
Blitz-64:	
Assembler,	
Linker,	and	

Object	File	Format	

Harry	H.	Porter	III	
Portland	State	University	

HHPorter3@gmail.com	

14	December	2023		

This	document	describes	the	following	tools:	
	 asm	—	The	Assembler	
	 link	—	The	Linker	
	 dumpobj	—	A	tool	to	display	object	=iles	in	human-readable	form	
	 createlib	—	A	tool	to	create	object	library	=iles	

In	addition,	it	describes	the	format	and	layouts	of:	
	 .o	—	Object	=iles	
	 .lib	—	Library	=iles	
	 a.out	—	Executable	=iles	

This	document	gives	the	information	needed	to	use	these	tools.	It	also	provides	
some	details	about	their	implementation	and	algorithms.	

	 Available	Online: Blitz64.org/Documentation/B64-Assembler.pdf

http://Blitz64.org/Documentation/B64-Assembler.pdf
mailto:HHPorter3@gmail.com?subject=Blitz-64:%20xxxxDETAILSxxxx

Table	of	Contents	
Chapter	1:	Introduction	 	7
Assembly	Language	 	7
The	Linker	 	8
Additional	Tools	 	10
Tool	Names	and	File	Extensions	 	10
Document	Revision	History	/	Permission	to	Copy	 	11
Program	Versions	 	12

Chapter	2:	Assembler	Syntax	 	13
An	Example	Program	 	13
A	Second	Example	 	13
Terminology,	Notation,	and	Basic	Concepts	 	15
Tokens	and	Lexical	Issues	 	17
Instruction	Syntax	 	24
Register	Names	 	26
Machine	and	Synthetic	Instructions	 	27
Assembler	Pseudo-ops	 	29
.byte,	.halfword,	.word,	.doubleword	 	30
.=loat	 	33
.string	 	34
.skip	 	35
.align	 	36
.export	 	37
.import	 	38
.equ	 	39
.begin	 	40

Chapter	3:	Symbols	and	Expressions	 	42
Quick	Summary	 	42
Symbols	 	42
Labels	 	44
Equates	 	44
Expression	Syntax	and	Evaluation	 	45

Blitz-64:	Assembler	and	Linker	/	Porter	 Page	 	of	2 284

Table	of	Contents	

Chapter	4:	Segments	 	51
Quick	Summary	 	51
Segments	 	51
The	Global	Pointer	Register,	gp	 	56

Chapter	5:	Synthetic	Instructions	 	61
Quick	Summary	 	61
Introduction	 	61
Simple	Translations	 	62
Absolute	Value	 	65
Branching	Instructions	 	65
The	Complex	Translations	 	67
Format	S-1:	“movi			RegD,Value”	 	70
Format	S-2:	“bXX			Reg1,Reg2,Address”	 	73
Format	S-3:	“jump/call			Address”	 	76
Format	S-4:	“loadX			RegD,Address”	 	78
Format	S-5:	“loadX			RegD,Offset(Reg1)”	 	81
Format	S-6:	“storeX			Address,Reg2”	 	85
Format	S-7:	“storeX			Offset(Reg1),Reg2”	 	87

Chapter	6:	The	Linker	 	88
Quick	Summary	 	88
Using	the	Linker	 	88
Error	Messages	 	89
Additional	Errors	 	91
Warning	Messages	 	92

Chapter	7:	Support	for	Runtime	Debugging	 	93
Quick	Summary	 	93
Debugging	Pseudo-ops	 	94
The	.source=ile	Pseudo-op	 	95
The	.function	Pseudo-op	 	95
The	.global	Pseudo-op	 	97
The	.local	and	.regparm	Pseudo-ops	 	100
The	.stmt	Pseudo-op	 	103
The	.comment	Pseudo-op	 	105

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	3 284

Table	of	Contents	

Chapter	8:	Assembler	Programming	Conventions	 	108
Quick	Summary	 	108
Function	Calling	Conventions	 	108
The	Runtime	Stack	 	115
Argument	Locations	and	the	Parameter	Block	 	118
Debugging	Support	 	121
Function	Prologue	and	Epilogue	 	125
Object	Representation	 	130
Method	Invocation	and	Dynamic	Dispatching	 	132
Compilation	Examples	 	135
Access	of	Variables	 	136
Arithmetic	Computation	 	140
Flow	of	Control	Examples	 	144

