electrical
noise. Any malicious user who can corrupt the kernel image will also update the
error-checking code mentioned here.	

 Recall that the first 8 bytes of memory are reserved and never used. Any attempt to access the 106

first 8 bytes will result in a Null Address Exception.

 This should be equal to the Power-on-reset entry point, 0x0_0000_0008.107

Blitz-64 Instruction Set Architecture / Porter	 Page of 	290 342

Chapter 12: The Boot Sequence	

Finally, the BootLoader will complete by branching to the kernel’s entry point.	

We have just described a straightforward booting chain, which doesn’t involve
multiple boot phases. While nothing precludes a complex boot chain, the approach
described above will be adequate for many systems.	

The BootLoader should not contain functions that are used by the kernel. The
reasons for this are (1) Different implementations will have different BootLoader
programs. Depending on the BootLoader code would tie the kernel to a specific
implementation. (2) There may be performance issues. The BootLoader is located in
the Boot ROM, which is in the memory-mapped I/O area. Thus, the ROM is
functioning as a sort of I/O device and may not operate as quickly as main
memory. 	108

There is one situation in which it may be acceptable for the kernel to invoke
functions residing within the BootLoader code. When the kernel fails
catastrophically (e.g., a Hardware Exception occurs), the BootLoader I/O functions
might be used to print error messages. The BootLoader may have a specific interface
for use during kernel errors. The BootLoader may contain a primitive user-interface
to allow some state to be recovered from the crashed kernel. For example, a branch
to the kernel-crash entry point may assume that the registers contain certain values,
such as:	

	 • Numeric crash code, indicating the nature of the crash	
	 • Pointer to area of memory containing additional data	
	 • Size of memory area	

These values could be passed as parameters to the re-incarnated kernel, for use in
debugging and crash reporting.	

A warm reboot (i.e., soft reset) occurs whenever a program branches back to the
BootLoader, i.e., to address 0x4_0000_0008. Before doing so, the core must be in
kernel mode and have interrupts disabled.	

 For example, instructions fetched from the ROM might not be cacheable in the i-cache. There is 108

no particular need to make the BootLoader run quickly since its performance will almost always
be limited by the time required to read the kernel image from an external device. Therefore, any
code within the BootLoader may not execute at a speed acceptable for kernel performance.

Blitz-64 Instruction Set Architecture / Porter	 Page of 	291 342

Chapter 12: The Boot Sequence	

Note that the power-on sequence may result in some I/O devices receiving a “reset”
signal. Such a reset signal is not assured during a soft reset. The kernel should
contain code during its initialization phase, to query and reset all I/O devices, in
order to avoid complications during a soft-reset. Upon soft-reset, neither the
BootLoader nor the kernel can assume that the I/O devices have received their
proper reset signals.	

For this reason, it is usually preferable to execute the RESTART instruction, rather
than branch to the “Warm Reset Entry Point”. 	

The BootLoader is free to pass information to the Kernel. The BootLoader can do
this by initializing some variables in the global static data area of the Kernel, which
is at the beginning of memory, or the BootLoader can pass parameters directly in
registers.	

For example, the BootLoader would normally pass the size of installed memory,
information about the hardware configuration that the kernel will find itself running
in, and possibly information about the current state of various I/O devices or
information about a previous kernel crash.	

Contrast with Traditional Booting	

In some computers, code in the BIOS will read in the Master Boot Record (MBR) and
then jump to code in the sector just loaded. In other approaches, the firmware itself
will be capable of understanding the file system and will ignore the code within the
MBR.	

In some systems, there is a “boot chain”, in which there is a sequence of programs
executed one after the other, until finally the full kernel is loaded and executed. For
example, the BIOS reads in the MBR; the code in the MBR reads in another (second
level) boot loader from the disk; and then the second level boot loader reads in the
kernel.	

In any case, the first step must necessarily involve executing code stored in some
form of non-volatile memory and that code must be capable of understanding,
controlling, and reading from any device from which the system can boot. This is
true of Blitz-64 as well.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	292 342

Chapter 12: The Boot Sequence	

The Blitz-64 architecture does not mandate whether there shall be a complex, multi-
phase boot chain, or whether a simple program burned into on-chip ROM will do all
the work of loading and starting the kernel.	

Security Issues Around Booting	

We know that the Master Boot Record (MBR) in traditional systems was a point of
vulnerability and a potential target of malware. If the MBR becomes corrupted by
malware, it can open the door for a corrupted version of the kernel to be loaded.	

However, the entire boot chain including the code in the ROM — whether it is the
BIOS of a traditional system or the BootLoader code in Blitz-64 — is also very
critical, perhaps even more critical than the MBR. If the BootLoader program has
been maliciously tampered with, then nothing that executes afterward can be
trusted.	

Because it is the first code that executes, the BootLoader is therefore the most
trusted piece of software in the computer system, more trusted than the kernel
itself. The kernel can trust that the BootLoader will “do the right thing” when
executed. But the BootLoader must be very cautious about trusting any kernel code
or functionality.	

For security reasons, the BootLoader should avoid communication with other
entities. (For example, it is very risky to receive instructions or commands over the
internet.) If the BootLoader must communicate, the security and integrity of the
communication and identity of the other parties must be carefully and securely
verified. Otherwise the bad guys can impersonate legitimate sources and can send
commands that exploit weaknesses in the BootLoader.	

In all ISAs, careful thought must given to guarding against malware. In systems using
the Blitz-64 architecture, the BootLoader must remain secure at all times. Putting
the BootLoader in firmware — as opposed to ROM — must be done with utmost 109

 ROM means Read-Only Memory: once data is placed the memory, it cannot be modified. Once 109

written, it cannot be altered. By “firmware”, we mean a non-volatile memory device that will retain
its data even when power is turned off, but that can be altered or re-programmed. Flash memory is
an example.

Blitz-64 Instruction Set Architecture / Porter	 Page of 	293 342

Chapter 12: The Boot Sequence	

attention to security, since it may inadvertently create a pathway for the kernel to be
compromised.	

To emphasize that the memory containing the BootLoader should be implemented
with ROM and not some form of updatable memory, the memory-mapped I/O region
is named the Boot ROM Area. 	110

The key to avoiding firmware is to keep the BootLoader small, simple, and correct.
Adding a bunch of code to the BootLoader is not a good idea, since it creates a need
for some mechanism to patch the code. 	

Of course placing some of the BootLoader code in firmware, which can be updated
under program control, is very convenient because bugs can be fixed and support for
new devices and greater functionality can be added.	

The cost of placing the BootLoader entirely in ROM is programming discipline:
Any bugs with a ROM-based BootLoader cannot be fixed, so the BootLoader must
work correctly and be bug-free.	

If, instead, the BootLoader is implemented as firmware, then once the kernel is
compromised — even once, for a very short time — security on the entire system is
lost forever. Using firmware necessarily increases the security risk. During any
malicious and successful attack on the kernel, we must assume the malware has
updated the BootLoader program, replacing it with a malicious version which will
do the bidding of the malware upon every future power-on-reset. Thereafter, the
boot process is forever compromised and no future kernel can be trusted.	

However if the BootLoader is placed in unalterable ROM, then malware cannot
persist beyond a power-on-reset. If a kernel is found to have security bugs and a
security breach occurs, then of course it is a bad thing and perhaps the kernel code
is forever compromised. But a repaired kernel can be created and distributed to
repair the security flaw. And the BootLoader can be relied upon to load the new,
corrected kernel correctly.	

The BootLoader must not contain secret data. The BootLoader code is fully visible to
the kernel and may become visible to arbitrary programs, through bugs, malware, or
oversight. It should be assumed that every byte of the BootLoader is in the public

 This document cannot control how the Blitz-64 architecture is implemented and does not 110

explicitly prohibit the Boot ROM Area from being implemented in updatable, non-volatile
memory.

Blitz-64 Instruction Set Architecture / Porter	 Page of 	294 342

Chapter 12: The Boot Sequence	

domain, and, in the spirit of open software, it is even encouraged. Any idea of
keeping the BootLoader code confidential as a security measure is misguided.	

As we should all remember, “security through obscurity”, is not security at all.	

For security purposes, the BootLoader may validate the kernel after loading it into
memory. For example, the BootLoader may compute a secure hash of the kernel
image and compare it to a known value. This ensures that the kernel image is what is
expected and the executable file containing the kernel has not been modified in any
way.	

However, the question is: Where is this “known value” to be kept? There are several
possible answers:	

• The user is required to type the expected secure hash value in to the
BootLoader. This is the most secure, but requires the most effort by the user.
Possibly appropriate for military-level security.	

• The BootLoader displays the secure hash value and asks the user to verify its
correctness before branching to the kernel. This is not reliable, since users will
tend to ignore such messages and “accept without reading”.	

• The BootLoader keeps the expected value in some form of stable, nonvolatile
storage. While most convenient to the user, this nonvolatile storage becomes a
critical component which must be protected. If there is any possibility it can be
altered by anything but the BootLoader, system security will be compromised.	

Various approaches to BootLoader / Kernel security and verification, which make
use of the “Secure Storage” area, are discussed later in this chapter.	

Simple Systems	

In some embedded systems, there may be no OS at all; perhaps all code will be “set
in stone” and not updatable as well. This would be particularly desirable for systems

Blitz-64 Instruction Set Architecture / Porter	 Page of 	295 342

Chapter 12: The Boot Sequence	

that must be impervious to malware. In such cases, the entire code base might reside
in flash memory or even in the ROM itself. 	111

ROM-Only Systems	

In the simplest ROM-only system, there will be no kernel and all code will be
burned into ROM. This might be appropriate for a very low cost, mass-produced
microcontroller.	

