
Personal	
Statement:	
The	Goals	of	the	
Blitz-64	Project	

Harry	H.	Porter	III	
Portland	State	University	

HHPorter3@gmail.com	

14	December	2023		

This	document	describes	the	goals	for	the	Blitz-64	project.	The	challenges	
confronting	computer	systems	in	today’s	world	are	discussed	and	I	ruminate	on	the	
decisions	and	design	process	in	creating	a	system	to	address	these	issues.	A	number	
of	opinions	and	philosophical	musings	are	also	included.	

	 Available	Online: Blitz64.org/Documentation/B64-Personal-Statement.pdf

http://Blitz64.org/Documentation/B64-Personal-Statement.pdf
mailto:HHPorter3@gmail.com?subject=Blitz-64:%20xxxxDETAILSxxxx

Table	of	Contents	
Design	Philosophy	 	3
General	Principles	and	Goals	 	3
The	Greater	Problem	 	4
Areas	of	Experimentation	 	7
Software	Evolution	 	11

Document	Revision	 	14
Document	History	 	14
Permission	to	Copy	 	14

About	the	Author	 15

Blitz-64:	Personal	Statement	/	Porter	 Page	 	of	2 15

Design	Philosophy	

I	must	create	a	system	or	be	enslaved	by	another	man’s;	
I	will	not	reason	and	compare:	My	business	is	to	create.	

—	William	Blake	

General	Principles	and	Goals	

The	primary	design	criterion	of	the	Blitz-64	project	is	simplicity.	The	intent	is	to	
create	a	complete,	fully	functional	computer	system	that	can	be	understood	quickly	
and	easily	by	any	skilled	programmer.	Although	the	system	has	evolved	over	time,	
this	goal	remains	number	one.	Simplicity	helps	to	achieve	the	other	goals.	

The	second	design	criterion	is	reliability.	Once	completed	and	deployed,	a	
computer	system	should	continue	to	work	correctly.	We	primarily	target	software	
failures	and	always	make	our	design	choices	in	favor	of	eliminating	bugs.	The	goal	
should	always	be	complete	eradication	of	bugs	and	unpredictable	behavior.	
Repeatability	and	resistance	to	software	rot	is	crucial	to	achieving	reliability.	

A	third	criterion	is	to	increase	security	and	improve	resistance	to	malware.	The	
Blitz-64	project	is	speciTically	targeted	at	applications	that	require	high-
reliability	and	malware	resistance.	

In	moving	toward	these	goals,	Blitz-64	places	an	enormous	emphasis	on	catching	
and	reporting	errors.	The	tradeoff	is	always	performance	versus	execution	speed.	I	
believe	we	should	choose	slower	systems	that	work	correctly	over	faster	systems	
that	do	not.	Those	who	are	willing	to	trade	correctness	for	speed	should	go	
elsewhere;	Blitz-64	is	not	for	you.	

Another	design	criterion	for	KPL	is	to	create	a	programming	language	that	facilitates	
readability	of	programs.	As	a	consequence,	the	syntax	emphasizes	readability,	at	
the	expense	of	terseness	and	ease	of	typing.	Increasing	the	clarity	of	code	clearly	
helps	in	our	goals	of	simplicity	and	reliability.	Software	correctness	is	critical	and	a	
new	language	designed	explicitly	for	this	objective	is	part	of	the	project.	

Blitz-64:	Personal	Statement	/	Porter	 Page	 	of	3 15

Design	Philosophy	

Of	course,	tradeoffs	between	reliability	and	execution	efTiciency	cannot	be	avoided.	
Traditionally,	low-level	languages	like	C	and	C++	made	design	choices	in	favor	of	
efTiciency,	leaving	high-reliability	to	interpreted	languages.	Within	the	class	of	
systems	programming	languages,	KPL	puts	greater	emphasis	on	reliability	and	fault-
tolerance	than	familiar	languages.	

The	Greater	Problem	

Okay,	that	was	some	nice	boilerplate.	The	usual	clichés,	bland	banalities,	and	trite	
bromides.	