Chapter	9:	Format	of	Object	Files	 	155
Quick	Summary	 	155
Terminology	and	Files	 	155
The	Object	File	 	157
Integers	 	161
Magic	Number	 	161
The	Version	Number	and	ISA	Architecture	Fields	 	162
Separators	(********)	 	163
Segment	Information	 	163
Symbols	in	the	Object	File	 	165
The	Symbol	List	 	166
Patch	Entries	 	169
The	Patch	Types	 	172
Debugging	Information	-	Header	Info	 	175
Debugging	Information	-	Global	Blocks	 	176
Type	Codes	Used	for	Debugging	 	178
Debugging	Information	-	Function	Blocks	 	178
Debugging	Information	-	Register	Parameter	Blocks	 	180
Debugging	Information	-	Local	Variable	Blocks	 	181
Debugging	Information	-	Statement	Blocks	 	182
Future	Work	 	183

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	4 284

Table	of	Contents	

Chapter	10:	Executable	File	Format	 	185
Quick	Summary	 	185
Introduction	 	185
File	Format	 	186
Magic	Number	 	188
The	Version	Number	and	ISA	Architecture	Fields	 	188
Padding	Bytes	 	190
Number	of	Pages	 	190
Lowest	and	Highest	Used	Addresses	 	191
Entry	Point	 	191
Separators	 	192
List	of	Regions	 	192
List	of	Segments	 	193
Modules	and	Symbols	 	195
The	Debugger	Info	Section	 	197
Layout	of	Debugging	Information	 	199

Chapter	11:	Object	Libraries	 	202
Quick	Summary	 	202
The	Format	of	a	Library	File	 	202
Introduction	and	Motivation	for	Libraries	 	203
About	the	Library	File	 	205
The	Version	Number	Field	 	210

Appendix	1:	Machine	Instructions	 	211

Appendix	2:	Command	Line	Tools	 	216
Quick	Summary	 	216
The	Assember	Tool	 	216
The	Linker	Tool	 	219
The	“createlib”	Tool	 	222
The	“dumpobj”	Tool	 	223
The	“hexdump”	Tool	 	224

Appendix	3:	The	Assembler	Algorithm	 	226
Introduction	 	226
ProcessSynthetics	 	226

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	5 284

Table	of	Contents	

First	Phase	 	229
Second	Phase:	Relaxation	 	231

Appendix	4:	The	Linker	Algorithm	 	235
Quick	Summary	 	235
Introduction	 	235
Pointers	and	Objects	 	238
Print	Routines	 	240
Initialization	 	242
The	InFile	Data	Structure	 	244
Functions	for	Reading	and	Writing	 	244
Reading	the	Input	Files	 	245
The	Module	Structure	 	246
Hash	Tables:	Library	Index	and	Exported	Index	 	247
The	Module	List	 	249
Reading	the	Modules:	AddNewModule	 	250
The	Segment,	Symbol,	and	Patch	Objects	 	251
Segment	Objects	 	253
Symbol	Objects	 	255
Patch	Objects	 	258
Processing	Imported	Symbols	 	261
Sorting	the	Label	and	Segment	Lists	 	262
Regions	and	Placing	Segments	 	265
The	Main	Linker	Algorithm	 	278
Finalization	 	282

Acronym	List	 284

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	6 284

Chapter	1:	Introduction	

Assembly	Language	

The	assembler	is	a	tool	which	will	translate	programs	written	in	assembler	(or	
“assembly	language”)	into	binary	machine	code.	Machine	code	can	be	loaded	into	
memory	and	executed.	Machine	code	consists	of	a	sequence	of	binary	bits	and	
cannot	be	practically	created	or	deciphered	by	humans.	

Assembly	code	is	a	human-readable	notation	in	which	to	specify	machine	code.	

Although	high-level	programming	languages	strive	to	be	platform	independent,	the	
opposite	is	true	of	assembly	language.	Each	processor	has	a	unique	assembly	
language	tailored	to	its	design.	There	is	much	similarity	in	the	assembly	languages	
for	different	machines,	but	there	is	also	signi=icant	difference.	

This	document	describes	the	assembly	language	for	the	Blitz-64	processor	core.	It	
assumes	that	you	have	familiarity	with	the	Blitz-64	Instruction	Set	Architecture	
(ISA).	The	Blitz-64	architecture	is	described	in	the	following	document:	

	 “Blitz-64:	Instruction	Set	Architecture	Reference	Manual”	

Programming	in	assembly	language	is	an	acquired	taste	and	should	not	be	
attempted	by	beginning	programmers.	Assembly	programming	requires	an	
enormous	attention	to	detail	and	an	extremely	high	degree	of	conscientiousness,	
commitment,	and	precise	logical	thinking.	The	resulting	programs	are	totally	non-
portable.	Merely	getting	an	assembly	program	to	work	on	a	different	model	in	the	
same	processor	line	is	non-trivial.	

