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Chapter	1:	Memory-Mapped	I/O	

Quick	Summary	

•	Each	I/O	device	is	allocated	one	or	more	pages.	
•	The	memory-mapped	I/O	pages	are	located	in	a	dedicated	region	of	addresses.	
•	The	memory-mapped	I/O	region	is	16	GiBytes	(1	Mi	Pages).	
•	The	memory-mapped	I/O	region	begins	at	address	0x4_0000_0000.	
•	Code	running	in	kernel	mode	has	full	access	to	the	memory-mapped	I/O	region.	
•	The	I/O	pages	may	optionally	be	mapped	into	virtual	address	spaces.	
•	The	Boot	ROM	Area	is	treated	as	a	memory-mapped	I/O	region.	

Overview	

The	Blitz-64	architecture	does	not	contain	instructions	that	are	dedicated	to	input	or	
output.	

Instead,	all	I/O	devices	are	memory-mapped,	which	means	they	are	accessed	using	
LOAD	and	STORE	instructions.	In	addition,	instructions	can	also	be	FETCHed	from	
memory-mapped	I/O	regions.	For	example,	instructions	are	fetched	from	the	Boot	
ROM	Area.	

Each	device	is	assigned	to,	and	located	within,	one	or	more	pages.	In	other	words,	
the	starting	address	for	a	device’s	address	range	will	be	page-aligned	and	the	
amount	of	address	space	the	device	consumes	will	be	a	multiple	of	the	page	size,	
which	is	16	KiBytes.	

The	following	address	range	is	set	aside	for	memory-mapped	I/O	pages:	

	 																												Size																													 	 	
	 Starting	Addr			 Ending	Addr					 							Bytes								 								Pages									 	 	
	 4_0000_0000 7_FFFF_FFFF 16 GiBytes 16,777,216	 	 	
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Chapter	1:	Memory-Mapped	I/O	

In	the	layout	of	the	memory-mapped	I/O	region,	the	various	I/O	devices	will	be	
ordered	and	laid	out	sequentially,	one	after	the	other.	They	will	not	overlap	and	
different	devices	will	be	on	different	pages. 	1

The	exact	layout	of	the	memory-mapped	I/O	regions	is	implementation-dependent.	

Allocating	the	memory-mapped	I/O	address	space	in	units	of	pages	is	mandated	for	
the	following	reason:	it	allows	the	kernel	to	use	address	translation	to	map	the	
pages	into	various	virtual	address	spaces.	At	runtime,	the	Memory	Management	Unit	
will	use	page	tables	to	map	a	LOAD	or	STORE	from	a	virtual	address	to	the	physical	
address	of	the	device.	Thus,	the	kernel	can	use	the	paging	mechanism	to	make	an	
individual	memory-mapped	I/O	device	available	to	one	address	space,	but	hidden	
and	invisible	to	all	other	address	spaces.	

In	most	cases,	the	device	driver	for	a	particular	device	will	run	as	a	user-mode	
program.	The	pages	for	the	device	being	managed	are	mapped	into	the	address	
space	of	the	driver	program.	This	approach	frees	the	kernel	from	the	overhead	of	
dealing	with	many	devices.	More	importantly,	it	allows	device	drivers	to	be	
dynamically	loaded,	started,	and	stopped	in	a	safe	fashion.	If	a	device	driver	is	buggy	
or	contains	malicious	code,	the	damage	is	limited	to	the	device	in	question;	it	cannot	
modify	other	devices	or	corrupt	kernel	memory.	Moving	most	device	drivers	out	of	
the	kernel	is	critical	for	security,	as	well	as	Glexibility.	

Nevertheless,	a	few	devices	will	undoubtedly	be	managed	directly	by	the	kernel.	The	
pages	for	such	a	device	would	not	be	mapped	into	any	virtual	address	space	and	the	
kernel	code	would	address	the	pages	directly.	

Like	normal	memory	pages,	I/O	pages	that	are	mapped	into	virtual	spaces	may	have	
any	combination	of	permissions.	

By	not	mapping	a	memory-mapped	I/O	page	into	a	virtual	address	space,	the	kernel	
prevents	user	mode	code	from	accessing	the	device.	If	a	page	is	mapped,	then	it	will	
be	readable.	In	addition,	the	kernel	may	mark	the	page	as	writable	and/or	
executable.	Normally,	the	pages	for	I/O	devices	would	be	marked	writable	(allowing	
the	code	to	update/alter/command	the	device)	but	not	executable.	

	It	is	allowed	for	implementation	to	place	unused	gaps	between	the	regions,	if	this	is	convenient.	If	1

there	is	an	expectation	that	a	region	will	grow	in	subsequent	implementations	or	that	some	
devices	may	be	implemented	optionally	in	different	versions,	then	those	pages	should	be	pre-
allocated,	set	aside,	and	documented	as	such.
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Chapter	1:	Memory-Mapped	I/O	

The	Blitz-64	speciGication	does	not	fully	specify	the	nature	of	all	I/O	devices	
available	on	a	given	system.	In	fact,	different	implementations	will	have	different	
devices.	In	other	words,	which	devices	are	present	and	how	they	function	will	vary	
between	implementations.	

Each	implementation	must	specify:	

	 •	Which	I/O	devices	are	present	
	 •	Where	each	device	is	located	in	the	physical	address	space	
	 •	How	many	pages	are	allocated	to	each	device	
	 •	Exactly	how	the	device	functions	and	how	it	is	used	

Below	is	an	example	placement	of	memory-mapped	I/O	devices.	(This	happens	to	be	
the	default	memory	map	for	the	devices	implemented	by	the	Blitz-64	emulator.)	

	 																												Size																													 	 	
	 Device																										 Starting	Addr	 					Hex					 					Bytes						 Pages	 	 	
	 Boot	ROM	Area	 4_0000_0000	 10_0000	 1	MiBytes	 64	 	 	
	 Secure	Storage	Area	 4_0010_0000	 10_0000	 1	MiBytes	 64	 	 	
	 PLIC	 4_0020_0000		 4000	 16	KiBytes	 1		 	 	
	 UART	 4_0020_4000	 4000	 16	KiBytes	 1		 	 	
	 DISK	 4_0020_8000		 4000	 16	KiBytes	 1		 	 	
	 DMA	Device	 4_0020_c000		 4000	 16	KiBytes	 1		 	 	
	 Host	Device	 4_0021_0000		 4000	 16	KiBytes	 1		 	 	

The	Boot	ROM	Area	and	the	Secure	Storage	Area	are	documented	in	the	“Blitz-64:	
Instruction	Set	Architecture	Reference	Manual”.	

Subsequent	chapters	here	deGine,	describe,	and	document	the	other	devices.	Of	
course,	different	implementations	may	choose	different	speciGications	for	various	
memory-mapped	peripheral	I/O	devices.	In	this	document,	we	describe	what	is	
implemented	by	the	Blitz-64	emulator.	

Another	chapter	sketches	out	ideas	for	other	hypothetical	devices,	including:	

•	Lock	Controller	
•	Digital	I/O	Pins	
•	SPI	/	MicroSD	Card	
•	Adjacent	Core	Links	
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Chapter	1:	Memory-Mapped	I/O	

•	HDMI,	USB,	WiFi	

Finally,	one	chapter	includes	the	speciGication	for	the	CONTROL	and	CONTROLU	
instructions	as	they	are	implemented	by	the	emulator.	
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Chapter	2:	Platform-Level	
Interrupt	Controller	(PLIC)	

Quick	Summary	

•	There	is	one	PLIC	for	each	multicore	system.	
•	All	I/O	devices,	including	the	PLIC	itself,	are	memory-mapped.	
•	Devices	send	interrupt	requests	to	the	PLIC.	
•	The	PLIC	will	forward	the	interrupt	to	the	cores.	
	 —	One	core	will	claim	the	interrupt.	
	 —	This	core	will	service	the	interrupt	(via	a	handler	routine).	
	 —	When	complete,	the	handler	will	retire	the	interrupt.	
•	Only	one	interrupt	per	device	may	be	actively	claimed	at	any	time.	
	 —	Multiple	interrupts	from	one	device	are	handled	sequentially.	
	 —	The	PLIC	enforces	this	sequential	linearization	of	interrupt	handling.	
•	During	set-up,	the	PLIC	is	conGigured	with	an	ENABLE_ARRAY.	
	 —	Device	D	may	(or	may	not)	be	enabled	for	Core	C.	
	 —	When	device	D	interrupts,	only	the	enabled	cores	will	be	interrupted.	
	 —	The	PLIC	allows	only	one	enabled	core	to	successfully	claim	the	interrupt.	

PLIC:	Platform-Level	Interrupt	Controller	

From	time-to-time	I/O	devices	will	generate	interrupts	and	each	interrupt	must	be	
routed	to	a	core	to	be	handled.	A	multicore	Blitz	System	will	contain	a	single	PLIC,	
which	will	route	interrupts	from	devices	to	the	cores.	

Of	course,	there	will	be	some	interrupt	sources	that	are	local	to	a	particular	core.	For	
example,	each	core	will	have	its	own	timer	and	each	timer	interrupt	will	go	to	only	
that	core.	For	such	devices,	the	interrupt	will	not	go	through	the	PLIC.	Instead,	there	
are	speciGic	interrupt	types	(such	as	“Timer	Interrupt”)	and	the	device	will	interrupt	
the	core	directly.	
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Nevertheless,	many	devices	will	be	shared	among	the	cores.	Each	interrupt	
generated	by	a	such	a	shared	device	goes	through	the	PLIC,	which	will	then	interrupt	
one	or	more	cores.	In	this	discussion	of	the	PLIC,	we	ignore	local	devices,	since	the	
PLIC	is	only	used	for	shared	devices.	

Figure:	Basic	PLIC	Architecture	

Typically,	all	cores	and	the	PLIC	are	located	on	the	same	IC	chip.	The	interrupting	
device	may	be	located	on	the	same	IC	chip	as	the	cores	or	it	may	be	located	
elsewhere.	When	a	device	raises	an	interrupt,	the	PLIC	is	notiGied	via	a	direct	
connection,	which	would	normally	be	a	single	wire.	

The	PLIC	will	then	cause	a	“PLIC	Interrupt”	to	be	raised	in	one	or	more	cores.	All	
interrupted	cores	will	execute	the	trap	handler	code.	Of	course,	if	a	core	has	
interrupts	disabled,	there	will	be	a	delay	before	interrupts	are	re-enabled,	the	PLIC	
interrupt	is	serviced,	and	the	handler	code	begins.	

Only	one	core	will	“claim”	the	interrupt.	This	core	will	then	(presumably)	execute	
actions	to	service	the	I/O	device.	All	other	cores	will	Gind	that	the	interrupt	has	been	
claimed	by	another	core	and	will	exit	their	trap	handling	and	resume	execution	of	
the	interrupted	code.	

The	Girst	step	of	the	trap	handler	is	to	contact	the	PLIC	to	“claim”	the	interrupt.	The	
PLIC	will	then	indicate	whether	the	claim	operation	is	successful	or	not.	If	the	claim	
operation	is	successful,	the	core	will	go	on	to	deal	with	the	I/O	device.	If	the	claim	
operation	is	not	successful,	the	core	will	return	to	other	tasks.	
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Chapter	2:	Platform-Level	Interrupt	Controller	

Every	I/O	device	is	memory-mapped,	and	each	will	occupy	its	own	distinct	region	of	
the	physical	address	space.	To	access	a	device,	a	core	will	use	LOAD	and	STORE	
instructions.	More	precisely,	to	send	data	to	a	device,	the	core	will	STORE	to	speciGic	
locations.	To	retrieve	status	and	data	from	a	device,	the	core	will	use	LOAD	
instructions.	Such	memory	locations	are	often	called	“I/O	registers”,	although	they	
should	not	be	confused	with	registers	within	the	core.	

To	determine	the	addresses	of	the	various	I/O	registers	associated	with	a	particular	
device,	consult	the	documentation	associated	with	that	device.	

The	PLIC	is	also	treated	as	a	memory-mapped	device.	There	are	a	number	of	I/O	
registers	associated	with	the	PLIC,	and	these	will	be	described	in	this	document.	For	
example,	to	set-up	and	initialize	the	PLIC	before	operation,	a	core	will	STORE	into	
speciGic	PLIC	registers.	Likewise,	to	claim	an	interrupt	and	the	complete	the	
interrupt,	a	core	will	LOAD	and	STORE	into	addresses	mapped	to	the	PLIC.	

In	addition	to	the	memory-mapped	I/O	registers,	there	are	separate	wires	
associated	with	the	PLIC.	Each	device	has	a	single	wire	to	the	PLIC,	which	is	used	by	
the	device	to	signal	an	interrupt.	Also,	there	is	a	wire	from	the	PLIC	to	each	core,	
which	is	used	by	the	PLIC	to	signal	a	PLIC	Interrupt	to	that	core.	

This	Speci_ication	

The	PLIC	design	and	speciGication	presented	here	is	similar	to,	but	distinct	from	the	
Risc-V	PLIC.	Furthermore,	this	design	may	be	changed	in	the	future.	Instead	of	
version	numbers,	we	use	the	dates	on	this	document	and	the	implementation	itself.	

This	design	supports…	

Maximum	Number	of	Cores	 128	
Maximum	Number	of	Devices	 64	

The	cores	are	numbered	0,	1,	2,	…	127.	

The	devices	are	numbered	0,	1,	2,	…	63.	
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There	is	no	support	for	interrupt	“priorities”.	All	devices	are	treated	as	equally	
important. 	2

Memory-Mapped	PLIC	Registers	

EDGE_TRIGGERED_ARRAY	—	64	bits,	one	bit	per	device	
	 0	=	This	device	is	level	triggered	
	 1	=	This	device	is	edge	triggered	
ENABLE_ARRAY	—	128	×	64	bits,	one	doubleword	per	core	
	 1	=	This	device	can	interrupt	this	core	
	 0	=	This	core	will	not	get	interrupts	from	this	device	
CLAIM_ARRAY	—	128	doublewords,	1	per	core	
	 Read/LOAD	to	determine	which	device	has	interrupted.	
	 Write/STORE	to	retire	the	current	interrupt	

These	registers	are	memory-mapped.	Memory-mapped	registers	can	be	read	and	
written	by	the	cores.	

The	PLIC	would	typically	be	memory-mapped	to	the	page	with	address	
0x4_0020_0000. 	The	offsets	of	these	registers	are:	3

Offset	(decimal)	 Typical	Addr	 SizeInBytes										 Register	
0x0000	(0) 4_0020_0000	 0x0008	(8)	 EDGE_TRIGGERED_ARRAY	
0x0008	(8) 4_0020_0008	 0x0400	(1024)	 ENABLE_ARRAY	
0x0408	(1032) 4_0020_0408	 0x0400	(1024)	 CLAIM_ARRAY	
0x0808	(2056) 4_0020_0808	 	 	

Normally,	the	EDGE_TRIGGERED_ARRAY	and	the	ENABLE_ARRAY	are	written	
during	setup	and	initialization	and	would	not	be	changed	thereafter.	

	Modern	devices	are	typically	managed	by	their	own	microcontrollers	that	provide	data	buffering,	2

eliminating	the	need	for	super-fast	interrupt	handling.	Furthermore,	in	a	multi-core	system	where	
any	core	can	service	any	device,	there	is	usually	a	core	available	whenever	any	interrupt	occurs.