The	fact	is,	the	sheer	complexity	of	modern	software	systems	terriNies	me.	

Nobody	can	understand	a	modern	computer.	The	device	in	your	pocket	holds	
millions	of	lines	of	code,	some	of	it	written	in	the	1970s .	No	single	person	can	1

understand	such	complicated	artifacts.	No	one	can	come	close	to	full	
comprehension,	even	with	a	Computer	Science	Ph.D.	

The	devices	in	our	pockets	have	a	remarkable	amount	of	functionality,	but	they	have	
become	black	boxes.	When	something	goes	wrong	with	the	software,	it	cannot	be	
Nixed	or	repaired.	Often,	we	can’t	even	understand	the	problem.	We	no	longer	
understand	the	technology	that	we	have	become	totally	dependent	on.	

The	Blitz-64	project	really	has	this	goal:	

I	want	a	computer	system	that	a	single	individual	can	fully	understand.		

More	speciTically,	I	want	a	computer	system	that	I,	myself,	can	understand.	My	goal	is	
to	design	and	implement	such	a	system	alone.	Furthermore,	my	goal	is	to	code	all	
software	from	scratch,	not	relying	on	preexisting	software.	Obviously,	this	is	
ambitious.	

We	have	learned	a	lot	about	how	computer	systems	can	be	designed,	about	what	
works	best,	and	how	to	do	things	right.	But	our	existing	digital	infrastructure	
rests	on	a	foundation	of	work	done	in	the	distant	past,	before	we	learned	many	of	
the	lessons	that	are	now	taught	to	beginning	programmers.	Your	phone	is	running	

		Android	has	12	million	lines	of	code.	[www.visualcapitalist.com/millions-lines-of-code]1

Blitz-64:	Personal	Statement	/	Porter	 	 Page	 	of	 	4 15

Design	Philosophy	

legacy	software	which	was	Tirst	designed	in	the	1970s.	While	this	remarkable	
software	was	modern	and	hugely	innovative	when	it	Tirst	appeared,	we	now	know	a	
lot	more.	

Much	of	the	software	that	our	society	relies	on—the	software	lying	below	all	the	
complex	apps	we	use,	as	well	as	the	digital	infrastructure	that	our	lives	depend	on—
is	simply	ancient	and,	by	modern	standards,	grody.	

The	Blitz-64	project	includes:	
	 a	completely	new	computer	architecture	
	 a	completely	new	programming	language	
	 a	completely	new	set	of	software	tools	
	 a	completely	new	operating	system	kernel	
	 full	and	complete	documentation	

The	Blitz-64	project	includes	a	completely	new	computer	architecture.	Blitz-64	
includes	a	completely	new	programming	language.	Blitz-64	includes	a	completely	
new	set	of	software	tools.	Blitz-64	includes	a	completely	new	operating	system	
kernel,	on	which	these	tools	run.	Blitz-64	includes	a	full	and	complete	description	
in	English	documents.	

The	ambition	of	the	Blitz-64	project	is	to	create	an	entire	computer	system	from	
scratch.	The	end	product	will	not	use	and	not	include	any	legacy	software.	The	
Blitz-64	project	is	a	complete	re-design	and	re-write	of	all	system	software,	
including	assembler,	linker,	compiler,	kernel.	

My	idea	is	this:	

If	an	entire	computer	system	is	created	by	a	single	person,	then	the	resulting	
artifact	can	be	understood	in	totality	by	any	dedicated	professional.	

Complexity	will	necessarily	be	contained	and	limited.	Obviously,	understanding	
an	entire	computer	system	is	something	that	will	be	beyond	the	capabilities	or	
desires	of	most	people,	but	it	is	clear	that	it	is	signiTicantly	easier	to	understand	a	
complete	system	than	to	design	and	implement	that	system.	So	the	Blitz-64	system	
will,	by	virtue	of	being	so	limited,	meet	the	design	constraint	for	simplicity.	