Assembly	language	and	the	skill	to	code	in	assembler	is	important	for	several	
reasons.	

First,	there	are	often	tasks	that	simply	cannot	be	done	in	high-level	languages	and	
the	code	must	be	written	in	assembler.	Assembly	code	is	required	for	operating	

Blitz-64:	Assembler	and	Linker	/	Porter	 Page	 	of	7 284

Chapter	1:	Introduction	

systems	kernels	and	for	accessing	certain	specialized	aspects	of	the	hardware	that	
cannot	be	addressed	in	a	high-level	language.	Although	much	work	has	been	done	to	
add	capabilities	to	high-level	languages	to	minimize	the	amount	of	assembly	code,	
some	assembly	code	is	required.	

Second,	high-level	languages	must	be	compiled	to	run	on	physical	hardware.	(Here	
we	speak	of	compiled	languages	(like	“C”	and	“C++”)	and	not	of	interpreted	
languages	(like	just	about	every	other	modern	language,	including	Java,	JavaScript,	
Python,	Perl,	etc.).	This	means	the	source	code	must	ultimately	be	translated	into	the	
bit	patterns	recognized	by	the	intended	target	hardware.	

The	typical	approach	is	for	a	compiler	to	translate	the	source	code	into	assembly	
code.	In	a	second	step,	the	assembler	tool	is	used	to	translate	the	assembly	program	
into	machine	code.	While	there	are	many	approaches,	this	approach	works	well	
since	it	breaks	the	task	into	two	smaller,	tasks:	translation	into	assembly	code,	
followed	by	translation	into	machine	code.	It	removes	many	of	the	hardware	details	
from	the	compiler	and	also	permits	the	compiler	writers	to	determine	whether	a	
compiler	is	working	properly	and	producing	the	correct	output.	

Third,	understanding	the	assembly	language	for	a	processor	is	a	requirement	for	
anyone	who	wants	to	understand	and	improve	the	runtime	execution	performance	
of	programs	written	in	high-level	code.	Those	programmers	seeking	to	maximize	
performance	need	to	understand	assembly	language	so	they	can	spot	inef=icient	
code	sequences	and	determine	whether	the	compiler	is	producing	the	best	code.	

Fourth,	assembly	language	programming	is	required	for	new,	state-of-the-art	
processors	for	which	no	high-level	languages	are	available.	Assembly	language	
programming	may	also	be	required	for	obscure	or	specialized	processors	for	the	
same	reason.	

Finally,	there	are	a	few	programmers	who	actually	enjoy	programming	in	assembler.	

The	Linker	

The	assembler	tool	translates	assembly	source	code	into	machine	code.	However,	
programmers	break	large	programs	into	pieces	which	we	will	call	“modules”.	
Generally,	a	small	number	of	pieces	are	combined	to	produce	an	executable	program.	
For	example,	one	piece	might	contain	a	number	of	mathematical	support	functions	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	8 284

Chapter	1:	Introduction	

(like	“sin”	and	“sqrt”).	This	might	be	combined	with	the	“main”	function	of	a	
program	to	produce	an	executable.	Obviously,	the	mathematical	support	functions	
are	written	separately	and	reused	in	many	different	programs.	

In	practice,	there	is	a	tremendous	number	of	code	modules.	The	sharing	and	re-use	
of	modules	is	critical.	

The	assembler	tool	takes	as	input	a	single	source	code	=ile	(containing	the	code	and	
data	for	a	single	module)	and	produces	a	“object	Wile”.	For	example,	a	large	program	
consisting	of	5	modules	will	require	the	assembler	to	be	run	=ive	times,	once	for	each	
module,	producing	=ive	object	=iles.	

The	linker	tool	is	named	“link”.	(We	chose	a	name	more	meaningful	than	the	
traditional	name	used	in	Unix/Linux,	which	was	“ld”.)	

The	linker	tool	is	used	to	combine	the	object	=iles	and	produce	a	single	executable	
=ile.	In	other	systems,	the	linker	also	takes	as	input	some	sort	of	textual	script	or	
program	to	give	the	linker	instructions.	But	in	the	Blitz-64	approach,	such	additional	
information	is	not	needed.	The	input	to	the	Blitz-64	linker	consists	of	only	the	object	
=iles.	

The	executable	=ile	is	stored	in	a	=ile	and,	when	the	program	is	to	be	run,	the	
operating	system	will	read	this	=ile	(understanding	the	format	of	executable	=iles)	
and	will	load	the	bits	into	memory	just	prior	to	beginning	execution.	