It might also be appropriate for military weapons systems and other critical
embedded applications, in which extreme efforts must be taken to prevent any and
all cyber-attacks.	

In a ROM-only system, all code resides within the Boot ROM Area and there is never
any branch to other areas of memory. The main memory area (i.e., bytes within the
first 16 GiBytes of the physical address space) will only be used for storing variables
and data.	

Flash-Based Systems	

In a Flash-based system design, the ROM-based code is solely devoted to loading a
program into flash memory. Subsequently, on every power-on-reset, the flash-based
code will execute.	

This accommodates a model similar to that used for the Arduino. The on-board
loader code is permanently fixed in the ROM and the various application programs
are placed in the Secure Storage Area, which is implemented with flash memory. 	112

If the loader program in ROM detects a working connection to a host computer at
power-on-reset, it can download and overwrite the flash with a new program.

 A system with no flash might also be appropriate for simple, low-cost systems where the 111

additional cost and complexity of an OS is not worth it. But the real benefit is that maintenance
costs are eliminated. It is ridiculous to have to deal with firmware upgrades for (say) headphones.
And if there is no possibility of updates, there is no possibility of breaking the system with an
update, which has become an increasing plague upon us.

 By “flash memory” we mean any form of updatable, nonvolatile memory.112

Blitz-64 Instruction Set Architecture / Porter	 Page of 	296 342

Chapter 12: The Boot Sequence	

Otherwise, the loader program in ROM will branch directly to the program last
stored in flash. This is basically the Arduino model. 	113

Single-Stage Bootstrap Systems	

In another system design, booting the kernel will be a single-stage process.	

The Boot ROM Area will contain a BootLoader program. This BootLoader will locate
the kernel on some other device and will load it directly. The Secure Storage will not
be used.	

This approach might be appropriate for a Single Board Computer (SBC), which will
always boot from a microSD card.	

This sort of design might also be appropriate for an embedded application such as
an automobile, airframe, or weapon system, where the system must be entirely
isolated from the Internet, in order to prevent any possibility of cyberattack. A
multitasking kernel is needed to control various complex and interacting functions.
However, because of the complexity, bugs and modifications to all parts of the code
must be accommodated. So all code — i.e., the kernel and the filesystem — are
placed on a microSD card. If upgrades and/or bug fixes are required, the microSD
card is simply removed and replaced. 	

Multi-Stage Boot Processes	

In modern operating systems, the kernel is updated periodically and is distributed to
the users. We assume the kernel originates from a trusted source but is transmitted
over insecure communication channels to end-users. The communication and
bootstrapping must be done in such a way that the kernel cannot be compromised
by bad guys at any step of the process.	

We assume that both the communication channels and the files on the user’s local
file system may be intentional hacked, corrupted, and modified in an attempt to

 In a related development model, the program resides in flash memory, but updates to the flash 113

are performed by plugging in a microSD card, rather than through a communication channel. At
power-on-reset, the ROM-based code will detect that a card is present and will then update the
flash from data on the card.

Blitz-64 Instruction Set Architecture / Porter	 Page of 	297 342

Chapter 12: The Boot Sequence	

install and boot a malicious version of the kernel, and we must protect against this.
We also assume that new devices (requiring new device drivers) are periodically
added and that the kernel must boot using driver code that will be written and
distributed in the future.	

To achieve these goals, booting the OS kernel will be a multi-stage process.	

The BootLoader code in the Boot ROM Area is called the Low Level BootLoader
(LLBL). The BootLoader code will locate and pass control to the Second Stage
BootLoader (SSBL). The Second Stage BootLoader resides in non-volatile storage
which, in Blitz-64, is called the “Secure Storage Area”. The Second Stage BootLoader
will locate the OS Kernel, load it in to memory, and pass control to it.	

The idea is to keep the Low Level BootLoader as simple as possible and place all
complex functionality in the Second Stage BootLoader.	

A “power-on-reset” occurs whenever the system is initially powered up. If the
system contains a RESET button, then pressing this button will also initiate a power-
on-reset. This can also be triggered by the execution of the RESTART machine
instruction.	

A power-on-reset will have this effect:	

	 The PC will be loaded with 0x4_0000_0000.	
	 The csr_status register will be initialized (kernel mode, interrupts disabled).	
	 Any pending interrupts will be cleared.	
	 The Secure Storage Limit register will be set to 0.	

The BootLoader is a high-security, high-trust system component. If it contains bugs
or security vulnerabilities, these might be exploited to load a compromised OS
kernel. Furthermore, since the BootLoader is in ROM (not flash), it cannot be fixed or
updated. Any flaws it contains will be with the device forever. Putting unnecessary
or complex functionality into the BootLoader is risky and ill-advised.	

It is assumed that the Boot ROM and the core(s) are bundled together and will often
be on the same silicon. The Boot ROM is therefore the obvious place to put constant
and unchanging information about the system’s design and configuration. This

Blitz-64 Instruction Set Architecture / Porter	 Page of 	298 342

Chapter 12: The Boot Sequence	

would include information about main memory sizes and details about memory-
mapped I/O devices. 	114

Commentary	

It is extremely difficult for a core CPU to distinguish between private and shared
memory. From the point of view of a single core, a byte of memory functions the
same regardless of whether or not it is accessible by another core.	

A logical thing to place in the Boot ROM is information about the memory system. In
particular, the starting address of the shared memory is critical. The BootLoader can
determine how much memory is installed by the use of STORE-LOAD cycles to
determine whether there is functional memory at a given address. However, having
additional information in the BootLoader might make this process smoother.	

Another critical piece of information is the location and size of the Secure Storage
area. The Secure Storage is another memory-mapped I/O device that is used for an
additional level of security in a multi-level boot chain.	

As mentioned above, a BootLoader can simply go find something that looks like an
OS kernel — perhaps on some removable microSD card or disk drive — load it, and
jump to it.	

But in order to implement any level of security for the boot process, something more
is required. With Blitz-64, this is supplied by the Secure Storage device. The
BootLoader program will access Secure Storage to implement the secure booting
protocol.	

 Although the BootLoader can determine how much memory is installed by the use of STORE-114

LOAD cycles to determine whether or not there is functional memory at a given address, having
this information in the BootLoader might make the process smoother. Furthermore, it is
extremely difficult for a core to distinguish between private and shared memory. From the point of
view of a single core, a byte of memory functions the same regardless of whether or not it is
accessible by other cores. Therefore, it might make sense to place information like the starting
address of the shared memory in the Boot ROM.

Blitz-64 Instruction Set Architecture / Porter	 Page of 	299 342

Chapter 12: The Boot Sequence	

In a single-stage boot process with no security , a minimal BootLoader will only 115

need to perform the following tasks:	

•	 Perform basic machine start-up and error-checking	
•	 Locate the kernel image	
•	 Read the kernel image from an external source	
•	 Load the kernel image into memory	
•	 Jump to the kernel entry point	
•	 Optionally, the BootLoader might pass data about previous kernel crashes to
the new kernel	

However, the following operations require substantial amounts of code:	

•	 Interface with complex I/O devices, where the kernel might be located	
•	 Understand complex file formats, in which the kernel might be stored	
•	 Implement various cryptographic techniques to verify kernel integrity	
•	 Provide a facility to securely update firmware	
•	 Implement a user interface	
•	 Deal with complex I/O devices for user interaction (e.g., USB, HDMI, Bluetooth)	
•	 Provide a debugging facility to deal with kernel crashes	

For this reason, a Second Stage BootLoader (SSBL) is anticipated. Presumably, the
Second Stage BootLoader will be firmware, meaning that it will be stored in the
Secure Storage area. In this case, the Low Level BootLoader (LLBL) in Boot ROM
will:	

•	 Perform basic machine start-up and error-checking	
•	 Pass machine-specific parameters to the SSBL	
•	 Jump to the SSBL entry point	
•	 Manage firmware updates in a secure way 	116

 This is appropriate for a device that is (1) not-connected to the Internet, (2) not expected to 115

have software updates, and (3) not mission-critical. Think: dishwasher, refrigerator.

 This might also include dealing with firmware corruption and/or firmware rollbacks.116

Blitz-64 Instruction Set Architecture / Porter	 Page of 	300 342

Chapter 12: The Boot Sequence	

The ISA pre-allocates are block of 1 MiByte for the Boot ROM area and 1 MiByte for
the Secure Storage are. The amount of memory actually installed is implementation
dependent. 	117

The Secure Storage Area	

Next, we describe how Secure Storage is intended to be used.	

Upon power-on-reset, the Secure Storage area is assumed to contain the Second
Stage Boot Loader (SSBL) program in the lower portion and unused bytes in the
upper portion. The Secure Storage is initially unlocked.	

The Secure Storage Area	

The Secure Storage area works as follows.	

The Secure Storage area is implemented as a block of non-volatile memory (i.e., flash
memory) which is mapped into a memory-mapped I/O region.	

In addition, there is a Secure Storage Limit Register, which is mapped into the first
doubleword of the Secure Storage area.	

The Secure Storage memory has two states: “locked” and “unlocked”. In the locked
state, the memory can only be read, while in the unlocked state, it can be modified.	

More precisely, all Secure Storage bytes below the current value of the Limit Register
are in the locked state and cannot be modified. All bytes above the Limit Register are
unlocked and can be freely read and modified.	

Upon power-on-reset, the Secure Storage Limit Register is initialized to zero, which
puts all the Secure Storage bytes in the unlocked state. A subsequent STORE into the
Secure Storage Limit Register will switch the Secure Storage to the locked state.
More precisely, a write to the Limit Register will make the first portion of the Secure

 Two MiBytes is a tiny fraction (1/8,192) of the available memory-mapped I/O address space. 117

We aim to keep the BootLoader as small and simple as possible, so this size should be adequate.
But setting aside larger regions for the ROM or Secure Storage presents no conceptual issue.