	With	the	Blitz-64	emulator,	this	address	is	one	of	the	emulation	parameters,	and	can	be	3

adjusted.
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Enabled	Devices	

When	a	device	raises	an	interrupt,	which	cores	should	be	notiGied?	This	is	
determined	by	how	the	ENABLED_ARRAY	was	initialized	on	start-up.	This	array	
determines	which	cores	will	be	notiGied	when	a	particular	device	requests	an	
interrupt.	It	also	determines,	for	a	given	core,	which	devices	are	able	to	trigger	an	
interrupt	on	that	core.	

Claiming	Interrupts	

Whenever	a	core	receives	a	“PLIC	Interrupt”,	it	should	LOAD	from	the	element	of	the	
CLAIM_ARRAY	corresponding	to	that	core.	If	the	value	retrieved	from	the	PLIC	is	-1,	
it	means	the	interrupt	has	been	previously	claimed	by	another	core	or	that	the	
interrupt	is	no	longer	pending. 	Otherwise,	the	value	retrieved	from	the	register	will	4

be	0…63	to	indicate	which	device	is	raising	an	interrupt.	

Retiring	Interrupts	

A	core	that	has	successfully	claimed	an	interrupt	from	device	X	should	retire	that	
interrupt	after	handling	it.	This	is	done	by	STORING	into	the	core’s	claim	word.	The	
exact	value	stored	does	not	matter	and	is	ignored	by	the	PLIC.	

From	the	Trap	Handler’s	Perspective	

When	a	device	has	generated	(i.e.,	“signaled”	or	“raised”)	an	interrupt,	the	PLIC	will	
generate	a	“PLIC	Interrupt”	on	all	cores	for	which	that	device	is	enabled.	The	PLIC	
determines	this	from	the	ENABLE_ARRAY,	which	tells	for	each	core,	which	devices	
are	allowed	to	cause	interrupts	on	that	core.	Interrupts	from	devices	that	are	not	
enabled	are	never	forwarded	to	that	core.	

Focussing	on	one	core,	if	interrupts	are	disabled	on	that	core	(i.e.,	if	the	“Interrupts	
Enabled”	bit	in	csr_status	is	0),	that	core	will	continue	executing	normally.	On	the	

	How	can	the	interrupt	“no	longer	be	pending”?	Perhaps	the	interrupt	has	been	claimed	by	4

another	core,	the	handler	has	run	to	completion	on	that	core,	and	the	interrupt	has	been	retired,	
all	before	some	other	core	has	even	attempted	to	claim	the	interrupt.
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Chapter	2:	Platform-Level	Interrupt	Controller	

other	hand,	if	interrupts	are	enabled	(or	once	interrupts	are	re-enabled),	trap	
processing	will	begin	and	a	jump	to	the	global	trap	handler	will	occur.	At	the	time	of	
the	trap,	the	csr_cause	will	be	set	to	the	code	for	a	“PLIC	Interrupt”.	

If	interrupts	are	disabled	at	core	X	and	the	interrupt	is	successfully	claimed	by	some	
other	core	Y	before	interrupts	are	re-enabled	on	X,	the	interrupt	may	or	may	not	
disappear.	In	other	words,	the	PLIC	Interrupt	at	core	X	may	remain	pending	until	
interrupts	are	re-enabled	or	it	may	disappear.	If	the	interrupt	disappears,	then	trap	
processing	never	occurs	and,	from	the	perspective	of	core	X,	it	is	as	if	the	PLIC	
Interrupt	never	occurred.	This	is	an	implementation	detail	to	be	decided	by	the	PLIC	
implementor. 	5

Once	the	trap	handling	begins	for	the	PLIC	interrupt,	the	interrupt	must	Girst	be	
“claimed”.	Since	several	cores	may	be	notiGied	and	begin	trap	processing	more	or	less	
simultaneously,	and	since	only	one	must	service	the	interrupt,	all	interrupted	cores	
must	communicate	with	the	PLIC.	The	PLIC	will	give	the	interrupt	to	exactly	one	
core.	That	is,	the	claim	operation	will	be	successful	on	one	core	and	will	fail	on	all	
other	cores	attempting	to	claim	that	same	interrupt.	

Furthermore,	the	core	could	have	several	devices	enabled,	so	after	the	PLIC	
Interrupt,	the	handler	must	determine	which	device	is	requesting	service,	and	the	
core	gets	this	information	when	it	LOADs	from	the	CLAIM_ARRAY.	

There	is	a	“claim	register”	for	each	of	the	cores.	Each	claim	register	is	a	doubleword	
(i.e.,	64	bits)	which	will	contain	an	integer.	To	claim	an	interrupt,	a	core	will	LOAD	
from	its	register	in	the	CLAIM_ARRAY.	For	example,	core	5	will	LOAD	from	
CLAIM_ARRAY[5].	

The	PLIC	will	determine	whether	or	not	a	claim	operation	is	successful	for	any	core	
trying	to	claim	it,	giving	the	interrupt	to	exactly	one	core,	and	not	to	any	other	cores	
which	are	also	trying	to	claim	the	interrupt.	If	the	operation	is	successful,	the	PLIC	
will	return	the	number	of	the	device	that	is	interrupting.	If	the	claim	operation	fails,	
the	PLIC	will	return	-1	to	the	core.	

	Furthermore,	it	may	be	that	such	an	interrupt	sometimes	remains	pending	and	sometimes	5

disappears,	at	the	discretion	of	the	PLIC.
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If	the	claim	operation	fails,	then	the	trap	handler	will	return	to	the	interrupted	code	
and	will	do	other	things. 	But	if	the	claim	is	successful,	the	trap	handler	will…	6

	 •	Determine	which	device	is	interrupting	
	 •	Execute	code	speciGic	to	that	device	
	 •	Communicate	directly	with	that	device	as	needed	to	process	the	interrupt	
	 •	Retire	the	interrupt	by	communicating	to	the	PLIC	
	 •	Return	to	the	interrupted	code	

The	value	returned	from	LOADing	the	CLAIM_ARRAY	will	indicate	which	device	is	
interrupting	and	can	be	used	to	dispatch	to	code	speciGic	to	that	device.	After	the	
interrupt	is	handled,	it	must	be	retired	by	notifying	the	PLIC	that	the	core	has	
completed	its	handling	the	interrupt.	

To	“retire”	the	interrupt,	the	core	will	STORE	into	the	CLAIM_ARRAY	register	for	
that	core	in	the	PLIC.	As	mentioned,	the	CLAIM_ARRAY	register	has	one	doubleword	
for	each	device.	The	core	may	store	any	value	into	this	doubleword;	the	actual	value	
is	ignored	by	the	PLIC.	

Once	an	interrupt	from	some	device	has	been	claimed	by	one	core,	no	further	
interrupts	from	that	device	will	be	dispatched	by	the	PLIC	until	that	interrupt	is	
retired.	In	other	words,	if	an	interrupt	from	some	device	(say	X)	has	been	claimed	
but	not	yet	retired,	then	subsequent	interrupts	from	device	X	will	not	cause	a	“PLIC	
Interrupt”	in	any	core,	nor	will	any	attempts	to	claim	an	interrupt	be	successful.	

In	order	to	use	the	PLIC	correctly,	the	following	rules	must	be	respected	by	the	
cores:	

•	 A	core	must	LOAD	from	and	STORE	to	only	the	CLAIM_ARRAY	register	
associated	with	that	core.	For	example,	core	5	should	never	mess	with	the	
register	associated	with	core	9.	

•	 A	core	must	not	execute	a	“retire”	operation	unless	it	has	Girst	successfully	
“claimed”	an	interrupt.	In	other	words,	each	retire	operation	should	be	
preceded	by	a	successful	claim.	

	Presumably.	Here,	we	describe	the	normal	operation	of	the	core	and	assume	all	handlers	behave	6

correctly.
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•	 A	core	should	not	try	to	claim	an	interrupt	unless	it	has	retired	the	previous	
interrupt	and	the	PLIC	has	subsequently	generated	a	“PLIC	Interrupt”.	

•	 The	ENABLE_ARRAY	and	the	EDGE_TRIGGERED_ARRAY	should	only	be	
modiGied	before	the	Girst	interrupt	occurs.	

Violations	of	these	rules	may	confuse	the	PLIC	and	cause	erroneous	operation.	

Level-Triggered	and	Edge-Triggered	Interrupts	

There	will	be	a	single	line	from	each	device	to	the	PLIC	and	the	device	will	use	that	
wire	to	signal	(i.e.,	request/raise)	an	interrupt .	The	interrupt	request	line	(from	the	7

device	to	the	PLIC)	can	be	conGigured	as	either:	

Level-Triggered	
Edge-Triggered	

The	EDGE_TRIGGERED_ARRAY	—	which	should	be	initialized	at	start-up	—	
determines	how	the	PLIC	will	sample	that	line.	The	array	is	stored	in	a	single	
doubleword	I/O	register	with	one	bit	for	each	device.	Bit	k	in	the	doubleword	
corresponds	to	device	k.	If	the	bit	is	initialized	to	0,	the	line	will	be	level-triggered;	if	
the	bit	is	1,	the	line	will	be	edge-triggered.	

	Our	discussion	of	a	“single	wire”	is	conceptual	only.	The	actual	circuitry	by	which	the	interrupt	7

signal	is	carried	from	device	to	PLIC	or	PLIC	to	core	may	be	more	complex.
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Level-Triggered	

If	the	device	operates	as	a	level-triggered	device,	then	the	interrupt	request	line	
from	the	device	to	the	PLIC	is	sampled	periodically.	If	the	line	is	high,	the	PLIC	will	
begin	operation	and	will	send	a	“PLIC	Interrupt”	to	all	cores	that	have	enabled	that	
device.	Then,	some	core	will	claim	the	interrupt,	execute	a	handler,	and	ultimately	
retire	the	interrupt.	

For	a	level-triggered	device,	the	act	of	retiring	the	interrupt	will	cause	the	PLIC	to	
once	again	sample	the	device’s	request	line.	If	high,	the	process	will	repeat	and	
another	interrupt	will	be	generated.	If	low,	no	interrupt	will	be	generated.	If	there	is	
no	interrupt,	the	PLIC	will	continue	to	sample	to	line	periodically,	e.g.,	on	every	clock	
pulse.	Whenever	the	line	goes	high	again,	the	PLIC	will	start	a	new	interrupt	cycle.	

For	a	level-triggered	device,	once	an	interrupt	has	occurred	and	the	PLIC	has	
notiGied	all	enabled	cores,	the	PLIC	will	then	ignore	the	interrupt	line	from	that	
device.	For	level-triggered	devices,	it	is	expected	that	the	device	will	keep	its	request	
line	high	for	many	clock	cycles	until	some	operation	by	the	handler	code	resets	the	
device,	causing	it	to	lower	its	request	line.	
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Edge-Triggered	

For	edge-triggered	devices,	the	device	is	expected	to	send	a	single	pulse	on	its	
request	line	to	the	PLIC.	It	is	the	rising	edge	on	the	request	line	that	will	cause	the	
PLIC	to	generate	an	interrupt	in	all	enabled	cores.	

However,	with	an	edge	triggered	device,	the	device	can	continue	to	generate	more	
interrupts	while	the	previous	interrupt	is	being	handled.	

For	each	edge-triggered	device,	the	PLIC	maintains	a	counter.	This	counter	is	
internal	to	the	PLIC;	it	is	not	directly	accessible	by	the	cores	and	is	initialized	to	zero	
on	power-on-reset.	Every	time	the	PLIC	detects	a	rising	edge	on	the	request	line	
from	a	device,	the	counter	for	that	device	is	incremented.	Every	time	a	core	retires	
an	interrupt,	the	counter	is	decremented.	

There	can	only	be	at	most	one	interrupt	active	for	any	given	device.	If	an	edge-
triggered	device	has	an	interrupt	active	(i.e.,	that	interrupt	has	not	yet	been	retired)	
and	the	device	raises	subsequent	interrupts,	then	the	counter	will	be	incremented,	
but	no	further	interrupts	to	the	cores	will	occur.	When	the	current	interrupt	is	
retired,	the	PLIC	will	process	subsequent	interrupts	and	raise	a	new	“PLIC	
Interrupt”	in	the	enabled	cores.	When	an	interrupt	for	an	edge-triggered	device	is	
retired,	the	PLIC	will	decrement	the	counter	associated	with	that	device.	If,	after	the	
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decrement,	the	counter	is	still	positive,	then	a	new	interrupt	will	be	forwarded	to	the	
cores. 	8

Claiming	Multiple	Interrupts	Not	Allowed	

Once	a	core	has	claimed	an	interrupt,	the	handler	will	normally	run	with	interrupts	
disabled	until	the	interrupt	is	retired.	Interrupts	should	not	be	re-enabled	until	after	
the	interrupt	has	been	retired.	

Once	some	core	has	claimed	an	interrupt	from	device	K	and	before	that	interrupt	
has	been	retired,	the	PLIC	will	not	raise	another	“PLIC	Interrupt”	at	any	core	
concerning	device	K,	even	if	device	K	has	requested	another	interrupt.	
To	restate	this,	consider	a	situation	in	which	a	core	is	handling	an	interrupt	from	
device	K	and	has	not	yet	retired	it.	Now	assume	device	K	raises	another	interrupt	
before	the	core	has	retired	the	previous	interrupt.	The	interrupt	from	device	K	will	
not	be	forwarded	to	that	core	or	to	any	other	core	until	the	previous	interrupt	is	
retired.	

If	the	device	is	“edge-triggered”,	the	second	interrupt	will	not	be	lost.	Instead,	it	will	
remain	pending	because	the	counter	will	be	incremented.	The	PLIC	will	signal	a	
second	interrupt	only	after	the	Girst	interrupt	is	retired.	

If	the	device	is	“level-triggered”,	this	situation	cannot	arise;	the	level	of	the	interrupt	
line	from	device	K	is	only	checked	when	the	previous	interrupt	is	retired.	In	other	
words,	if	the	device	is	level-triggered,	the	interrupt	request	line	from	the	device	to	
the	PLIC	will	be	ignored	until	the	previous	interrupt	is	retired.	Thus,	the	device	
cannot	cause	a	second	interrupt	while	the	Girst	interrupt	is	being	handled.	At	the	
moment	the	Girst	interrupt	is	retired,	the	request	line	from	the	device	to	the	PLIC	

	Edge-triggered	devices	that	are	integrated	on	the	same	chip	as	the	PLIC	and	running	within	the	8

same	clock	domain	will	presumably	be	synchronized	with	the	PLIC	circuitry.	Like	all	on-chip	
signals,	the	interrupt	request	line	from	the	device	to	the	PLIC	will	be	sampled	on	the	rising	edge	of	
the	clock.	At	each	clock	cycle,	the	counter	will	be	incremented	if	and	only	if	the	request	line	is	high.	
Thus,	“edge-triggered”	here	means	not	so	much	as	“the	rising	edge”	but	“high	on	a	given	clock	
cycle”;	if	the	line	happens	to	remain	high	for	multiple	clock	cycles,	the	counter	would	be	
incremented	on	each	clock	cycle.
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will	be	sampled.	If	the	line	is	still	high,	the	PLIC	will	dispatch	the	second	interrupt	to	
all	cores	for	which	that	device	is	enabled. 	9

This	means	that	interrupts	from	device	K	will	be	processed	one-at-a-time,	although	
each	interrupt	may	be	processed	on	a	different	core.	And	this	precludes	a	core	from	
handling	more	than	one	interrupt	simultaneously.	