One	can	deTine	a	“prototype”	as	any	design	in	which	there	are	known	Tlaws	or	
inadequacies	designed	in	from	the	beginning.	A	prototype	is	not	fully	functional	and	
will	fail,	but	it	has	value	nevertheless.	We	build	prototypes	in	order	to	learn.	

Blitz-64:	Personal	Statement	/	Porter	 	 Page	 	of	 	5 15

Design	Philosophy	

For	example,	Boeing	might	construct	a	1/10	scale	prototype	aircraft	for	use	in	wind	
tunnel	testing;	obviously	the	prototype	is	not	intended	to	function	as	a	real	plane.	I	
once	built	a	computer	out	of	relays;	obviously	this	computer	was	fatally	Tlawed	from	
the	moment	I	decided	to	use	relays.	But	these	prototypes	are	useful	and	we	learn	a	
lot	from	them.	

Blitz-64	is	not	intended	as	a	prototype	or	hobby	project.	

Blitz-64	is	intended	to	be	fully	functional,	fully	modern	computer	system	to	
address	a	couple	of	speciTic	needs.	The	hardware	architecture,	the	KPL	language,	and	
all	the	tools	are	intended	to	be	fully	functional	and	usable	in	the	construction	of	
deployable	software	systems.	Blitz-64	is	intended	to	be	industrial-grade,	power-
efTicient,	reliable,	and	fast.	

Is	there	any	need	for	a	wholly	new	computer	system	like	Blitz-64?	

First,	a	complete	but	non-trivial	computer	system	would	be	useful	as	a	teaching	
aid	for	Computer	Science.	In	my	experience,	beginning	programmers	have	a	hard	
time	getting	their	heads	around	(say)	Linux.	Modern	systems	are	just	too	complex	to	
grok	as	a	whole.	Successful	programmers	are	increasingly	nothing	but	“wizards”,	
who	learn	magic	phases	and	incantations	which	seem	to	work,	without	
understanding	why	they	work.	This	is	beyond	sad;	it	is	dangerous.	

Second,	the	market	for	fault-tolerant,	highly	reliable	systems	is	expanding	and,	I	
think,	crucial	for	the	future	of	civilization.	On	the	one	hand,	we	have	malware,	
hacking	attempts,	and	hostile	foreign	powers	trying	to	break	or	corrupt	existing	
software.	On	the	other	hand,	we	are	totally	reliant	on	software	for	critical	
applications,	such	as	airplane	avionics,	banking	infrastructure,	medical	devices,	
nuclear	missile	launch	control,	stock	trading,	power	grid	maintenance,	and	
election	voting.	From	space	probes	to	pacemakers	to	auto	braking,	we	cannot	
tolerate	a	glitches	or	failure	in	these	systems.	

To	make	matters	more	urgent,	we	are	moving	into	a	dangerous	political	future	in	
which	cyberwar	is	a	possibility.	Terms	like	cyberattack,	cyberwar,	cyber-terror,	
cyber-defense,	stockpiled	exploits,	and	military	malware	have	entered	
circulation.	Benign	errors	and	random	failures	can	be	bad,	but	targeted	attacks	pose	
a	much	greater	threat.	In	a	cyberattack,	we	might	experience	the	simultaneous	
failure	of	multiple	systems	coinciding	with	other	physical	attacks.	Right	now,	
powerful	nations	are	employing	very	clever	guys	who	work	hard	to	make	existing	

Blitz-64:	Personal	Statement	/	Porter	 	 Page	 	of	 	6 15

Design	Philosophy	

software	fail,	and	they	do	this	by	Tinding	Tlaws	and	weaknesses	in	those	millions	of	
lines	of	code	that	nobody	really	understands.	

To	address	this	clear	and	present	danger,	we	need	a	higher	level	of	reliability	and	
fault-tolerance	across	the	board.	In	order	to	verify	and	certify	that	a	system	will	
work	reliably,	all	parts	of	the	system	must	be	fully	analyzed	in	the	context	in	which	
the	system	will	be	deployed.	While	much	of	(say)	Linux	has	been	time-tested,	it	is	
clear	with	a	system	as	complex	as	Linux,	there	remain	holes	and	deTiciencies.	We	can	
be	certain	that	Linux	is	not	bug	free,	yet	it	is	widely	deployed.	