Blitz-64 Instruction Set Architecture / Porter	 Page of 	301 342

Chapter 12: The Boot Sequence	

Storage locked. The exact value written to the Limit Register determines how many
bytes are to be locked and how many are to remain unlocked.	

Since the Limit Register itself occupies the very first bytes in the Secure Storage
area, once it is written to, the Limit Register itself will also be in the locked region,
preventing any further changes in which portion of the Secure Storage is locked and
which is unlocked.	

Since the Limit Register is no longer modifiable, the Secure Storage area will remain
locked as long as the device is powered up. 	118

The Low Level Boot Loader program will verify the Second Stage Boot Loader
program is correct. If everything looks good, it will proceed to lock the lower portion
of the Secure Storage area and branch to the Second Stage Boot Loader, leaving the
upper portion of the Secure Storage area updatable.	

Since the Low Level Boot Loader is in ROM, it must be reliable and cannot be
repaired or replaced. Therefore, it really should not interface with I/O devices. The
I/O devices connected to a processor may vary from system to system. Furthermore,
I/O devices change over time and require updates to software drivers.	

The Second Stage Boot Loader (SSBL) is expected to be a large and complex piece of
software.	

It will, among other things, validate the OS Kernel. It must check to make sure the OS
Kernel has not been tampered with or altered by malware. Thus, it must securely
maintain and protect the secure hash keys of the various kernel versions that it 119

knows about. If there are issues, it must interact with the user, e.g., to install new
kernel versions, or roll-back to earlier kernel versions.	

To perform its duties, the Second Stage Boot Loader (SSBL) will need to contain
information about:	

 More precisely, the Limit Register itself will remain locked after any write to the register with 118

any value greater than or equal to 0x4_0010_0008 until a power-on-reset signal is received.

 To quote Wikipedia, “A cryptographic hash function … is a mathematical algorithm that maps 119

data of an arbitrary size (often called the ‘message’) to a bit array of a fixed size (the ‘hash value’,
‘hash’, or ‘message digest’). It is a one-way function, that is, a function for which it is practically
infeasible to invert or reverse the computation. Blitz-64 primarily uses the SHA-256 secure hash
function, which produces a 256 bit (32 byte) key.

Blitz-64 Instruction Set Architecture / Porter	 Page of 	302 342

Chapter 12: The Boot Sequence	

•	 The devices where a kernel might be stored.	
•	 The file systems on those devices.	
•	 The user interface devices and interfaces.	

Periodically, updates to the Second Stage Boot Loader code will be required, for
these reasons:	

•	 A new version of the OS Kernel is distributed with a new secure hash key.	
•	 A new file system has been implemented and the SSBL must interface to it.	
•	 A new device has been implemented and the SSBL must interface to it.	
•	 Changes are made to the user interface used by the SSBL.	
•	 A bug in the SSBL must be repaired.	

Periodically, messages must be sent to the firmware. These messages must be acted
on before the Secure Storage area is locked, or else they can have no lasting effect.
However, since the Low Level Boot Loader will lock secure storage before it
branches to the Second Stage Boot Loader and since the Low Level Boot Loader will
never access any I/O devices, the messages must be passed in the Secure Storage
area itself.	

Every update to the Second Stage Boot Loader will follow these steps:	

•	 While running the OS kernel, some app will move a newly received message
into Secure Storage at an address above the current Secure Storage Limit.	

•	 A power-on-reset is required, reseting the Secure Storage Limit register and
making the entire Secure Storage area updatable.	

•	 The Low Level Boot Loader in Boot ROM will run, before any other code runs.	
•	 The Low Level Boot Loader will see the message previously stored in the
Secure Storage area and will process it.	

•	 Using public-private (asymmetric) encryption, the Low Level Boot Loader will
verify that the message is from a trusted authority. Using a secure hash
function (such as SHA-256), it will verify that the message has not been
tampered with.	

•	 The Low Level Boot Loader will update the Secure Storage area as directed by
the message. This could be in the form of replacing the Second Stage Boot
Loader code, or by adding new secure hash keys for new versions of the OS
kernel.	

•	 The Low Level Boot Loader remove the message from the Secure Storage area.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	303 342

Chapter 12: The Boot Sequence	

•	 The Low Level Boot Loader will lock Secure Storage by writing to the Secure
Storage Limit register.	

•	 Finally, the Low Level Boot Loader branch to the Second Stage Boot Loader.	

When the next power-on-reset occurs, the Low Level Boot Loader will see that there
is no new message. It will then lock Secure Storage and branch to the Second Stage
Boot Loader program.	

It is likely the Secure Storage and the core will be integrated and located on the same
chip. Nevertheless, they are separate modules. The Secure Storage Limit register can
be located either within the core module or within the Secure Storage module. The
important thing, of course, is that the register and the write-protection circuitry
must be located “on the side of the Secure Storage”, by which we mean there must be
no pathways to write the Secure Storage that do not first go through the limit
register and the write-protection mechanism.	

As an example of a potential vulnerability, imagine that the DMA controller or some
other device that updates memory is able to write to the Secure Storage area
without first going through the write-protection circuitry. This would provide a way
to circumvent this critical security mechanism.	

Memory-mapped I/O devices are not involved in the cache system. Caching occurs
only for physical main memory, which lies below address 0x4_0000_0000. While it
might be tempting to allow the Secure Storage memory to participate in caching, this
is disallowed, since it might introduce subtle security vulnerabilities. 	120

Verifying the Kernel Code	

The boot process will load a kernel image into main memory. Before branching to it,
the boot process must verify that the image it has just loaded is the real, correct
image. We must ensure that the kernel image has not been corrupted or altered by
malicious software.	

 Although we cannot see how this could happen, perhaps the cache contents could become 120

outdated, allowing the core to fetch incorrect data from a location in the Secure Storage area that is
assumed to have been updated, locked, and guaranteed to be correct. Or perhaps a delayed write-
back/write-through from the cache to the Secure Storage area could delay the updating of the
Secure Storage Limit register , thereby leaving the Secure Storage area vulnerable to malicious
updates for a short window of time.

Blitz-64 Instruction Set Architecture / Porter	 Page of 	304 342

Chapter 12: The Boot Sequence	

In order to achieve this, the BootLoader will compute a secure message digest and
compare it with a known, expected value. 	121

Secure Message Digests	

A secure message digest (also called a secure hash) is a short, fixed size binary
value which is computed from all the bytes in a much longer string of bytes. There
are a number of different secure hash algorithms. For example, with the SHA-256
algorithm, the message digest is a 256 bit value.	

The secure hash algorithm is designed in such a way that any change in the long byte
sequence will alter the digest value (with extremely high probability). Furthermore,
given a particular digest value, it is extremely difficult to create a string that will
hash to that digest value.	

An example usage would be to make sure a kernel executable image has not been
modified by a malicious actor or cyberattack. If the kernel image is scanned and a
digest value is computed that matches a stored “expected value”, then (with
extremely high probability) this kernel image must be exactly the one and only same
byte string that was used to produce the expected value in the first place. The secure
hash system allows us to be sure the kernel has not been modified.	

In Blitz-64, we prefer and recommend the SHA-256 secure message digest
algorithm.	

The BootLoader can easily compute a secure hash of any potential kernel image it
has loaded, but the question is: Where does the BootLoader get the “expected value”
with which the computed value must be compared?	

In other words, the BootLoader needs a secure, non-volatile storage in which to
store expected hash values. Moreover, to prevent malware from changing the
expected value and then substituting a modified kernel, the expected value must be
stored in a place that cannot be modified by any software other than the BootLoader.	

 In the case of a single-stage boot chain, the code that loads the kernel executable will be 121

resident in the Boot ROM Area. In the case of a multi-stage process, the code will be in firmware,
i.e., in the Secure Storage area. For this discussion, it doesn’t matter and we will just talk about the
BootLoader program, regardless of whether it is in Boot ROM or is Second Stage Boot Loader
(SSBL) code.

Blitz-64 Instruction Set Architecture / Porter	 Page of 	305 342

Chapter 12: The Boot Sequence	

This place is the Secure Storage area.	

The Secure Storage area need only be large enough (e.g., 32 bytes in the case of
SHA-256) to store a single secure message digest value, although the Secure Storage
area is expected to be much larger. To accommodate the loading of several different
versions of the kernel, several secure message digest values would need to be stored.
The idea is that the BootLoader would accept any kernel executable if its secure
message digest matches any of the stored values.	

The expected secure message digest of the kernel will be placed in the Secure
Storage area. The BootLoader, as part of its functionality, must always lock the
Secure Storage before branching to any non-BootLoader code, so that no other
software can possibly modify the expected message digest values stored in the
Secure Storage area.	

On typical power-on-resets and soft-resets, the BootLoader will simply compute the
message digest for the kernel executable, retrieve the expected message digest from
Secure Storage, and compare them to verify that the kernel being loaded has not
been corrupted.	

Normally, the version of the kernel to be loaded will be the same version as last time,
so there is rarely a need to store a new expected value. But occasionally the user will
need to install a new version of the kernel. In that case, the computed secure digest
will not match the stored expected value. We need a way to update the stored
expected value.	

In one approach, the BootLoader might require the user to manually type in the
expected secure hash value. The BootLoader will then store the new value in the
non-volatile Secure Storage memory area before it locks it. With every new version
of the kernel, the user must type in a secure hash value to validate the kernel
version.	