The	primarily	programming	language	for	the	Blitz-64	system	is	KPL	(Kernel	
Programming	Language).	While	almost	every	other	computer	uses	the	“C”	
language	—	a	language	from	the	early	1970s	—	as	the	core	language	upon	which	all	
the	remaining	software	is	constructed,	Blitz-64	does	not	support	“C”.	Blitz-64	takes	
the	radical	approach	of	not	supporting	any	legacy	software.	

KPL	supports	a	concept	called	“packages”.	Each	package	is	separately	compiled	into	
an	assembly	language	program.	In	this	way,	KPL	works	like	program	development	in	
“C”.	For	example,	=ive	packages	will	be	separately	compiled,	yielding	=ive	different	
assembly	=iles.	

Each	assembly	=ile	produced	by	the	compiler	will	assembled	separately.	Additional	
modules	that	have	been	hand-code	in	assembly	language	will	also	be	assembled	by	
the	assembler	tool.	Finally,	the	linker	tool	will	be	run	to	combine	all	the	object	
modules	into	a	single	executable	=ile.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	9 284

Chapter	1:	Introduction	

Additional	Tools	

A	separate	tool,	called	“dumpobj”,	is	also	provided.	It	can	be	used	to	look	at	the	
contents	of	an	object	=ile	or	an	executable	=ile.	These	=iles	are	not	text	=iles	and	are	
not	meant	to	be	human	readable.	The	“dumpobj”	tool	merely	prints	out	information	
about	the	=ile	contents	in	a	format	that	humans	can	read.	This	tool	is	not	normally	
needed	in	program	development,	so	it	is	used	less	often.	

Several	object	modules	can	be	combined	into	a	“library”.	The	linker	can	consult	a	
library	=ile	to	locate	modules	as	needed	by	the	program	being	linked.	The	
“createlib”	tool	is	used	to	create	library	=iles.	

Another	tool,	called	“hexdump”,	is	also	provided	to	look	at	the	contents	of	any	=ile.	
The	“hexdump”	tool	prints	out	the	contents	of	any	=ile	in	hex.	It	also	prints	out	any	
ASCII	characters.	The	“hexdump”	tool	is	useful	in	determining	what	exactly	is	in	a	
=ile.	

Tool	Names	and	File	Extensions	

The	names	of	the	tools	are:	

	 kpl	 The	KPL	compiler	tool	
	 asm	 The	Assembler	tool	
	 link	 The	Linker	tool	
	 dumpobj	 Tool	to	display	info	about	object	and	executable	=iles	
	 createlib	 Tool	to	create	a	library	=ile	
	 hexdump	 Tool	to	display	the	contents	of	any	=ile	in	hex	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	10 284

Chapter	1:	Introduction	

Blitz-64	uses	=ile	extensions	to	suggests	the	nature	or	type	of	material	in	a	=ile,	and	
the	=ile	extensions	are	similar	to	other	systems:	

	 .c	 KPL	source	code	(“c”	for	“code”)	
	 .h	 KPL	header	=iles	
	 .s	 Assembly	programs	
	 .o	 Object	=iles	
	 .lib	 Library	=iles	

Executable	programs	usually	do	not	have	extensions,	but	when	no	=ilename	is	
supplied,	the	traditional	default	name	of	“a.out”	is	used.		

Document	Revision	History	/	Permission	to	Copy	

Version	numbers	are	not	used	to	identify	revisions	to	this	document.	Instead	the	
date	and	the	author’s	name	are	used.	The	document	history	is:	

Date	 Author	
27	October	2018	 Harry	H.	Porter	III		<document	created>	
28	May	2019	 Harry	H.	Porter	III		
19	March	2022	 Harry	H.	Porter	III		
18	October	2022	 Harry	H.	Porter	III	
3	November	2022	 Harry	H.	Porter	III	
9	September	2023	 Harry	H.	Porter	III	
14	December	2023	 Harry	H.	Porter	III		<current	version>	

	 	
In	the	spirit	of	the	open-source	and	free	software	movements,	the	author	grants	
permission	to	freely	copy	and/or	modify	this	document,	with	the	following	
requirement:	

You	must	not	alter	this	section,	except	to	add	to	the	revision	history.	You	
must	append	your	date/name	to	the	revision	history.	

Any	material	lifted	should	be	referenced.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	11 284

Chapter	1:	Introduction	

Program	Versions	

In	the	Blitz-64	project,	version	numbers	are	not	used	for	programs	and	documents.	
Instead,	dates	are	used.	This	document	describes	the	following	programs.	