As	time	goes	on,	embedding	complex	legacy	systems	that	are	not	truly	
understood	by	their	users	in	safety-critical	systems	may	become	increasingly	
dangerous.	

The	risk	of	systemic	failures	in	some	systems	is	already	intolerable.	The	risk	of	
concerted	cyberattacks	is	unimaginable.	

Obviously	Blitz-64	will	not	be	fully	fault-tolerant	and	bug	free	from	the	get-go,	but	
we	do	know	that,	other	things	equal,	a	simpler	system	will	be	more	reliable	and	
fault-tolerant	than	a	more	complex	system.	

Areas	of	Experimentation	

The	boundary	between	hardware	and	software	is	the	Instruction	Set	Architecture	
(ISA).	There	are	a	several	ISAs	in	widespread	use	(such	as	x86-64	and	ARM)	and	
there	are	others	less	widely	known	(such	as	Mips,	RISC-V,	AVR,	SPARC,	and	Power).	

The	ISA	boundary	can	be	compared	to	the	border	between	two	countries.	
Generally	speaking,	a	border	is	inherited	from	the	past	and	its	shape	was	
determined	by	historical	events.	Borders	are	difNicult	to	change.	People	on	both	
sides	have	gotten	used	to	the	border	and	people	resist	change.	Furthermore,	a	
change	requires	agreement	between	two	different	populations	with	different	
objectives	and	different	cultures.	Agreement	between	groups	with	different	
mindsets	is	difTicult.	

Things	change	and	borders	are	often	not	placed	in	the	most	practical	places.	The	
border	may	reTlect	the	outcome	of	a	forgotten	battle.	Redrawing	a	border	in	a	
more	reasonable	way	may	involve	rivers,	watersheds,	and	contemporary	language	

Blitz-64:	Personal	Statement	/	Porter	 	 Page	 	of	 	7 15

Design	Philosophy	

groups.	Unfortunately,	a	change	may	be	impossible	to	achieve,	even	though	changing	
the	border	might	result	in	beneTits	to	both	parties.	

The	ISA	acts	as	a	border	or	interface	between	two	groups	of	people:	the	hardware	
engineers	on	one	side	and	the	software	programmers	on	the	other.	These	groups	
have	different	educations	and	areas	of	expertise.	Hardware	engineers	know	a	lot	
about	hardware,	but	less	about	software,	while	the	programmers	know	a	lot	about	
software,	but	less	about	hardware.	

Programmers	can	make	recommendations	or	requests	to	the	hardware	folks	for	
incremental	changes	in	the	ISA,	but	they	don’t	suggest	sweeping	changes	to	the	
ISA.	Likewise,	the	hardware	people	can	make	incremental	changes	in	the	ISA	that	
beneTit	the	programmers,	but	are	hesitant	to	throw	out	the	ISA	and	propose	
something	radically	different.	

The	C	language	also	forms	a	crucial	landscape	feature	and	should	be	considered	
as	part	of	this	inTlexible	border.	Apparently,	all	ISA	designers	share	one	maxim:	

The	ISA	must	support	existing	C	language	programs.	

Whatever	changes	are	proposed,	the	ISA	must	continue	to	support	legacy	software	
written	in	C	and	these	programs	must	run	exactly	the	same	as	they	have	been	
running.	No	serious	hardware	designer	would	propose	a	new	ISA	that	was	unable	to	
run	C	code	and	execute	it	with	high	efTiciency.	Likewise,	no	sane	programmer	would	
suggest	that	a	newly	proposed	ISA	not	support	C	and	suggest	that	all	the	low-level	
system	software	can	just	be	thrown	out	and	rewritten.	

Another	constraint	that	affects	some	ISAs	is	that	they	must	continue	to	execute	
existing	software.	We	all	know	that	Intel	has	succeeded	because	they	attached	great	
importance	to	being	able	to	execute	legacy	machine	code.	