The	PLIC	serializes	all	interrupt	handlers	for	a	given	device,	and	it	
serializes	all	interrupt	handlers	on	a	given	core.	

After	some	core	X	has	claimed	an	interrupt	from	device	K	but	before	it	has	retired	
that	interrupt,	other	devices	may	request	interrupts.	If	those	other	devices	are	also	
enabled	for	core	X,	then	a	“PLIC	Interrupt”	will	be	raised	at	core	X.	In	other	words,	
when	a	second	device	requests	an	interrupt,	that	interrupt	will	trigger	interrupts	at	
all	cores,	including	X,	which	are	enabled	for	that	device.	Presumably,	core	X	will	
leave	interrupts	disabled	until	after	it	retires	the	interrupt	from	device	K,	so	any	
subsequent	interrupts	to	core	X	will	remain	pending. 	10

Discussion	of	Handler	Approaches	

In	some	operating	systems,	interrupts	will	be	handled	as	follows:	

•	Device	D	requests	an	interrupt	
•	Core	C	is	interrupted	and	interrupts	are	temporarily	disabled	
•	The	interrupt	handler	claims	the	interrupt	for	device	D	
•	The	interrupt	handler	wakes	up	a	sleeping	“device	service	process”	
•	The	interrupt	handler	notiGies	the	PLIC	that	the	interrupt	is	retired.	
•	The	handler	re-enables	interrupts	and	returns	to	other	tasks	
•	Later,	the	“device	service	process”	is	scheduled	and	interacts	with	device	D	

		
But	note	that	each	interrupt	must	be	retired	before	attempting	to	claim	the	next	
interrupt.	

	The	request	line	from	a	level-triggered	device	is	also	monitored	when	there	are	no	interrupts	9

active	for	that	device.	Typically	it	would	be	sampled	on	every	edge	of	the	PLIC’s	clock.

	At	the	PLIC	implementor’s	option,	if	some	device	D	raises	an	interrupt	which	is	enabled	at	10

several	cores	and	that	interrupt	is	then	claimed	by	some	core,	the	PLIC	may	cancel	the	interrupt	at	
the	other	cores,	assuming	there	is	no	other	device	also	interrupting	them.
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In	the	above	scenario,	the	interrupt	handler	retires	the	interrupt	before	returning	to	
other	tasks.	This	means	that	the	“device	service	process”	runs	after	the	interrupt	has	
been	retired,	and	at	a	time	when	future	interrupts	may	be	recognized	and	claimed.	
Thus,	the	device	in	question	may	generate	additional	interrupts	(if	its	design	allows	
for	this)	before	the	“device	service	process”	has	completed.	

If	devices	can	generate	multiple	interrupts	between	servicing,	this	could	be	a	
problem.	

One	solution	is	for	the	interrupt	handler	to	fully	service	the	interrupt	and	eliminate	
the	need	for	any	special	"device	service	process”	that	is	scheduled	separately.	For	
example,	a	UART	might	generate	interrupts	whenever	a	byte	arrives	on	the	receive	
channel.	This	could	happen	at	any	time.	In	this	design,	the	interrupt	handler	will	get	
each	character,	add	it	to	a	buffer,	and	retire	the	interrupt	before	re-enabling	
interrupts.	This	way,	multiple	input	characters	will	each	generate	an	interrupt	and	
each	character	will	be	retrieved.	Any	tasks	that	are	scheduled	and	run	with	
interrupts	enabled	will	only	deal	with	the	buffer	and	not	care	about	interrupts	or	the	
device.	

Another	solution	is	for	the	interrupt	handler	to	avoid	retiring	the	interrupt,	and	
leave	that	to	the	“device	service	process”.	So	the	interrupt	will	be	claimed	by	the	
interrupt	handler,	but	it	will	not	be	retired	until	later,	by	the	“device	service	process”	
whenever	it	is	scheduled.	Of	course,	this	means	the	core	will	not	be	able	to	service	
any	PLIC	interrupt	until	after	the	“device	service	process”	completes	execution.	

A	third	solution	is	make	sure	that	each	device	will	not	generate	the	next	interrupt	
until	after	the	previous	interrupt	has	been	fully	serviced.	This	might	be	typical	of	
disks,	Of	course,	a	“read-sector”	or	“write-sector"	command	will	interrupt	when	
complete,	but	the	disk	will	not	then	interrupt	again	until	after	the	next	command	is	
issued.	So	it	is	safe	for	the	interrupt	handler	to	retire	the	interrupt	before	the	“device	
service	process”	runs,	since	there	cannot	be	a	subsequent	interrupt	until	after	the	
“device	service	process”	runs	and	issues	the	next	command	to	the	device.	
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Implementation	in	the	Emulator	

Next,	we	describe	the	implementation	of	the	PLIC	used	in	the	Blitz-64	emulator.	

This	section	can	be	safely	skipped.	

The	following	variables	are	used	within	the	emulator:	

EDGE_TRIGGERED_ARRAY	—	64	ints,	one	per	device	
	 0	=	This	device	is	level	triggered	
	 1	=	This	device	is	edge	triggered	
ENABLE_ARRAY	—	128	×	64	bits,	one	doubleword	per	core	
	 1	=	This	device	can	interrupt	this	core	
	 0	=	This	core	will	not	get	interrupts	from	this	device	
ENABLE_ARRAY_BY_DEVICE	—	64	×	128	bits,	two	doublewords	per	device	
	 1	=	This	device	can	interrupt	this	core	
	 0	=	This	core	will	not	get	interrupts	from	this	device	
COUNTER	—	64	ints,	1	per	device	
	 0	=	No	interrupt	(i.e.,	all	previous	interrupts	have	been	claimed)	
	 n	=	There	are	n	unclaimed	interrupts	for	this	device	
PROCESSING	—	128	ints,	1	per	core	
	 -1	=	This	core	is	available	to	be	interrupted	
	 k	=	This	core	has	claimed	(but	not	retired)	an	interrupt	from	device	k	
DEVICE_STATUS	—	64	ints,	1	per	device	
	 -1	=	This	device	is	not	requesting	an	interrupt,	or	
	 	 no	core	has	claimed	the	current	interrupt	
	 x	=	Core	x	has	claimed	(but	not	retired)	an	interrupt	for	this	device	
INITIALIZATION_COMPLETE	—	bool	
	 0	=	No	LOAD/STORE	to	CLAIM_ARRAY	has	yet	occurred.	
	 1	=	We	have	seen	LOADs/STOREs	to	the	CLAIM_ARRAY.	

PLIC-related	functions:	

signalInterruptFromDevice	(dev:	int)	
unsignalInterruptFromDevice	(dev:	int)	
checkInterruptsForDevice	(dev:	int)	
cancelUnneededInterrupts	()	

On	reset:	
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	 EDGE_TRIGGERED_ARRAY	—	Set	to	zeros	
	 ENABLE_ARRAY	—	Set	to	zeros	
	 ENABLE_ARRAY_BY_DEVICE	—	Set	to	zeros	
	 COUNTER	—	Set	to	zeros	
	 PROCESSING	—	All	entries	set	to	-1	
	 DEVICE_STATUS	—	All	entries	set	to	-1	
	 INITIALIZATION_COMPLETE	—	Set	to	0	

Whenever	a	LOAD	or	STORE	to	the	CLAIM	memory-mapped	array	is	executed,	
INITIALIZATION_COMPLETE	will	be	set	to	true.	This	Glag	is	used	to	make	sure	the	
code	doesn’t	try	to	modify	ENABLE_ARRAY	or	the	EDGE_TRIGGERED_ARRAY	after	
kernel	initialization	is	complete.	If	the	kernel	code	misbehaves,	a	user	warning	is	
displayed.	

A	STORE	to	the	EDGE_TRIGGERED_ARRAY	memory-mapped	doubleword	is	
transformed	into	an	initialization	of	the	internal	EDGE_TRIGGERED_ARRAY,	which	
is	more	convenient	to	use.	If	INITIALIZATION_COMPLETE	is	true,	then	a	user	
warning	is	displayed.	Otherwise,	no	further	action.	

The	ENABLE_ARRAY	maps	exactly	to	the	memory-mapped	registers	of	the	same	
name.	A	STORE	to	any	of	these	registers	will	update	the	corresponding	array	
element	directly.	The	ENABLE_ARRAY_BY_DEVICE	contains	the	exact	same	
information,	except	it	is	indexed	by	device	number,	rather	than	core	number.	Each	
and	every	STORE	to	the	ENABLE_ARRAY	will	also	cause	the	complete	
reinitialization	of	the	ENABLE_ARRAY_BY_DEVICE.	A	STORE	to	ENABLE_ARRAY	
after	INITIALIZATION_COMPLETE	has	been	set	will	be	Glagged	with	a	user	warning.	

The	ENABLE_ARRAY_BY_DEVICE	is	not	modiGied,	except	when	the	kernel	writes	to	
ENABLE_ARRAY	during	initialization.	It	is	used	by	the	PLIC-related	code	in	the	
emulator,	and	the	ENABLE_ARRAY	is	ignored	after	ENABLE_ARRAY_BY_DEVICE	is	
initialized.	

For	edge-triggered	devices,	the	following	function	should	be	invoked	by	the	code	
associated	with	the	device:	

signalInterruptFromDevice	(dev:	int)	

For	level-triggered	devices,	this	function	should	be	invoked	by	the	code	associated	
with	the	device	whenever	the	interrupt	level	is	changed	to	HIGH.	Whenever	the	
device	wishes	to	lower	the	interrupt	request	line,	it	calls:	
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unsignalInterruptFromDevice	(dev:	int)	

The	signalInterruptFromDevice	function	will	check	to	see	if	the	device	is	edge-	or	
level-triggered.	If	it	is	edge-triggered,	it	will	increment	the	corresponding	COUNTER	
array	element.	If	the	device	is	level-triggered,	it	will	set	the	element	to	1.	In	either	
case,	it	will	then	call:	

checkInterruptsForDevice	(dev:	int)	

Whenever	unsignalInterruptFromDevice	is	invoked,	the	corresponding	COUNTER	
array	element	will	be	set	to	0.	We	may	also	check	that	the	device	is	truly	level-
triggered	and	issue	a	user	warning	if	not.	It	will	then	call	the	following	function	to	
adjust	things	as	needed:	

Reset_PLIC_Interrupt_Pending	()	

This	function	will	cancel	all	pending	PLIC	Interrupts.	It	will	then	go	through	
COUNTER	array	to	identify	every	device	requesting	an	interrupt	and,	if	the	device	is	
not	currently	claimed	by	any	core	(i.e.,	DEVICE_STATUS	==	-1),	it	will	raise	a	PLIC	
Interrupt	for	all	enabled	cores.	There	is	a	PLIC_Interrupt_Pending	Glag	for	each	
core,	and	an	interrupt	is	signaled	by	setting	this	Glag .	It	will	consult	11

ENABLE_ARRAY_BY_DEVICE	to	determine	which	cores	are	to	be	interrupted.	

The	checkInterruptsForDevice	function	will	consult	the	COUNTER	array	to	
determine	whether	this	device	is	needing	an	interrupt	and	the	DEVICE_STATUS	
array	to	determine	whether	there	is	an	ongoing	(i.e.,	claimed	but	not	retired)	
handler	working	on	this	device.	If	there	is	an	interrupt	required,	but	none	in	
progress,	a	PLIC	Interrupt	will	be	raised	at	all	enabled	cores,	which	can	be	
determined	by	consulting	the	ENABLE_ARRAY_BY_DEVICE	array.	

	The	PLIC_Interrupt_Pending	Glag	is	checked	before	each	instruction	and	a	trap	occurs	if	it	is	set	11

and	interrupts	are	enabled.
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Whenever	a	LOAD	from	the	CLAIM_ARRAY	occurs,	an	interrupt	is	being	claimed.	
First,	we	check	to	make	sure	this	core	doesn’t	have	any	interrupts	in	progress	by	
checking	the	PROCESSING	array.	Then	we	search	for	a	device	such	that	(1)	it	has	
outstanding	unclaimed	interrupts	(the	COUNTER	array),	(2)	no	core	is	currently	
servicing	an	interrupt	from	this	device	(the	DEVICE_STATUS	array),	and	(3)	this	
device	is	enabled	for	the	requesting	core	(the	ENABLE_ARRAY_BY_DEVICE	array).	If	
no	such	device	is	found,	-1	is	returned	as	the	result	of	the	LOAD.	Otherwise,	we	
decrement	the	COUNTER	array,	set	the	DEVICE_STATUS	array	for	this	device	to	the	
current	core,	and	set	the	PROCESSING	array	for	this	core	to	this	device.	Now,	since	
this	core	has	claimed	the	interrupt	for	this	device,	we	adjust	the	
PLIC_Interrupt_Pending	Glags	for	the	other	cores	by	calling	
Reset_PLIC_Interrupt_Pending.	

Whenever	a	STORE	into	the	CLAIM_ARRAY	occurs,	an	interrupt	is	being	retired.	
First,	we	make	sure	there	is	an	outstanding	(i.e.,	un-retired)	interrupt	for	this	core	
by	checking	the	PROCESSING	array,	which	indicates	which	device	was	being	
handled.	Then	we	change	the	entry	for	this	core	to	-1	and	we	also	change	the	
DEVICE_STATUS	array	for	that	device	to	-1.	Then	we	ask	whether	there	are	still	
more	interrupts	from	this	device	by	checking	the	COUNTER	array	for	this	device.	If	
so,	we	raise	the	PLIC_Interrupt_Pending	Glag	for	all	cores	that	are	enabled	for	this	
device.	Finally,	we	ask	whether	there	are	still	unclaimed	interrupts	for	devices	for	
which	this	core	is	enabled,	If	so,	we	raise	the	PLIC_Interrupt_Pending	Glag	for	this	
core.	

Interrupt	Priorities	

It	is	possible	that	the	following	interrupts	will	occur	simultaneously:	

Timer	Interrupt	 ←	highest	
DMA	Complete	Interrupt	
PLIC	Interrupt	 ←	lowest	

Only	one	interrupt	will	be	processed	at	a	time.	In	other	words,	when	interrupts	are	
enabled,	one	interrupt	will	be	selected	and	a	trap	will	occur	for	that	interrupt.	Any	
other	pending	interrupts	will	remain	pending	until	interrupts	are	again	re-enabled.	

The	Timer	Interrupt	will	be	given	precedence,	with	the	others	in	turn.	This	is	how	
the	emulator	orders	priority;	other	implementations	may	order	the	priority	of	
interrupts	differently.	
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Quick	Summary	

•	A	UART	Communication	Device	
	 —	One	Tx	and	one	Rx	Channel	
•	Interface	is	through	memory-mapped	I/O	registers	
	 —	SEND_BYTE	
	 —	RECV_BYTE	
	 —	STATUS	
	 	 —	RECV_READY	bit	0	
	 	 —	SEND_READY	bit	1	
	 —	SETUP	
	 	 —	INTERRUPTS_REQUESTED	bit	0	
•	Optional	interrupts	to	PLIC	
	 —	When	the	device	becomes	free	to	send	a	byte	
	 —	When	the	device	has	received	another	byte	
•	The	Blitz-64	emulator	implements	this	device	

Introduction	

This	device	is	a	Universal	Asynchronous	Receive	Transmit	(UART)	channel,	
sometimes	known	as	a	“serial	port”.	There	is	a	transmit	channel	for	transmit	and	
another	channel	for	receive.	Bytes	can	be	sent	along	each	channel	independently	at	
the	same	time,	i.e.,	the	channel	is	full	duplex.	A	complete	byte	at	a	time	is	sent.	

