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Chapter 1: Memory-Mapped I/O	

Quick Summary	

• Each I/O device is allocated one or more pages.	
• The memory-mapped I/O pages are located in a dedicated region of addresses.	
• The memory-mapped I/O region is 16 GiBytes (1 Mi Pages).	
• The memory-mapped I/O region begins at address 0x4_0000_0000.	
• Code running in kernel mode has full access to the memory-mapped I/O region.	
• The I/O pages may optionally be mapped into virtual address spaces.	
• The Boot ROM Area is treated as a memory-mapped I/O region.	

Overview	

The Blitz-64 architecture does not contain instructions that are dedicated to input or 
output.	

Instead, all I/O devices are memory-mapped, which means they are accessed using 
LOAD and STORE instructions. In addition, instructions can also be FETCHed from 
memory-mapped I/O regions. For example, instructions are fetched from the Boot 
ROM Area.	

Each device is assigned to, and located within, one or more pages. In other words, 
the starting address for a device’s address range will be page-aligned and the 
amount of address space the device consumes will be a multiple of the page size, 
which is 16 KiBytes.	

The following address range is set aside for memory-mapped I/O pages:	

	                             Size                            	 	 	
	 Starting Addr  	 Ending Addr    	        Bytes       	         Pages        	 	 	
	 4_0000_0000 7_FFFF_FFFF 16 GiBytes 16,777,216	 	 	
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Chapter 1: Memory-Mapped I/O	

In the layout of the memory-mapped I/O region, the various I/O devices will be 
ordered and laid out sequentially, one after the other. They will not overlap and 
different devices will be on different pages. 	1

The exact layout of the memory-mapped I/O regions is implementation-dependent.	

Allocating the memory-mapped I/O address space in units of pages is mandated for 
the following reason: it allows the kernel to use address translation to map the 
pages into various virtual address spaces. At runtime, the Memory Management Unit 
will use page tables to map a LOAD or STORE from a virtual address to the physical 
address of the device. Thus, the kernel can use the paging mechanism to make an 
individual memory-mapped I/O device available to one address space, but hidden 
and invisible to all other address spaces.	

In most cases, the device driver for a particular device will run as a user-mode 
program. The pages for the device being managed are mapped into the address 
space of the driver program. This approach frees the kernel from the overhead of 
dealing with many devices. More importantly, it allows device drivers to be 
dynamically loaded, started, and stopped in a safe fashion. If a device driver is buggy 
or contains malicious code, the damage is limited to the device in question; it cannot 
modify other devices or corrupt kernel memory. Moving most device drivers out of 
the kernel is critical for security, as well as flexibility.	

Nevertheless, a few devices will undoubtedly be managed directly by the kernel. The 
pages for such a device would not be mapped into any virtual address space and the 
kernel code would address the pages directly.	

Like normal memory pages, I/O pages that are mapped into virtual spaces may have 
any combination of permissions.	

By not mapping a memory-mapped I/O page into a virtual address space, the kernel 
prevents user mode code from accessing the device. If a page is mapped, then it will 
be readable. In addition, the kernel may mark the page as writable and/or 
executable. Normally, the pages for I/O devices would be marked writable (allowing 
the code to update/alter/command the device) but not executable.	

 It is allowed for implementation to place unused gaps between the regions, if this is convenient. If 1

there is an expectation that a region will grow in subsequent implementations or that some 
devices may be implemented optionally in different versions, then those pages should be pre-
allocated, set aside, and documented as such.
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Chapter 1: Memory-Mapped I/O	

The Blitz-64 specification does not fully specify the nature of all I/O devices 
available on a given system. In fact, different implementations will have different 
devices. In other words, which devices are present and how they function will vary 
between implementations.	

Each implementation must specify:	

	 • Which I/O devices are present	
	 • Where each device is located in the physical address space	
	 • How many pages are allocated to each device	
	 • Exactly how the device functions and how it is used	

Below is an example placement of memory-mapped I/O devices. (This happens to be 
the default memory map for the devices implemented by the Blitz-64 emulator.)	

	                             Size                            	 	 	
	 Device                         	 Starting Addr	      Hex    	      Bytes     	 Pages	 	 	
	 Boot ROM Area	 4_0000_0000	 10_0000	 1 MiBytes	 64	 	 	
	 Secure Storage Area	 4_0010_0000	 10_0000	 1 MiBytes	 64	 	 	
	 PLIC	 4_0020_0000 	 4000	 16 KiBytes	 1		 	 	
	 UART	 4_0020_4000	 4000	 16 KiBytes	 1		 	 	
	 DISK	 4_0020_8000 	 4000	 16 KiBytes	 1		 	 	
	 DMA Device	 4_0020_c000 	 4000	 16 KiBytes	 1		 	 	
	 Host Device	 4_0021_0000 	 4000	 16 KiBytes	 1		 	 	

The Boot ROM Area and the Secure Storage Area are documented in the “Blitz-64: 
Instruction Set Architecture Reference Manual”.	

Subsequent chapters here define, describe, and document the other devices. Of 
course, different implementations may choose different specifications for various 
memory-mapped peripheral I/O devices. In this document, we describe what is 
implemented by the Blitz-64 emulator.	

Another chapter sketches out ideas for other hypothetical devices, including:	

• Lock Controller	
• Digital I/O Pins	
• SPI / MicroSD Card	
• Adjacent Core Links	
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Chapter 1: Memory-Mapped I/O	

• HDMI, USB, WiFi	

Finally, one chapter includes the specification for the CONTROL and CONTROLU 
instructions as they are implemented by the emulator.	
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Chapter 2: Platform-Level 
Interrupt Controller (PLIC)	

Quick Summary	

• There is one PLIC for each multicore system.	
• All I/O devices, including the PLIC itself, are memory-mapped.	
• Devices send interrupt requests to the PLIC.	
• The PLIC will forward the interrupt to the cores.	
	 — One core will claim the interrupt.	
	 — This core will service the interrupt (via a handler routine).	
	 — When complete, the handler will retire the interrupt.	
• Only one interrupt per device may be actively claimed at any time.	
	 — Multiple interrupts from one device are handled sequentially.	
	 — The PLIC enforces this sequential linearization of interrupt handling.	
• During set-up, the PLIC is configured with an ENABLE_ARRAY.	
	 — Device D may (or may not) be enabled for Core C.	
	 — When device D interrupts, only the enabled cores will be interrupted.	
	 — The PLIC allows only one enabled core to successfully claim the interrupt.	

PLIC: Platform-Level Interrupt Controller	

From time-to-time I/O devices will generate interrupts and each interrupt must be 
routed to a core to be handled. A multicore Blitz System will contain a single PLIC, 
which will route interrupts from devices to the cores.	

Of course, there will be some interrupt sources that are local to a particular core. For 
example, each core will have its own timer and each timer interrupt will go to only 
that core. For such devices, the interrupt will not go through the PLIC. Instead, there 
are specific interrupt types (such as “Timer Interrupt”) and the device will interrupt 
the core directly.	
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Chapter 2: Platform-Level Interrupt Controller	

Nevertheless, many devices will be shared among the cores. Each interrupt 
generated by a such a shared device goes through the PLIC, which will then interrupt 
one or more cores. In this discussion of the PLIC, we ignore local devices, since the 
PLIC is only used for shared devices.	

Figure: Basic PLIC Architecture	

Typically, all cores and the PLIC are located on the same IC chip. The interrupting 
device may be located on the same IC chip as the cores or it may be located 
elsewhere. When a device raises an interrupt, the PLIC is notified via a direct 
connection, which would normally be a single wire.	

The PLIC will then cause a “PLIC Interrupt” to be raised in one or more cores. All 
interrupted cores will execute the trap handler code. Of course, if a core has 
interrupts disabled, there will be a delay before interrupts are re-enabled, the PLIC 
interrupt is serviced, and the handler code begins.	

Only one core will “claim” the interrupt. This core will then (presumably) execute 
actions to service the I/O device. All other cores will find that the interrupt has been 
claimed by another core and will exit their trap handling and resume execution of 
the interrupted code.	

The first step of the trap handler is to contact the PLIC to “claim” the interrupt. The 
PLIC will then indicate whether the claim operation is successful or not. If the claim 
operation is successful, the core will go on to deal with the I/O device. If the claim 
operation is not successful, the core will return to other tasks.	
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Every I/O device is memory-mapped, and each will occupy its own distinct region of 
the physical address space. To access a device, a core will use LOAD and STORE 
instructions. More precisely, to send data to a device, the core will STORE to specific 
locations. To retrieve status and data from a device, the core will use LOAD 
instructions. Such memory locations are often called “I/O registers”, although they 
should not be confused with registers within the core.	

To determine the addresses of the various I/O registers associated with a particular 
device, consult the documentation associated with that device.	

The PLIC is also treated as a memory-mapped device. There are a number of I/O 
registers associated with the PLIC, and these will be described in this document. For 
example, to set-up and initialize the PLIC before operation, a core will STORE into 
specific PLIC registers. Likewise, to claim an interrupt and the complete the 
interrupt, a core will LOAD and STORE into addresses mapped to the PLIC.	

In addition to the memory-mapped I/O registers, there are separate wires 
associated with the PLIC. Each device has a single wire to the PLIC, which is used by 
the device to signal an interrupt. Also, there is a wire from the PLIC to each core, 
which is used by the PLIC to signal a PLIC Interrupt to that core.	

This Specification	

The PLIC design and specification presented here is similar to, but distinct from the 
Risc-V PLIC. Furthermore, this design may be changed in the future. Instead of 
version numbers, we use the dates on this document and the implementation itself.	

This design supports…	

Maximum Number of Cores	 128	
Maximum Number of Devices	 64	

The cores are numbered 0, 1, 2, … 127.	

The devices are numbered 0, 1, 2, … 63.	
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There is no support for interrupt “priorities”. All devices are treated as equally 
important. 	2

Memory-Mapped PLIC Registers	

EDGE_TRIGGERED_ARRAY — 64 bits, one bit per device	
	 0 = This device is level triggered	
	 1 = This device is edge triggered	
ENABLE_ARRAY — 128 × 64 bits, one doubleword per core	
	 1 = This device can interrupt this core	
	 0 = This core will not get interrupts from this device	
CLAIM_ARRAY — 128 doublewords, 1 per core	
	 Read/LOAD to determine which device has interrupted.	
	 Write/STORE to retire the current interrupt	

These registers are memory-mapped. Memory-mapped registers can be read and 
written by the cores.	

The PLIC would typically be memory-mapped to the page with address 
0x4_0020_0000.  The offsets of these registers are:	3

Offset (decimal)	 Typical Addr	 SizeInBytes         	 Register	
0x0000 (0) 4_0020_0000	 0x0008 (8)	 EDGE_TRIGGERED_ARRAY	
0x0008 (8) 4_0020_0008	 0x0400 (1024)	 ENABLE_ARRAY	
0x0408 (1032) 4_0020_0408	 0x0400 (1024)	 CLAIM_ARRAY	
0x0808 (2056) 4_0020_0808	 	 	

Normally, the EDGE_TRIGGERED_ARRAY and the ENABLE_ARRAY are written 
during setup and initialization and would not be changed thereafter.	

 Modern devices are typically managed by their own microcontrollers that provide data buffering, 2

eliminating the need for super-fast interrupt handling. Furthermore, in a multi-core system where 
any core can service any device, there is usually a core available whenever any interrupt occurs.