Some	new	architectures	will	execute	code	without	being	recompiled.	Some	new	
architectures	will	execute	legacy	code	but	require	all	code	to	be	recompiled.	And	
some	new	architectures	will	execute	legacy	code,	but	require	signiTicant	changes	to	
the	compiler	and	other	systems	software.	

But	no	new	ISA	is	rash	enough	to	suggest	that	the	C	language	itself	must	be	
changed.	It’s	just	too	much	to	ask.	

Blitz-64:	Personal	Statement	/	Porter	 	 Page	 	of	 	8 15

Design	Philosophy	

I	love	the	C	language.	It	was	brilliant.	C	remains	my	language	of	choice	for	many	
tasks.		

Nevertheless,	I	believe	the	requirement	to	support	C	has	become	an	intolerable	
constraint	on	ISA	design	and	prevents	progress.	Blitz-64	takes	the	approach	that	no	
legacy	constraints,	including	C	itself,	should	shape	the	ISA.	

I	am	fortunate	that	I	have	done	a	little	work	on	both	sides	of	the	border.	My	
educational	and	professional	background	is	clearly	in	software,	but	I	have	
maintained	an	interest	in	electrical	engineering	and	circuit	design.	I	am	lucky	to	be	
able	to	see	the	border	from	both	perspectives	and	crazy	enough	to	suggest	
something	as	radical	as	completely	redrawing	this	border,	abandoning	all	legacy	
baggage	and	the	restraints	of	compatibility	with	historical	precedent.	

The	Blitz-64	design	was	created	in	conjunction	with	creating	the	KPL	language.	I	
started	by	asking	what	I	want	my	programming	language	to	look	like,	and	I	worked	
backward,	asking	what	I	need	from	the	ISA	to	execute	this	language.	

The	Blitz-64	design	grew	out	of	a	similar	project.	The	earlier	project	was	called	
BLITZ,	but	is	now	called	Blitz-32,	if	ever	mentioned	at	all.	Blitz-32	included	an	ISA,	
an	assembler,	emulator	and	compiler,	an	earlier	version	of	KPL,	and	a	small	OS	
kernel	written	in	KPL.	I	learned	a	lot	from	the	years	spent	on	that	project,	and	
Blitz-64	is	my	attempt	to	employ	that	wisdom	to	the	fullest.	

Anyone	familiar	with	RISC-V	will	also	note	the	inTluences	on	Blitz-64.	

The	Blitz-64	project	is	also	my	vehicle	for	experimenting	and	demonstrating	a	
number	of	design	choices	that	seem	promising.	

I	will	say	nothing	here	about	the	choice	of	Big	Endian	except	that	I	could	never	have	
gotten	this	to	work	in	Little	Endian.	I	just	didn’t	have	the	extra	bandwidth	required	
to	constantly	mangle	hex	values.	

I	feel	that	greater	runtime	error	checking	is	the	right	way	to	go,	although	I	
appreciate	that	there	is	a	penalty.	My	approach	is	to	assume	that	we	must	have	the	
error	checking	and	then	ask	how	we	can	best	accomplish	it,	with	the	least	runtime	
impact.	I	came	up	with	things	like	the	CHECKA	instruction	(for	array	index	
checking),	the	Null	Address	Exception	(for	null	pointer	uses),	the	SLA	(for	shift-left-
arithmetic),	and	the	CHECKB/H/W	instructions	(for	range	checking).	

Blitz-64:	Personal	Statement	/	Porter	 	 Page	 	of	 	9 15

Design	Philosophy	

I	feel	that	the	plethora	of	integer	types	in	C	is	confusing	and	I	feel	that	the	problem	
of	integer	overNlow	is	overlooked	far	too	often.	My	solution	is	to	fully	commit	to	64	
bit	arithmetic	and	to	making	certain	that	every	arithmetic	operation	is	checked	for	
overTlow.	I	don’t	trust	myself	to	avoid	overTlow	and	have	been	surprised	time	and	
again	that	code	I	thought	was	correct	overTlowed.	Furthermore,	most	of	these	
overTlows	would	not	have	been	caught	during	debugging.	We	humans	tend	to	gloss	
over	big	numbers.	