In	hardware,	the	byte	is	linearized	and	sent	to	some	other	device	one	bit	at	a	time.	At	
the	minimum	the	hardware	uses	three	wires:	

	 Tx	
	 Rx	
	 Gnd	
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When	emulated,	the	transmission	may	happen	in	other	ways.	

In	this	chapter,	we	describe	what	is	implemented	by	the	Blitz-64	emulator;	other	
implementations	may	vary.	Variations	may	include:	

•	Multiple	channels,	instead	of	a	single	Tx/Rx	channel	
•	Ability	to	control	the	baud	rate,	the	parity	bit,	and	the	number	of	stop	bits	
•	Different	register	mappings	and	meanings 	12

Memory-Mapped	I/O	Registers	

The	following	four	hardware	registers	are	implemented	and	these	are	memory-
mapped	into	locations	in	the	physical	address	space.	

SEND_BYTE	—	Doubleword,	write	only	
	 Only	the	lower	8	bits	are	used,	higher	bits	are	ignored.	

RECV_BYTE	—	Doubleword,	read	only	
	 The	value	will	be	0	…	255,	i.e.,	
	 	 0x0000_0000_0000_0000 … 0x0000_0000_0000_00ff	

STATUS	—	Doubleword,	read	only	
	 RECV_READY	(bit	0):	0=no	recv	byte	is	available;	1=recv	byte	is	available	
	 SEND_READY	(bit	1):	0=send	channel	is	busy;	1=send	channel	is	ready	
	 Other	bits	are	zero,	but	should	be	ignored.	

SETUP	—	Doubleword,	write	only	
	 INTERRUPTS_REQUESTED	(bit	0):	0=do	not	interrupt;	1=cause	interrupts	
	 Other	bits	are	ignored;	reserved	for	future	baud/stop/parity	conGiguration	

	There	are	a	number	of	existing	chips	and	protocols	for	UART	devices	which	are	in	widespread	12

use.	While	we	choose	to	use	a	simple,	minimal	design,	other	Blitz-64	implementations	may	choose	
to	mimic	those	legacy	systems.
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These	doublewords	are	located	at	the	following	offsets	within	the	page	allocated	to	
the	UART0	device:	

	 Offset	 Size	in	bytes	 				Register					 	 	 	
	 0	 8	 SEND_BYTE	 write-only	 	
	 0	 8	 RECV_BYTE	 read-only	 	
	 8	 8	 STATUS	 read-only	 	
	 8	 8	 SETUP	 write-only	 	

Note	that	the	same	address	can	be	used	for	multiple	registers.	For	example,	a	LOAD	
from	offset	8	returns	the	status	word,	while	a	STORE	to	that	same	address	will	
perform	a	setup	operation.	

Operation	

Before	usage,	the	SETUP	register	should	be	written	to.	Bit	0	—	the	
INTERRUPTS_REQUESTED	bit	—	determines	whether	the	device	will	cause	an	
interrupt	or	not.	

If	a	0	is	written,	no	interrupts	will	be	generated.	To	use	the	device,	the	code	should	
check	the	STATUS	register	to	determine	when	bytes	can	be	safely	read	from	
RECV_BYTE	or	written	to	SEND_BYTE.	

If	INTERRUPTS_REQUESTED	is	1,	the	device	will	interrupt	the	core(s)	whenever	
either	

	 •	A	byte	has	been	received	on	the	receive	channel	
	 •	The	send	channel	can	accept	the	next	byte	to	transmit	

The	interrupt	will	be	sent	to	the	PLIC,	which	will	then	forward	it	to	whichever	cores	
have	enabled	interrupts	from	the	UART0	device.	

Additional	bits	of	the	SETUP	register	may	be	deGined	later.	These	bits	might	be	used	
to	conGigure	the	UART	circuitry’s	

•	Baud	Rate	
•	Number	of	bits	(7	or	8)	by	“byte”	transmitted	
•	Number	of	stop	bits	
•	Parity	bit	(none,	even,	or	odd)	
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The	emulator	simulates	hardware	so	these	parameters	are	neither	relevant	nor	
needed.	

To	send	a	byte,	the	core	will	store	a	value	into	the	SEND_BYTE	register.	Only	the	
lower	8	bits	are	sent;	the	upper	56	bits	are	ignored.	If	the	UART0	device	is	not	ready	
to	transmit	—	that	is,	if	the	SEND_READY	status	bit	is	not	1	and	the	device	is	still	
busy	sending	the	previous	byte	—	the	results	are	undeGined	and	the	byte	will	be	lost	
or	perhaps	some	garbage	will	be	transmitted	on	the	Tx	line.	If	the	
INTERRUPTS_REQUESTED	control	bit	was	set	to	1,	the	device	will	generate	an	
interrupt	after	the	byte	has	Ginished	sending	and	the	device	is	ready	for	the	next	byte	
to	be	written	into	SEND_BYTE.	

Whenever	a	value	is	STOREd	into	SEND_BYTE,	the	SEND_READY	status	bit	will	
immediately	go	to	0	and	will	remain	0	until	the	device	has	Ginished	sending	a	byte	
and	is	ready	to	send	the	next	byte.	

To	receive	a	byte,	the	core	must	wait	for	incoming	data.	When	the	UART0	device	
receives	a	byte,	it	will	drive	the	RECV_READY	status	bit	to	1.	It	will	also	generate	an	
interrupt	if	the	INTERRUPTS_REQUESTED	control	bit	was	set	to	1.	After	that,	the	
core	can	safely	LOAD	from	the	RECV_BYTE	register.	The	byte	that	was	received	will	
be	returned	as	an	integer	in	the	range	0…255.	The	register	is	a	doubleword	and	the	
upper	56	bits	will	be	zeros.	A	LOAD	operation	before	RECV_READY	goes	to	1	is	
undeGined	and	may	return	anything,	such	as	a	copy	of	the	previously	received	byte.	

Whenever	a	byte	is	LOADed	from	RECV_BYTE,	the	RECV_READY	status	bit	will	
immediately	go	to	0	and	will	remain	0	until	a	new	byte	is	received	over	the	Rx	line.	

Notes	

This	device	is	named	“UART0”	—	instead	of	simply	“UART”	—	to	emphasize	that	it	is	
about	the	simplest	interface	to	a	UART	device	possible.	It	is	implemented	by	the	
Blitz-64	emulator	as	described.	The	UART0	interface	is	unique	to	Blitz-64,	but	it	is	
quite	similar	to	other	UART	interfaces.	

Hardware	implementations	may	use	the	UART0	interface	as	described	here,	or	may	
use	something	a	little	different.	For	example,	future	hardware	may	deGine	the	
memory-mapped	I/O	registers	to	map	more	closely	to	the	so-called	“16550	UART”	
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interface.	Different	speciGications	for	a	UART	device	interface	should	be	named	
something	besides	“UART0”.	

The	PLIC	handles	and	dispatches	interrupts	from	devices	numbered	0…63.	In	the	
Blitz-64	emulator,	the	PLIC	maps	the	UART0	device	to	device	number	0.	The	use	of	0	
in	both	is	coincidence.	
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Quick	Summary	

•	A	Disk	Device	
	 —	Providing	Sector	Read	and	Write	Operations	
•	Interface	is	through	memory-mapped	I/O	registers	
	 —	STATUS	
	 	 —	BUSY	bit	0:	1=operation	in	progress;	0=idle	and	free	
	 	 —	ERROR	bit	1:	1=operation	failed;	0=operation	succeeded	
	 —	SETUP	
	 	 —	INTERRUPTS_REQUESTED	bit	0:	1=interrupt;	0=do	not	interrupt	
	 —	SECTOR_START	
	 —	SECTOR_COUNT	
	 —	MEMORY_ADDRESS	
	 —	COMMAND	
•	Optional	interrupts	to	PLIC	
	 —	Interrupt	upon	command	completion	(failure	or	success)	
•	The	emulator	implements	this	interface	
	 —	Disk	is	emulated	using	a	Gile	on	the	host	system	
	 —	Disk	Gilename	provided	on	emulator	command	line	
	 —	Emulation	Parameters	
	 	 Sector	size	(default	is	512	bytes)	
	 	 Disk	size	(default	is	2000	sectors)	

Introduction	

This	device	simulates	some	form	of	long-term	stable	storage,	such	as	a	disk	or	
Glash	memory.	The	design	is	intended	to	mimic	real	hardware,	although	the	emulator	
will	use	a	Gile	on	the	host	system	to	store	the	data.	
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This	device	responds	to	two	commands:	READ	and	WRITE.	Each	command	is	
passed:	

	 •	A	“disk	address”,	i.e.,	where	the	data	is	stored	or	retrieved	
	 •	The	length	in	bytes	of	the	data	to	be	transferred	
	 •	An	address	in	memory,	i.e.,	where	the	data	is	read	or	written	

The	READ	command	will	transfer	data	from	the	stable	storage	into	memory.	The	
WRITE	command	will	transfer	data	from	the	memory	to	the	stable	storage.	

The	device	described	here	is	only	present	in	an	emulated	system.	The	stable	storage	
will	be	backed	by	a	_ile	on	the	host	computer	system.	

The	device	implemented	by	the	emulator	is	sufGicient	to	support	an	OS	running	on	
Blitz,	and	has	been	used	to	store	a	complete	Unix	Gile	system	for	a	Blitz	
implementation	of	the	xv6	OS.	

It	should	be	noted	that	real	devices	are	both	different	in	detail	and	more	complex	in	
operation.	For	example,	a	real	device	may	encounter	errors	so	some	operations	may	
fail	or	time-out.	The	emulator	models	the	delay	associated	with	operations.	READs	
and	WRITEs	are	not	instantaneous,	but	real	systems	(such	as	rotating	disks)	will	
exhibit	delays	that	depend	on	details	such	as	track,	head	location,	and	rotation	
which	are	not	modeled	by	the	emulator.	

Memory-Mapped	I/O	Registers	

STATUS	—	Doubleword,	read	only	
	 Only	the	lower	2	bits	are	used,	higher	bits	are	zeros.	

	 	 —	BUSY	(bit	0):	1=operation	in	progress;	0=idle	and	free	
	 	 —	ERROR	(bit	1):	1=operation	failed;	0=operation	succeeded	

SETUP	—	Doubleword,	write	only	
	 Only	the	lower	bit	is	used,	higher	bits	are	ignored.	

	 	 —	INTERRUPTS_REQUESTED	(bit	0):	
	 	 	 	1=interrupt	when	operation	completes;	0=do	not	interrupt	
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SECTOR_START	—	Doubleword,	write	only	

SECTOR_COUNT	—	Doubleword,	write	only	

MEMORY_ADDRESS	—	Doubleword,	write	only	

COMMAND	—	Doubleword,	write	only	
	 0	=	perform	a	read,	transferring	sectors	from	disk	to	memory	
	 1	=	perform	a	write,	transferring	sectors	from	memory	to	disk	

The	registers	are	located	within	a	memory-mapped	I/O	page	at	these	offsets:	

	 		Offset			 Size	in	bytes	 Register																										 	 	 	
	 0x0000	 8	 STATUS	 read-only	 	
	 0x0000	 8	 SETUP	 write-only	 	
	 0x0008	 8	 SECTOR_START	 write-only	 	
	 0x0010	 8	 SECTOR_COUNT	 write-only	 	
	 0x0018	 8	 MEMORY_ADDRESS	 write-only	 	
	 0x0020	 8	 COMMAND	 write-only	 	

Operation	

Before	using	the	disk,	the	program	should	write	into	the	SETUP	register	either	a	0	or	
a	1.	If	1	is	written,	then	the	device	will	interrupt	the	core(s)	whenever	an	operation	
completes.	The	interrupt	will	be	channeled	through	the	Platform-Level	Interrupt	
Controller	(PLIC),	which	will	route	the	interrupt	to	the	cores,	as	described	
elsewhere	in	this	document.	

At	any	one	moment	in	time,	the	disk	is	either	busy	with	a	command	or	idle.	To	
determine	the	status	of	the	disk,	the	code	should	LOAD	from	the	STATUS	word.	The	
ERROR	bit	will	reGlect	the	result	of	the	previous	operation.	(It	is	undeGined	before	
the	Girst	command	is	issued.)	The	BUSY	bit	will	be	set	to	1	if	the	desk	is	still	working	
on	the	previous	command.	

The	disk	can	perform	only	two	operations:	read	and	write.	To	perform	a	read	or	
write	operation,	the	core	must:	
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(1)	 LOAD	the	SECTOR_START	register	with	an	integer	to	indicate	the	number	of	
the	Girst	sector	to	be	transferred.	This	number	should	range	between	0	and	
NUMBER_OF_SECTORS-1.	

(2)	 LOAD	the	SECTOR_COUNT	register	with	the	number	of	sectors	to	be	
transferred.	This	should	be	a	small	integer,	greater	than	0.	

(3)	 LOAD	the	MEMORY_ADDRESS	register	with	a	valid	physical	address.	This	
address	should	be	doubleword	aligned.	

(4)	 LOAD	the	COMMAND	register	with	either	0	or	1,	to	indicate	a	read	(0)	or	a	
write	(1)	is	to	be	performed.	

Operations	(1),	(2),	and	(3)	above	may	be	done	in	any	order.	They	may	also	be	
skipped;	if	skipped,	the	register	will	retain	its	previous	value.	There	will	be	no	error	
reporting	or	interrupts	as	a	result	of	LOADing	these	registers.	The	registers	should	
not	be	loaded	while	the	disk	is	BUSY	with	an	operation.	

LOAD	(4)	must	be	done	after	the	other	three	registers	have	been	loaded.	Step	(4)	
will	begin	the	operation.	

If	the	disk	is	busy	at	the	moment	COMMAND	is	LOADed,	the	command	will	be	
ignored	and	the	previous	operation	will	continue	uninterrupted.	The	emulator	will	
detect	this	and	halt	execution.	

Each	operation	(read	or	write)	will	copy	one	or	more	sectors	between	memory	and	
the	disk.	“Write”	moves	data	from	memory	to	disk	and	“read”	moves	data	from	the	
disk	to	memory.	

The	number	sectors	to	be	moved	must	all	be	valid,	i.e.,	within	the	size	of	the	disk.	For	
example,	if	the	disk	contains	2,000	sectors,	a	read	of	2	sectors	from	1,998	is	okay	
and	will	read	the	last	two	sectors	(1,998	and	1,999),	but	a	read	of	3	sectors	from	this	
same	SECTOR_START	will	result	in	an	error.	

When	an	error	is	detected,	it	is	undeGined	whether	some	sectors	may	have	been	
transferred.	(The	emulator	will	detect	this	error	before	transferring	any	data	and	
immediately	cause	a	halt	to	emulation.)	