By	comparing	dates,	you	can	determine	whether	this	document	matches	the	tools	
you	are	using	or,	if	not,	which	is	more	recent.	

Tool												 Version	Described	Here												 Coding	Status	
asm	 <	same	date	as	this	document	>	 Completed	
link	 <	same	date	as	this	document	>		 Completed	
dumpobj	 <	same	date	as	this	document	>		 Completed	
createlib	 <	same	date	as	this	document	>		 Completed	
hexdump	 <	same	date	as	this	document	>		 Completed	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	12 284

Chapter	2:	Assembler	Syntax	

An	Example	Program	

 #################
 #
 # MyFun
 #
 # This function does such and such. It uses…
 #
 #################
 .begin
 .align 4
 .export MyFun
 MyFun: stored 0(sp),r2 # Save registers
 stored 8(sp),r3 # .
 loop: # LOOP
 loadb r3,0(r2) # IF r4>*r2 THEN
 ble r4,r3,endif # .
 sub r1,r5,r3 # r1 := r5-(*r2)
 endif: # ENDIF
 addi r2,r2,1 # r2++
 # … etc …
 jump loop # ENDLOOP

A	Second	Example	

The	following	example	illustrates	a	number	of	different	instruction	and	operand	
combinations.	

Blitz-64:	Assembler	and	Linker	/	Porter	 Page	 	of	13 284

Chapter	2:	Assembler	Syntax	

This	code	assembles	without	error	as	a	standalone	source	=ile,	although	taken	as	a	
whole,	the	code	is	obviously	not	a	program	to	be	executed.	

Examples showing different pseudo-ops

.begin startaddr=0x0456,executable,writable
a: .byte 0x12 # allocates 1 byte
b: .halfword 0x1234 # allocates 2 bytes
c: .word -1234 + 0x5d # allocates 4 bytes
d: .doubleword y+246 # allocates 8 bytes
e: .float -123.456e78 # allocates 8 byte double float
s_1: .string "hello\n" # allocates N bytes

.export MyLabel # make symbol avail to other mods

.import OtherLabel # use a symbol from other module
x: .skip 100 # skips over bytes, w/ zero-fill

.align 8 # inserts 0x00 bytes as necessary
y: .equ 100 # Defines symbolic constant

Examples showing different operands

sysret # Format A-0: <no operands>
checkw r1 # Format A-1: Reg1
sextw r7,r1 # Format A-2: RegD,Reg1
add r7,r1,r2 # Format A-3: RegD,Reg1,Reg2
alignd r7,r1,r2,r3 # Format A-4: RegD,Reg1,Reg2,Reg3
csrswap r7,csr_status,r2 # Format A-7: RegD,CSRReg1,Reg2
csrread r7,csr_status # Format A-8: RegD,CSRReg1
getstat r7 # Format A-9: RegD
addi r7,r1,-456 # Format B-1: RegD,Reg1,immed-16
load.d r7,250(r1) # Format B-2: RegD,immed-16(Reg1)
checkaddr r7,5 # Format B-3: RegD,Reg1,immed-3
syscall 123 # Format B-4: immed-10
slli r7,r1,63 # Format B-5: RegD,Reg1,immed-6
csrset csr_status,0x03 # Format B-6: CSRReg1,immed-16
store.b 123(r1),r2 # Format C-1: immed-16(Reg1),Reg2
b.eq r1,r2,+8 # Format C-2: Reg1,Reg2,immed-16
jal lr,-12 # Format D-1: RegD,immed-20

Examples showing different synthetic instructions

movi r7,0x123456789abcdef0 # Format S-1
blt r1,r2,MyLabel # Format S-2
call MyFun # Format S-3

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	14 284

Chapter	2:	Assembler	Syntax	

loadw r7,MyVariable # Format S-4
loadw r7,my_offset(r1) # Format S-4
storeb MyVariable,r2 # Format S-6
stored my_offset(r1),r2 # Format S-7

MyVariable: .doubleword 0
MyLabel: jump MyLabel
my_offset: .equ 100

Terminology,	Notation,	and	Basic	Concepts	

•	Byte	 8	bits	
•	Halfword	 16	bits	 2	bytes	
•	Word	 32	bits	 4	bytes	
•	Doubleword		 64	bits		 8	bytes	

Binary	values	are	frequently	speci=ied	in	hex.	

	 number	 number					
		 of	bytes	 of	bits	 example	value	(in	hex)	
	 byte	 1	 8 A4	
	 halfword	 2	 16	 C4F9	
	 word	 4	 32	 AB12CD34	
	 doubleword	 8	 64	 0123456789ABCDEF	

To	 clarify	 and	 prevent	 confusion,	 hex	 numbers	 are	 often	 preceded	 by	 “0x”.	 For	
example:	

	 0x1234	

As	in	most	other	computers,	main	memory	is	byte	addressable,	which	means	that	
every	byte	in	memory	has	a	unique	address.	