 With the Blitz-64 emulator, this address is one of the emulation parameters, and can be 3

adjusted.
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Enabled Devices	

When a device raises an interrupt, which cores should be notified? This is 
determined by how the ENABLED_ARRAY was initialized on start-up. This array 
determines which cores will be notified when a particular device requests an 
interrupt. It also determines, for a given core, which devices are able to trigger an 
interrupt on that core.	

Claiming Interrupts	

Whenever a core receives a “PLIC Interrupt”, it should LOAD from the element of the 
CLAIM_ARRAY corresponding to that core. If the value retrieved from the PLIC is -1, 
it means the interrupt has been previously claimed by another core or that the 
interrupt is no longer pending.  Otherwise, the value retrieved from the register will 4

be 0…63 to indicate which device is raising an interrupt.	

Retiring Interrupts	

A core that has successfully claimed an interrupt from device X should retire that 
interrupt after handling it. This is done by STORING into the core’s claim word. The 
exact value stored does not matter and is ignored by the PLIC.	

From the Trap Handler’s Perspective	

When a device has generated (i.e., “signaled” or “raised”) an interrupt, the PLIC will 
generate a “PLIC Interrupt” on all cores for which that device is enabled. The PLIC 
determines this from the ENABLE_ARRAY, which tells for each core, which devices 
are allowed to cause interrupts on that core. Interrupts from devices that are not 
enabled are never forwarded to that core.	

Focussing on one core, if interrupts are disabled on that core (i.e., if the “Interrupts 
Enabled” bit in csr_status is 0), that core will continue executing normally. On the 

 How can the interrupt “no longer be pending”? Perhaps the interrupt has been claimed by 4

another core, the handler has run to completion on that core, and the interrupt has been retired, 
all before some other core has even attempted to claim the interrupt.
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Chapter 2: Platform-Level Interrupt Controller	

other hand, if interrupts are enabled (or once interrupts are re-enabled), trap 
processing will begin and a jump to the global trap handler will occur. At the time of 
the trap, the csr_cause will be set to the code for a “PLIC Interrupt”.	

If interrupts are disabled at core X and the interrupt is successfully claimed by some 
other core Y before interrupts are re-enabled on X, the interrupt may or may not 
disappear. In other words, the PLIC Interrupt at core X may remain pending until 
interrupts are re-enabled or it may disappear. If the interrupt disappears, then trap 
processing never occurs and, from the perspective of core X, it is as if the PLIC 
Interrupt never occurred. This is an implementation detail to be decided by the PLIC 
implementor. 	5

Once the trap handling begins for the PLIC interrupt, the interrupt must first be 
“claimed”. Since several cores may be notified and begin trap processing more or less 
simultaneously, and since only one must service the interrupt, all interrupted cores 
must communicate with the PLIC. The PLIC will give the interrupt to exactly one 
core. That is, the claim operation will be successful on one core and will fail on all 
other cores attempting to claim that same interrupt.	

Furthermore, the core could have several devices enabled, so after the PLIC 
Interrupt, the handler must determine which device is requesting service, and the 
core gets this information when it LOADs from the CLAIM_ARRAY.	

There is a “claim register” for each of the cores. Each claim register is a doubleword 
(i.e., 64 bits) which will contain an integer. To claim an interrupt, a core will LOAD 
from its register in the CLAIM_ARRAY. For example, core 5 will LOAD from 
CLAIM_ARRAY[5].	

The PLIC will determine whether or not a claim operation is successful for any core 
trying to claim it, giving the interrupt to exactly one core, and not to any other cores 
which are also trying to claim the interrupt. If the operation is successful, the PLIC 
will return the number of the device that is interrupting. If the claim operation fails, 
the PLIC will return -1 to the core.	

 Furthermore, it may be that such an interrupt sometimes remains pending and sometimes 5

disappears, at the discretion of the PLIC.
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If the claim operation fails, then the trap handler will return to the interrupted code 
and will do other things.  But if the claim is successful, the trap handler will…	6

	 • Determine which device is interrupting	
	 • Execute code specific to that device	
	 • Communicate directly with that device as needed to process the interrupt	
	 • Retire the interrupt by communicating to the PLIC	
	 • Return to the interrupted code	

The value returned from LOADing the CLAIM_ARRAY will indicate which device is 
interrupting and can be used to dispatch to code specific to that device. After the 
interrupt is handled, it must be retired by notifying the PLIC that the core has 
completed its handling the interrupt.	

To “retire” the interrupt, the core will STORE into the CLAIM_ARRAY register for 
that core in the PLIC. As mentioned, the CLAIM_ARRAY register has one doubleword 
for each device. The core may store any value into this doubleword; the actual value 
is ignored by the PLIC.	

Once an interrupt from some device has been claimed by one core, no further 
interrupts from that device will be dispatched by the PLIC until that interrupt is 
retired. In other words, if an interrupt from some device (say X) has been claimed 
but not yet retired, then subsequent interrupts from device X will not cause a “PLIC 
Interrupt” in any core, nor will any attempts to claim an interrupt be successful.	

In order to use the PLIC correctly, the following rules must be respected by the 
cores:	

•	 A core must LOAD from and STORE to only the CLAIM_ARRAY register 
associated with that core. For example, core 5 should never mess with the 
register associated with core 9.	

•	 A core must not execute a “retire” operation unless it has first successfully 
“claimed” an interrupt. In other words, each retire operation should be 
preceded by a successful claim.	

 Presumably. Here, we describe the normal operation of the core and assume all handlers behave 6

correctly.
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•	 A core should not try to claim an interrupt unless it has retired the previous 
interrupt and the PLIC has subsequently generated a “PLIC Interrupt”.	

•	 The ENABLE_ARRAY and the EDGE_TRIGGERED_ARRAY should only be 
modified before the first interrupt occurs.	

Violations of these rules may confuse the PLIC and cause erroneous operation.	

Level-Triggered and Edge-Triggered Interrupts	

There will be a single line from each device to the PLIC and the device will use that 
wire to signal (i.e., request/raise) an interrupt . The interrupt request line (from the 7

device to the PLIC) can be configured as either:	

Level-Triggered	
Edge-Triggered	

The EDGE_TRIGGERED_ARRAY — which should be initialized at start-up — 
determines how the PLIC will sample that line. The array is stored in a single 
doubleword I/O register with one bit for each device. Bit k in the doubleword 
corresponds to device k. If the bit is initialized to 0, the line will be level-triggered; if 
the bit is 1, the line will be edge-triggered.	

 Our discussion of a “single wire” is conceptual only. The actual circuitry by which the interrupt 7

signal is carried from device to PLIC or PLIC to core may be more complex.
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Level-Triggered	

If the device operates as a level-triggered device, then the interrupt request line 
from the device to the PLIC is sampled periodically. If the line is high, the PLIC will 
begin operation and will send a “PLIC Interrupt” to all cores that have enabled that 
device. Then, some core will claim the interrupt, execute a handler, and ultimately 
retire the interrupt.	

For a level-triggered device, the act of retiring the interrupt will cause the PLIC to 
once again sample the device’s request line. If high, the process will repeat and 
another interrupt will be generated. If low, no interrupt will be generated. If there is 
no interrupt, the PLIC will continue to sample to line periodically, e.g., on every clock 
pulse. Whenever the line goes high again, the PLIC will start a new interrupt cycle.	

For a level-triggered device, once an interrupt has occurred and the PLIC has 
notified all enabled cores, the PLIC will then ignore the interrupt line from that 
device. For level-triggered devices, it is expected that the device will keep its request 
line high for many clock cycles until some operation by the handler code resets the 
device, causing it to lower its request line.	
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Edge-Triggered	

For edge-triggered devices, the device is expected to send a single pulse on its 
request line to the PLIC. It is the rising edge on the request line that will cause the 
PLIC to generate an interrupt in all enabled cores.	

However, with an edge triggered device, the device can continue to generate more 
interrupts while the previous interrupt is being handled.	

For each edge-triggered device, the PLIC maintains a counter. This counter is 
internal to the PLIC; it is not directly accessible by the cores and is initialized to zero 
on power-on-reset. Every time the PLIC detects a rising edge on the request line 
from a device, the counter for that device is incremented. Every time a core retires 
an interrupt, the counter is decremented.	

There can only be at most one interrupt active for any given device. If an edge-
triggered device has an interrupt active (i.e., that interrupt has not yet been retired) 
and the device raises subsequent interrupts, then the counter will be incremented, 
but no further interrupts to the cores will occur. When the current interrupt is 
retired, the PLIC will process subsequent interrupts and raise a new “PLIC 
Interrupt” in the enabled cores. When an interrupt for an edge-triggered device is 
retired, the PLIC will decrement the counter associated with that device. If, after the 
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decrement, the counter is still positive, then a new interrupt will be forwarded to the 
cores. 	8

Claiming Multiple Interrupts Not Allowed	

Once a core has claimed an interrupt, the handler will normally run with interrupts 
disabled until the interrupt is retired. Interrupts should not be re-enabled until after 
the interrupt has been retired.	

Once some core has claimed an interrupt from device K and before that interrupt 
has been retired, the PLIC will not raise another “PLIC Interrupt” at any core 
concerning device K, even if device K has requested another interrupt.	
To restate this, consider a situation in which a core is handling an interrupt from 
device K and has not yet retired it. Now assume device K raises another interrupt 
before the core has retired the previous interrupt. The interrupt from device K will 
not be forwarded to that core or to any other core until the previous interrupt is 
retired.	

If the device is “edge-triggered”, the second interrupt will not be lost. Instead, it will 
remain pending because the counter will be incremented. The PLIC will signal a 
second interrupt only after the first interrupt is retired.	

If the device is “level-triggered”, this situation cannot arise; the level of the interrupt 
line from device K is only checked when the previous interrupt is retired. In other 
words, if the device is level-triggered, the interrupt request line from the device to 
the PLIC will be ignored until the previous interrupt is retired. Thus, the device 
cannot cause a second interrupt while the first interrupt is being handled. At the 
moment the first interrupt is retired, the request line from the device to the PLIC 

 Edge-triggered devices that are integrated on the same chip as the PLIC and running within the 8

same clock domain will presumably be synchronized with the PLIC circuitry. Like all on-chip 
signals, the interrupt request line from the device to the PLIC will be sampled on the rising edge of 
the clock. At each clock cycle, the counter will be incremented if and only if the request line is high. 
Thus, “edge-triggered” here means not so much as “the rising edge” but “high on a given clock 
cycle”; if the line happens to remain high for multiple clock cycles, the counter would be 
incremented on each clock cycle.
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will be sampled. If the line is still high, the PLIC will dispatch the second interrupt to 
all cores for which that device is enabled. 	9

This means that interrupts from device K will be processed one-at-a-time, although 
each interrupt may be processed on a different core. And this precludes a core from 
handling more than one interrupt simultaneously.	

The PLIC serializes all interrupt handlers for a given device, and it 
serializes all interrupt handlers on a given core.	