When	an	error	is	detected,	the	ERROR	bit	in	the	STATUS	word	will	be	set,	and	the	
BUSY	bit	will	be	cleared.	If	INTERRUPTS_REQUESTED	is	true,	an	interrupt	will	also	
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be	signaled.	The	STATUS	will	then	remain	unchanged	until	COMMAND	is	again	
LOADed.	

The	SECTOR_COUNT	determines	the	number	of	bytes	to	be	transferred:	

number_of_bytes_to_copy	=	SECTOR_COUNT	×	SECTOR_SIZE	

where	SECTOR_SIZE	is	an	emulation	parameter.	

The	MEMORY_ADDRESS	register,	along	with	the	number_of_bytes_to_copy	
determines	where	in	memory	the	data	is	to	be	copied	to/from.	This	should	be	a	valid	
address	in	physical	memory.	MEMORY_ADDRESS	should	be	a	44	bit	physical	
address.	There	is	no	participation	with	virtual	memory.	

If	the	memory	address	range	is	illegal,	the	operation	is	considered	to	be	incorrect	
and	may—or	may	not—cause	an	error.	In	the	current	emulator,	an	attempt	to	access	
bytes	beyond	the	physical	memory	will	be	detected	by	the	emulator,	and	emulation	
will	immediately	halt.	

MEMORY_ADDRESS,	SECTOR_COUNT,	and	SECTOR_START	are	interpreted	as	
positive	integers.	A	SECTOR_COUNT	of	0	is	considered	incorrect.	The	emulator	will	
catch	this	an	immediately	halt	emulation.	

The	following	are	the	possible	error	conditions:	

Emulator	suspends	emulation:	
SECTOR_COUNT	=	0	
SECTOR_START	+	SECTOR_COUNT	>=	NUMBER_OF_SECTORS	
MEMORY_ADDRESS	+	number_of_bytes_to_copy	≥	physical_memory_size	
MEMORY_ADDRESS	is	not	doubleword	aligned.	
LOADing	SECTOR_START,	SECTOR_COUNT,	MEMORY_ADDRESS,	or	

COMMAND	while	disk	STATUS	is	BUSY	
Host	error,	problems	with	the	host	Gile	

Emulator	does	not	implement:	
Simulated	disk	errors	(transient	or	non-recoverable)	
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Emulator	Implementation	

The	emulator	uses	the	following	“emulation	parameters”.	(These	are	defaults	which	
can	be	changed	by	editing	the	Gile	named	emulationParms.)	

	 default	value	
DISK0_SECTOR_SIZE	 512	
DISK0_NUMBER_OF_SECTORS	 2000	
DISK0_DEVICE_START_ADDR	 0x4_0020_8000	
DISK0_OPERATION_DELAY	 10000	

The	emulator	(a	program	named	“blitz”)	is	run	from	the	command	line	in	a	Unix/
Linux/Mac	shell.	One	option	is	the	name	of	a	Gile	to	use	as	the	“disk	image	Gile”.	The	
option	is	speciGied	as	in:	

% blitz … -disk MyImageFile.img

The	Gile	is	not	opened	until	a	DISK0	command	is	issued.	

If	the	Gile	does	not	exist,	it	is	created	and	set	to	the	given	size.	The	emulator	may	
print	a	message	and	suspend	emulation,	but	you	can	type	“go”	to	continue	execution	
if	you	are	okay	with	the	Gile	being	created.	

If	the	Gile	exists,	but	is	larger	than	indicated	by	the	emulation	parameters,	the	tail	of	
the	Gile	is	ignored.	

If	the	Gile	exists,	but	is	shorter	than	indicated	by	the	emulation	parameters,	the	Gile	is	
immediately	enlarged	to	the	expected	size.	

The	Gile	is	closed	when	the	emulator	exits	or	when	the	“reset”	or	“rerun”	commands	
are	used.	

When	a	disk	operation	is	performed,	there	will	be	a	delay	after	the	COMMAND	
register	is	written	to	and	the	moment	that	the	BUSY	bit	in	the	STATUS	word	will	
changed	to	1	and	an	interrupt	will	be	signaled	(if	requested).	This	delay	is	
determined	by	the	emulation	parameter	DISK0_OPERATION_DELAY,	which	is	given	
as	a	number	of	instructions.	

If	you	are	emulating	a	multi-core	processor,	keep	in	mind	that	the	emulator	will	
execute	some	instructions	for	core	0,	followed	by	some	instructions	for	core	1,	etc.	
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For	example,	a	delay	of	10,000	instructions	on	a	10-core	system	means	that	each	
core	will	execute	1,000	instructions	on	average	before	the	disk	operation	is	
completed.	

Notes	

The	PLIC	handles	and	dispatches	interrupts	from	devices	numbered	0…63.	In	the	
Blitz-64	emulator,	the	PLIC	maps	the	DISK0	device	to	device	number	1.	
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Quick	Summary	

•	Direct	Memory	Access	
	 —	Move	a	large	block	of	memory	
	 —	Zero	a	large	block	of	memory	
•	Includes	crypto-engine	functions	
	 —	Perform	secure	hashing	(using	SHA-256)	
	 —	Perform	AES	encryption	and	decryption	

Background	

In	general	terms,	a	Direct	Memory	Access	(DMA)	controller	is	capable	of	moving	
large	blocks	of	data	from	one	location	in	the	physical	address	space	to	another	
location.	This	includes	both	installed	physical	memory	and	the	memory-mapped	I/O	
device	region.	

Such	operations	are	useful	in	moving	sectors/pages/blocks	both	to	and	from	I/O	
device	buffers.	A	DMA	controller	can	also	be	used	to	copy	pages	from	one	address	
space	to	another	(e.g.,	to	duplicate	a	copy-on-write	page).	The	DMA	controller	can	
also	be	used	to	zero-out	memory	pages,	which	may	be	necessary	for	newly	allocated	
pages	to	prevent	information	leakage	from	one	address	space	into	an	unrelated	
address	space.	

Of	course	these	data	moving	tasks	can	be	done	directly	by	the	core.	However,	this	
may	not	be	the	best	approach,	since	the	core	will	not	be	usable	during	the	operation.	
Furthermore,	since	an	instruction	loop	is	required,	copying	by	the	core	will	be	
relatively	slow.	The	DMA	controller	avoids	instruction	execution	and	performs	the	
repetitive	LOAD-STORE	cycle	directly	in	hardware,	which	can	drive	the	memory	bus	
at	its	maximum	bandwidth.	
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Generally	speaking,	a	DMA	controller	will	interleave	accesses	to	the	memory	bus	
with	the	accesses	being	made	by	the	core,	to	avoid	locking	up	the	core.	The	presence	
of	DMA	activity	may	slow	the	core,	since	LOADs,	STOREs,	and	FETCHes	that	cannot	
be	served	by	caches	may	have	increased	latency	times	due	to	bus	contention.	
However,	the	core	will	continue	to	operate	during	DMA	operations,	freeing	the	core	
to	do	things	the	DMA	controller	cannot	do.	

A	DMA	controller	is	said	to	be	“programmed”	to	performed	a	task.	The	DMA	
controller	is	commanded	by	the	core	to	perform	a	task	and,	when	complete,	it	
signals	an	interrupt	to	the	core.	By	“programmed”	we	mean	that	the	DMA	controller	
is	issued	a	command	or	series	of	commands.	These	commands	are	given	by	writing	
predetermined	values	to	predetermined	words	within	the	memory-mapped	region	
occupied	by	the	DMA	controller.	

The	Blitz	DMA	Controller	

In	this	chapter	we	describe	a	Direct	Memory	Access	(DMA)	controller	is	capable	of	
the	following	tasks:	

	 •	Move	a	large	block	of	memory	
	 •	Zero	a	large	block	of	memory	
	 •	Perform	secure	hashing	(using	SHA-256)	
	 •	Perform	AES	encryption	and	decryption	

As	of	this	writing,	the	device	described	here	is	implemented	in	the	emulator.	It	is	not	
yet	implemented	in	VLSI.	

This	device	can	perform	one	task	at	a	time	and	is	either	“busy”	or	“free”.	There	is	no	
queue	of	waiting	tasks.	

A	“device	register”	is	doubleword	in	the	DMA	controller’s	page.	Each	“register"	is	
64	bits	and	is	located	at	a	doubleword	aligned	address.	The	device	is	controlled	by	
storing	into	“registers”	and	the	results	are	obtained	by	reading	from	the	“registers”.	
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Here	are	the	device	registers:	

Offset	(hex)	 Offset	(dec)	 Register	Name	
	 0000	 0	 write-only	 DMA_COMMAND	
	 0008	 8	 r/o	 DMA_STATUS	
	 0010	 16	 write-only	 DMA_START_ADDR	
	 0018	 24	 write-only	 DMA_TARGET_ADDR	
	 0020	 32	 write-only	 DMA_BYTECOUNT	
	 0028	 40	 r/o	 DMA_SHA256_0	
	 0030	 48	 r/o	 DMA_SHA256_1	
	 0038	 56	 r/o	 DMA_SHA256_2	
	 0040	 64	 r/o	 DMA_SHA256_3	
	 0048	 72	 write-only	 DMA_AES_KEY_0	
	 0050	 80	 write-only	 DMA_AES_KEY_1	
	 0058	 88	 write-only	 DMA_AES_KEY_2	
	 0060	 96	 write-only	 DMA_AES_KEY_3	

Additional	functionality	may	be	added	in	the	future;	additional	registers	will	be	
deGined	to	control	such	enhancements	at	that	time.	

The	arguments	(such	as	“starting	address”,	“byte	count”,	and	so	on)	should	be	stored	
Girst,	in	any	order.	The	task	is	initiated	by	writing	a	command	code	into	the	
DMA_Command	register. 	13

Upon	completion	of	the	task,	the	DMA	controller	will	interrupt	the	core.	In	addition,	
a	status	code	will	be	available	in	the	“DMA_STATUS”	register.	

	The	registers	should	not	be	written	while	the	device	is	busy;	if	so,	the	behavior	is	undeGined	and	13

considered	to	be	an	error.	The	status	register	“DMA_STATUS”	may	be	read	at	any	time.	Any	attempt	
to	read	the	other	registers	when	the	device	is	busy	is	undeGined	and	considered	to	be	an	error.	Any	
attempt	to	write	to	a	read-only	register,	or	read	from	a	write-only	register,	is	undeGined	and	
considered	to	be	an	error.	Any	attempt	to	read	or	write	to	an	undeGined	address	within	the	page	is	
undeGined	and	considered	to	be	an	error.	All	registers	are	doublewords;	any	attempt	to	read	
individual	bytes,	halfwords,	or	words	is	undeGined	and	considered	to	be	an	error.
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For	reference,	here	are	the	command	codes:	

hex	 decimal	 command	
0001	 1	 DMA_MOVE	 Move	memory	
0002	 2	 DMA_ZERO		 Zero	memory	
0003	 3	 DMA_SHA256_SIMPLE	 SHA256	(Simple,	only	one	chunk)	
0004	 4	 DMA_SHA256_INITIALIZE	 SHA256	(Initialize)	
0005	 5	 DMA_SHA256_CHUNK	 SHA256	(Process	next	chunk)	
0006	 6	 DMA_SHA256_FINALIZE		 SHA256	(Finalize)	
0007	 7	 DMA_AES256_PREPARE		 AES-256	Prepare	Key	
0008	 8	 DMA_AES256_EN_SIMPLE		 AES-256	Encrypt	(Simple)	
0009	 9	 DMA_AES256_EN_INITIAL		 AES-256	Encrypt	(Initial	segment)	
000a	 10	 DMA_AES256_EN_MIDDLE		 AES-256	Encrypt	(Middle	segments)	
000b	 11	 DMA_AES256_EN_FINAL		 AES-256	Encrypt	(Final	segment)	
000c	 12	 DMA_AES256_DE_SIMPLE		 AES-256	Decrypt	(Simple)	
000d	 13	 DMA_AES256_DE_INITIAL		 AES-256	Decrypt	(Initial	segment)	
000e	 14	 DMA_AES256_DE_MIDDLE		 AES-256	Decrypt	(Middle	segments)	
000f	 15	 DMA_AES256_DE_FINAL		 AES-256	Decrypt	(Final	segment)	

For	reference,	here	are	the	status	codes:	

hex	 decimal	 command	
0000	 0	 DMA_OK	 Last	operator	completed	
0001	 1	 DMA_BUSY	 Operation	in	progress	

The	addresses	(i.e.,	DMA_START_ADDR	and	DMA_TARGET_ADDR)	are	physical	
addresses	and	should	lie	within	0x0_0000_0008	and	0x7_FFFF_FFFF.	They	must	not	
be	virtual	addresses	and	paging	will	not	be	involved. 	14

Normally	the	addresses	will	lie	in	physical	RAM,	but	they	may	also	include	ROM,	
Secure	Storage,	and	FLASH	memory. 	15

	Addresses	are	35	bits,	with	the	“physical/virtual”	bit	assumed	to	be	0.14

	Exactly	which	Memory-Mapped	I/O	devices	can	be	operated	on	by	the	DMA	controller	depends	15

on	what	devices	are	present	and	is	therefore	implementation-dependent.	But	the	DMA	controller	
must	be	able	to	operate	on	anything	that	is	“memory-like”,	since	the	compiler	may	generate	code	
using	the	DMA	controller	to	access	such	memory.	In	particular,	the	security-related	functionality	
will	certainly	be	applied	to	the	ROM	and	SecureStorage	devices.	
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Moving	Blocks	of	Memory	

To	move	a	block	of	memory:	

	 STORE	an	address	into	DMA_START_ADDR	
	 STORE	an	address	into	DMA_TARGET_ADDR	
	 STORE	an	integer	into	DMA_BYTECOUNT	
	 STORE	the	command	DMA_MOVE	into	DMA_COMMAND	
	 Wait	for	the	task	to	complete	

This	operation	is	primarily	intended	for	copying	entire	16	KiByte	pages,	to	support	
things	like	copy-on-write	sharing	and	moving	address	space	pages	from	private	to	
shared	memory.	

The	addresses	should	be	doubleword	aligned	and	the	number	of	bytes	to	be	moved	
should	be	a	multiple	of		8.	The	last	3	bits	of	DMA_START_ADDR,	
DMA_TARGET_ADDR,	and	DMA_BYTECOUNT	are	ignored.	

The	blocks	of	memory	should	not	overlap;	if	so	the	result	is	undeGined.	

Wait	for	Task	to	Complete	

Regardless	of	the	command,	when	the	DMA	controller	completes	a	task,	it	will	cause	
an	interrupt.	The	status	doubleword	DMA_STATUS	can	be	read	at	any	time	and	will	
tell	whether	the	DMA	controller	is	busy	or	ready	to	receive	another	command.	

To	wait	for	a	task,	the	program	might	chose	to	do	a	busy-loop,	repeatedly	querying	
DMA_STATUS.	However,	this	may	increase	bus	trafGic	and/or	slow	the	DMA	
controller	down,	as	well	as	waste	cycles,	so	this	approach	is	not	recommended	
unless	you	know	for	sure	the	wait	will	be	short.	

The	other	approach	is	to	proceed	to	other	tasks	and	wait	for	the	interrupt	to	trigger	
further	action.	It	is	envisioned	that	a	two	Semaphores	will	protect	the	DMA	
controller.	Semaphore	#1	will	be	used	to	make	sure	only	one	thread	is	using	the	
DMA	controller	at	a	time.	Semaphore	#2	will	be	used	to	signal	the	interrupt.	