Main	memory	is	Big	Endian,	which	means	that	the	most	signi=icant	byte	of	a	value	is	
stored	=irst,	at	the	starting	address.	For	example,	if	the	value	0x1234	is	stored	in	
memory	at	address	X,	then	the	=irst	byte	0x12	will	be	in	location	X	and	the	second	
byte	0x34	will	be	in	location	X+1.	This	means	that	the	bytes	are	not	rearranged.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	15 284

Chapter	2:	Assembler	Syntax	

Many	other	computers	(including	x86)	use	the	opposite	convention,	Little	Endian,	
which	reverses	the	byte	order.	

The	notation	[n:m]	is	used	to	identify	bits.	For	example,	[63:60]	means	the	most	
signi=icant	(MSB)	4	bits	in	a	doubleword.	

We	use	the	term	KiByte	to	mean	1,024	(i.e.,	210).	We	avoid	using	the	term	KByte	(i.e.,	
1,000	=	103).	Likewise,	we	use	MiByte	and	GiByte	instead	of	MByte	and	GByte.	

	 	 	 		Hex	Value			 		Decimal	Value			
	 KiByte	 210	 400	 1,024	
	 MiByte	 220	 10_0000	 1,048,576	
	 GiByte	 230	 4000_0000	 1,073,741,824	

The	Blitz-64	processor	has	certain	alignment	requirements.	A	halfword	aligned	
address	is	an	even	number	and,	when	represented	in	binary,	ends	with	a	0	bit.	A	
word		aligned	address	is	a	multiple	of	4	and	ends	with	00.	A	doubleword		aligned	
address	is	a	multiple	of	8	and	ends	with	000.	

The	Blitz-64	is	“strongly	64	bits”,	which	means	that	all	arithmetic	is	done	with	64	
bits.	The	processor	has	minimal	support	for	legacy	sizes	such	as	8,	16,	or	32	bits.	

Integers	are	represented	with	signed,	two’s	complement	values.	

	 	 				Size	 	
	 	 		in	bits			 																																							Range	of	values	 	 	
byte	 8		 -128	…	127	
halfword	 16	 -32,768	…	32,767	
word	 32	 -2,147,483,648	…	2,147,483,647	
doubleword	 64	 -9,223,372,036,854,775,808	…	9,223,372,036,854,775,807		

Sign-extension	enlarges	an	integer	represented	in	signed	two’s	complement	binary.	
For	example,	sign-extending	the	halfword	0x8C32	to	a	doubleword	yields	the	
following	result:	

	 0xFFFFFFFFFFFF8C32	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	16 284

Chapter	2:	Assembler	Syntax	

For	large	numbers,	we	often	add	underscores	every	16	bits,	to	prevent	confusion :	1

	 0xFFFF_FFFF_FFFF_8C32	

The	underscore	is	in	assembler	code,	as	well	as	documentation	and	comments.	

Size	reduction	(e.g.,	from	64	to	32	bits)	results	in	an	“over=low”	error	whenever	a	
the	value	exceeds	the	range	of	the	smaller	size..	

Tokens	and	Lexical	Issues	

IdentiWiers	may	contain	letters,	digits,	and	underscores.	For	example:	

MyLabel
_entry
lab_23_

Identi=iers	must	begin	with	a	letter	or	underscore.	Case	is	signi=icant.	

Identi=iers	are	limited	in	length.	Currently	the	limit	is	set	to	1,000	characters.	[This	
limitation	is	hardcoded	into	the	assembler	tool	and	requires	recompiling	“asm”	to	
change.]	

Identi=iers	may	contain	only	ASCII	characters.	By	“letters	and	digits”,	we	mean	one	of	
the	the	26+26+10	characters	in		{		a	…	z		A	…	Z		0	…	9		}.	

Keywords			The	assembler	recognizes	a	number	of	special	keywords	which	
otherwise	resemble	identi=iers.	These	keywords	may	not	be	used	for	identi=iers.	

Although	the	period	character	is	not	allowed	in	identi=iers,	several	keywords	contain	
the	period	character.	For	example:	

load.w
.begin

	Sometimes	a	comma	is	used	as	a	separator.	The	Blitz-64	tools	recognize	and	accept	underscores,	1

but	not	commas.