After some core X has claimed an interrupt from device K but before it has retired 
that interrupt, other devices may request interrupts. If those other devices are also 
enabled for core X, then a “PLIC Interrupt” will be raised at core X. In other words, 
when a second device requests an interrupt, that interrupt will trigger interrupts at 
all cores, including X, which are enabled for that device. Presumably, core X will 
leave interrupts disabled until after it retires the interrupt from device K, so any 
subsequent interrupts to core X will remain pending. 	10

Discussion of Handler Approaches	

In some operating systems, interrupts will be handled as follows:	

• Device D requests an interrupt	
• Core C is interrupted and interrupts are temporarily disabled	
• The interrupt handler claims the interrupt for device D	
• The interrupt handler wakes up a sleeping “device service process”	
• The interrupt handler notifies the PLIC that the interrupt is retired.	
• The handler re-enables interrupts and returns to other tasks	
• Later, the “device service process” is scheduled and interacts with device D	

 	
But note that each interrupt must be retired before attempting to claim the next 
interrupt.	

 The request line from a level-triggered device is also monitored when there are no interrupts 9

active for that device. Typically it would be sampled on every edge of the PLIC’s clock.

 At the PLIC implementor’s option, if some device D raises an interrupt which is enabled at 10

several cores and that interrupt is then claimed by some core, the PLIC may cancel the interrupt at 
the other cores, assuming there is no other device also interrupting them.
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In the above scenario, the interrupt handler retires the interrupt before returning to 
other tasks. This means that the “device service process” runs after the interrupt has 
been retired, and at a time when future interrupts may be recognized and claimed. 
Thus, the device in question may generate additional interrupts (if its design allows 
for this) before the “device service process” has completed.	

If devices can generate multiple interrupts between servicing, this could be a 
problem.	

One solution is for the interrupt handler to fully service the interrupt and eliminate 
the need for any special "device service process” that is scheduled separately. For 
example, a UART might generate interrupts whenever a byte arrives on the receive 
channel. This could happen at any time. In this design, the interrupt handler will get 
each character, add it to a buffer, and retire the interrupt before re-enabling 
interrupts. This way, multiple input characters will each generate an interrupt and 
each character will be retrieved. Any tasks that are scheduled and run with 
interrupts enabled will only deal with the buffer and not care about interrupts or the 
device.	

Another solution is for the interrupt handler to avoid retiring the interrupt, and 
leave that to the “device service process”. So the interrupt will be claimed by the 
interrupt handler, but it will not be retired until later, by the “device service process” 
whenever it is scheduled. Of course, this means the core will not be able to service 
any PLIC interrupt until after the “device service process” completes execution.	

A third solution is make sure that each device will not generate the next interrupt 
until after the previous interrupt has been fully serviced. This might be typical of 
disks, Of course, a “read-sector” or “write-sector" command will interrupt when 
complete, but the disk will not then interrupt again until after the next command is 
issued. So it is safe for the interrupt handler to retire the interrupt before the “device 
service process” runs, since there cannot be a subsequent interrupt until after the 
“device service process” runs and issues the next command to the device.	
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Implementation in the Emulator	

Next, we describe the implementation of the PLIC used in the Blitz-64 emulator.	

This section can be safely skipped.	

The following variables are used within the emulator:	

EDGE_TRIGGERED_ARRAY — 64 ints, one per device	
	 0 = This device is level triggered	
	 1 = This device is edge triggered	
ENABLE_ARRAY — 128 × 64 bits, one doubleword per core	
	 1 = This device can interrupt this core	
	 0 = This core will not get interrupts from this device	
ENABLE_ARRAY_BY_DEVICE — 64 × 128 bits, two doublewords per device	
	 1 = This device can interrupt this core	
	 0 = This core will not get interrupts from this device	
COUNTER — 64 ints, 1 per device	
	 0 = No interrupt (i.e., all previous interrupts have been claimed)	
	 n = There are n unclaimed interrupts for this device	
PROCESSING — 128 ints, 1 per core	
	 -1 = This core is available to be interrupted	
	 k = This core has claimed (but not retired) an interrupt from device k	
DEVICE_STATUS — 64 ints, 1 per device	
	 -1 = This device is not requesting an interrupt, or	
	 	 no core has claimed the current interrupt	
	 x = Core x has claimed (but not retired) an interrupt for this device	
INITIALIZATION_COMPLETE — bool	
	 0 = No LOAD/STORE to CLAIM_ARRAY has yet occurred.	
	 1 = We have seen LOADs/STOREs to the CLAIM_ARRAY.	

PLIC-related functions:	

signalInterruptFromDevice (dev: int)	
unsignalInterruptFromDevice (dev: int)	
checkInterruptsForDevice (dev: int)	
cancelUnneededInterrupts ()	

On reset:	
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	 EDGE_TRIGGERED_ARRAY — Set to zeros	
	 ENABLE_ARRAY — Set to zeros	
	 ENABLE_ARRAY_BY_DEVICE — Set to zeros	
	 COUNTER — Set to zeros	
	 PROCESSING — All entries set to -1	
	 DEVICE_STATUS — All entries set to -1	
	 INITIALIZATION_COMPLETE — Set to 0	

Whenever a LOAD or STORE to the CLAIM memory-mapped array is executed, 
INITIALIZATION_COMPLETE will be set to true. This flag is used to make sure the 
code doesn’t try to modify ENABLE_ARRAY or the EDGE_TRIGGERED_ARRAY after 
kernel initialization is complete. If the kernel code misbehaves, a user warning is 
displayed.	

A STORE to the EDGE_TRIGGERED_ARRAY memory-mapped doubleword is 
transformed into an initialization of the internal EDGE_TRIGGERED_ARRAY, which 
is more convenient to use. If INITIALIZATION_COMPLETE is true, then a user 
warning is displayed. Otherwise, no further action.	

The ENABLE_ARRAY maps exactly to the memory-mapped registers of the same 
name. A STORE to any of these registers will update the corresponding array 
element directly. The ENABLE_ARRAY_BY_DEVICE contains the exact same 
information, except it is indexed by device number, rather than core number. Each 
and every STORE to the ENABLE_ARRAY will also cause the complete 
reinitialization of the ENABLE_ARRAY_BY_DEVICE. A STORE to ENABLE_ARRAY 
after INITIALIZATION_COMPLETE has been set will be flagged with a user warning.	

The ENABLE_ARRAY_BY_DEVICE is not modified, except when the kernel writes to 
ENABLE_ARRAY during initialization. It is used by the PLIC-related code in the 
emulator, and the ENABLE_ARRAY is ignored after ENABLE_ARRAY_BY_DEVICE is 
initialized.	

For edge-triggered devices, the following function should be invoked by the code 
associated with the device:	

signalInterruptFromDevice (dev: int)	

For level-triggered devices, this function should be invoked by the code associated 
with the device whenever the interrupt level is changed to HIGH. Whenever the 
device wishes to lower the interrupt request line, it calls:	
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unsignalInterruptFromDevice (dev: int)	

The signalInterruptFromDevice function will check to see if the device is edge- or 
level-triggered. If it is edge-triggered, it will increment the corresponding COUNTER 
array element. If the device is level-triggered, it will set the element to 1. In either 
case, it will then call:	

checkInterruptsForDevice (dev: int)	

Whenever unsignalInterruptFromDevice is invoked, the corresponding COUNTER 
array element will be set to 0. We may also check that the device is truly level-
triggered and issue a user warning if not. It will then call the following function to 
adjust things as needed:	

Reset_PLIC_Interrupt_Pending ()	

This function will cancel all pending PLIC Interrupts. It will then go through 
COUNTER array to identify every device requesting an interrupt and, if the device is 
not currently claimed by any core (i.e., DEVICE_STATUS == -1), it will raise a PLIC 
Interrupt for all enabled cores. There is a PLIC_Interrupt_Pending flag for each 
core, and an interrupt is signaled by setting this flag . It will consult 11

ENABLE_ARRAY_BY_DEVICE to determine which cores are to be interrupted.	

The checkInterruptsForDevice function will consult the COUNTER array to 
determine whether this device is needing an interrupt and the DEVICE_STATUS 
array to determine whether there is an ongoing (i.e., claimed but not retired) 
handler working on this device. If there is an interrupt required, but none in 
progress, a PLIC Interrupt will be raised at all enabled cores, which can be 
determined by consulting the ENABLE_ARRAY_BY_DEVICE array.	

 The PLIC_Interrupt_Pending flag is checked before each instruction and a trap occurs if it is set 11

and interrupts are enabled.
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Whenever a LOAD from the CLAIM_ARRAY occurs, an interrupt is being claimed. 
First, we check to make sure this core doesn’t have any interrupts in progress by 
checking the PROCESSING array. Then we search for a device such that (1) it has 
outstanding unclaimed interrupts (the COUNTER array), (2) no core is currently 
servicing an interrupt from this device (the DEVICE_STATUS array), and (3) this 
device is enabled for the requesting core (the ENABLE_ARRAY_BY_DEVICE array). If 
no such device is found, -1 is returned as the result of the LOAD. Otherwise, we 
decrement the COUNTER array, set the DEVICE_STATUS array for this device to the 
current core, and set the PROCESSING array for this core to this device. Now, since 
this core has claimed the interrupt for this device, we adjust the 
PLIC_Interrupt_Pending flags for the other cores by calling 
Reset_PLIC_Interrupt_Pending.	

Whenever a STORE into the CLAIM_ARRAY occurs, an interrupt is being retired. 
First, we make sure there is an outstanding (i.e., un-retired) interrupt for this core 
by checking the PROCESSING array, which indicates which device was being 
handled. Then we change the entry for this core to -1 and we also change the 
DEVICE_STATUS array for that device to -1. Then we ask whether there are still 
more interrupts from this device by checking the COUNTER array for this device. If 
so, we raise the PLIC_Interrupt_Pending flag for all cores that are enabled for this 
device. Finally, we ask whether there are still unclaimed interrupts for devices for 
which this core is enabled, If so, we raise the PLIC_Interrupt_Pending flag for this 
core.	

Interrupt Priorities	

It is possible that the following interrupts will occur simultaneously:	

Timer Interrupt	 ← highest	
DMA Complete Interrupt	
PLIC Interrupt	 ← lowest	

Only one interrupt will be processed at a time. In other words, when interrupts are 
enabled, one interrupt will be selected and a trap will occur for that interrupt. Any 
other pending interrupts will remain pending until interrupts are again re-enabled.	

The Timer Interrupt will be given precedence, with the others in turn. This is how 
the emulator orders priority; other implementations may order the priority of 
interrupts differently.	
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Quick Summary	

• A UART Communication Device	
	 — One Tx and one Rx Channel	
• Interface is through memory-mapped I/O registers	
	 — SEND_BYTE	
	 — RECV_BYTE	
	 — STATUS	
	 	 — RECV_READY bit 0	
	 	 — SEND_READY bit 1	
	 — SETUP	
	 	 — INTERRUPTS_REQUESTED bit 0	
• Optional interrupts to PLIC	
	 — When the device becomes free to send a byte	
	 — When the device has received another byte	
• The Blitz-64 emulator implements this device	

Introduction	

This device is a Universal Asynchronous Receive Transmit (UART) channel, 
sometimes known as a “serial port”. There is a transmit channel for transmit and 
another channel for receive. Bytes can be sent along each channel independently at 
the same time, i.e., the channel is full duplex. A complete byte at a time is sent.	

In hardware, the byte is linearized and sent to some other device one bit at a time. At 
the minimum the hardware uses three wires:	

	 Tx	
	 Rx	
	 Gnd	
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When emulated, the transmission may happen in other ways.	