Semaphore	#1	will	act	as	a	“mutex”	lock,	allowing	only	one	thread	at	a	time	to	use	
the	DMA	device.	Before	using	the	DMA	device,	every	thread	must	“wait”	on	
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Semaphore	#1	(i.e.,	the	“down”	or	“P”	operation).	After	the	task	is	complete	and	the	
results	have	been	retrieved	from	the	device,	the	thread	must	“signal”	the	semaphore	
(i.e.,	the	“up”	or	“V”	operation),	making	the	DMA	device	free	and	available	to	other	
threads.	

Semaphore	#2	is	used	to	communicate	the	interrupt.	When	a	thread	which	is	using	
the	DMA	device	is	ready	to	wait	for	the	completion	of	the	task,	it	will	“wait”	on	
Semaphore	#2.	The	interrupt	handler	will	respond	to	the	interrupt	by	“signaling”	
Semaphore#2,	thus	waking	up	the	thread	up.	The	thread	should	then	retrieve	the	
results	and	signal	Semaphore	#1. 	16

Zeroing	Blocks	of	Memory	

To	zero	a	block	of	memory:	

	 STORE	an	address	into	DMA_START_ADDR	
	 STORE	an	integer	into	DMA_BYTECOUNT	
	 STORE	the	command	DMA_ZERO	into	DMA_COMMAND	
	 Wait	for	the	task	to	complete	

This	operation	is	primarily	intended	for	clearing	entire	16	KiByte	pages,	when	
processes	terminate	and	address	space	pages	are	recycled.	

The	addresses	should	be	doubleword	aligned	and	the	number	of	bytes	to	be	zeroed	
should	be	a	multiple	of		8.	The	last	3	bits	of	DMA_START_ADDR	and	
DMA_BYTECOUNT	are	ignored.	

Note:	This	command	uses	DMA_START_ADDR	and	not	DMA_TARGET_ADDR.	

	With	this	approach,	any	thread	which	sends	a	command	to	the	DMA	device	must	always	wait	on	16

Semaphore	#2,	or	else	signals	from	previous	tasks	will	accumulate	and	prematurely	terminate	
future	unsuspecting	threads.	Furthermore,	that	wait	must	occur	before	Semaphore	#1	is	signaled.	
If	there	are	some	situations	where	some	threads	using	the	DMA	controller	will	not	be	waiting,	then	
an	alternate,	more	complex	design	will	be	required.	
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SHA-256	

A	block	of	bytes	(the	“message”)	can	be	processed	to	yield	a	hash	value,	using	the	
SHA-256	algorithm.	The	result	of	this	operation	is	a	256	bit	(i.e.,	4	doublewords,	or	4	
×	64	bits)	hash	value.	

We	say	that	a	region	of	memory	is	“continuous”	if	a	single	starting	address	and	byte	
count	sufGice	to	locate	the	region	in	memory.	If	the	region	happens	to	span	multiple	
pages,	then	all	those	pages	must	be	adjacent	and	sequential.	In	other	words,	no	gaps	
or	jumping	around	is	allowed.	

Alternatively,	a	block	of	bytes	could	originate	from	a	virtual	address	space.	While	it	
might	be	continuous	in	the	virtual	address	space,	it	might	happen	to	cross	page	
boundaries.	However,	the	DMA	controller	works	only	on	physical	addresses.	While	
the	block	of	bytes	is	continuous	in	the	virtual	address	space,	it	may	not	be	
continuous	in	physical	memory.	Such	a	block	must	be	broken	into	a	sequence	of	two	
or	more	“chunks”.	Each	chuck	must	be	entirely	continuous	and	can	therefore	be	
described	with	a	starting	address	and	byte	count.	

To	compute	the	hash	of	a	single,	fully	continuous	block	of	memory:	

	 STORE	an	address	into	DMA_START_ADDR	
	 STORE	an	integer	into	DMA_BYTECOUNT	
	 STORE	the	command	DMA_SHA256_SIMPLE	into	DMA_COMMAND	
	 Wait	for	the	task	to	complete	
	 READ	the	256	bit	(i.e.,	4	doubleword,	or	4	×	64	bits)	hash	value	from	
	 	 DMA_SHA256_0	…	DMA_SHA256_3. 	17

The	DMA_START_ADDR	must	be	doubleword	aligned,	but	the	DMA_BYTECOUNT	
does	not	need	to	be	a	multiple	of	8.	

On	the	other	hand,	it	may	be	that	a	User	Mode	process	has	requested	the	SHA-256	
hash	for	a	block	of	message	bytes	in	a	virtual	address	space	and	the	block	of	
message	bytes	crosses	one	or	more	page	boundaries.	In	this	case,	the	message	must	
divided	into	chunks	of	bytes	where	each	chunk	lies	wholly	within	a	continuous	
range	of	physical	memory.	

	If	you	did	not	even	wonder	about	most-signiGicant/least-signiGicant	order,	then	you	have	17

escaped	the	mental	contamination	of	Little	Endian	dementia.
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The	individual	chunks	may	be	any	length;	they	do	not	need	to	be	a	multiple	of	8	
bytes.	

The	SHA-256	algorithm	involves	an	initialization	phase	and	a	Ginalization	phase.	
Here	is	the	procedure:	

For	the	Girst	chunk:	
	 STORE	the	command	DMA_SHA256_INITIALIZE	into	DMA_COMMAND	
	 Wait	for	the	task	to	complete	
For	each	chunk:	

	 STORE	an	address	into	DMA_START_ADDR	
	 STORE	an	integer	into	DMA_BYTECOUNT	
	 STORE	the	command	DMA_SHA256_CHUNK	into	DMA_COMMAND	
	 Wait	for	the	task	to	complete	
After	the	last	chunk:	

	 STORE	the	command	DMA_SHA256_FINALIZE	into	DMA_COMMAND	
	 Wait	for	the	task	to	complete	
	 READ	the	256	bit	(i.e.,	4	doubleword,	or	4	×	64	bits)	hash	value	from	
	 	 DMA_SHA256_0	…	DMA_SHA256_3.	

The	DMA_START_ADDR	must	be	doubleword	aligned,	but	the	DMA_BYTECOUNT	
does	not	need	to	be	a	multiple	of	8.	

AES-256	

The	AES-256	algorithm	uses	a	256	bit	(i.e.,	4	doubleword,	or	4	×	64	bits)	key	to	
either	encrypt	a	message	or	decrypt	a	message.	Since	the	algorithm	is	symmetric,	
the	same	key	is	used	for	both	encryption	and	decryption.	However,	the	encryption	
algorithm	is	different	from	the	decryption	algorithm.	

The	DMA	controller	will	process	a	message	and	produce	a	result.	The	“source	
region”	is	the	block	of	memory	bytes	containing	the	message	to	be	processed.	The	
“target	region”	is	the	block	of	memory	bytes	where	the	result	of	the	encryption	or	
decryption	will	be	placed.	

A	region	of	memory	may	or	may	not	be	continuous.	
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We	say	that	a	region	of	memory	is	“continuous”	if	a	single	starting	address	and	byte	
count	sufGice	to	locate	the	region	in	memory.	If	the	region	happens	to	span	multiple	
pages,	then	all	those	pages	must	be	adjacent	and	sequential.	In	other	words,	no	gaps	
or	jumping	around	is	allowed.	

Alternatively,	a	block	of	bytes	could	originate	from	a	virtual	address	space.	While	it	
might	be	continuous	in	the	virtual	address	space,	it	might	happen	to	cross	page	
boundaries.	However,	the	DMA	controller	works	only	on	physical	addresses.	While	
the	block	of	bytes	is	continuous	in	the	virtual	address	space,	it	may	not	be	
continuous	in	physical	memory.	Such	a	block	must	be	broken	into	a	sequence	of	two	
or	more	“chunks”.	Each	chuck	must	be	entirely	continuous	and	can	therefore	be	
described	with	a	starting	address	and	byte	count.	

When	both	the	source	and	target	regions	consist	of	a	single	chunk,	we	have	a	
“simple”	case.	

To	encrypt	a	“simple”	continuous	block	of	memory	using	AES-256:	

	 STORE	the	key	into	DMA_AES_KEY_0	…	DMA_AES_KEY_3	
	 STORE	the	command	DMA_AES256_PREPARE	into	DMA_Command	
	 Wait	for	the	task	to	complete	
	 STORE	an	address	into	DMA_START_ADDR	(where	to	Gind	the	plaintext)	
	 STORE	an	address	into	DMA_TARGET_ADDR	(where	to	store	the	cipher-text)	
	 STORE	an	integer	into	DMA_BYTECOUNT	
	 STORE	the	command	DMA_AES256_EN_SIMPLE	into	DMA_Command	
	 Wait	for	the	task	to	complete	
	 Retrieve	the	cipher-text	from	the	target	area.	

To	decrypt	a	“simple”	continuous	block	of	memory	using	AES-256:	

	 STORE	the	key	into	DMA_AES_KEY_0	…	DMA_AES_KEY_3	
	 STORE	the	command	DMA_AES256_PREPARE	into	DMA_COMMAND	
	 Wait	for	the	task	to	complete	
	 STORE	an	address	into	DMA_START_ADDR	(where	to	Gind	the	cipher-text)	
	 STORE	an	address	into	DMA_TARGET_ADDR	(where	to	store	the	plaintext)	
	 STORE	an	integer	into	DMA_BYTECOUNT	
	 STORE	the	command	DMA_AES256_DE_SIMPLE	into	DMA_COMMAND	
	 Wait	for	the	task	to	complete	
	 Retrieve	the	plaintext	from	the	target	area.	
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An	AES-256	key	is	256	bits	(i.e.,	32	bytes	=	4	doublewords).	Before	any	encryption	
or	decryption,	the	key	must	be	stored	in	the	following	DMA	registers:	

	 DMA_AES_KEY_0	
	 DMA_AES_KEY_1	
	 DMA_AES_KEY_2	
	 DMA_AES_KEY_3	

This	key	must	be	prepared	before	use. 	The	DMA_AES256_PREPARE	command	18

will	convert	the	key	into	an	internal	representation,	which	will	be	stored	in	the	DMA	
controller.	This	internal	state	will	be	used	for	future	AES-256	encryptions	and	
decryptions.	

The	same	key	may	be	used	for	multiple	encryption	and	decryption	operations	and	
only	needs	to	be	prepared	once.	In	other	words,	loading	the	DMA_AES_KEY_0	…	
DMA_AES_KEY_3	registers	and	executing	the	DMA_AES256_PREPARE	command	
are	performed	Girst,	and	need	not	be	repeated	if	the	same	key	is	used	for	multiple	
encryption/decryption	operations.	

For	all	AES-256	commands,	the	addresses	DMA_START_ADDR	and	
DMA_TARGET_ADDR	must	be	doubleword	aligned.		

The	AES	algorithm	encrypts	and	decrypts	in	units	of	16	bytes	(i.e.,	128	bits)	so	the	
DMA_BYTECOUNT	must	be	a	multiple	of	16.	This	means	the	message	to	be	
encrypted	must	be	padded	out	to	a	multiple	of	16	bytes	and	that	any	message	to	be	
decrypted	will	be	a	multiple	of	16	bytes	in	length.	

To	encrypt	a	non-continuous	block	of	memory	using	AES-256,	the	source	and	the	
target	regions	must	be	broken	into	a	set	of	chunks,	where	each	chunk	is	continuous	
and	a	multiple	of	16	bytes	in	length.	The	Girst	chunk	must	be	be	encrypted	with	the	
DMA_AES256_EN_INITIAL	command.	The	last	chunk	must	be	encrypted	with	the	
DMA_AES256_EN_FINAL	command.	The	middle	chunks	(if	any),	which	lie	between	
the	initial	and	Ginal	chunks,	are	processed	with	a	series	of	
DMA_AES256_EN_MIDDLE	commands.	

	Before	any	encryption	or	decryption,	the	key	must	be	“expanded”	into	something	called	the	18

“round	key”,	which	is	denoted	“w”.	The	step	takes	the	8	word	(8	×	32	=	256	bit)	key	and	initializes	
“w”	which	is	another	56	words	(i.e.,	Nb	×	Nr	words,	where	Nb	=	number	of	words	per	block	=	4,	
and	Nr	=	number	of	rounds	=	14)	
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Here	is	the	sequence.	As	mentioned,	the	preparation	of	the	key	can	be	skipped	if	
same	key	as	used	previously	is	to	be	used.	

Prepare	the	key	(optional,	if	same	key	as	last	time):	
	 STORE	the	key	into	DMA_AES_KEY_0	…	DMA_AES_KEY_3	
	 STORE	the	command	DMA_AES256_PREPARE	into	DMA_Command	
	 Wait	for	the	task	to	complete	
For	the	Girst	chunk:	

	 STORE	an	address	into	DMA_START_ADDR	(where	to	Gind	the	plaintext)	
	 STORE	an	address	into	DMA_TARGET_ADDR	(where	to	store	the	cipher-text)	
	 STORE	an	integer	into	DMA_BYTECOUNT	
	 STORE	the	command	DMA_AES256_EN_INITIAL	into	DMA_Command	
	 Wait	for	the	task	to	complete	
For	the	each	additional	chunk:	

	 STORE	an	address	into	DMA_START_ADDR	(where	to	Gind	the	plaintext)	
	 STORE	an	address	into	DMA_TARGET_ADDR	(where	to	store	the	cipher-text)	
	 STORE	an	integer	into	DMA_BYTECOUNT	
	 STORE	the	command	DMA_AES256_EN_MIDDLE	into	DMA_Command	
	 Wait	for	the	task	to	complete	
For	the	the	Ginal	chunk:	

	 STORE	an	address	into	DMA_START_ADDR	(where	to	Gind	the	plaintext)	
	 STORE	an	address	into	DMA_TARGET_ADDR	(where	to	store	the	cipher-text)	
	 STORE	an	integer	into	DMA_BYTECOUNT	
	 STORE	the	command	DMA_AES256_EN_FINAL	into	DMA_Command	
	 Wait	for	the	task	to	complete	
Retrieve	the	cipher-text	from	the	target	area.	

The	process	for	decryption	is	identical,	except	

	 instead	of	 use	
	 DMA_AES256_EN_INITIAL	 DMA_AES256_DE_INITIAL	
	 DMA_AES256_EN_MIDDLE	 DMA_AES256_DE_MIDDLE	
	 DMA_AES256_EN_FINAL	 DMA_AES256_DE_FINAL	

To	be	precise,	here	is	the	procedure	to	decrypt	a	series	of	chunks:	

Prepare	the	key	(optional,	if	same	key	as	last	time):	
	 STORE	the	key	into	DMA_AES_KEY_0	…	DMA_AES_KEY_3	
	 STORE	the	command	DMA_AES256_PREPARE	into	DMA_Command	
	 Wait	for	the	task	to	complete	
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For	the	Girst	chunk:	
	 STORE	an	address	into	DMA_START_ADDR	(where	to	Gind	the	cipher-text)	
	 STORE	an	address	into	DMA_TARGET_ADDR	(where	to	store	the	plaintext)	
	 STORE	an	integer	into	DMA_BYTECOUNT	
	 STORE	the	command	DMA_AES256_DE_INITIAL	into	DMA_Command	
	 Wait	for	the	task	to	complete	
For	the	each	additional	chunk:	

	 STORE	an	address	into	DMA_START_ADDR	(where	to	Gind	the	cipher-text)	
	 STORE	an	address	into	DMA_TARGET_ADDR	(where	to	store	the	plaintext)	
	 STORE	an	integer	into	DMA_BYTECOUNT	
	 STORE	the	command	DMA_AES256_DE_MIDDLE	into	DMA_Command	
	 Wait	for	the	task	to	complete	
For	the	the	Ginal	chunk:	

	 STORE	an	address	into	DMA_START_ADDR	(where	to	Gind	the	cipher-text)	
	 STORE	an	address	into	DMA_TARGET_ADDR	(where	to	store	the	plaintext)	
	 STORE	an	integer	into	DMA_BYTECOUNT	
	 STORE	the	command	DMA_AES256_DE_FINAL	into	DMA_Command	
	 Wait	for	the	task	to	complete	
Retrieve	the	plaintext	from	the	target	area.	