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	17 284

Chapter	2:	Assembler	Syntax	

The	following	classes	of	keywords	are	recognized:	

	 	 									Examples									
	 Opcodes	for	machine	instructions	 add,	load.w,	syscall,	…	
	 Opcodes	for	synthetic	instructions	 mov,	call,	bgt,	…	
	 Pseudo-ops	 .begin,	.equ,	.string,	…	
	 Registers	 r0,	…	r15,	t,	sp,	lr,	…	
	 CSR	Registers	 csr_status,	csr_cycle,	…	
	 Misc.	keywords	 page,	startaddr,	…	

An	integer	value	may	be	speci=ied	in	decimal	or	in	hex.	If	speci=ied	in	decimal,	the	
integer	value	must	lie	between	0	and	9,223,372,036,854,775,807	(i.e.	263-1).	
Commas	are	not	allowed.	

Integer	values	may	be	given	in	hex	notation,	and	must	be	preceded	by	“0x”.	For	
example:	

	 0x1234abcd	
	 0x1234ABCD		 ←	case	does	not	matter	

A	hex	constant	may	optionally	contain	underscore	characters,	which	may	be	used	to	
improve	readability.	An	underscore	should	be	placed	after	every	fourth	hex	digit,	but	
this	is	not	enforced.	

	 0x4d03_55e2_3a8e_47a9			 ←	recommended	style	
	 0x4d_0355e23a___8e47a9		 ←	also	allowable	

Every	integer	constant	speci=ies	a	64-bit	signed	value,	regardless	of	how	many	digits	
appear.	

Integer	values	can	be	speci=ied	in	either	decimal	or	hex.	Hex	notation	and	decimal	
notation	are	fully	interchangeable.	Anywhere	a	decimal	value	can	be	speci=ied,	a	hex	
value	can	be	used	instead,	and	vice-versa:	

	 123	 	
	 0x7b	 ←	equivalent	value	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	18 284

Chapter	2:	Assembler	Syntax	

Decimal	can	only	be	used	for	positive	values	but	a	preceding	minus	sign	can	be	used	
to	form	an	expression	so,	effectively,	negative	numbers	can	be	speci=ied.	For	
example:	

	 -123

Unary	negation	can	be	applied	to	any	integer,	whether	speci=ied	in	decimal	or	hex,	so	
the	following	all	represent	the	same	64-bit	value:	

	 -4660	 	
	 -0x1234	 ←	identical	value	
	 0xffffffffffffedcc	 ←	identical	value	

A	number	given	in	hex	is	not	sign-extended	by	the	assembler.	

	 0xc8a4	 ←	equal	to	+51,364	
	 0x000000000000c8a4	 ←	identical	value	

If	a	negative	number	is	speci=ied	in	hex,	sign-extension	to	64-bits	is	required.	For	
example	

	 0xc8a4	

is	equal	to	-14,172	as	a	signed,	16-bit	value.	To	specify	this	value	in	hex,	the	leading	
1	bits	must	be	given.	This	value	can	be	speci=ied	in	any	of	the	following	ways:	

	 0xffffffffffffc8a4
-14172
-0x375C

Note	that	the	following	values	are	equal:	

	 0xffffffffffffffff
-1

If	a	hex	number	has	fewer	than	16	hex	digits,	it	will	be	interpreted	as	a	positive	
number.	Be	careful:	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	19 284

Chapter	2:	Assembler	Syntax	

	 0xfffffffffffffff		 ←	missing	an	“f”
	 1152921504606846975		←	identical	value

Note	that	the	most	negative	64	bit	value	may	not	be	speci=ied	in	decimal	since	the	
positive	portion	exceeds	the	limit	for	positive	numbers.	This	value	must	be	speci=ied	
in	hex:	

	 -9223372036854775808	 	 ←	not	allowed	
	 0x8000_0000_0000_0000		 ←	use	this	instead	

Strings	are	written	using	double	quotes.	For	example:	

"Hello, world"

The	following	escape	sequences	are	allowed	in	strings:	

\0 \a \b \t \n \v \f \r \e \" \' \\ \xHH

where	HH	represents	any	two	hex	digits.	The	escape	sequences	have	the	traditional	
meanings:	