Of course this secure hash value for the kernel is a cryptographic key which must be
securely validated and protected from alteration or spoofing, to prevent the user
from seeing a false key. 	122

 If this is too onerous, the BootLoader might simply alert the user that the kernel image has 122

changed and ask the user whether this is intended. If the user agrees, the hash value just computed
for the new version will be written to Secure Storage and saved as a new “expected value”.

Blitz-64 Instruction Set Architecture / Porter	 Page of 	306 342

Chapter 12: The Boot Sequence	

In order for the BootLoader to be able to store a new key, a hard restart is required,
i.e., a power-on-reset signal must be generated. This will always and definitely cause
the BootLoader code from the Boot ROM Area to be executed, with no intervening
software possible.	

However, requiring intervention by users when it comes to verification of a new
kernel’s message digest is risky. Instead, we need a way to completely automate the
updating of kernel versions.	

Secure Distribution of New Message Digests	

Presumably new versions of the kernel software are distributed by a single trusted
source and the goal is to prevent any bad actor from impersonating the trusted
source. We must make sure the BootLoader never, ever boots to a compromised
version of the kernel.	

Here we describe an approach to distributing secure hash keys (i.e., secure message
digests) using a public-private key encrypted communication channel.	

In the public-private encryption technique, there are two keys. One key (the private
key) is used to encrypt the message and the other key (the public key) can be used
to decrypt the message.	

The BootLoader software will have the public key hardcoded directly into it. The
public key is not a secret. The private key will be kept remotely, by the organization
authorized update the kernel. For example, the private key will be held by the
trusted company that creates and distributes new, authorized versions of the kernel.	

In the public-private key system, the communication is both kept private and
protected from corruption. We must protect against spoofing: we must be certain 123

that the message came from the sender it claims to have come from. Public-private
key systems do this, since they guarantee the message has not be altered and that it
comes only from the organization holding the other (private) key.	

From time to time the trusted authority will communicate with the existing kernel
instructing is to install a new version of the kernel. The existing, old version of the
kernel will download the new executable file and store it on the boot device. This

 In this case, we care only about protection from corruption; privacy is not required.123

Blitz-64 Instruction Set Architecture / Porter	 Page of 	307 342

Chapter 12: The Boot Sequence	

communication will also contain a special message to be delivered to the
BootLoader.	

The message to the BootLoader will command it to boot to a new version of the
kernel image. The message will consist of two items: (1) the name/filename/version
number of the new kernel, and (2) the corresponding secure message digest for that
version. The sole purpose of the message is to instruct the BootLoader to update the
Secure Storage area to save a new secure hash key for the new version of the kernel
code.	

The message to the BootLoader will be encrypted using the private key. Only the
authorized and trusted organization can create a valid encrypted message in this
way. The message will be decrypted by the BootLoader using the public key. 	124

The BootLoader must receive the message and process it after a power-on-reset,
since only at that time will the Secure Storage area be unlocked. Thus, the
BootLoader will look for an incoming message every time it runs after a power-on-
reset. If an incoming message is found, it will be processed.	

The message can be communicated to the BootLoader in several ways. One approach
is to place the message in a file with a fixed, well-known name, such as
“BootLoaderNewKey”. Upon power-on-reset, the BootLoader will read from this file.
This might be appropriate for a single-stage boot sequence, since the BootLoader
code — which is in the Boot ROM Area — will already be capable of understanding
the file system and the device on which it is stored, since it will be capable of reading
the kernel executable file.	

Another approach is for the message to be stored directly in the Secure Storage area.
Of course, it can just be stored directly above the current value of the Secure Storage
Limit Register. Recall, that writing is always allowed to memory addresses above the
limit, but the memory below the limit is in the locked state and cannot be altered,
even by the kernel.	

 In order to reduce the likelihood of the private key being discovered by a bad actor who is 124

viewing the message traffic, the quantity of data encrypted by the private key should always be
kept to a minimum. The private key held by the trusted organization for the purpose of validating
new kernel versions should only be used for this purpose and the encoded data should be kept as
concise and non-redundant at possible, with all repeated, formulaic, or boilerplate information
eliminated.

Blitz-64 Instruction Set Architecture / Porter	 Page of 	308 342

Chapter 12: The Boot Sequence	

The process of updating a kernel involves (1) downloading the new kernel
executable file and the associated encrypted message for the BootLoader; (2)
placing the message in a place where the BootLoader will find it; and (3) performing
a power-on-reset by executing a RESTART command.	

The BootLoader does the rest.	

The result is that — without obtaining the private key of the organization trusted
with distributing new kernel images — it is impossible to boot into a corrupted or
compromised kernel. Only “official” kernels will boot. 	125

 For added security, perhaps the Low Level Boot Loader (LLBL) code running in the Boot ROM 125

Area should begin by immediately verifying that the Secure Storage Limit Register is zero (as
expected) to verify that a power-on-reset has truly just occurred. It is perhaps conceivable that if
not, malicious code running simultaneously might be able to interfere somehow.

Blitz-64 Instruction Set Architecture / Porter	 Page of 	309 342

Appendix 1: Blitz Assembly Language	

Assembling and Linking	

This appendix contains a brief introduction to assembly language concepts, as
applied to Blitz-64. 	

Assembly language is a sort of primitive programming language, in which the
programmer writes instructions that can be directly executed by the processor core.
Each computer architecture has its own assembly language. Programming
convenience, portability, and maintainability are crucially important. Although all
these are absent with assembly language, assembly language programming
necessary for anyone close to the hardware.	

This appendix discusses one assembler tool in particular; the Blitz-64 assembler.
This tool exists in two identical versions. One version is written in C (and runs on a
POSIX-based host) and the other version is written in KPL (and runs on a Blitz-64
computer). 	126

The basic idea is that each machine instruction can be written symbolically instead
of written in binary. An assembler tool translates the symbolic assembly code into
binary machine code. For example, the assembler translates an assembler
instruction such as:	

addi r2,r4,100 # end = start + size

into the following 32 bit machine instruction:	

 0x01006424

 There may be other assemblers; for details, consult the documentation for the assembler tool 126

you are using.

Blitz-64 Instruction Set Architecture / Porter	 Page of 310 342

Appendix 1: Assembly Language	

An assembly program is a text file with one instruction per line, making it possible to
write machine code in a human-readable, symbolic form. Machine code specified in
binary or hex is just too error-prone for humans to create, and an assembly language
is an improvement over pure machine code.	

In addition to the assembler tool, the linker tool must be used, in a step called
“linking”.	

Roughly speaking, the purpose of the assembler is to:	

•	 Check the assembly source file for errors, to make sure all the instruction
names are spelled correctly.	

•	 Determine whether the required operands are present and correctly specified.	
•	 Compose the machine instructions, at least in most cases.	

And roughly speaking, the purpose of the linker is to:	

•	 Determine where in memory to place the machine instructions and data.	
•	 Evaluate expressions that depend on memory locations.	
•	 Determine which machine instructions will be used, in cases where the
assembler can not do it.	

The assembler translates each assembler source file into an “object file”. One or
more object files are then combined by the linker to produce an “executable file”.
Often the executable file is called the “a.out” file, since that is the name commonly
given to the executable file. At runtime, the OS kernel loads the executable file into
memory and begins execution.	

Assembler Syntax	

Each line of the assembly program contains a single instruction. Each line contains
the following fields:	

	 Label — optional	
	 Opcode	
	 Operands — zero or more	
	 Comment — optional	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	311 342

Appendix 1: Assembly Language	

The syntax for a line is this (where brackets indicate optional material):	

	 [label :] [opcode [operands]] [# comment]	

For example:	

myLabel: xor r2,r4,r6 # An example instruction

A label consists of an identifier symbol, followed by a colon (“:”). The label may be on
a line alone, or it may prefix an instruction or pseudo-op. The label associates the
symbol with the address of whatever follows.	

Label symbols are user-defined identifiers and may not have the same spelling as
instructions, register names, or pseudo-ops. Symbols may contain the underscore
character, e.g., “MyLab_43” and “_entry”. A leading underscore is only meaningful by
convention; the assembler doesn’t care whether identifiers begin with underscore.
Identifiers may not begin with a digit, but they may contain digits.	

The register names, the CSR names, and the opcodes are all in lowercase. For
registers with two names (e.g., “sp” = “r15”), either name may be used.	

Values specified in decimal are written as a sequence of digits, e.g., “1234”. Values
coded in hex are written with the prefix “0x”, e.g., “0x1234”. Floating point constants
(e.g., “0.5”, “123e-9”) can be used, but only in the “.float” pseudo-op.	

Comments begin with the “#” character and run through the end of the line.	

Tabs are typically used between labels, opcodes, operands, and comments, but
spaces may also be used.	

	 t	 t	 t	 t	 t	 t	 t	 t	 t	 t	 	
Here is an example:

addi r2,r4,0x3B7F # Add decimal 15,231
csrread r3,csr_status

MyLab_43:
load.b r5,123(sp)
ble r5,r2,Exit_Label

Blitz-64 Instruction Set Architecture / Porter	 Page of 	312 342

Appendix 1: Assembly Language	

The names of the machine instructions have been given earlier in this document and
the order and meaning of the operands have been specified, so they will not be
repeated here.	

Assembly code is case sensitive.	

Whenever the operand is an immediate value (e.g., “immed16” or “address” in the
earlier chapters), the programmer may specify a value in hex or decimal, a symbol,
or (more generally) an expression using constants, symbols, and the usual
operators, such as +, -, <<, &, … For example the following instruction:	

ADDI RegD,Reg1,immed16

might be used like this:	

addi r7,sp,MyLabel+(3*len)

Pseudo-Ops	

In addition to lines containing machine instructions, the assembly code file will
contain lines containing pseudo-ops. A “pseudo-op” is an assembler directive
which gives guidance to the assembler/linker about how to assemble instructions.	