Each	chunk	will	be	decrypted	and	stored	in	the	target	area	before	the	next	command	
is	issued.	In	some	applications,	it	may	be	the	case	that	the	initial	chunk	of	a	message	
contains	a	header	with	a	“length”	Gield	which	indicates	how	long	the	message	is.	
After	decrypting	the	Girst	chunk,	it	may	be	desirable	to	use	this	“length”	information	
to	determine	exactly	how	much	of	the	message	to	decrypt.	
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Quick	Summary	

•	General	Thoughts	of	Other	Memory-Mapped	I/O	Devices	

Overview	

In	this	chapter,	we	outline	ideas	for	I/O	peripherals	that	might	be	included	in	a	
Blitz-64	implementation.	The	follow	devices	are	suggestive	and	speculative.	

•	Lock	Controller	
•	Digital	I/O	
•	SPI	/	MicroSD	Card	Slot	
•	Adjacent	Core	Links	
•	HDMI,	USB,	WiFi,	etc.	

Lock	Controller	

In	this	section,	we	sketch	the	design	of	a	device	which	is	novel,	hypothetical,	
unconventional,	and	speculative.	

When	scaling	systems	beyond	more	than	about	16	cores,	the	traditional	approach	of	
implementing	shared	locks	by	using	atomic	operations	on	shared	memory	may	not	
work	well.	The	idea	here	is	to	off-load	the	task	of	synchronization	to	a	dedicated	
device,	in	order	to	improve	performance.	

This	memory-mapped	I/O	device	is	used	for	synchronization	between	the	
processors	in	a	multiprocessor	system.	Consequently,	this	device	will	be	shared	by	
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all	processors	in	the	system.	The	system	may	or	may	not	also	have	shared	memory	
or	other	shared	resources.	In	systems	without	shared	memory,	data	might	be	copied	
from	one	private	memory	to	another	private	memory	by	a	Direct	Memory	Access	
(DMA)	controller	with	access	to	the	private	memories	of	several	different	
processors.	

A	mutex	lock	is	normally	used	to	control	the	access	to	shared	data.	Any	code	which	
reads	and	updates	shared	data	is	said	to	be	a	critical	region.	In	many	applications,	
due	to	the	possible	unpleasant	interaction	of	concurrent	processes,	only	one	thread	
should	be	in	a	critical	region	at	any	moment.	A	mutex	lock	can	be	used	to	enforce	
this.	The	lock	is	either	held	or	free.	Before	entering	a	critical	section,	every	thread	
must	acquire	the	lock,	which	changes	it	from	“free”	to	“held”	by	that	thread.	After	
the	critical	section	has	been	completed,	the	thread	should	release	the	lock,	which	
changes	it	from	“held”	to	“free”.	

A	lock	that	is	“held”	is	sometimes	said	to	be	“set”	or	“locked”.	A	lock	that	is	“free”	is	
sometimes	said	to	be	“clear”	or	“unlocked”.	

In	a	system	with	only	a	single	core,	the	implementation	of	locks	is	straightforward.	
Whenever	one	kernel	thread	wishes	to	examine	and	acquire	a	lock,	it	can	
momentarily	disable	interrupts	(e.g.,	with	the	CSRCLR	instruction).	The	thread	can	
check	the	state	of	the	lock	and,	if	the	lock	is	free,	the	thread	will	acquire	it	before	
reenabling	interrupts.	This	prevents	a	thread-switch	from	occurring	while	the	lock	is	
being	manipulated.	

In	a	system	with	shared	memory	and	multiple	cores,	disabling	interrupts	is	not	
sufGicient.	Other	cores,	running	concurrently,	may	still	interfere	with	the	lock-
acquire	operation.	Another	approach	is	required.	

To	address	this	need,	most	Instruction	Set	Architectures	(ISAs)	provide	instructions	
that	can	be	used	to	implement	locking.	For	example,	Blitz	includes	the	CAS	
(compare-and-set)	instruction.	The	CAS	instruction	will	perform	both	a	read	and	
write	to	a	shared	memory	location.	The	instruction	will	both	set	the	memory	
location	and	return	the	previous	value	from	the	read,	allowing	the	software	to	
determine	whether	the	“lock	acquire”	operation	was	successful	or	whether	the	lock	
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was	already	held	and	the	attempt	to	gain	exclusive	access	has	failed.	Instructions	
such	as	compare-and-set	and	test-and-set	instruction	must	be	executed	atomically. 	19

The	approach	outlined	here,	which	uses	a	memory-mapped	I/O	device,	is	
signiGicantly	different.	It	avoids	requiring	the	shared	memory	to	support	atomic	
operations	in	any	way.	This	would	be	useful	if	there	is	no	shared	memory.	It	would	
also	be	useful	if	the	system	did	not	support	atomic	memory	operations,	perhaps	for	
reasons	of	efGiciency.	

Instead	of	relying	on	atomic	instructions,	one	can	use	this	I/O	device,	whose	sole	
purpose	is	to	implement	mutex	locks.	For	example,	these	locks	might	be	used	to	
regulate	the	access	by	multiple	cores	to	regions	of	the	shared	memory.	(For	locks	
used	only	by	a	single	core,	the	technique	of	temporarily	disabling	interrupts	is	
sufGicient,	faster,	and	simpler.)	

This	memory-mapped	I/O	device	provides	32	special	“lock	registers”.	Each	register	
is	a	doubleword	(that	is,	64	bits	wide)	and	each	is	addressable	as	a	memory-mapped	
I/O	location,	just	as	any	doubleword	in	memory	is	addressable.	The	single	page	
allocated	to	this	I/O	device	will	contain	these	32	doublewords,	near	the	beginning	of	
the	page,	at	the	offsets	shown	below.	

	 	offset	into	page	
	 								(in	hex)											

0000 - 0007	 Lock	register	#0
0008 - 000F	 Lock	register	#1
... ...

00F8 - 00FF	 Lock	register	#31

The	memory-mapped	I/O	page	for	this	device	contains	no	other	usable	locations	

Each	lock	register	behaves	similarly	to	any	normal	doubleword	of	memory.	Each	
lock	register	can	be	read	by	a	LOAD.D	instruction.	Each	lock	register	can	be	written	
by	a	STORE.D	instruction.	However,	there	are	differences,	which	will	be	described.	

	There	are	variations	to	this	approach.	For	example,	the	RISC-V	approach	is	called	load-reserved/19

store-conditional	(LR/SC),	which	is	also	called	“load-link/store-conditional	(LL/SC).	In	addition,	
the	RISC-V	ISA	also	includes	a	number	of	“atomic	memory	operations”,	including	instructions	such	
as	AMOADD,	which	will	read	a	value	from	memory,	add	a	number	to	it,	and	then	store	the	result	
back	in	memory	—	all	as	a	single	atomic	operation.
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Each	lock	register	will	contain	a	64	bit	signed	value.	However,	the	value	0	has	special	
meaning.	A	value	of	zero	means	that	the	lock	is	“free”	(i.e.,	not	locked	or	held	by	any	
core).	A	non-zero	value	means	the	lock	is	held	and	the	value	will	indicate	the	
identity	of	the	core	holding	the	lock.	

A	read	(e.g.,	using	a	LOAD.D)	will	return	the	value	of	the	register	and	work	as	
expected.	However,	storing	into	a	register	(e.g.,	using	a	STORE.D	instruction)	has	an	
unusual	behavior.	In	some	cases,	the	STORE	will	work;	in	other	cases,	the	STORE	will	
be	ignored	and	the	value	will	remain	unchanged.	

To	be	more	speciGic,	any	attempt	to	store	a	non-zero	value	into	a	lock	register	that		
previously	contained	any	value	other	than	zero	will	fail.		If	the	lock	register	
previously	contained	zero,	then	the	write	will	succeed	and	the	register	will	be	
updated.	But	if	the	previous	value	was	nonzero,	and	an	attempt	is	made	to	write	
another	non-zero	value	into	the	register,	then	the	write	will	be	ignored	and	the	
previous	value	will	be	unchanged.	A	write	of	zero	to	a	lock	register	will	always	work.	

Another	way	to	think	about	this	is	as	follows:	A	lock	register	works	exactly	like	any	
other	doubleword	in	memory,	except	that	any	attempt	to	store	a	non-zero	value	into	
a	register	already	containing	a	non-zero	value	will	be	ignored.	

The	idea	is	that	a	single	lock	register	is	used	to	represent	and	implement	a	mutex	
lock.	To	acquire	the	lock,	a	core	will	write	a	non-zero	value	to	the	register.	If	the	lock	
was	previously	free,	it	will	be	changed	from	zero	to	the	number	written.	The	core	
should	follow	the	STORE.D	instruction	by	executing	a	LOAD.D	to	look	at	the	lock’s	
value.	If	the	lock	contains	the	new	value,	then	the	lock	has	been	successfully	
acquired;	it	it	contains	any	other	value,	the	acquire	has	failed	and	must	be	retried.	
Later,	to	release	the	lock,	the	core	will	write	a	zero	into	the	lock	register.	

We	assume	that	each	core	has	a	been	assigned	a	unique	number,	which	we	will	call	
its	“core	ID”.	We	assume	that	the	cores	are	numbered	1,	2,	3,	…	N.	The	idea	is	that	to	
acquire	a	lock	register,	a	core	will	write	its	number	into	the	lock	register	using	the	
STORE.D	instruction.	Then,	to	determine	whether	the	operation	was	successful,	the	
core	will	read	the	lock	register	using	a	LOAD.D.	If	the	number	returned	is	the	core’s	
own	ID,	then	the	lock	was	successfully	acquired.	If	the	number	is	anything	else,	then	
the	acquire	operation	failed.	If	the	number	returned	is	zero,	then	it	means	that	the	
lock	was	released	sometime	between	the	STORE.D	and	the	LOAD.D	instructions.	
Otherwise,	the	number	returned	indicates	which	core	holds	the	lock	(or,	more	
correctly,	the	identity	of	a	core	that	held	the	lock	at	some	time	in	the	recent	past,	and	
may	or	may	not	still	hold	it).	
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How	can	these	locks	be	used.	Perhaps	each	lock	register	will	be	used	to	lock	a	given	
region	of	shared	memory	for	the	purpose	of	enforcing	exclusive,	sequential	access	to	
that	memory	region.	Exactly	which	critical	data	is	to	be	protected	by	each	lock	is	up	
to	the	kernel	programmer.	Perhaps	each	core	will	have	a	region	“belonging”	to	it;	
each	lock	will	be	used	to	protect	the	memory	associated	with	a	particular	core.	Or	
perhaps	one	lock	register	will	be	used	as	a	“master	lock”	to	control	access	to	a	
shared	critical	region	containing	thousands	of	“secondary”	mutex	locks.	In	order	to	
perform	an	operation	on	one	of	the	secondary	locks,	a	core	would	be	required	to	
Girst	acquire	the	master	lock.	

The	lock	registers	are	speciGied	to	be	64	bits	wide.	Recall	that	aligned	LOAD.D	and	
STORE.D	instructions	are	atomic.	

A	mutex	locks	is	used	to	regulate	and	synchronize	a	set	of	concurrent	“processes".	
With	the	Blitz-64	approach,	each	process	must	use	a	different	number	when	
executing	the	STORE.D	to	an	acquire	the	lock,	so	that	it	can	determine	whether	the	
STORE.D	operation	successfully	acquired	the	lock.	If	two	different	processes	are	
using	the	same	number,	there	would	be	no	way	for	one	process	to	tell	whether	it	or	
the	other	process	successfully	acquired	the	lock.	

The	lock	registers	described	here	are	speciGically	designed	to	arbitrate	between	
cores,	not	between	threads	within	a	single	core.	As	we	said	above,	each	core	will	use	
a	unique	number	(e.g.,	its	“core	number”)	in	the	STORE.D	instruction	to	acquire	a	
lock.	This	approach	uses	64	bit	values.	With	this	many	bits,	we	could	easily	
accommodate	two	Gields,	one	with	the	core	number	and	the	other	with	a	thread	ID.	

There	is	nothing	particularly	special	about	specifying	the	number	of	lock	registers	to	
be	32;	it	was	chosen	arbitrarily.	Perhaps	this	will	change	in	a	future	speciGication.	
Also	note	that	cores	are	normally	numbered	0,	1,	2,	…	N-1	but	this	discussion	used	1,	
2,	3,	…	N.	

Digital	I/O	Pins	and	LEDs	

Like	many	processors,	a	Blitz-64	chip	may	contain	a	number	of	digital	I/O	pins.	The	
core	will	control	these	pins	by	accessing	a	dedicated	page.	
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For	example,	to	change	the	value	of	the	output	pins,	software	would	STORE	into	
speciGic,	predeGined	locations	within	this	page.	To	query	the	current	value	on	the	
input	pins,	software	would	read	from	locations	within	this	page.	

It	may	be	that	some	locations	are	reserved	for	conGiguring	the	I/O	pins	before	use.	
For	example,	it	may	be	necessary	to	deGine	whether	the	pin	is	“input”	or	“output”	or	
to	send	it	into	the	high	Z	state,	and	this	would	be	done	by	writing	into	other	
speciGic,	predeGined	locations.	

If	the	implementation	includes	hardware	support	for	Pulse	Width	Modulated	
(PWM)	signals,	then	the	page	would	contain	additional	words	which	can	be	used	to	
control	the	PWM	pins.	

In	some	implementations,	analog	pins	may	be	present.	If	this	is	the	case,	then	page	
would	contain	additional	words	which	can	be	used	to	query	the	analog	to	digital	
(ADC)	values	or	to	send	digital	to	analog	(DAC)	values	to	the	output.	

In	one	OS	design,	user-mode	processes	would	need	to	invoke	system	calls	to	access	
the	digital	I/O	pins.	The	kernel’s	syscall	handler	would	access	the	page	directly	to	
perform	the	operation.	In	another	OS	design,	the	device	page	is	mapped	into	the	
address	space	of	a	single	pin	controller	process.	All	requests	to	control	and	query	
the	digital	I/O	pins	would	then	go	through	this	pin	controller	process.	In	a	third	OS	
approach,	the	kernel	will	map	the	relevant	page	into	the	address	space	of	any	user-
mode	process	wanting	to	access	the	digital	I/O	pins.	