In this chapter, we describe what is implemented by the Blitz-64 emulator; other 
implementations may vary. Variations may include:	

• Multiple channels, instead of a single Tx/Rx channel	
• Ability to control the baud rate, the parity bit, and the number of stop bits	
• Different register mappings and meanings 	12

Memory-Mapped I/O Registers	

The following four hardware registers are implemented and these are memory-
mapped into locations in the physical address space.	

SEND_BYTE — Doubleword, write only	
	 Only the lower 8 bits are used, higher bits are ignored.	

RECV_BYTE — Doubleword, read only	
	 The value will be 0 … 255, i.e.,	
	 	 0x0000_0000_0000_0000 … 0x0000_0000_0000_00ff	

STATUS — Doubleword, read only	
	 RECV_READY (bit 0): 0=no recv byte is available; 1=recv byte is available	
	 SEND_READY (bit 1): 0=send channel is busy; 1=send channel is ready	
	 Other bits are zero, but should be ignored.	

SETUP — Doubleword, write only	
	 INTERRUPTS_REQUESTED (bit 0): 0=do not interrupt; 1=cause interrupts	
	 Other bits are ignored; reserved for future baud/stop/parity configuration	

 There are a number of existing chips and protocols for UART devices which are in widespread 12

use. While we choose to use a simple, minimal design, other Blitz-64 implementations may choose 
to mimic those legacy systems.
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These doublewords are located at the following offsets within the page allocated to 
the UART0 device:	

	 Offset	 Size in bytes	     Register    	 	 	 	
	 0	 8	 SEND_BYTE	 write-only	 	
	 0	 8	 RECV_BYTE	 read-only	 	
	 8	 8	 STATUS	 read-only	 	
	 8	 8	 SETUP	 write-only	 	

Note that the same address can be used for multiple registers. For example, a LOAD 
from offset 8 returns the status word, while a STORE to that same address will 
perform a setup operation.	

Operation	

Before usage, the SETUP register should be written to. Bit 0 — the 
INTERRUPTS_REQUESTED bit — determines whether the device will cause an 
interrupt or not.	

If a 0 is written, no interrupts will be generated. To use the device, the code should 
check the STATUS register to determine when bytes can be safely read from 
RECV_BYTE or written to SEND_BYTE.	

If INTERRUPTS_REQUESTED is 1, the device will interrupt the core(s) whenever 
either	

	 • A byte has been received on the receive channel	
	 • The send channel can accept the next byte to transmit	

The interrupt will be sent to the PLIC, which will then forward it to whichever cores 
have enabled interrupts from the UART0 device.	

Additional bits of the SETUP register may be defined later. These bits might be used 
to configure the UART circuitry’s	

• Baud Rate	
• Number of bits (7 or 8) by “byte” transmitted	
• Number of stop bits	
• Parity bit (none, even, or odd)	
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The emulator simulates hardware so these parameters are neither relevant nor 
needed.	

To send a byte, the core will store a value into the SEND_BYTE register. Only the 
lower 8 bits are sent; the upper 56 bits are ignored. If the UART0 device is not ready 
to transmit — that is, if the SEND_READY status bit is not 1 and the device is still 
busy sending the previous byte — the results are undefined and the byte will be lost 
or perhaps some garbage will be transmitted on the Tx line. If the 
INTERRUPTS_REQUESTED control bit was set to 1, the device will generate an 
interrupt after the byte has finished sending and the device is ready for the next byte 
to be written into SEND_BYTE.	

Whenever a value is STOREd into SEND_BYTE, the SEND_READY status bit will 
immediately go to 0 and will remain 0 until the device has finished sending a byte 
and is ready to send the next byte.	

To receive a byte, the core must wait for incoming data. When the UART0 device 
receives a byte, it will drive the RECV_READY status bit to 1. It will also generate an 
interrupt if the INTERRUPTS_REQUESTED control bit was set to 1. After that, the 
core can safely LOAD from the RECV_BYTE register. The byte that was received will 
be returned as an integer in the range 0…255. The register is a doubleword and the 
upper 56 bits will be zeros. A LOAD operation before RECV_READY goes to 1 is 
undefined and may return anything, such as a copy of the previously received byte.	

Whenever a byte is LOADed from RECV_BYTE, the RECV_READY status bit will 
immediately go to 0 and will remain 0 until a new byte is received over the Rx line.	

Notes	

This device is named “UART0” — instead of simply “UART” — to emphasize that it is 
about the simplest interface to a UART device possible. It is implemented by the 
Blitz-64 emulator as described. The UART0 interface is unique to Blitz-64, but it is 
quite similar to other UART interfaces.	

Hardware implementations may use the UART0 interface as described here, or may 
use something a little different. For example, future hardware may define the 
memory-mapped I/O registers to map more closely to the so-called “16550 UART” 
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interface. Different specifications for a UART device interface should be named 
something besides “UART0”.	

The PLIC handles and dispatches interrupts from devices numbered 0…63. In the 
Blitz-64 emulator, the PLIC maps the UART0 device to device number 0. The use of 0 
in both is coincidence.	
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Quick Summary	

• A Disk Device	
	 — Providing Sector Read and Write Operations	
• Interface is through memory-mapped I/O registers	
	 — STATUS	
	 	 — BUSY bit 0: 1=operation in progress; 0=idle and free	
	 	 — ERROR bit 1: 1=operation failed; 0=operation succeeded	
	 — SETUP	
	 	 — INTERRUPTS_REQUESTED bit 0: 1=interrupt; 0=do not interrupt	
	 — SECTOR_START	
	 — SECTOR_COUNT	
	 — MEMORY_ADDRESS	
	 — COMMAND	
• Optional interrupts to PLIC	
	 — Interrupt upon command completion (failure or success)	
• The emulator implements this interface	
	 — Disk is emulated using a file on the host system	
	 — Disk filename provided on emulator command line	
	 — Emulation Parameters	
	 	 Sector size (default is 512 bytes)	
	 	 Disk size (default is 2000 sectors)	

Introduction	

This device simulates some form of long-term stable storage, such as a disk or 
flash memory. The design is intended to mimic real hardware, although the emulator 
will use a file on the host system to store the data.	
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This device responds to two commands: READ and WRITE. Each command is 
passed:	

	 • A “disk address”, i.e., where the data is stored or retrieved	
	 • The length in bytes of the data to be transferred	
	 • An address in memory, i.e., where the data is read or written	

The READ command will transfer data from the stable storage into memory. The 
WRITE command will transfer data from the memory to the stable storage.	

The device described here is only present in an emulated system. The stable storage 
will be backed by a file on the host computer system.	

The device implemented by the emulator is sufficient to support an OS running on 
Blitz, and has been used to store a complete Unix file system for a Blitz 
implementation of the xv6 OS.	

It should be noted that real devices are both different in detail and more complex in 
operation. For example, a real device may encounter errors so some operations may 
fail or time-out. The emulator models the delay associated with operations. READs 
and WRITEs are not instantaneous, but real systems (such as rotating disks) will 
exhibit delays that depend on details such as track, head location, and rotation 
which are not modeled by the emulator.	

Memory-Mapped I/O Registers	

STATUS — Doubleword, read only	
	 Only the lower 2 bits are used, higher bits are zeros.	

	 	 — BUSY (bit 0): 1=operation in progress; 0=idle and free	
	 	 — ERROR (bit 1): 1=operation failed; 0=operation succeeded	

SETUP — Doubleword, write only	
	 Only the lower bit is used, higher bits are ignored.	

	 	 — INTERRUPTS_REQUESTED (bit 0):	
	 	 	  1=interrupt when operation completes; 0=do not interrupt	
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SECTOR_START — Doubleword, write only	

SECTOR_COUNT — Doubleword, write only	

MEMORY_ADDRESS — Doubleword, write only	

COMMAND — Doubleword, write only	
	 0 = perform a read, transferring sectors from disk to memory	
	 1 = perform a write, transferring sectors from memory to disk	

The registers are located within a memory-mapped I/O page at these offsets:	

	   Offset  	 Size in bytes	 Register                         	 	 	 	
	 0x0000	 8	 STATUS	 read-only	 	
	 0x0000	 8	 SETUP	 write-only	 	
	 0x0008	 8	 SECTOR_START	 write-only	 	
	 0x0010	 8	 SECTOR_COUNT	 write-only	 	
	 0x0018	 8	 MEMORY_ADDRESS	 write-only	 	
	 0x0020	 8	 COMMAND	 write-only	 	

Operation	

Before using the disk, the program should write into the SETUP register either a 0 or 
a 1. If 1 is written, then the device will interrupt the core(s) whenever an operation 
completes. The interrupt will be channeled through the Platform-Level Interrupt 
Controller (PLIC), which will route the interrupt to the cores, as described 
elsewhere in this document.	

At any one moment in time, the disk is either busy with a command or idle. To 
determine the status of the disk, the code should LOAD from the STATUS word. The 
ERROR bit will reflect the result of the previous operation. (It is undefined before 
the first command is issued.) The BUSY bit will be set to 1 if the desk is still working 
on the previous command.	

The disk can perform only two operations: read and write. To perform a read or 
write operation, the core must:	

Blitz-64: I/O Devices — Porter	 	 Page  of 	33 64



Chapter 4: DISK0	

(1)	 LOAD the SECTOR_START register with an integer to indicate the number of 
the first sector to be transferred. This number should range between 0 and 
NUMBER_OF_SECTORS-1.	

(2)	 LOAD the SECTOR_COUNT register with the number of sectors to be 
transferred. This should be a small integer, greater than 0.	

(3)	 LOAD the MEMORY_ADDRESS register with a valid physical address. This 
address should be doubleword aligned.	

(4)	 LOAD the COMMAND register with either 0 or 1, to indicate a read (0) or a 
write (1) is to be performed.	

Operations (1), (2), and (3) above may be done in any order. They may also be 
skipped; if skipped, the register will retain its previous value. There will be no error 
reporting or interrupts as a result of LOADing these registers. The registers should 
not be loaded while the disk is BUSY with an operation.	

LOAD (4) must be done after the other three registers have been loaded. Step (4) 
will begin the operation.	

If the disk is busy at the moment COMMAND is LOADed, the command will be 
ignored and the previous operation will continue uninterrupted. The emulator will 
detect this and halt execution.	

Each operation (read or write) will copy one or more sectors between memory and 
the disk. “Write” moves data from memory to disk and “read” moves data from the 
disk to memory.	

The number sectors to be moved must all be valid, i.e., within the size of the disk. For 
example, if the disk contains 2,000 sectors, a read of 2 sectors from 1,998 is okay 
and will read the last two sectors (1,998 and 1,999), but a read of 3 sectors from this 
same SECTOR_START will result in an error.	

When an error is detected, it is undefined whether some sectors may have been 
transferred. (The emulator will detect this error before transferring any data and 
immediately cause a halt to emulation.)	

When an error is detected, the ERROR bit in the STATUS word will be set, and the 
BUSY bit will be cleared. If INTERRUPTS_REQUESTED is true, an interrupt will also 
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be signaled. The STATUS will then remain unchanged until COMMAND is again 
LOADed.	

The SECTOR_COUNT determines the number of bytes to be transferred:	

number_of_bytes_to_copy = SECTOR_COUNT × SECTOR_SIZE	

where SECTOR_SIZE is an emulation parameter.	