For	many	applications,	32	bit	arithmetic	is	dangerously	limited.	The	numbers	in	
programs	are	often	big,	risking	overTlow	in	almost	every	arithmetic	operation.	64	
bits	numbers	are	really	a	lot	bigger	and	accidental	overTlow	just	doesn’t	happen	as	
often.	

The	decision	to	eliminate	unsigned	integers	followed	naturally.	On	reTlection,	I	
could	Tind	no	good	reason	to	include	unsigned	numbers,	which	is	really	the	decision	
to	exclude	all	negative	numbers.	Of	course	it	is	impossible	to	imagine	C	without	
unsigned	numbers,	but	I	have	not	yet	encountered	any	need	for	them	in	my	KPL	
programming.	I	feel	that	unsigned	numbers	cause	nothing	but	problems.	

Over	the	years,	I	have	spent	a	lot	of	time	debugging.	Debugging	generally	consists	of	
looking	at	a	code	and	trying	to	Tigure	out	what	it	does.	To	get	programs	debugged,	
one	needs	to	read	and	understand	a	program.	From	this,	I	concluded	that	program	
readability	should	be	given	more	importance	that	writability.	

Unix	and	the	C	language	were	designed	for	very	slow	computers	by	guys	who	did	not	
grow	up	typing.	Today,	the	computing	environment	is	different:	word	completion,	
cut-and-paste,	good	typing	skills,	and	slick	development	tools	can	be	assumed.	We	
can	generate	code	much	faster,	but	we	can’t	read	code	any	faster.	So	KPL	
emphasizes	readability.	

My	earlier	experience	with	grammars	and	parsing	gave	me	a	good	appreciation	for	
LR	grammars.	Like	many	programmers,	I	went	through	a	phase	of	being	seduced	by	
LR	parsing	algorithms.	But	in	the	end,	I	came	to	understand	that	the	syntax	of	a	
programming	language	is	orthogonal	to	the	expressiveness	and	utility	of	the	
language.	

For	KPL,	I	wanted	a	simple	syntax	and	a	parser	that	was	easy	to	write	and	which	
could	generate	reasonable	error	messages.	I	came	to	realize	that	a	simple	syntax	is		
easier	for	humans	to	read.	

Blitz-64:	Personal	Statement	/	Porter	 	 Page	 	of	 	10 15

Design	Philosophy	

In	the	course	of	simplifying	the	KPL	grammar,	I	tried	to	eliminate	as	much	as	
possible.	For	example,	the	elimination	of	semicolons	and	mandatory	parentheses	
(e.g.,	in	IF	and	WHILE	statements)	reduces	visual	clutter.	The	decision	to	use	“--”	
instead	of	“//”	for	comments	was	made	because	I	feel	that	it	is	more	effective	at	
visually	setting	off	comments.	

When	I	didn’t	feel	strongly	about	something,	I	had	no	hesitation	in	using	tried-and-
true	ideas,	such	as	the	operator	precedence	from	C,	or	the	“printf”	formatting	string	
codes.	

Both	in	the	ISA	and	in	KPL	I	tried	to	simplify	and	come	up	with	a	clean	regular	
design.	

Blitz-64	was	not	designed	by	a	committee.	There	was	no	schedule	and	there	were	
no	deadlines.	

I	had	the	uncommon	luxury	of	working	at	my	own	speed,	which	gave	me	the	
freedom	to	ponder	decisions,	when	the	best	option	was	not	obvious.	Since	there	
were	no	deadlines	or	milestones	to	be	achieved,	I	could	stop	and	re-work	parts	of	
the	system	whenever	I	felt	that	I	had	made	a	bad	decision.	I	had	the	freedom	to	go	
back	and	change	things	that	I	didn’t	like.	In	fact,	I	look	at	the	transition	from	the	
earlier	Blitz-32	to	the	Blitz-64	system	as	going	back	to	Tix	problems,	although	it	took	
several	years	of	cogitation.	