While a line containing a pseudo-op looks like a machine instruction, it is not. To
emphasize the distinction, all pseudo-ops begin with a period.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	313 342

Appendix 1: Assembly Language	

Here are the pseudo-ops:	

	 .byte <integer expr>	 Place a byte in memory	
	 .halfword <integer expr>	 Place a halfword in memory	
	 .word <integer expr>	 Place a word in memory	
	 .doubleword <integer expr>	 Place a doubleword in memory	
	 .float <floating value>	 Place a 64 bit floating point in memory	
	 .string <string>	 Place a sequence of bytes in memory	
	 .skip <integer expr>	 Skip N bytes, filling with zeros	
	 .align 2/4/8/16/32/page	 Insert 0x00 bytes to achieve alignment	
	 .equ <integer expr>	 Equate symbol to an integer value	
	 .export <symbol>	 Make this symbol available to other files	
	 .import <symbol>	 Expect symbol to be defined in other file	
	 .begin <parameters>	 Start filling a new chunk of memory	

Each pseudo-op is written on a line by itself, in the same format as a machine
instruction. Here are some examples:	

x: .byte 123 # Byte containing value
c: .halfword 0x04d2 # Decimal: 1234
d: .word 0x000BC614E # Decimal: 12345678
e: .doubleword 0x12-100 # 0xffff_ffff_ffff_ffae
f: .float -123.456e-10 # Double precision
str: .string “Hello\n” # No terminating \0
arr: .skip 400 # Array of 400 bytes

.align 8 # Insert padding bytes

The .byte, .halfword, .word, and .doubleword pseudo-ops are used to allocate 1, 2,
4, and 8 bytes (respectively). The initial value to be placed in the memory (before
execution begins) is given by an expression, which may include values given in
decimal or hex. The expression appearing in the operand field may also employ the
usual operators. The expression will be evaluated and the value will be computed at
“assembly time” (i.e., by the assembler and linker) and not at “run-time”.	

If a label precedes a pseudo-op or instruction, that symbol will be associated with
the address of the thing that follows. (More precisely, the symbol will be associated
with the address of the first byte of the thing that follows.) The label may appear on
the same line or on the preceding line.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	314 342

Appendix 1: Assembly Language	

For example, this	

myVar: .doubleword 0x0123456789abcdef

is equivalent to this:	

myVar:
.doubleword 0x0123456789abcdef

The .float pseudo-op is used to allocate 8 bytes and fill it with the IEEE
representation of a double-precision floating point number. The operand should be a
floating point constant. Expressions are not supported.	

The .string pseudo-op is used to place ASCII data in memory. The usual escapes (\n,
\0, \t, etc.) can be used, as well as specific hex codes. For example, the byte 0x3f is
written as \x3f, where “x” means “hex”. The string is not null-terminated, but the null
character can be included in two ways, e.g.,	

str: .string “Bye\0”

and:	

str: .string “Bye”
.byte 0

The .skip pseudo-op causes the assembler to skip over a number of bytes, without
filling these bytes in with initial values. The bytes are guaranteed to be filled with
zeros before execution begins. If a label precedes the .skip pseudo-op, then that
symbol is associated with the address of the first byte in the block of bytes allocated
by the .skip pseudo-op.	

The .align pseudo-op is used to insert padding bytes to force the next following
thing to be aligned. In the following example, the string may end on an improperly
aligned address; the .align pseudo-op will insert as many bytes as necessary to
guarantee that the variable “x” is properly aligned.	

str: .string “hello”
.align 8

x: .doubleword 0x0123456789abcdef

Blitz-64 Instruction Set Architecture / Porter	 Page of 	315 342

Appendix 1: Assembly Language	

The padding bytes inserted by .align are guaranteed to be zero-filled. The operand
for .align may be 2, 4, 8, 16, or 32. In addition, the keyword “page” may be used as
the operand. Including “.align page" will add padding bytes as necessary to round up
to the next page aligned address, i.e., to an address that is a multiple of 16,384 (i.e., a
multiple of 16 KiBytes and in which the least significant 14 bits are zeros).	

Symbols	

The .equ pseudo-op should always be preceded by a label. The purpose of .equ is to
define a symbol and give it a specific value. The value is given by an expression,
which is evaluated at the time of assembly and linking, not at runtime. For example:	

start: .string “hello”
end:
len: .equ end-start

A symbol is defined by its appearance as a label on some line in an assembly source
file. Symbols may be used before they are defined. In other words, the line defining a
symbol may appear later in the assembly source file than a line in which the symbol
is used as an operand.	

A symbol may also be defined in one file and used in another file, although
the .export and .import pseudo-ops must be used. As a result, the actual value of a
symbol may not be known by the assembler. Therefore, some expressions cannot be
evaluated until the linker tool is executed.	

The .export pseudo-op is used to make a symbol defined in this file available for use
in other assembly source files. Symbols are, by default, local to the current assembly
source file and must be exported if they are to be used in other files. The operand
should be a single symbol. For example:	

myVar: .doubleword 1234
.export myVar

myConst: .equ 100
.export myConst

Blitz-64 Instruction Set Architecture / Porter	 Page of 	316 342

Appendix 1: Assembly Language	

The .import pseudo-op is used to make a symbol that is defined in another file
available for use in this file. For example:	

.import myVar
loadd r3,myVar
.import myConst
addi r3,r3,myConst

A symbol must either be defined or imported (but not both). If a symbol is neither
defined nor imported, the assembler will flag it as an error. Every symbol that is
imported in one file must be exported in exactly one other file; if not, the linker will
issue an error message.	

Every symbol either has an “absolute value” or a “relative value”. For example,
“myConst” in the above example has the absolute value of 100. An absolute value is
not dependent on where in memory the linker places things.	

A relative symbol is a memory address and is dependent on where the linker places
code and data. In the example above, “myVar” is a relative symbol. The values of
relative symbols are not computed until the linker assigns memory locations to code
and data.	

For some instructions, the actual binary machine code cannot be determined by the
assembler. This will happen whenever the instruction contains an immediate value
for which the programmer has provided an expression containing a relative symbol.
Since the value of the symbol cannot be known until link-time, only the linker has
enough information to complete the assembly of the instruction.	

For instructions using absolute symbols, the assembler will be able to complete the
assembly of instructions whenever the symbol is used in the same file in which it
was defined. However, when the symbol is defined in one file and used in another
file, the linker will be required to fill in the values and complete the instructions.	

In the case of synthetic instructions, the assembler will sometimes be able to choose
the final machine code and complete the assembly. But in other cases, the synthetic
instruction may translate into one, two, three, or even four machine instructions,
depending on the actual value of the operand. Since the value of the operand may
not be known until link time, it will be up to the linker to determine which sequence
of machine instructions will be used to implement a given synthetic instruction.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	317 342

Appendix 1: Assembly Language	

[The assembler and linker work together to produce the final code. In cases where a
synthetic instruction may be turned into several instructions and the assembler
must pass the problem to the linker, the assembler will make the initial assumption
that a single machine instruction will suffice and will allocate a slot of size 4 bytes.
Once the final value of all symbols is known, the linker will determine whether one
instruction (i.e., 4 bytes) turns out to be adequate. If 4 bytes as inadequate, the
linker will expand the slot (and the segment containing the slot) by another 4 bytes
to accommodate a second machine instruction. Once again, the linker will determine
whether there is enough room. This process will be repeated, enlarging all synthetic
instruction slots until each is large enough to contain the machine instructions
needed to handle the value. This is an example of a “relaxation” algorithm. Since
slots are only enlarged and never reduced in size, this process will eventually
terminate. In the worst case — highly improbable — each slot will be enlarged to its
maximum size, which is enough to accommodate any possible value. In the vast
majority of cases, the slot size will be just large enough to accommodate the smallest
synthetic instruction sequence, and no larger.]	

Segments and Linking	

The linker will place code and data into pages of memory. Each page of virtual
address space will be marked either executable or not, and each page will be marked
either writable or not. All pages are readable, so this is not an issue. This was
described in an earlier section when virtual memory and page tables were
discussed.	

Each assembly code source file consists of a sequence of “segments”. Each segment
consists of a sequence of instructions. The segments are listed one-after-the-other in
the source code file. Thus, every line in the source file will belong to exactly one
segment. 	127

An assembly source file will typically contain only one segment, or just a couple of
segments. For example a given assembly source file may contain one segment of
instructions (which will go into pages marked “executable” but not “writable”) and
one segment of data (which will go into pages marked “writable” but not
“executable”).	

 The term “section” is sometimes used instead of “segment”.127

Blitz-64 Instruction Set Architecture / Porter	 Page of 	318 342

Appendix 1: Assembly Language	

The term “segment”, as used here, is a purely software concept used only by the
assembler and linker; at runtime there is no such thing as a segment. (Other
computer systems have used the term “segment” differently, e.g., for regions of
memory supported by various hardware features.)	

The purpose of the “.begin” pseudo-op is delineate segments.	

Below is a small, artificial example, representing a single assembly source code file
containing three segments:	

.begin executable
entry: loadd r1,myVar

addi r1,r1,300
stored myVar,r1
ret

.begin writable
myVar: .doubleword 12345
other: .doubleword 200

.begin
str: .string “Hello”

.byte 0
xor r1,r2,r3

Each segment must start with a .begin pseudo-op. A segment runs from a .begin
pseudo-op until just before the next .begin pseudo-op, or until the end-of-file. Every
instruction and every other pseudo-op will be located in exactly one segment, based
on where it is placed.	

There is no requirement that an “executable” segment contains only machine
instructions; it may contain data as well. There is no requirement that a “writable”
segment contains only data; it may contain machine instructions as well.	