The MEMORY_ADDRESS register, along with the number_of_bytes_to_copy 
determines where in memory the data is to be copied to/from. This should be a valid 
address in physical memory. MEMORY_ADDRESS should be a 44 bit physical 
address. There is no participation with virtual memory.	

If the memory address range is illegal, the operation is considered to be incorrect 
and may—or may not—cause an error. In the current emulator, an attempt to access 
bytes beyond the physical memory will be detected by the emulator, and emulation 
will immediately halt.	

MEMORY_ADDRESS, SECTOR_COUNT, and SECTOR_START are interpreted as 
positive integers. A SECTOR_COUNT of 0 is considered incorrect. The emulator will 
catch this an immediately halt emulation.	

The following are the possible error conditions:	

Emulator suspends emulation:	
SECTOR_COUNT = 0	
SECTOR_START + SECTOR_COUNT >= NUMBER_OF_SECTORS	
MEMORY_ADDRESS + number_of_bytes_to_copy ≥ physical_memory_size	
MEMORY_ADDRESS is not doubleword aligned.	
LOADing SECTOR_START, SECTOR_COUNT, MEMORY_ADDRESS, or 

COMMAND while disk STATUS is BUSY	
Host error, problems with the host file	

Emulator does not implement:	
Simulated disk errors (transient or non-recoverable)	
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Emulator Implementation	

The emulator uses the following “emulation parameters”. (These are defaults which 
can be changed by editing the file named emulationParms.)	

	 default value	
DISK0_SECTOR_SIZE	 512	
DISK0_NUMBER_OF_SECTORS	 2000	
DISK0_DEVICE_START_ADDR	 0x4_0020_8000	
DISK0_OPERATION_DELAY	 10000	

The emulator (a program named “blitz”) is run from the command line in a Unix/
Linux/Mac shell. One option is the name of a file to use as the “disk image file”. The 
option is specified as in:	

% blitz … -disk MyImageFile.img

The file is not opened until a DISK0 command is issued.	

If the file does not exist, it is created and set to the given size. The emulator may 
print a message and suspend emulation, but you can type “go” to continue execution 
if you are okay with the file being created.	

If the file exists, but is larger than indicated by the emulation parameters, the tail of 
the file is ignored.	

If the file exists, but is shorter than indicated by the emulation parameters, the file is 
immediately enlarged to the expected size.	

The file is closed when the emulator exits or when the “reset” or “rerun” commands 
are used.	

When a disk operation is performed, there will be a delay after the COMMAND 
register is written to and the moment that the BUSY bit in the STATUS word will 
changed to 1 and an interrupt will be signaled (if requested). This delay is 
determined by the emulation parameter DISK0_OPERATION_DELAY, which is given 
as a number of instructions.	

If you are emulating a multi-core processor, keep in mind that the emulator will 
execute some instructions for core 0, followed by some instructions for core 1, etc. 
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For example, a delay of 10,000 instructions on a 10-core system means that each 
core will execute 1,000 instructions on average before the disk operation is 
completed.	

Notes	

The PLIC handles and dispatches interrupts from devices numbered 0…63. In the 
Blitz-64 emulator, the PLIC maps the DISK0 device to device number 1.	
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Quick Summary	

• Direct Memory Access	
	 — Move a large block of memory	
	 — Zero a large block of memory	
• Includes crypto-engine functions	
	 — Perform secure hashing (using SHA-256)	
	 — Perform AES encryption and decryption	

Background	

In general terms, a Direct Memory Access (DMA) controller is capable of moving 
large blocks of data from one location in the physical address space to another 
location. This includes both installed physical memory and the memory-mapped I/O 
device region.	

Such operations are useful in moving sectors/pages/blocks both to and from I/O 
device buffers. A DMA controller can also be used to copy pages from one address 
space to another (e.g., to duplicate a copy-on-write page). The DMA controller can 
also be used to zero-out memory pages, which may be necessary for newly allocated 
pages to prevent information leakage from one address space into an unrelated 
address space.	

Of course these data moving tasks can be done directly by the core. However, this 
may not be the best approach, since the core will not be usable during the operation. 
Furthermore, since an instruction loop is required, copying by the core will be 
relatively slow. The DMA controller avoids instruction execution and performs the 
repetitive LOAD-STORE cycle directly in hardware, which can drive the memory bus 
at its maximum bandwidth.	
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Generally speaking, a DMA controller will interleave accesses to the memory bus 
with the accesses being made by the core, to avoid locking up the core. The presence 
of DMA activity may slow the core, since LOADs, STOREs, and FETCHes that cannot 
be served by caches may have increased latency times due to bus contention. 
However, the core will continue to operate during DMA operations, freeing the core 
to do things the DMA controller cannot do.	

A DMA controller is said to be “programmed” to performed a task. The DMA 
controller is commanded by the core to perform a task and, when complete, it 
signals an interrupt to the core. By “programmed” we mean that the DMA controller 
is issued a command or series of commands. These commands are given by writing 
predetermined values to predetermined words within the memory-mapped region 
occupied by the DMA controller.	

The Blitz DMA Controller	

In this chapter we describe a Direct Memory Access (DMA) controller is capable of 
the following tasks:	

	 • Move a large block of memory	
	 • Zero a large block of memory	
	 • Perform secure hashing (using SHA-256)	
	 • Perform AES encryption and decryption	

As of this writing, the device described here is implemented in the emulator. It is not 
yet implemented in VLSI.	

This device can perform one task at a time and is either “busy” or “free”. There is no 
queue of waiting tasks.	

A “device register” is doubleword in the DMA controller’s page. Each “register" is 
64 bits and is located at a doubleword aligned address. The device is controlled by 
storing into “registers” and the results are obtained by reading from the “registers”.	

Blitz-64: I/O Devices — Porter	 	 Page  of 	39 64



Chapter 5: DMA Controller	

Here are the device registers:	

Offset (hex)	 Offset (dec)	 Register Name	
	 0000	 0	 write-only	 DMA_COMMAND	
	 0008	 8	 r/o	 DMA_STATUS	
	 0010	 16	 write-only	 DMA_START_ADDR	
	 0018	 24	 write-only	 DMA_TARGET_ADDR	
	 0020	 32	 write-only	 DMA_BYTECOUNT	
	 0028	 40	 r/o	 DMA_SHA256_0	
	 0030	 48	 r/o	 DMA_SHA256_1	
	 0038	 56	 r/o	 DMA_SHA256_2	
	 0040	 64	 r/o	 DMA_SHA256_3	
	 0048	 72	 write-only	 DMA_AES_KEY_0	
	 0050	 80	 write-only	 DMA_AES_KEY_1	
	 0058	 88	 write-only	 DMA_AES_KEY_2	
	 0060	 96	 write-only	 DMA_AES_KEY_3	

Additional functionality may be added in the future; additional registers will be 
defined to control such enhancements at that time.	

The arguments (such as “starting address”, “byte count”, and so on) should be stored 
first, in any order. The task is initiated by writing a command code into the 
DMA_Command register. 	13

Upon completion of the task, the DMA controller will interrupt the core. In addition, 
a status code will be available in the “DMA_STATUS” register.	

 The registers should not be written while the device is busy; if so, the behavior is undefined and 13

considered to be an error. The status register “DMA_STATUS” may be read at any time. Any attempt 
to read the other registers when the device is busy is undefined and considered to be an error. Any 
attempt to write to a read-only register, or read from a write-only register, is undefined and 
considered to be an error. Any attempt to read or write to an undefined address within the page is 
undefined and considered to be an error. All registers are doublewords; any attempt to read 
individual bytes, halfwords, or words is undefined and considered to be an error.
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For reference, here are the command codes:	

hex	 decimal	 command	
0001	 1	 DMA_MOVE	 Move memory	
0002	 2	 DMA_ZERO 	 Zero memory	
0003	 3	 DMA_SHA256_SIMPLE	 SHA256 (Simple, only one chunk)	
0004	 4	 DMA_SHA256_INITIALIZE	 SHA256 (Initialize)	
0005	 5	 DMA_SHA256_CHUNK	 SHA256 (Process next chunk)	
0006	 6	 DMA_SHA256_FINALIZE 	 SHA256 (Finalize)	
0007	 7	 DMA_AES256_PREPARE 	 AES-256 Prepare Key	
0008	 8	 DMA_AES256_EN_SIMPLE 	 AES-256 Encrypt (Simple)	
0009	 9	 DMA_AES256_EN_INITIAL 	 AES-256 Encrypt (Initial segment)	
000a	 10	 DMA_AES256_EN_MIDDLE 	 AES-256 Encrypt (Middle segments)	
000b	 11	 DMA_AES256_EN_FINAL 	 AES-256 Encrypt (Final segment)	
000c	 12	 DMA_AES256_DE_SIMPLE 	 AES-256 Decrypt (Simple)	
000d	 13	 DMA_AES256_DE_INITIAL 	 AES-256 Decrypt (Initial segment)	
000e	 14	 DMA_AES256_DE_MIDDLE 	 AES-256 Decrypt (Middle segments)	
000f	 15	 DMA_AES256_DE_FINAL 	 AES-256 Decrypt (Final segment)	

For reference, here are the status codes:	

hex	 decimal	 command	
0000	 0	 DMA_OK	 Last operator completed	
0001	 1	 DMA_BUSY	 Operation in progress	

The addresses (i.e., DMA_START_ADDR and DMA_TARGET_ADDR) are physical 
addresses and should lie within 0x0_0000_0008 and 0x7_FFFF_FFFF. They must not 
be virtual addresses and paging will not be involved. 	14

Normally the addresses will lie in physical RAM, but they may also include ROM, 
Secure Storage, and FLASH memory. 	15

 Addresses are 35 bits, with the “physical/virtual” bit assumed to be 0.14

 Exactly which Memory-Mapped I/O devices can be operated on by the DMA controller depends 15

on what devices are present and is therefore implementation-dependent. But the DMA controller 
must be able to operate on anything that is “memory-like”, since the compiler may generate code 
using the DMA controller to access such memory. In particular, the security-related functionality 
will certainly be applied to the ROM and SecureStorage devices. 
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Moving Blocks of Memory	

To move a block of memory:	

	 STORE an address into DMA_START_ADDR	
	 STORE an address into DMA_TARGET_ADDR	
	 STORE an integer into DMA_BYTECOUNT	
	 STORE the command DMA_MOVE into DMA_COMMAND	
	 Wait for the task to complete	

This operation is primarily intended for copying entire 16 KiByte pages, to support 
things like copy-on-write sharing and moving address space pages from private to 
shared memory.	

The addresses should be doubleword aligned and the number of bytes to be moved 
should be a multiple of  8. The last 3 bits of DMA_START_ADDR, 
DMA_TARGET_ADDR, and DMA_BYTECOUNT are ignored.	

The blocks of memory should not overlap; if so the result is undefined.	

Wait for Task to Complete	

Regardless of the command, when the DMA controller completes a task, it will cause 
an interrupt. The status doubleword DMA_STATUS can be read at any time and will 
tell whether the DMA controller is busy or ready to receive another command.	

To wait for a task, the program might chose to do a busy-loop, repeatedly querying 
DMA_STATUS. However, this may increase bus traffic and/or slow the DMA 
controller down, as well as waste cycles, so this approach is not recommended 
unless you know for sure the wait will be short.	