I	do	not	know	how	modern	ISA	or	software	design	teams	function,	but	I	suspect	my	
total	freedom	from	management	may	not	be	typical.	

As	a	result,	Blitz-64	is	something	new,	something	that	is	quite	unlike	other	systems.	

Software	Evolution	

Blitz-64	proposes	to	create	a	wholly	new	branch	in	the	tree	of	software.	One	
motivation	for	creating		derivations	is	to	increase	resilience,	reliability,	and	fault-
tolerance	by	increasing	the	number	of	unique	alternatives,	a	sort	of	redundancy	at	
the	level	of	software	code	base.	

Blitz-64:	Personal	Statement	/	Porter	 	 Page	 	of	 	11 15

Design	Philosophy	

When	it	comes	to	fault-tolerance,	there	is	clearly	a	beneNit	to	diversity	in	any	
complex	system.	With	only	one	implementation,	there	will	always	be	a	single,	critical	
point	of	vulnerability.	

For	example,	consider	the	recent	problems	with	the	Boeing	737-MAX	aircraft,	in	
which	a	single	design	problem	forced	the	grounding	of	all	737-MAX	planes.	Of	
course	there	have	been	costs	associated	with	this	failure,	but	because	of	the	large	
number	of	different	aircraft	models	in	service,	the	impact	on	air	trafTic	as	a	whole	
has	been	limited	and	tolerable.	Because	there	are	many	competing	aircraft	designs,	a	
failure	in	the	design	of	one	can	be	tolerated	better	than	if	there	were	only	two	or	
three	different	airplane	models	in	service.	

The	vast	majority	of	phones	and	computers	rely	on	a	shared	software	base,	
essentially	derived	from	Unix.	Imagine	if	all	computers	were	to	be	running	the	
exact	same	OS	software,	and	there	appeared	a	single	malware	exploit	able	to	
render	that	software	unusable.	It	would	be	catastrophic	for	civilization.	This	is	not	
hyperbole;	we	have	become	fully	dependent	on	computers	for	money,	food,	power,	
communication,	transportation.	We	can’t	tolerate	serious	degradation	in	any	single	
one	of	these	life-critical	systems,	let	alone	a	combination	of	several.	

The	more	we	rely	on	a	software	monoculture,	the	more	we	risk	that	a	single	failure	
or	successful	attack	may	have	tragic	consequences.	For	increased	fault-tolerance,	
civilization	should	explore	different	hardware	implementations	and	a	variety	of	
software	systems.	Then,	in	the	event	of	random	faults	or	malicious	attacks,	some	
systems	will	be	entirely	unaffected	and	some	functionality	would	remain	intact.	

There	is	another	beneNit	to	variety	and	diversity.	Computers	have	effectively	
become	ecosystems,	populated	by	a	huge	diversity	of	interacting	software	
components.	Software	is	evolving	and	this	evolution	is	heading	in	many	different	
directions.	We	are	foolish	not	to	be	creative	and	try	some	radically	different	
approaches	now	and	then.	Even	if	a	revolutionary	approach	like	Blitz-64	does	not	
lead	to	a	revolution,	such	projects	can	still	have	beneTicial	inTluences	on	future	
designs.	

We	might	even	suggest	that	in	the	complex	universe	of	software,	Natural	Selection	
is	beginning	to	occur,	since	there	is	competition	and	some	software	entities	
(concepts,	styles,	code	snippets,	or	even	entire	programs)	survive	and	prosper,	while	
other	software	entities	are	withering	and	fading	into	history.	

Blitz-64:	Personal	Statement	/	Porter	 	 Page	 	of	 	12 15

Design	Philosophy	

Do	we	have	the	conditions	to	declare	that	Darwinian	Selection	is	happening	to	
software?	