In this example, the third segment is marked with neither executable nor writable. It
contains a string and an XOR instruction. This segment is read-only (i.e., not writable
and not executable) so the XOR instruction cannot be executed.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	319 342

Appendix 1: Assembly Language	

Segments are not given names and the line containing .begin must not contain a
label. Any label directly preceding a .begin pseudo-op will be associated with an
address in the previous segment.	

The .begin pseudo-op has an operand field that can contain a number of comma-
separated parameters.	

.begin parameter , parameter , parameter , parameter

For example:	

.begin startaddr=0x8000a0000,executable,writable

The following parameters are indicated by a keyword, which is either present or
absent.	

kernel
executable
writable
zerofilled

The programmer may also include a “startaddr=” parameter:	

startaddr=integer	

The programmer may also include a “gp=” parameter:	

gp=integer	

The job of the linker is to determine where in memory to place the segments. More
specifically, the input to the linker will be a number of object files, each containing a
number of segments.	

For programs that will go into a virtual address space, these segments will
ultimately be placed into memory pages. One constraint is that two segments with
different executable/writable attributes may not be placed in the same page.
Another constraint is that segments may not overlap. The linker will attempt to
group similar segments together and pack them as close as possible in order to
reduce the number of pages in the final memory image.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	320 342

Appendix 1: Assembly Language	

Normally, the linker will be free to choose the location of a segment. However, the
programmer may demand that the linker place a segment at a given memory
address. This is the purpose of the “startaddr=” parameter, which gives the starting
address of the segment as an absolute value. This parameter forces the linker to
place a segment at a particular location in memory.	

If there is no starting address given for a segment, the linker is free to place the
segment where it best fits. By default, the linker will place segments in the virtual
address region, which starts at 0x8_0000_0000. The linker will more-or-less place
segments one after another, filling up the virtual address space from 0x8_0000_0000
on up, within the previously mentioned constraints.	

However, the presence of the “kernel” keyword will force the linker to place the
segment in the lower, physical region of address space. Segments with this keyword
will be placed in low memory, starting with 0x0_0000_0000 and going up.	

The “zerofilled” keyword is used to indicate that a segment will contain only zeros.
Thus, only the following are allowable in a “zerofilled” segment:	

.byte 0

.halfword 0

.word 0

.doubleword 0

.float 0.0

.skip <any>

.align <any>

.equ <any>

.import <any>

.export <any>

The data in zerofilled segments is not present in the object and executable files,
since the pages can be created and initialized at the time the executable file is loaded
into memory. Zerofilled segments are useful for large data structures (such as
gigantic arrays, spaces for heaps, and so on), since these data structures would
waste a large amount of space in the object and executable files if all bytes were
actually present. For example:	

.begin startaddr=0x9_0000_0000,writable,zerofilled
MyHeap: .skip 0x1_0000_0000 # 4 GiBytes

Blitz-64 Instruction Set Architecture / Porter	 Page of 	321 342

Appendix 1: Assembly Language	

The assembler will round each segment up in size to a multiple of 8 bytes, by adding
0 to 7 bytes of 0x00, as necessary. The linker will place each segment on an aligned 8
byte address.	

The Global Pointer Register, gp	

Several of the synthetic instructions specify that an operand can be an “address”.
Examples include:	

	 BEQ	 Reg1,Reg2,address	
	 LOADB	 Reg1,address	
	 CALL	 address	

In the course of generating code, the assembler and linker must be able to translate
memory addresses into the forms required by the machine instructions. For
example, consider this line from an assembly source file:	

loadb r1,MyVar

Assuming the address of MyVar is within 0 … 0x0_0000_7fff, the above instruction
can be assembled like this:	

load.b r1,0x7fff(r0)

For user programs running in a virtual address space, the assumption is that the
global pointer register (gp) will contain the value 0x8_0000_8000 at runtime, and
this register can make addressing certain locations in memory particularly easy.	

(The gp register will be initialized either by the kernel during thread-creation or
within the first couple of instructions at thread-startup, as part of the thread
initialization prologue. If initialized within the thread prologue, the MOVI
instruction is safe to use for this purpose although it is synthetic. The assembler may
use gp whenever it synthesizes a MOVI instruction and the value in question is
within range, allowing the MOVI to be translated into a single ADDI instruction.
However, the assembler will specifically avoid using gp whenever the destination
register is gp itself.)	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	322 342

Appendix 1: Assembly Language	

When generating code, the assembler/linker will make use of the assumed value of
gp. For example, if MyVar is located within the first 4 pages of the virtual address
space (i.e., the first 64 KiBytes of the virtual address space, 0x8_0000_0000 …
0x8_000_FFFF), then the assembler/linker can generate an instruction which uses
an offset from register gp. For example, if MyVar is located at 0x8_0000_8056, it can
be assembled like:	

load.b r1,0x0056(gp)

Positive offsets will be used for addresses above 0x8_0000_8000 and negative
offsets will be used for addresses below that:	

	 8_0000_0000 … 8_0000_7fff	 negative offset 8000 … ffff from gp	
	 8_0000_8000 … 8_0000_ffff	 positive offset 0 … 7fff from gp 	128

The assembler/linker can deal with arbitrary addresses but addresses outside this
range might require additional instructions or the use of the temp register “t”.
Therefore, the programmer is encouraged to place commonly used variables at the
bottom of the virtual address space, in the first 64 KiBytes. The typical practice
would be to place all static, non-stack data at the bottom of the virtual address
space, with the code segments in pages following the data pages.	

The above comments about register gp primarily concern LOAD and STORE
instructions which are used to access data in static, fixed memory locations. Other
instructions (e.g., JUMP, BRANCH, CALL) are using addresses as jump targets. For
them, PC-relative addressing is more common and useful. However, the gp-relative
addressing mechanism is still present and gp-relative jumps can be generated
whenever the target address is in low memory. For example, it might make sense to
place jump tables in low-memory, so the code can easily branch to various entries.	

Kernel code will not be running in a virtual address space, so things are different. All
addresses will be located in the physical memory region.	

For kernel code, the “gp” register is assumed to be initialized to 0x0_0001_0000 (i.e.,
64 KiByte).	

This means that any address in the first 6 pages (i.e., the first 96 KiBytes of memory,
0 … 0x0_0001_7fff) can be accessed with a single instruction.	

 More precisely, non-negative offsets. For address 0x8_0000_8000 an offset of 0 is used.128

Blitz-64 Instruction Set Architecture / Porter	 Page of 	323 342

Appendix 1: Assembly Language	

Addresses within the first 32 KiBytes (0x0 ... 0x7FFF) are easily accessible using
offsets from “r0”. The next 64 KiBytes (0x8000 ... 0x1_7FFF) can easily be accessed
from register “gp”.	

	 0_0000_0000 … 0_0000_7fff	 offset 0…7fff from “r0”	
	 0_0000_8000 … 0_0000_ffff	 negative offset 8000…ffff from “gp”	
	 0_0001_0000 … 0_0001_7fff	 positive offset 0…7fff from “gp”	

Commentary It is recommended that the kernel place all frequently accessed,
global, static data in low memory.	

If “gp” has been properly initialized, bytes within the first 6 pages (96 KiBytes) are
addressable with a single LOAD or STORE instruction, since they can be addressed
with a 16 bit immediate offset from register r0 or gp. The need to use two
instructions is avoided for the most frequently accessed kernel variables.	

Thus, the most critical data should be placed within the first 6 pages (96 KiBytes).
The data region can then be followed by the code at successively larger memory
addresses. Placing the code after the data (rather than before the data) means that
accesses to the most frequently accessed data can be done with a single instruction.	

If the “kernel” keyword is present in the .begin pseudo-op, the default assumption
made by the assembler and linker is that register gp will contain the value
0x0_0001_0000. If the “kernel” keyword is not present, the assumption is that gp
contains 0x8_0000_8000.	

The programmer can override the default assumption with the “gp=” parameter.	

The “value” associated with a “startaddr=” or “gp=” parameter must be an absolute
value that can be calculated immediately by the assembler. Normally, every
“startaddr=” or “gp=” value will be a simple hex constant.	

User mode code should never be accessing any address below 0x8_0000_0000 and
the assembler/linker may issue warnings for any LOAD, STORE, BRANCH, JUMP, or
CALL instruction that uses such an address in a code segment that is not marked
“kernel”.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	324 342

Appendix 1: Assembly Language	

The programmer can also specify “gp=undefined” in the .begin pseudo-op, which
will entirely prevent the assembler/linker from using register “gp” in any
synthesized instructions. This would be useful for code in which the gp register (i.e.,
r13) is used for an entirely different purpose.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	325 342

Appendix 2: Implementation Details	

Every implementation of the Blitz-64 architecture must provide documentation to
elaborate on ISA details that are “implementation dependent” or “undefined” in this
document.	

Such an implementation document must answer the following questions.	

•	 What values are used for csr_version and csr_prod? What values are obtained
when these registers are read?	

•	 How many cores are implemented and what is their arrangement? Is the
organization 1-D, 2-D, or 3-D? What are the dimensions of the array of cores?	129

•	 Which machine instructions are unimplemented and require emulation?	
	 	 DIV, REM	
	 	 Floating point instructions	

•	 If the DIV and REM instructions are implemented, do they perform “truncated”,
“floored”, or “Euclidean” division when the operands are negative?	

•	 How are the CONTROL and CONTROLU instructions defined? (Perhaps they are
unused and always causes an Illegal Instruction Exception.)	

•	 Concerning the ENTERFUN instruction, if an Arithmetic Exception occurs for the
addition but there is no exception for the store operation, will the store to
memory be executed? If there is an exception related to the store operation but
the addition does not overflow, will the update to the destination register occur?
If there is an Arithmetic Exception and an exception related to the store
operation, which exception will be signaled?	