The other approach is to proceed to other tasks and wait for the interrupt to trigger 
further action. It is envisioned that a two Semaphores will protect the DMA 
controller. Semaphore #1 will be used to make sure only one thread is using the 
DMA controller at a time. Semaphore #2 will be used to signal the interrupt.	

Semaphore #1 will act as a “mutex” lock, allowing only one thread at a time to use 
the DMA device. Before using the DMA device, every thread must “wait” on 
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Semaphore #1 (i.e., the “down” or “P” operation). After the task is complete and the 
results have been retrieved from the device, the thread must “signal” the semaphore 
(i.e., the “up” or “V” operation), making the DMA device free and available to other 
threads.	

Semaphore #2 is used to communicate the interrupt. When a thread which is using 
the DMA device is ready to wait for the completion of the task, it will “wait” on 
Semaphore #2. The interrupt handler will respond to the interrupt by “signaling” 
Semaphore#2, thus waking up the thread up. The thread should then retrieve the 
results and signal Semaphore #1. 	16

Zeroing Blocks of Memory	

To zero a block of memory:	

	 STORE an address into DMA_START_ADDR	
	 STORE an integer into DMA_BYTECOUNT	
	 STORE the command DMA_ZERO into DMA_COMMAND	
	 Wait for the task to complete	

This operation is primarily intended for clearing entire 16 KiByte pages, when 
processes terminate and address space pages are recycled.	

The addresses should be doubleword aligned and the number of bytes to be zeroed 
should be a multiple of  8. The last 3 bits of DMA_START_ADDR and 
DMA_BYTECOUNT are ignored.	

Note: This command uses DMA_START_ADDR and not DMA_TARGET_ADDR.	

 With this approach, any thread which sends a command to the DMA device must always wait on 16

Semaphore #2, or else signals from previous tasks will accumulate and prematurely terminate 
future unsuspecting threads. Furthermore, that wait must occur before Semaphore #1 is signaled. 
If there are some situations where some threads using the DMA controller will not be waiting, then 
an alternate, more complex design will be required. 
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SHA-256	

A block of bytes (the “message”) can be processed to yield a hash value, using the 
SHA-256 algorithm. The result of this operation is a 256 bit (i.e., 4 doublewords, or 4 
× 64 bits) hash value.	

We say that a region of memory is “continuous” if a single starting address and byte 
count suffice to locate the region in memory. If the region happens to span multiple 
pages, then all those pages must be adjacent and sequential. In other words, no gaps 
or jumping around is allowed.	

Alternatively, a block of bytes could originate from a virtual address space. While it 
might be continuous in the virtual address space, it might happen to cross page 
boundaries. However, the DMA controller works only on physical addresses. While 
the block of bytes is continuous in the virtual address space, it may not be 
continuous in physical memory. Such a block must be broken into a sequence of two 
or more “chunks”. Each chuck must be entirely continuous and can therefore be 
described with a starting address and byte count.	

To compute the hash of a single, fully continuous block of memory:	

	 STORE an address into DMA_START_ADDR	
	 STORE an integer into DMA_BYTECOUNT	
	 STORE the command DMA_SHA256_SIMPLE into DMA_COMMAND	
	 Wait for the task to complete	
	 READ the 256 bit (i.e., 4 doubleword, or 4 × 64 bits) hash value from	
	 	 DMA_SHA256_0 … DMA_SHA256_3. 	17

The DMA_START_ADDR must be doubleword aligned, but the DMA_BYTECOUNT 
does not need to be a multiple of 8.	

On the other hand, it may be that a User Mode process has requested the SHA-256 
hash for a block of message bytes in a virtual address space and the block of 
message bytes crosses one or more page boundaries. In this case, the message must 
divided into chunks of bytes where each chunk lies wholly within a continuous 
range of physical memory.	

 If you did not even wonder about most-significant/least-significant order, then you have 17

escaped the mental contamination of Little Endian dementia.
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The individual chunks may be any length; they do not need to be a multiple of 8 
bytes.	

The SHA-256 algorithm involves an initialization phase and a finalization phase. 
Here is the procedure:	

For the first chunk:	
	 STORE the command DMA_SHA256_INITIALIZE into DMA_COMMAND	
	 Wait for the task to complete	
For each chunk:	

	 STORE an address into DMA_START_ADDR	
	 STORE an integer into DMA_BYTECOUNT	
	 STORE the command DMA_SHA256_CHUNK into DMA_COMMAND	
	 Wait for the task to complete	
After the last chunk:	

	 STORE the command DMA_SHA256_FINALIZE into DMA_COMMAND	
	 Wait for the task to complete	
	 READ the 256 bit (i.e., 4 doubleword, or 4 × 64 bits) hash value from	
	 	 DMA_SHA256_0 … DMA_SHA256_3.	

The DMA_START_ADDR must be doubleword aligned, but the DMA_BYTECOUNT 
does not need to be a multiple of 8.	

AES-256	

The AES-256 algorithm uses a 256 bit (i.e., 4 doubleword, or 4 × 64 bits) key to 
either encrypt a message or decrypt a message. Since the algorithm is symmetric, 
the same key is used for both encryption and decryption. However, the encryption 
algorithm is different from the decryption algorithm.	

The DMA controller will process a message and produce a result. The “source 
region” is the block of memory bytes containing the message to be processed. The 
“target region” is the block of memory bytes where the result of the encryption or 
decryption will be placed.	

A region of memory may or may not be continuous.	
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We say that a region of memory is “continuous” if a single starting address and byte 
count suffice to locate the region in memory. If the region happens to span multiple 
pages, then all those pages must be adjacent and sequential. In other words, no gaps 
or jumping around is allowed.	

Alternatively, a block of bytes could originate from a virtual address space. While it 
might be continuous in the virtual address space, it might happen to cross page 
boundaries. However, the DMA controller works only on physical addresses. While 
the block of bytes is continuous in the virtual address space, it may not be 
continuous in physical memory. Such a block must be broken into a sequence of two 
or more “chunks”. Each chuck must be entirely continuous and can therefore be 
described with a starting address and byte count.	

When both the source and target regions consist of a single chunk, we have a 
“simple” case.	

To encrypt a “simple” continuous block of memory using AES-256:	

	 STORE the key into DMA_AES_KEY_0 … DMA_AES_KEY_3	
	 STORE the command DMA_AES256_PREPARE into DMA_Command	
	 Wait for the task to complete	
	 STORE an address into DMA_START_ADDR (where to find the plaintext)	
	 STORE an address into DMA_TARGET_ADDR (where to store the cipher-text)	
	 STORE an integer into DMA_BYTECOUNT	
	 STORE the command DMA_AES256_EN_SIMPLE into DMA_Command	
	 Wait for the task to complete	
	 Retrieve the cipher-text from the target area.	

To decrypt a “simple” continuous block of memory using AES-256:	

	 STORE the key into DMA_AES_KEY_0 … DMA_AES_KEY_3	
	 STORE the command DMA_AES256_PREPARE into DMA_COMMAND	
	 Wait for the task to complete	
	 STORE an address into DMA_START_ADDR (where to find the cipher-text)	
	 STORE an address into DMA_TARGET_ADDR (where to store the plaintext)	
	 STORE an integer into DMA_BYTECOUNT	
	 STORE the command DMA_AES256_DE_SIMPLE into DMA_COMMAND	
	 Wait for the task to complete	
	 Retrieve the plaintext from the target area.	
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An AES-256 key is 256 bits (i.e., 32 bytes = 4 doublewords). Before any encryption 
or decryption, the key must be stored in the following DMA registers:	

	 DMA_AES_KEY_0	
	 DMA_AES_KEY_1	
	 DMA_AES_KEY_2	
	 DMA_AES_KEY_3	

This key must be prepared before use.  The DMA_AES256_PREPARE command 18

will convert the key into an internal representation, which will be stored in the DMA 
controller. This internal state will be used for future AES-256 encryptions and 
decryptions.	

The same key may be used for multiple encryption and decryption operations and 
only needs to be prepared once. In other words, loading the DMA_AES_KEY_0 … 
DMA_AES_KEY_3 registers and executing the DMA_AES256_PREPARE command 
are performed first, and need not be repeated if the same key is used for multiple 
encryption/decryption operations.	

For all AES-256 commands, the addresses DMA_START_ADDR and 
DMA_TARGET_ADDR must be doubleword aligned. 	

The AES algorithm encrypts and decrypts in units of 16 bytes (i.e., 128 bits) so the 
DMA_BYTECOUNT must be a multiple of 16. This means the message to be 
encrypted must be padded out to a multiple of 16 bytes and that any message to be 
decrypted will be a multiple of 16 bytes in length.	

To encrypt a non-continuous block of memory using AES-256, the source and the 
target regions must be broken into a set of chunks, where each chunk is continuous 
and a multiple of 16 bytes in length. The first chunk must be be encrypted with the 
DMA_AES256_EN_INITIAL command. The last chunk must be encrypted with the 
DMA_AES256_EN_FINAL command. The middle chunks (if any), which lie between 
the initial and final chunks, are processed with a series of 
DMA_AES256_EN_MIDDLE commands.	

 Before any encryption or decryption, the key must be “expanded” into something called the 18

“round key”, which is denoted “w”. The step takes the 8 word (8 × 32 = 256 bit) key and initializes 
“w” which is another 56 words (i.e., Nb × Nr words, where Nb = number of words per block = 4, 
and Nr = number of rounds = 14) 
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Here is the sequence. As mentioned, the preparation of the key can be skipped if 
same key as used previously is to be used.	

Prepare the key (optional, if same key as last time):	
	 STORE the key into DMA_AES_KEY_0 … DMA_AES_KEY_3	
	 STORE the command DMA_AES256_PREPARE into DMA_Command	
	 Wait for the task to complete	
For the first chunk:	

	 STORE an address into DMA_START_ADDR (where to find the plaintext)	
	 STORE an address into DMA_TARGET_ADDR (where to store the cipher-text)	
	 STORE an integer into DMA_BYTECOUNT	
	 STORE the command DMA_AES256_EN_INITIAL into DMA_Command	
	 Wait for the task to complete	
For the each additional chunk:	

	 STORE an address into DMA_START_ADDR (where to find the plaintext)	
	 STORE an address into DMA_TARGET_ADDR (where to store the cipher-text)	
	 STORE an integer into DMA_BYTECOUNT	
	 STORE the command DMA_AES256_EN_MIDDLE into DMA_Command	
	 Wait for the task to complete	
For the the final chunk:	

	 STORE an address into DMA_START_ADDR (where to find the plaintext)	
	 STORE an address into DMA_TARGET_ADDR (where to store the cipher-text)	
	 STORE an integer into DMA_BYTECOUNT	
	 STORE the command DMA_AES256_EN_FINAL into DMA_Command	
	 Wait for the task to complete	
Retrieve the cipher-text from the target area.	