The	analogy	between	the	copying	of	code	from	older	programs	into	newer	programs	
and	the	mixing	of	genes	that	occurs	in	biological	reproduction	is	obvious.	
Inherited	features	are	being	passed	from	older	entities	to	newly	created	entities.	
We	note	that	resources	are	limited	and	we	observe	differential	survival	among	
entities.	Competition	among	software	entities	occurs	whenever	human	users	
choose	to	download	and	execute	one	program	over	another.	Furthermore,	the	
ability	to	survive,	Tlourish,	and	inspire	new	entities	is	dependent	on	these	
inherited	features.	Code	is	copied	from	successful	apps	to	new	apps,	just	as	the	
genes	of	successful	organisms	are	copied	during	reproduction.	The	Darwinian	
requirement	of	random	mutation	is	crucial	for	Natural	Selection	to	occur.	Both	
ideas	and	code	are	copied	from	one	app	to	another	and	in	both	cases,	there	are	
changes	and	often	mistakes. 	To	digress	into	academic	philosophy,	I’ll	observe	that	2

this	mutation	is	not	fully	random,	so	we	might	be	observing	some	hybrid	between	
Intelligent	Design	and	Darwinian	Selection.	

Regardless	of	such	philosophical	musings,	it’s	clear	we	need	to	keep	creating	and	
experimenting	and	not	simply	re-using	existing	intellectual	property.	

By	creating	a	wholly	new	branch	in	the	tree	of	software	derivation,	Blitz-64	may	lead	
to	the	exploration	of	new	areas	in	software	design	space,	to	new	avenues	in	the	
creative	evolution	of	software.	

In	any	case,	I	hope	you	Tind	Blitz-64	interesting	and	worth	studying.	

	If	you	see	what	I’ve	seen	some	student	programmers	do	to	existing	code,	you’ll	agree	that	some	2

mutations	are	truly	random.

Blitz-64:	Personal	Statement	/	Porter	 	 Page	 	of	 	13 15

Document	Revision	

Document	History	

Version	numbers	are	not	used	to	identify	revisions	to	this	document.	Instead	the	
date	and	the	author’s	name	is	used.	The	document	history	is:	

Date	 Author	
28	October	2019	 Harry	H.	Porter	III		<document	created>	
18	February	2020	 Harry	H.	Porter	III		<document	reviewed>	
14	December	2023	 Harry	H.	Porter	III		<minor	updates>	

Permission	to	Copy	

Please	do	not	copy	or	modify	this	document.	Any	material	lifted	should	be	
referenced.	

Blitz-64:	Personal	Statement	/	Porter	 Page	 	of	 	14 15

About	the	Author		
For	many	years,	Professor	Harry	H.	Porter	III	taught	in	the	Department	of	Computer	
Science	at	Portland	State	University.	He	has	produced	several	video	courses,	notably	
on	the	Theory	of	Computation.	Recently	he	built	a	complete	computer	using	the	
relay	technology	of	the	1940s,	which	has	eight	general	purpose	8	bit	registers,	a	16	
bit	program	counter,	and	a	complete	instruction	set,	all	housed	in	mahogany	
cabinets	as	shown.	His	technical	focus	and	research	interests	have	included	AI	and	
neural	networks;	parsing	and	natural	language	processing;	logic,	object-oriented,	
and	functional	programming;	compilers,	operating	systems,	interpreters,	and	system	
software;	and	discrete	math	and	computational	theory.	He	has	programmed	in	many	
high-level	languages	and	written	assembly	code	for	a	variety	of	machines,	dating	
back	to	the	IBM	360/67	and	Intel	8080.	

Porter	lives	in	Portland,	Oregon.	When	not	trying	to	Tigure	out	how	his	computer	
actually	works,	he	skis,	hikes,	travels,	and	spends	time	with	his	children	building	
things.	

Porter	holds	an	Sc.B.	from	Brown	University	and	a	Ph.D.	from	the	Oregon	Graduate	
Institute.	

Blitz-64:	Personal	Statement	/	Porter	 	 Page	 	of	 	15 15