 That is, what are M, N, and P in the array addresses [0,0,0] … [M-1,N-1,P-1]?129

Blitz-64 Instruction Set Architecture / Porter	 Page of 326 342

Appendix 2: Implementation Details	

•	 Concerning the EXITFUN instruction, if an Arithmetic Exception occurs for the
addition but there is no exception for the load operation, will the program
counter be updated, that is, which value will be saved in csr_prevpc ? If there is
an exception related to the load operation but the addition does not overflow,
will the update to the destination register occur? If there is an Arithmetic
Exception and an exception related to the load operation, which exception will
be signaled?	

•	 Are there any additional instructions or changes to the Blitz-64 ISA?	

•	 Does the core contain TLB registers? How many?	

•	 Concerning memory…	
	 	 How much private memory is available to each core?	
	 	 Is shared memory is present? How much? Starting address?	

•	 What memory caching is implemented?	
	 	 What are the details?	
	 	 Is the cache write-through or not?	

•	 Which memory-mapped I/O devices are implemented?	

•	 Concerning each memory-mapped I/O device…	
	 	 What is its starting address?	
	 	 How many pages does it occupy?	
	 	 Exactly how does it function?	

•	 Concerning asynchronous interrupts…	
	 	 What are the possible interrupt types?	
	 	 What causes each interrupt to occur?	
	 	 What value is stored in csr_cause for each type?	

•	 Concerning the Boot ROM area, what does it contain? In particular, what is the
assembly source file that produced it, showing all the bytes?	

•	 Are there any other changes to the Blitz-64 specification?	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	327 342

Appendix 2: Implementation Details	

Example: The Emulator	

What values are used for csr_version and csr_prod? What values are obtained
when these registers are read?	

The emulator is configurable; the values can be set as part of the “emulation
parameters”. The default for csr_version is 0x0002_49F0_8002_0001, i.e., conforms
to spec = 1; version number = 0x0002; implementor = 0x0001 (“Harry Porter”); and
a value of 0x0002_49F0 (decimal 150,000) for clock cycles per millisecond,
indicating 150MHz operation. The default for csr_prod is 0x0000_0000_0000_0000.	

How many cores are implemented and what is their arrangement? Is the
organization 1-D, 2-D, or 3-D? What are the dimensions of the array of cores?	

The emulator is configurable; the number of cores and their arrangement are
included in the “emulation parameters”. The default is 6 core, but by default, only
core 0 is “running”, while the others are “stopped”.	

Which machine instructions are unimplemented and require emulation?	
	 DIV, REM	
	 Floating point instructions	

The DIV, and REM instructions are implemented, but the “-nodiv” command line
option can be used to force an Emulated Instruction Exception. The floating point
instructions can either cause an Emulated Instruction Exception, or will be executed
directly. This is configurable with the “-fp” command line option.	

If the DIV and REM instructions are implemented, do they perform “truncated”,
“floored”, or “Euclidean” division when the operands are negative?	

The operations of “truncated” and “Euclidean” division only differ when the top
value (the dividend) is negative and the remainder is non-zero. Whenever an
operation is attempted where this condition holds, the emulator will signal a user
error. Thus, the results of the emulator are consistent with both “truncated” and
“Euclidean” division, and signals an error if ever the user attempts an operation
where the results would differ.	

How are the CONTROL and CONTROLU instructions defined? (Perhaps they are
unused and always causes an Illegal Instruction Exception.)	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	328 342

Appendix 2: Implementation Details	

The following operations are implemented for the CONTROLU instruction, using the
corresponding values in the immediate field.	

DIGITAL_READ	 0	
DIGITAL_WRITE	 1	
HALT	 2	
SERIAL_STAT	 3	
SERIAL_RECV	 4	
SERIAL_SEND	 5	
ENABLE_KERNEL	 6	
SET_STATUS	 7	
TLB_DEBUG	 8	

These codes and operations are designed to match the codes used in the MicroBlitz
hardware implementation. These operations are useful in testing and exercising the
hardware implementation and are provided in the emulator so that the emulator can
be used to execute code meant to be run on the hardware. Such code is meant to test
and verify the correctness of the hardware.	

The DIGITAL_READ operation is not implemented. DIGITAL_WRITE will print the
value in register Reg1 in hex. HALT will halt execution. SERIAL_STAT will move
0x0000_0000_0000_0003 into RegD. This is a value that indicates that the serial
device is ready to receive and ready to transmit. SERIAL_RECV will get a byte from
the user and store it in RegD. SERIAL_SEND will print the byte in Reg1 on the output.
ENABLE_KERNEL will move the current value of csr_status to RegD and will then
set csr_status to 0x0000_0000_0000_0001. SET_STATUS will set csr_status to
0x0000_0000_0000_0001. TLB_DEBUG will retrieve the number of a TLB register
from Reg1. It will move a representation of that TLB register into RegD. The TLB
registers are larger than 64 bits, so this operation will store the following in RegD:	

	 ASID[63:48] || VirtAddr[47:27] || PhysAddr[26:5] || C || D || W || X || V	

This captures all the information except the upper bits of the physical address,
which are lost.	

The behavior of all other CONTROL and CONTROLU operations is left to the user.
When encountered, the emulator will halt and display the immed16 value and the
contents of register Reg1. Then, the emulator will ask the user whether or not the
instruction should cause an Illegal Instruction Exception. If “no”, then the emulator

Blitz-64 Instruction Set Architecture / Porter	 Page of 	329 342

Appendix 2: Implementation Details	

will prompt for a value to be entered, which is placed in register RegD. Then,
execution is resumed.	

Concerning the ENTERFUN instruction, if an Arithmetic Exception occurs for the
addition but there is no exception for the store operation, will the store to memory
be executed? If there is an exception related to the store operation but the addition
does not overflow, will the update to the destination register occur? If there is an
Arithmetic Exception and an exception related to the store operation, which
exception will be signaled?	

If an Arithmetic Exception occurs, it will take precedence; the store operation will
not be attempted and the destination register will not be modified. If the addition is
okay, but there is an exception related to the store operation, then neither the
update to the destination register nor the store operation will be performed.	

Concerning the EXITFUN instruction, if an Arithmetic Exception occurs for the
addition but there is no exception for the load operation, will the program counter
be updated, that is, which value will be saved in csr_prevpc ? If there is an exception
related to the load operation but the addition does not overflow, will the update to
the destination register occur? If there is an Arithmetic Exception and an exception
related to the load operation, which exception will be signaled?	

If an Arithmetic Exception occurs for the addition, it will take precedence; the load
operation will not be attempted. If the addition is okay, then the destination register
will be updated, regardless of whether or not there is an exception related to the
load operation. If there is an exception (regardless of whether it is from the addition
or the load operation), csr_prevpc will be set to the address of the EXITFUN
instruction.	

Are there any additional instructions or changes to the Blitz-64 ISA?	

No.	

Does the core contain TLB registers? How many?	

The emulator is configurable; this is one of the “emulation parameters”. The default
number is 16. If desired, the value 0 can be used to run with no TLB registers.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	330 342

Appendix 2: Implementation Details	

Concerning memory…	
	 How much private memory is available to each core?	
	 1 GiByte.	
	 Is shared memory is present? How much? Starting address?	
	 Shared memory is 1 GiByte, starting at address 0x0000_0000_4000_0000.	
	 These values are the defaults; the emulator is configurable.	

What memory caching is implemented?	
	 What are the details?	
	 Is the cache write-through or not?	

The emulator does not implement memory caching.	

Which memory-mapped I/O devices are implemented?	

Boot ROM	
Secure Storage	
DMA Controller	 Memory moves, SHA-256, AES-256	
Host Device	 For passing commands through to the host OS)	
UART	 Serial communication	
DISK	 Non-volatile storage device	
PLIC	 Platform-Level Interrupt Controller	
Digital I/O Pins	

There is only one “Secure Storage” device, which is shared between all cores. Ideally,
each core would have its own Secure Storage device.	

Concerning each memory-mapped I/O device…	
	 What is its starting address?	
	 How many pages does it occupy?	
	 Exactly how does it function?	

Details are given in the document “Blitz-64: Memory-Mapped I/O Devices”.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	331 342

Appendix 2: Implementation Details	

Concerning asynchronous interrupts…	
	 What are the possible interrupt types?	
	 What causes each interrupt to occur?	
	 What value is stored in csr_cause for each type?	

The following devices cause interrupts:	

Timer Interrupt	
DMA Controller	
Platform-Level Interrupt Controller (PLIC)	

Details are specified elsewhere in this document and in “Blitz-64: Memory-Mapped
I/O Devices”.	

Concerning the Boot ROM area, what does it contain? In particular, what is the
assembly source file that produced it, showing all the bytes?	

The value stored in the Boot ROM is configurable. It is read in by the emulator from a
secondary file named “emulationROM”. A simple version of the BootLoader comes
from boot0.s; it assumes the emulator has already read in an executable file into
memory and simply jumps to it.	

Are there any other changes to the Blitz-64 specification?	

No.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	332 342

Appendix 3: Recent Changes	

This appendix documents changes to the Blitz-64 architecture and this document
over time.	

28 May 2019	

A new exception called “Null Address Exception” is added.	

The exceptions numbers are changed and shifted to make room for the new Null
Address Exception.	

The relevant instructions were altered. They will now signal this exception when
appropriate.	

15 June 2019	

Modification to instructions SLL, SLA, SRL, SRA. These instructions will now cause
an Arithmetic Exception if the value in the register (i.e., the shift amount) is not
within 0 … 63. 	

15 June 2019	

The CHECKA instruction is added.	