The process for decryption is identical, except	

	 instead of	 use	
	 DMA_AES256_EN_INITIAL	 DMA_AES256_DE_INITIAL	
	 DMA_AES256_EN_MIDDLE	 DMA_AES256_DE_MIDDLE	
	 DMA_AES256_EN_FINAL	 DMA_AES256_DE_FINAL	

To be precise, here is the procedure to decrypt a series of chunks:	

Prepare the key (optional, if same key as last time):	
	 STORE the key into DMA_AES_KEY_0 … DMA_AES_KEY_3	
	 STORE the command DMA_AES256_PREPARE into DMA_Command	
	 Wait for the task to complete	
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For the first chunk:	
	 STORE an address into DMA_START_ADDR (where to find the cipher-text)	
	 STORE an address into DMA_TARGET_ADDR (where to store the plaintext)	
	 STORE an integer into DMA_BYTECOUNT	
	 STORE the command DMA_AES256_DE_INITIAL into DMA_Command	
	 Wait for the task to complete	
For the each additional chunk:	

	 STORE an address into DMA_START_ADDR (where to find the cipher-text)	
	 STORE an address into DMA_TARGET_ADDR (where to store the plaintext)	
	 STORE an integer into DMA_BYTECOUNT	
	 STORE the command DMA_AES256_DE_MIDDLE into DMA_Command	
	 Wait for the task to complete	
For the the final chunk:	

	 STORE an address into DMA_START_ADDR (where to find the cipher-text)	
	 STORE an address into DMA_TARGET_ADDR (where to store the plaintext)	
	 STORE an integer into DMA_BYTECOUNT	
	 STORE the command DMA_AES256_DE_FINAL into DMA_Command	
	 Wait for the task to complete	
Retrieve the plaintext from the target area.	

Each chunk will be decrypted and stored in the target area before the next command 
is issued. In some applications, it may be the case that the initial chunk of a message 
contains a header with a “length” field which indicates how long the message is. 
After decrypting the first chunk, it may be desirable to use this “length” information 
to determine exactly how much of the message to decrypt.	
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Quick Summary	

• General Thoughts of Other Memory-Mapped I/O Devices	

Overview	

In this chapter, we outline ideas for I/O peripherals that might be included in a 
Blitz-64 implementation. The follow devices are suggestive and speculative.	

• Lock Controller	
• Digital I/O	
• SPI / MicroSD Card Slot	
• Adjacent Core Links	
• HDMI, USB, WiFi, etc.	

Lock Controller	

In this section, we sketch the design of a device which is novel, hypothetical, 
unconventional, and speculative.	

When scaling systems beyond more than about 16 cores, the traditional approach of 
implementing shared locks by using atomic operations on shared memory may not 
work well. The idea here is to off-load the task of synchronization to a dedicated 
device, in order to improve performance.	

This memory-mapped I/O device is used for synchronization between the 
processors in a multiprocessor system. Consequently, this device will be shared by 
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all processors in the system. The system may or may not also have shared memory 
or other shared resources. In systems without shared memory, data might be copied 
from one private memory to another private memory by a Direct Memory Access 
(DMA) controller with access to the private memories of several different 
processors.	

A mutex lock is normally used to control the access to shared data. Any code which 
reads and updates shared data is said to be a critical region. In many applications, 
due to the possible unpleasant interaction of concurrent processes, only one thread 
should be in a critical region at any moment. A mutex lock can be used to enforce 
this. The lock is either held or free. Before entering a critical section, every thread 
must acquire the lock, which changes it from “free” to “held” by that thread. After 
the critical section has been completed, the thread should release the lock, which 
changes it from “held” to “free”.	

A lock that is “held” is sometimes said to be “set” or “locked”. A lock that is “free” is 
sometimes said to be “clear” or “unlocked”.	

In a system with only a single core, the implementation of locks is straightforward. 
Whenever one kernel thread wishes to examine and acquire a lock, it can 
momentarily disable interrupts (e.g., with the CSRCLR instruction). The thread can 
check the state of the lock and, if the lock is free, the thread will acquire it before 
reenabling interrupts. This prevents a thread-switch from occurring while the lock is 
being manipulated.	

In a system with shared memory and multiple cores, disabling interrupts is not 
sufficient. Other cores, running concurrently, may still interfere with the lock-
acquire operation. Another approach is required.	

To address this need, most Instruction Set Architectures (ISAs) provide instructions 
that can be used to implement locking. For example, Blitz includes the CAS 
(compare-and-set) instruction. The CAS instruction will perform both a read and 
write to a shared memory location. The instruction will both set the memory 
location and return the previous value from the read, allowing the software to 
determine whether the “lock acquire” operation was successful or whether the lock 
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was already held and the attempt to gain exclusive access has failed. Instructions 
such as compare-and-set and test-and-set instruction must be executed atomically. 	19

The approach outlined here, which uses a memory-mapped I/O device, is 
significantly different. It avoids requiring the shared memory to support atomic 
operations in any way. This would be useful if there is no shared memory. It would 
also be useful if the system did not support atomic memory operations, perhaps for 
reasons of efficiency.	

Instead of relying on atomic instructions, one can use this I/O device, whose sole 
purpose is to implement mutex locks. For example, these locks might be used to 
regulate the access by multiple cores to regions of the shared memory. (For locks 
used only by a single core, the technique of temporarily disabling interrupts is 
sufficient, faster, and simpler.)	

This memory-mapped I/O device provides 32 special “lock registers”. Each register 
is a doubleword (that is, 64 bits wide) and each is addressable as a memory-mapped 
I/O location, just as any doubleword in memory is addressable. The single page 
allocated to this I/O device will contain these 32 doublewords, near the beginning of 
the page, at the offsets shown below.	

	  offset into page	
	         (in hex)          	

0000 - 0007	 Lock register #0
0008 - 000F	 Lock register #1
... ...

00F8 - 00FF	 Lock register #31

The memory-mapped I/O page for this device contains no other usable locations	

Each lock register behaves similarly to any normal doubleword of memory. Each 
lock register can be read by a LOAD.D instruction. Each lock register can be written 
by a STORE.D instruction. However, there are differences, which will be described.	

 There are variations to this approach. For example, the RISC-V approach is called load-reserved/19

store-conditional (LR/SC), which is also called “load-link/store-conditional (LL/SC). In addition, 
the RISC-V ISA also includes a number of “atomic memory operations”, including instructions such 
as AMOADD, which will read a value from memory, add a number to it, and then store the result 
back in memory — all as a single atomic operation.
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Each lock register will contain a 64 bit signed value. However, the value 0 has special 
meaning. A value of zero means that the lock is “free” (i.e., not locked or held by any 
core). A non-zero value means the lock is held and the value will indicate the 
identity of the core holding the lock.	

A read (e.g., using a LOAD.D) will return the value of the register and work as 
expected. However, storing into a register (e.g., using a STORE.D instruction) has an 
unusual behavior. In some cases, the STORE will work; in other cases, the STORE will 
be ignored and the value will remain unchanged.	

To be more specific, any attempt to store a non-zero value into a lock register that  
previously contained any value other than zero will fail.  If the lock register 
previously contained zero, then the write will succeed and the register will be 
updated. But if the previous value was nonzero, and an attempt is made to write 
another non-zero value into the register, then the write will be ignored and the 
previous value will be unchanged. A write of zero to a lock register will always work.	

Another way to think about this is as follows: A lock register works exactly like any 
other doubleword in memory, except that any attempt to store a non-zero value into 
a register already containing a non-zero value will be ignored.	

The idea is that a single lock register is used to represent and implement a mutex 
lock. To acquire the lock, a core will write a non-zero value to the register. If the lock 
was previously free, it will be changed from zero to the number written. The core 
should follow the STORE.D instruction by executing a LOAD.D to look at the lock’s 
value. If the lock contains the new value, then the lock has been successfully 
acquired; it it contains any other value, the acquire has failed and must be retried. 
Later, to release the lock, the core will write a zero into the lock register.	

We assume that each core has a been assigned a unique number, which we will call 
its “core ID”. We assume that the cores are numbered 1, 2, 3, … N. The idea is that to 
acquire a lock register, a core will write its number into the lock register using the 
STORE.D instruction. Then, to determine whether the operation was successful, the 
core will read the lock register using a LOAD.D. If the number returned is the core’s 
own ID, then the lock was successfully acquired. If the number is anything else, then 
the acquire operation failed. If the number returned is zero, then it means that the 
lock was released sometime between the STORE.D and the LOAD.D instructions. 
Otherwise, the number returned indicates which core holds the lock (or, more 
correctly, the identity of a core that held the lock at some time in the recent past, and 
may or may not still hold it).	
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How can these locks be used. Perhaps each lock register will be used to lock a given 
region of shared memory for the purpose of enforcing exclusive, sequential access to 
that memory region. Exactly which critical data is to be protected by each lock is up 
to the kernel programmer. Perhaps each core will have a region “belonging” to it; 
each lock will be used to protect the memory associated with a particular core. Or 
perhaps one lock register will be used as a “master lock” to control access to a 
shared critical region containing thousands of “secondary” mutex locks. In order to 
perform an operation on one of the secondary locks, a core would be required to 
first acquire the master lock.	

The lock registers are specified to be 64 bits wide. Recall that aligned LOAD.D and 
STORE.D instructions are atomic.	

A mutex locks is used to regulate and synchronize a set of concurrent “processes". 
With the Blitz-64 approach, each process must use a different number when 
executing the STORE.D to an acquire the lock, so that it can determine whether the 
STORE.D operation successfully acquired the lock. If two different processes are 
using the same number, there would be no way for one process to tell whether it or 
the other process successfully acquired the lock.	

The lock registers described here are specifically designed to arbitrate between 
cores, not between threads within a single core. As we said above, each core will use 
a unique number (e.g., its “core number”) in the STORE.D instruction to acquire a 
lock. This approach uses 64 bit values. With this many bits, we could easily 
accommodate two fields, one with the core number and the other with a thread ID.	

There is nothing particularly special about specifying the number of lock registers to 
be 32; it was chosen arbitrarily. Perhaps this will change in a future specification. 
Also note that cores are normally numbered 0, 1, 2, … N-1 but this discussion used 1, 
2, 3, … N.	

Digital I/O Pins and LEDs	

Like many processors, a Blitz-64 chip may contain a number of digital I/O pins. The 
core will control these pins by accessing a dedicated page.	
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For example, to change the value of the output pins, software would STORE into 
specific, predefined locations within this page. To query the current value on the 
input pins, software would read from locations within this page.	

It may be that some locations are reserved for configuring the I/O pins before use. 
For example, it may be necessary to define whether the pin is “input” or “output” or 
to send it into the high Z state, and this would be done by writing into other 
specific, predefined locations.	

If the implementation includes hardware support for Pulse Width Modulated 
(PWM) signals, then the page would contain additional words which can be used to 
control the PWM pins.	

In some implementations, analog pins may be present. If this is the case, then page 
would contain additional words which can be used to query the analog to digital 
(ADC) values or to send digital to analog (DAC) values to the output.	

In one OS design, user-mode processes would need to invoke system calls to access 
the digital I/O pins. The kernel’s syscall handler would access the page directly to 
perform the operation. In another OS design, the device page is mapped into the 
address space of a single pin controller process. All requests to control and query 
the digital I/O pins would then go through this pin controller process. In a third OS 
approach, the kernel will map the relevant page into the address space of any user-
mode process wanting to access the digital I/O pins.	

Presumably, this device will occupy only a single page. That is, all I/O pins would be 
controlled from a single page and any process that can access any pins would have 
access to all pins. But there is plenty of room in the address range for memory-
mapped I/O to set aside a unique page for each pin. This would allow fine-grained 
control over permissions, allow a process to access some pins, but preventing access 
to other pins.	