Presumably,	this	device	will	occupy	only	a	single	page.	That	is,	all	I/O	pins	would	be	
controlled	from	a	single	page	and	any	process	that	can	access	any	pins	would	have	
access	to	all	pins.	But	there	is	plenty	of	room	in	the	address	range	for	memory-
mapped	I/O	to	set	aside	a	unique	page	for	each	pin.	This	would	allow	Gine-grained	
control	over	permissions,	allow	a	process	to	access	some	pins,	but	preventing	access	
to	other	pins.	

SPI	/	MicroSD	Card	Slot	

If	interface	hardware	for	microSD	card	slots	is	available,	then	each	slot	will	be	
assigned	to	a	memory-mapped	I/O	region.	
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In	initial	implementations,	it	is	assumed	that	the	Gile	system	and	kernel	will	be	
located	on	microSD	cards.	

Each	card	slot	should	be	mapped	to	different	pages	from	the	other	slots,	so	that	each	
slot	can	be	individually	mapped	into	the	address	space	of	separate	controller	
processes.	

Adjacent	Core	Links	

Status:	 Provisional;	details	to	be	determined	
Starting	Address:	 0x4_XXXX_XXXX			<	implementation	dependent	>	
Next	Available	Address:	 0x4_XXXX_XXXX	
Size:	 0x0_0000_4000	(16	KiBytes)	
Number	of	Pages:	 1	

Blitz-64	is	intended	to	be	used	in	parallel	processing	arrays	where	each	node	is	a	
Blitz-64	core.	Each	core	may	occupy	a	single	chip	die	(along	with	its	local	memory	
and	other	components)	or	there	may	be	multiple	cores	on	each	die.	

The	cores	are	intended	to	be	arranged	in	a	rectangular	array.	The	array	may	be	2-
dimensional	or	3-dimensional,	or	the	cores	may	be	array	linearly	in	a	1-dimensional	
arrangement.	

When	arranged	in	a	3-dimensional	array,	the	directions	are	called	“west”,	“east”,	
“north”,	“south”,	“up”,	and	“down”.	The	size	(extent)	in	each	dimension	need	not	be	
identical.	The	cores	are	identiGied	using	a	coordinate	system	

In	a	linearly	arranged	array,	the	cores	are	numbered	0,	1,	2,	…	M.	The	western-most	
core	is	numbered	zero,	with	the	numbers	increasing	in	the	eastern	direction.	You	
can	also	think	of	“left”	as	corresponding	to	west	and	“right”	as	corresponding	to	
“east”.	

In	a	2-dimensional	array,	you	can	think	of	the	west-east	axis	as	indicating	the	
“column”	and	the	north-south	axis	as	indicating	the	“row”.	The	northern-most	core	is	
numbered	zero,	with	the	numbers	increasing	in	the	southern	direction.	

In	a	3-dimensional	array,	the	third	axis	corresponds	to	up-down.	The	uppermost	
core	is	numbered	zero,	with	the	numbers	increasing	in	the	downward	direction.	
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Thus,	the	cores	are	numbered	from	code	[0,0,0]	in	the	upper	northwestern	corner,	to	
core	[M-1,N-1,P-1]	in	the	far	(lower	southeastern)	corner	where	M	is	the	number	of	
columns	in	the	west-east	direction,	N	is	the	number	of	rows	in	the	north-south	
direction,	and	P	is	the	number	of	planes	in	the	up-down	direction.	(Note	that	this	
order	corresponds	to	Cartesian	coordinates	(x,	y,	z)	and	not	the	[row,	column]	order	
of	matrices.)	

Each	core	can	communicate	directly	with	its	6	neighbors.	The	memory	mapped	I/O	
device	here	is	designed	to	support	this	communication.	The	messages	can	be	
variable	length	(up	to	1	page	in	size)	and	are	buffered	so	that	a	core	need	not	wait	
for	a	transmission	to	complete.	Since	each	core	is	expected	to	have	an	independent	
clock,	the	transmission	and	corresponding	Glow	control	is	handled	entirely	by	the	
hardware.	When	a	transmission	is	complete,	interrupts	will	be	signaled	at	both	ends.	
The	interrupt	at	the	sending	end	lets	the	software	know	that	it	can	initiate	a	new	
transmission.	The	interrupt	at	the	receiving	end	lets	the	software	know	that	it	can	
read	and	process	the	incoming	message.	

Each	of	the	six	channels	will	be	“full	duplex”,	which	means	that	the	communication	
in	one	direction	is	entirely	independent	of	the	communication	in	the	other	direction.	
Communication	can	occur	in	both	directions	simultaneously	with	no	timing	
interaction	or	performance	impact.	

Commentary	With	6	communication	links,	a	collection	of	processor	cores	may	also	
be	arranged	in	other	conGigurations,	such	as	a	6-dimensional	hypercube.	A	6-D	
hypercube	arrangement	will	accommodate	64	cores	and	the	longest	path	from	any	
core	to	any	other	core	is	only	6.	

Contrast	this	with	a	3-dimensional	array	of	64	processors	(i.e.,	4	×	4	×	4):	the	longest	
path	from	any	core	to	any	other	core	is	9	(i.e.,	3	+	3	+	3).	

The	difference	in	path	lengths	in	a	hypercube	arrangement	over	a	3-dimensional	
array	becomes	more	apparent	as	the	dimension	and	number	of	cores	increases.	For	
1,024	cores	in	a	10-D	hypercube	it	is	10::27.	The	number	of	wires	remains	
unchanged	and	is	solely	determined	by	the	number	of	cores;	each	wire	has	a	core	at	
each	end,	so	the	number	of	wires	is	cores	×	links	÷	2.	But	wiring	in	our	3-D	universe	
becomes	messy.	

The	real	world	is	3	dimensional	(although	physicists	might	correct	me)	and	many	
computations	are	tied	to	this	dimensionality,	so	practical	applications	tend	to	map	
naturally	onto	3-D	processor	arrays.	
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Note	In	an	earlier	discussion	concerning	the	Lock	Controller	device,	we	discussed	
how	each	core	could	“acquire”	a	lock	by	writing	its	core	ID	number	into	special	
location	in	the	memory-mapped	I/O	device	that	is	dedicated	to	controlling	locks.	
The	Lock	Controller	uses	a	value	of	zero	to	indicate	that	a	lock	is	“free”,	so	the	
numbering	of	the	core	ID	values	must		begin	with	1.	

Here,	in	the	discussion	of	arrays	of	cores,	we	are	numbering	cores	so	that	the	home	/	
master	core	at	the	origin	of	a	3-D	array	is	given	the	address	[0,0,0].	If	the	array	is	
only	1-D	and	the	cores	are	laid	out	in	a	line,	they	are	given	addresses	[0],	[1],	…	[M].	
In	other	words,	the	cores	are	numbered:	

	 Array	Address	 Core	ID	for	Locking	
	 [0]	 1	
	 [1]	 2	
	 [2]	 3	
	 …	 …	

These	two	numbering	systems	are	different;	be	careful	of	confusing	them.	

HDMI,	USB,	WiFi,	etc.	

If	interface	hardware	for	other	devices	is	available,	then	each	device	will	be	assigned	
to	a	memory-mapped	I/O	region.	
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Quick	Summary	

•	The	CONTROL	and	CONTROLU	instructions	are	implementation-dependent	
	 —	Used	by	the	Verilog/FPGA	implementation	
•	These	instructions	are	used	to…	
	 —	Control	the	digital	I/O	pins	
	 —	Control	the	UART	device	
	 —	Debug	the	TLB	registers	
	 —	Debug	the	Verilog/FPGA	core	

CONTROL	and	CONTROLU	

CONTROL	and	CONTROLU	are	two	machine	instructions	which	have	the	same	
syntax.	They	take	a	

•	Destination	register	
•	Source	register	
•	16	bit	immediate	value	

Here	are	two	examples:	

control     r3,r6,1234
controlu    r7,r0,0x56ab

The	deGinition	and	speciGication	of	these	instructions	is	entirely	implementation	
dependent.	Below,	we	will	describe	how	they	are	implemented	in	the	emulator	and	
in	the	MicroBlitz	Verilog/FPGA	implementation.	
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In	the	Emulator	and	Verilog/FPGA	

The	CONTROL	and	CONTROLU	are	implemented	identically	in	both	

•	The	Blitz	emulator	
•	The	MicroBlitz	Verilog/FPGA	implementation	

In	both	implementations,	only	CONTROLU	is	implemented	and	used.	The	CONTROL	
instruction	is	left	unimplemented,	as	a	stub	instruction.	The	CONTROL	will	not	be	
discussed	further.	

The	CONTROLU	instruction,	as	described	here,	was	included	to	assist	in	the	
development	of	the	Verilog/FPGA	implementation.	Initially,	the	Verilog/FPGA	did	
not	support	memory-mapped	I/O.	But	since	human-readable	text	output	was	
needed	and	very	useful,	the	behavior	described	below	was	added	to	CONTROLU.	

The	immediate	value	is	used	to	select	an	operation:	

value	 operation	
0	 DIGITAL_READ	
1	 DIGITAL_WRITE	
2	 HALT	
3	 SERIAL_STAT	
4	 SERIAL_RECV	
5	 SERIAL_SEND	
6	 ENABLE_KERNEL	
7	 SET_STATUS	
8	 TLB_DEBUG	
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For	convenience,	assembler	programs	contain	the	following	deGinitions:	

DIGITAL_READ:  .equ   0
DIGITAL_WRITE: .equ   1
HALT:          .equ   2
SERIAL_STAT:   .equ   3
SERIAL_RECV:   .equ   4
SERIAL_SEND:   .equ   5
ENABLE_KERNEL: .equ   6
SET_STATUS:    .equ   7
TLB_DEBUG:     .equ   8

In	the	emulator,	other	values	will	interrupt	program	execution	with	a	message.	In	
the	Verilog/FPGA	implementation,	other	values	will	cause	an	Illegal	Instruction	
Exception.	

Digital	Read	/	Write	

controlu   XXX,r0,DIGITAL_READ
controlu   r0,XXX,DIGITAL_WRITE

In	the	DIGITAL_READ	operation,	the	source	register	is	ignored	and	the	destination	
register	is	modiGied. 	In	the	Verilog/FPGA	implementation,	the	digital	input	comes	20

from	the	8	of	the	slide	switches	on	the	FPGA	board	and	the	corresponding	binary	
value	is	placed	in	bits	[7:0],	with	the	upper	bits	set	to	zero.	When	being	emulated,	
the	emulator	will	momentarily	halt	execution	and	prompt	the	user	to	input	a	value.	

In	either	case,	a	64-bit	binary	value	will	stored	in	the	destination	register.	

In	the	DIGITAL_WRITE	operation,	the	destination	register	ignored	and	not	modiGied.	
Instead,	a	64	bit	value	comes	from	the	source	register.	In	the	Verilog/FPGA	
implementation,	the	lower	order	16	bits	are	sent	to	the	4	digit	seven-segment	and	
displayed	as	four	hex	digits.	The	upper	bits	are	ignored.	When	being	emulated,	the	
emulator	will	momentarily	halt	execution	and	display	the	value.	

	When	registers	are	ignored	and	not	needed,	register	r0	can	be	speciGied.	Here,	“xxx”	symbolizes	20

a	source	or	destination	register	that	is	needed	and	relevant.
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Halt	

controlu   r0,r0,HALT

This	instruction	will	stop	execution.	In	the	Verilog/FPGA	implementation,	this	
instruction	will	send	the	core	into	the	“sleep”	state,	where	it	will	remain	until	a	reset	
occurs.	In	the	emulator,	either	the	emulator	itself	is	terminated	(if	the	auto-go	option	
“-g”	was	present)	or	the	user	is	popped	up	into	the	debugger	(otherwise).	

Both	the	source	and	destination	registers	are	ignored.	

Serial	/	UART	Control	

controlu   XXX,r0,SERIAL_STAT
controlu   XXX,r0,SERIAL_RECV
controlu   r0,XXX,SERIAL_SEND

With	SERIAL_STAT,	the	destination	register	will	be	loaded	with	a	64	bit	value,	with	
the	following	bits:	

[63:2]	 Unused;	always	returned	as	zero	
[1]	 Output	ready	
[0]	 Input	available	

With	SERIAL_RECV,	the	input	character	will	be	moved	in	the	lower	8	bits	of	the	
destination	register	and	the	upper	bits	are	set	to	zero.	

With	the	SERIAL_SEND,	the	byte	in	the	source	register	will	be	sent	to	the	output,	
with	the	upper	56	bits	of	the	register	being	ignored.	

With	the	emulator,	the	serial	channel	is	always	ready,	so	the	SERIAL_STAT	will	
always	have	the	lower	two	bits	set	to	1.	SERIAL_RECV	will	simply	“get”	the	next	byte	
and	SERIAL_SEND	will	”put”	a	byte	to	the	output	without	any	delay	as	measured	by	
the	cycle	count.	

With	the	Verilog/FPGA	implementation,	there	will	be	a	delay.	The	code	should	
always	check	the	status	before	using	SERIAL_RECV	or	SERIAL_SEND.	Attempting	to	
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send	or	receive	before	the	system	is	ready	results	in	incorrect	data	values	being	
transferred.	

ENABLE_KERNEL	

controlu   XXX,r0,ENABLE_KERNEL  # grab csr_status; then set mode

This	operation	loads	0x0000_0000_0000_0001	into	CSR_STATUS,	which	will	disable	
interrupts	and	place	the	core	in	Kernel	Mode.	It	also	moves	either	0	or	1	into	the	
destination	register	to	indicate	whether	the	core	was	previously	in	Kernel	Mode	
(1=Kernel	Mode,	0=User	Mode).	

SET_STATUS	

controlu   r0,XXX,SET_STATUS     # set csr_status from reg.

This	operation	moves	the	value	in	the	source	register	into	CSR_STATUS.	

TLB_DEBUG	

controlu   regD,Reg1,TLB_DEBUG   # copy TLB[r1] to RegD

With	this	operation,	the	value	in	the	source	register	is	used	as	the	number	of	one	of	
the	TLB	registers.	This	operation	moves	the	value	of	the	selected	TLB	register	into	
the	destination	register.	

This	operation	is	useful	and	important	for	verifying	the	proper	functioning	of	the	
Memory	Management	Unit	(MMU)	since	the	TLB	registers	are	not	otherwise	directly	
accessible.	
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The	TLB	registers	in	the	Verilog/FPGA	implementation	are	72	bits	long.	In	both	the	
emulator	and	the	Verilog/FPGA	implementations,	the	TLB	register	is	reduced 	to	a	21

64	bit	value	with	the	following	format,	which	is	moved	into	the	destination	register.	

						Bits							 Size	
63 … 48 16 Address	Space	IdentiGier	(ASID)
47 … 27 21 Virtual	Page	Number
26 … 5 22 Physical	Page	Number
4 1 C:	Copy	Bit
3 1 D:	Dirty	Bit
2 1 W:	Writable	Bit	
1 1 X:	Executable	Bit
0 1 V:	Valid	Bit

	In	Page	Table	Entries	(PTEs)	and	in	the	TLB	registers,	the	Physical	Page	Number	is	30	bits.	The	21

Physical	Page	Number	is	reduced	from	30	bits	to	22	bits	by	dropping	the	most	signiGicant	8	bits.	
Note	that	72-8	=	64.
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