A new exception called “Bad Array Index Exception” is added.	

The exceptions numbers are changed and shifted to make room for the new Bad
Array Index Exception.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 333 342

Appendix 3: Recent Changes	

23 July 2019	

In the section describing the Arithmetic Exception, there was an error in the list of
which instructions can cause the exception. It is changed as follows: 	

Arithmetic Exception	

This exception can be caused by the following operations:	
	 Integer arithmetic :	 ADD, ADDI, SUB, MUL, DIV, REM	
	 Shift operations:	 SLA, SLAI, SRA, SRAI, SRL, SLL	
	 Size checking:	 CHECKB, CHECKH, CHECKW	

3 August 2019	

In the discussion of priorities in the case of multiple, simultaneous exceptions, a
mention of the “Bad Array Index” exception was added. This exception cannot co-
occur with any Page-related exceptions, since it can only be caused by the INDEX__
instructions, which don’t access memory.	

Additional discussion of the FCVTFI and FCVTIF instructions was added. A
commentary section titled “Overflow for FCVTFI” was added.	

Minor changes and rewordings were added and some typos were corrected.	

16 August 2019	

Added a commentary about floating comparisons with NaN. Explained why FNE is
not included in the instruction set.	

18 August 2019	

Added clarification about “unused/zero” bits in the csr_status register. They cannot
be modified.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	334 342

Appendix 3: Recent Changes	

Added clarification about csr_prevpc, which is a 64 bit register. When the PC is
copied to this register, the upper 28 bits will be set to zero. When this register is
copied to the PC, the upper 28 bits will be ignored.	

Added: Cause codes are zero-extended to 64 bits whenever the hardware writes
them into a CSR register.	

21 August 2019	

The version number in the csr_version register is specified to be 0x0001.	

22 August 2019	

Concerning the TLB registers, this sentence was added: “All bits of each register,
including bit [5] which marked as “unused,” can be read and written by the
TLBREAD and TLBWRITE instructions.”	

6 September 2019	

Updates were made to the Simple Serial device concerning how UTF-8 is handled.
[The Simple Serial device was later replaced by the UART device.]	

The ADD3, CONTROL, and CONTROLU instructions were added.	

8 November 2019	

The DZ “Divide-by-zero” bit was added to CSR_STATUS and the CSR_STATUS was
altered to squeeze it in. In CSR_STATUS register, the DZ bit was inserted as bit 4 and
bits 4-8 were shifted to 5-9. (The FCLASS instruction was changed, but a subsequent
change eliminated the FCLASS instruction.)	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	335 342

Appendix 3: Recent Changes	

11 November 2019	

Added a commentary describing a hypothetical csr_limit register (which would be
to watch for stack overflow) and why it was not included.	

7 October 2020	

Footnotes were added discussing error conditions for FCVTIF and FCVTFI. This
behavior needs to be reviewed and is subject to change / correction / improvement.	

18 April 2021	

Previously, the Null Address Exception was defined to occur if the address of 0 was
used. It has been redefined to include any address within 0…7, i.e., the last 3 bits are
now to be ignored in the check. The reason for this change is that some array
operations (e.g., arraySize) look at the current size at offset 4 without ever reading
offset 0. Without this change, use of a null pointer fails to cause an exception.	

10 May 2021	

The csr_core register was created to replace csr_extra2. The csr_extra1 register
was renamed csr_extra.	

24 May 2021	

The GETSTAT, PUTSTAT instructions were added. The FCLASS instruction was
eliminated.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	336 342

Appendix 3: Recent Changes	

2 June 2021	

The following instructions were added:	
	 INDEX0, …, INDEX32, MULADD, MULADDU	
MUL was changed to synthetic. Previously, MUL was optional; MULADD and
MULADDU are now mandatory, never emulated. The CHECKA instruction was
eliminated, since the INDEX__ instructions are superior.	

The format of register csr_version was changed.	

Register csr_temp1 was renamed csr_temp. Registers csr_temp2 and csr_temp3
were renamed csr_resv1 and csr_resv2. Register csr_extra was renamed csr_prod
which was also defined and described.	

The DMA Controller memory-mapped I/O device and corresponding interrupt was
added.	

The Secure Storage memory-mapped I/O device was changed. The allocated space
was enlarged and the semantics of locking was changed. Discussion of the boot
process was improved.	

10 July 2021	

Discussion of interrupt priority was improved.	

The RESTART instruction was added.	

22 October 2021	

The CAS and FENCE instructions were added.	

LOADs and STOREs are defined to be atomic if they are aligned. (Previously,
atomicity was guaranteed only for byte and halfword sizes.)	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	337 342

Appendix 3: Recent Changes	

15 November 2021	

The NULLTEST instruction was added.	

18 October 2022	

There are a number of changes to the ISA. The ISA documented here is now called
version 2.0.	

The version number in csr_version is incremented to 2.	

Registers csr_trapvec and csr_pgtable replace csr_resv1 and csr_resv2. The trap
processing will now load PC from csr_trapvec. (Previously the trap handler was at
fixed address 0x0_0001_8000.)	

Page tables are introduced and the TLB organization is completely changed. TLB
registers are now an optional cache of page table entries.	

The following instructions and exceptions have been eliminated:	

TLBREAD	
TLBWRITE	
TLBPUSH	
TLBSET	
TLBCLR	
TLBDELETE	
TLBCHECK	

TLB Miss Exception	
TLB Write Exception	
TLB Copy-on-write Exception	
TLB Execute Exception	
TLB Privilege Exception	

The following instructions and exceptions have been added:	

TLBCLEAR	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	338 342

Appendix 3: Recent Changes	

TLBFLUSH	
CHECKADDR	

Page Illegal Address Exception	
Page Table Exception	
Page Invalid Exception	
Page Write Exception	
Page Fetch Exception	
Page Copy-On-Write Exception	
Page First Dirty Exception	

The Control and Status Registers (CSRs) were reordered and renumbered.	

The opcodes for the machine instructions have been renumbered.	

The chapter “Power-On-Reset and the Boot Sequence” was created and added. 	

The chapter “Memory-Mapped I/O” was rewritten. 	

9 February 2023	

The ASID was moved from csr_status to the upper bits of csr_pgtable. The Physical
Page Number (PPN) field of csr_pgtable was extended from 20 to 30 bits, allowing
the root node of the page table to be located anywhere in the 16 TiByte physical
memory space. The diagram of the virtual-to-physical mapping was corrected to
show 30 bit PPNs, instead of 20 bit PPNs.	

17 February 2023	

The CHECKADDR instruction is modified to return a code number, instead of a trap
cause code. Trap cause codes might be renumbered in the future and this reduces
dependencies. Formerly, the CAS instruction was named “compare-and-swap”; it has
been renamed to “compare-and-set”.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	339 342

Appendix 3: Recent Changes	

23 April 2023	

The ENTERFUN and EXITFUN instructions have been added.	

30 April 2023	

The StackLimit field is added to csr_status. The Stack Overflow Exception is added.	

6 October 2023	

The Simple Serial Device was eliminated. The PLIC, UART0, and DISK0 peripheral
memory-mapped I/O devices were added.	

4 December 2023	

Reorganized the discussion of Memory-Mapped I/O. Moved much material to
separate document: “Blitz-64: Memory-Mapped I/O Devices”	

10 December 2023	

The “Kernel Exception” was eliminated and exceptions were renumbered. The
CONTROL and CONTROLU instructions were modified.	

Blitz-64 Instruction Set Architecture / Porter	 Page of 	340 342

Acronym List	
ASID	 Address Space ID	
CISC	 Complex Instruction Set Computer	
CLA	 Carry Lookahead Adder	
CSR	 Control and Status Register	
DMA	 Direct Memory Access	
DZ	 Divide by zero (within FLOAT_STATUS within csr_status)	
EDC	 Error Detection and Correction	
EOF	 End of File	
ISA	 Instruction Set Architecture	
KPL	 Kernel Program Language	
LLBL	 Low Level BootLoader program	
LSB	 Least Significant (rightmost) Bit or Byte	
MBR	 Master Boot Record	
MMU	 Memory Management Unit	
MSB	 Most Significant (leftmost) Bit or Byte	
MTE	 Matching TLB Entry	
NV	 Invalid operation (within FLOAT_STATUS within csr_status)	
NX	 Inexact (within FLOAT_STATUS within csr_status)	
OF	 Overflow (within FLOAT_STATUS within csr_status)	
OS	 Operating System	
PC	 Program Counter	
PLIC	 Platform-Level Interrupt Controller	
PPN	 Physical Page Number	
PTE	 Page Table Entry	
PWM	 Pulse Width Modulation	
RAM	 Random Access Memory (i.e., “main memory”)	
RD	 Round Down (within FLOAT_ROUND within csr_status)	
RISC	 Reduced Instruction Set Computer	
RN	 Round Up (within FLOAT_ROUND within csr_status)	
r/o	 Read Only	
r/w	 Read / Write	
ROM	 Read-Only Memory	
RU	 Round Up (within FLOAT_ROUND within csr_status)	
RZ	 Round toward Zero (within FLOAT_ROUND within csr_status)	
SBC	 Single Board Computer	
SSBL	 Second Stage BootLoader program	
SMP	 Shared Memory Multiprocessor	

Blitz-64 Instruction Set Architecture / Porter	 Page of 341 342

Acronym List	

TCB	 Thread Control Block	
TLB	 Translation Lookaside Buffer (i.e., the page table cache)	
UART	 Universal Asynchronous Receive Transmit	
UF	 Underflow (within FLOAT_STATUS within csr_status)	
VPN	 Virtual Page Number

Blitz-64 Instruction Set Architecture / Porter	 Page of 	342 342