SPI / MicroSD Card Slot	

If interface hardware for microSD card slots is available, then each slot will be 
assigned to a memory-mapped I/O region.	
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In initial implementations, it is assumed that the file system and kernel will be 
located on microSD cards.	

Each card slot should be mapped to different pages from the other slots, so that each 
slot can be individually mapped into the address space of separate controller 
processes.	

Adjacent Core Links	

Status:	 Provisional; details to be determined	
Starting Address:	 0x4_XXXX_XXXX   < implementation dependent >	
Next Available Address:	 0x4_XXXX_XXXX	
Size:	 0x0_0000_4000 (16 KiBytes)	
Number of Pages:	 1	

Blitz-64 is intended to be used in parallel processing arrays where each node is a 
Blitz-64 core. Each core may occupy a single chip die (along with its local memory 
and other components) or there may be multiple cores on each die.	

The cores are intended to be arranged in a rectangular array. The array may be 2-
dimensional or 3-dimensional, or the cores may be array linearly in a 1-dimensional 
arrangement.	

When arranged in a 3-dimensional array, the directions are called “west”, “east”, 
“north”, “south”, “up”, and “down”. The size (extent) in each dimension need not be 
identical. The cores are identified using a coordinate system	

In a linearly arranged array, the cores are numbered 0, 1, 2, … M. The western-most 
core is numbered zero, with the numbers increasing in the eastern direction. You 
can also think of “left” as corresponding to west and “right” as corresponding to 
“east”.	

In a 2-dimensional array, you can think of the west-east axis as indicating the 
“column” and the north-south axis as indicating the “row”. The northern-most core is 
numbered zero, with the numbers increasing in the southern direction.	

In a 3-dimensional array, the third axis corresponds to up-down. The uppermost 
core is numbered zero, with the numbers increasing in the downward direction. 
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Thus, the cores are numbered from code [0,0,0] in the upper northwestern corner, to 
core [M-1,N-1,P-1] in the far (lower southeastern) corner where M is the number of 
columns in the west-east direction, N is the number of rows in the north-south 
direction, and P is the number of planes in the up-down direction. (Note that this 
order corresponds to Cartesian coordinates (x, y, z) and not the [row, column] order 
of matrices.)	

Each core can communicate directly with its 6 neighbors. The memory mapped I/O 
device here is designed to support this communication. The messages can be 
variable length (up to 1 page in size) and are buffered so that a core need not wait 
for a transmission to complete. Since each core is expected to have an independent 
clock, the transmission and corresponding flow control is handled entirely by the 
hardware. When a transmission is complete, interrupts will be signaled at both ends. 
The interrupt at the sending end lets the software know that it can initiate a new 
transmission. The interrupt at the receiving end lets the software know that it can 
read and process the incoming message.	

Each of the six channels will be “full duplex”, which means that the communication 
in one direction is entirely independent of the communication in the other direction. 
Communication can occur in both directions simultaneously with no timing 
interaction or performance impact.	

Commentary With 6 communication links, a collection of processor cores may also 
be arranged in other configurations, such as a 6-dimensional hypercube. A 6-D 
hypercube arrangement will accommodate 64 cores and the longest path from any 
core to any other core is only 6.	

Contrast this with a 3-dimensional array of 64 processors (i.e., 4 × 4 × 4): the longest 
path from any core to any other core is 9 (i.e., 3 + 3 + 3).	

The difference in path lengths in a hypercube arrangement over a 3-dimensional 
array becomes more apparent as the dimension and number of cores increases. For 
1,024 cores in a 10-D hypercube it is 10::27. The number of wires remains 
unchanged and is solely determined by the number of cores; each wire has a core at 
each end, so the number of wires is cores × links ÷ 2. But wiring in our 3-D universe 
becomes messy.	

The real world is 3 dimensional (although physicists might correct me) and many 
computations are tied to this dimensionality, so practical applications tend to map 
naturally onto 3-D processor arrays.	
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Note In an earlier discussion concerning the Lock Controller device, we discussed 
how each core could “acquire” a lock by writing its core ID number into special 
location in the memory-mapped I/O device that is dedicated to controlling locks. 
The Lock Controller uses a value of zero to indicate that a lock is “free”, so the 
numbering of the core ID values must  begin with 1.	

Here, in the discussion of arrays of cores, we are numbering cores so that the home / 
master core at the origin of a 3-D array is given the address [0,0,0]. If the array is 
only 1-D and the cores are laid out in a line, they are given addresses [0], [1], … [M]. 
In other words, the cores are numbered:	

	 Array Address	 Core ID for Locking	
	 [0]	 1	
	 [1]	 2	
	 [2]	 3	
	 …	 …	

These two numbering systems are different; be careful of confusing them.	

HDMI, USB, WiFi, etc.	

If interface hardware for other devices is available, then each device will be assigned 
to a memory-mapped I/O region.	

Blitz-64: I/O Devices — Porter	 	 Page  of 	58 64



Chapter 7: The CONTROL and	
CONTROLU Instructions	

Quick Summary	

• The CONTROL and CONTROLU instructions are implementation-dependent	
	 — Used by the Verilog/FPGA implementation	
• These instructions are used to…	
	 — Control the digital I/O pins	
	 — Control the UART device	
	 — Debug the TLB registers	
	 — Debug the Verilog/FPGA core	

CONTROL and CONTROLU	

CONTROL and CONTROLU are two machine instructions which have the same 
syntax. They take a	

• Destination register	
• Source register	
• 16 bit immediate value	

Here are two examples:	

control     r3,r6,1234
controlu    r7,r0,0x56ab

The definition and specification of these instructions is entirely implementation 
dependent. Below, we will describe how they are implemented in the emulator and 
in the MicroBlitz Verilog/FPGA implementation.	
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In the Emulator and Verilog/FPGA	

The CONTROL and CONTROLU are implemented identically in both	

• The Blitz emulator	
• The MicroBlitz Verilog/FPGA implementation	

In both implementations, only CONTROLU is implemented and used. The CONTROL 
instruction is left unimplemented, as a stub instruction. The CONTROL will not be 
discussed further.	

The CONTROLU instruction, as described here, was included to assist in the 
development of the Verilog/FPGA implementation. Initially, the Verilog/FPGA did 
not support memory-mapped I/O. But since human-readable text output was 
needed and very useful, the behavior described below was added to CONTROLU.	

The immediate value is used to select an operation:	

value	 operation	
0	 DIGITAL_READ	
1	 DIGITAL_WRITE	
2	 HALT	
3	 SERIAL_STAT	
4	 SERIAL_RECV	
5	 SERIAL_SEND	
6	 ENABLE_KERNEL	
7	 SET_STATUS	
8	 TLB_DEBUG	
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For convenience, assembler programs contain the following definitions:	

DIGITAL_READ:  .equ   0
DIGITAL_WRITE: .equ   1
HALT:          .equ   2
SERIAL_STAT:   .equ   3
SERIAL_RECV:   .equ   4
SERIAL_SEND:   .equ   5
ENABLE_KERNEL: .equ   6
SET_STATUS:    .equ   7
TLB_DEBUG:     .equ   8

In the emulator, other values will interrupt program execution with a message. In 
the Verilog/FPGA implementation, other values will cause an Illegal Instruction 
Exception.	

Digital Read / Write	

controlu   XXX,r0,DIGITAL_READ
controlu   r0,XXX,DIGITAL_WRITE

In the DIGITAL_READ operation, the source register is ignored and the destination 
register is modified.  In the Verilog/FPGA implementation, the digital input comes 20

from the 8 of the slide switches on the FPGA board and the corresponding binary 
value is placed in bits [7:0], with the upper bits set to zero. When being emulated, 
the emulator will momentarily halt execution and prompt the user to input a value.	

In either case, a 64-bit binary value will stored in the destination register.	

In the DIGITAL_WRITE operation, the destination register ignored and not modified. 
Instead, a 64 bit value comes from the source register. In the Verilog/FPGA 
implementation, the lower order 16 bits are sent to the 4 digit seven-segment and 
displayed as four hex digits. The upper bits are ignored. When being emulated, the 
emulator will momentarily halt execution and display the value.	

 When registers are ignored and not needed, register r0 can be specified. Here, “xxx” symbolizes 20

a source or destination register that is needed and relevant.
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Halt	

controlu   r0,r0,HALT

This instruction will stop execution. In the Verilog/FPGA implementation, this 
instruction will send the core into the “sleep” state, where it will remain until a reset 
occurs. In the emulator, either the emulator itself is terminated (if the auto-go option 
“-g” was present) or the user is popped up into the debugger (otherwise).	

Both the source and destination registers are ignored.	

Serial / UART Control	

controlu   XXX,r0,SERIAL_STAT
controlu   XXX,r0,SERIAL_RECV
controlu   r0,XXX,SERIAL_SEND

With SERIAL_STAT, the destination register will be loaded with a 64 bit value, with 
the following bits:	

[63:2]	 Unused; always returned as zero	
[1]	 Output ready	
[0]	 Input available	

With SERIAL_RECV, the input character will be moved in the lower 8 bits of the 
destination register and the upper bits are set to zero.	

With the SERIAL_SEND, the byte in the source register will be sent to the output, 
with the upper 56 bits of the register being ignored.	

With the emulator, the serial channel is always ready, so the SERIAL_STAT will 
always have the lower two bits set to 1. SERIAL_RECV will simply “get” the next byte 
and SERIAL_SEND will ”put” a byte to the output without any delay as measured by 
the cycle count.	

With the Verilog/FPGA implementation, there will be a delay. The code should 
always check the status before using SERIAL_RECV or SERIAL_SEND. Attempting to 
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send or receive before the system is ready results in incorrect data values being 
transferred.	

ENABLE_KERNEL	

controlu   XXX,r0,ENABLE_KERNEL  # grab csr_status; then set mode

This operation loads 0x0000_0000_0000_0001 into CSR_STATUS, which will disable 
interrupts and place the core in Kernel Mode. It also moves either 0 or 1 into the 
destination register to indicate whether the core was previously in Kernel Mode 
(1=Kernel Mode, 0=User Mode).	

SET_STATUS	

controlu   r0,XXX,SET_STATUS     # set csr_status from reg.

This operation moves the value in the source register into CSR_STATUS.	

TLB_DEBUG	

controlu   regD,Reg1,TLB_DEBUG   # copy TLB[r1] to RegD

With this operation, the value in the source register is used as the number of one of 
the TLB registers. This operation moves the value of the selected TLB register into 
the destination register.	

This operation is useful and important for verifying the proper functioning of the 
Memory Management Unit (MMU) since the TLB registers are not otherwise directly 
accessible.	
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The TLB registers in the Verilog/FPGA implementation are 72 bits long. In both the 
emulator and the Verilog/FPGA implementations, the TLB register is reduced  to a 21

64 bit value with the following format, which is moved into the destination register.	

      Bits      	 Size	
63 … 48 16 Address Space Identifier (ASID)
47 … 27 21 Virtual Page Number
26 … 5 22 Physical Page Number
4 1 C: Copy Bit
3 1 D: Dirty Bit
2 1 W: Writable Bit	
1 1 X: Executable Bit
0 1 V: Valid Bit

 In Page Table Entries (PTEs) and in the TLB registers, the Physical Page Number is 30 bits. The 21

Physical Page Number is reduced from 30 bits to 22 bits by dropping the most significant 8 bits. 
Note that 72-8 = 64.
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