	 \0 0x00	 ctrl-@	 NULL	
	 \a	 0x07	 ctrl-G	 BELL	(alert)	
	 \b	 0x08	 ctrl-H	 BS	(backspace)	
	 \t	 0x09	 ctrl-I	 HT	(tab)	
	 \n 0x0A	 ctrl-J	 LF	(linefeed,	newline,	NL)	
	 \v 0x0B	 ctrl-K	 VT	(vertical	tab)	
	 \f	 0x0C	 ctrl-L	 FF	(form	feed,	new	page)	
		 \r 0x0D	 ctrl-M	 CR	(carriage	return,	enter)	
		 \e 0x1B	 ctrl-[ESC	(escape)	
	 \d	 0x7F	 delete	 DEL	key	
	 \" 0x22	 "	 double	quote	character	
	 \' 0x27	 '	 single	quote	character	
	 \\	 0x5C	 \	 backslash	character	
	 \xHH	 0xHH	 	 arbitrary	byte	(where	H	is	any	hex	character)	

In	a	string	constant,	we	make	a	distinction	between	the	string	“source”	characters	
and	the	string	“value”.	For	example,	in	the	following	string	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	20 284

Chapter	2:	Assembler	Syntax	

.string "\n"

there	are	two	source	characters	‘\’	and	’n’.	In	the	string	value,	there	is	only	one	byte,	
namely	0x0a.	

The	string	value	is	a	sequence	of	zero	or	more	bytes,	and	there	is	no	constraint	on	
what	byte	values	or	sequences	are	allowed.	

However,	there	are	constraints	on	the	string	source	characters.	

The	string	source	may	not	include	any	ASCII	control	characters	directly.	Instead,	the	
programmer	may	use	escape	sequences,	such	as	\0,	\n,	\t,	etc.	

One	implication	is	that	strings	may	not	contain	newlines	directly.	In	other	words,	a	
string	may	not	span	multiple	lines.	Use	\n	or	\r	within	the	string	source	instead.	

The	.s	source	=ile	is	a	“text”	=ile	encoded	in	UTF-8.	Non-ASCII	characters	(as	in	the	
next	example)	are	allowable	in	comments	and	within	string	source	(between	the	
quotes	in	a	string	constant).	Non-ASCII	characters	are	not	allowed	anywhere	else.	

Any	Unicode	character	except	ASCII	control	characters	may	appear	in	a	string	
source.	The	control	characters	(i.e.,	codepoints	0x00	…	0x1F	and	0x7F)	may	not	
appear	directly;	instead	escape	sequences	must	be	used.	

The	string	source	will	be	translated	into	a	value	—	a	sequence	of	bytes	—	encoded	in	
UTF-8.	

Consider	the	following	string:	

str: .string "∉"

This	string	source	contains	1	character,	a	Unicode	character	called	“NOT	AN	
ELEMENT	OF”.	

The	UTF-8	encoding	of	this	character	requires	three	bytes.	Thus,	this	string	value	
consists	of	three	bytes.	

The	following	is	exactly	equivalent.	Both	place	exactly	the	same	bytes	at	location	
“str”.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	21 284

Chapter	2:	Assembler	Syntax	

str: .string "\xE2\x88\x89"

[See	the	document	titled	“An	Overview	of	Unicode”,	which	describes	UTF-8.]	

String	values	are	limited	in	length.	This	limit	is	identical	to	the	length	limit	for	
identi=iers.	

The	operand	of	the	.string	pseudo-op	must	be	a	string.	

In	addition,	a	string	may	be	used	in	an	expression	in	place	of	an	integer.	However,	in	
this	case,	the	string	value	must	have	exactly	8	bytes.	The	characters	will	be	used	to	
construct	an	8	byte	(i.e.,	64	bit)	integer	value.	

(More	precisely,	the	UTF-8	encoding	of	the	characters	will	be	used.)	

For	example,	the	following	are	four	ways	to	represent	the	same	64-bit	value:	

"Hello!\n\0"
"\x48\x65\x6C\x6C\x6f\x21\x0A\x00" ←	identical	value
0x48656C6C6f210A00 ←	identical	value
5216694956355291648 ←	identical	value

Character	constants	are	given	using	single	quotes.	For	example:	

'q'

There	must	be	exactly	one	character,	or	an	escape	sequence	representing	a	single	
byte.	The	same	escape	sequences	as	used	in	strings	are	allowed.	

A	character	constant	can	be	used	any	place	an	integer	is	allowed	and	is	equivalent	to	
an	integer	value	between	0	and	255	(i.e.,	between	0x0000000000000000	and	
0x00000000000000FF).	

For	example,	the	following	are	equal	and	can	be	used	interchangeably:	

'\n'
10
0x0A

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	22 284

Chapter	2:	Assembler	Syntax	

Since	a	character	constant	is	always	exactly	one	byte,	only	ASCII	characters	are	
permitted,	not	arbitrary	Unicode	characters.	

A	Wloating-point	constant	is	used	to	specify	a	double	precision	(8-byte)	=loating	
point	value.	To	be	differentiated	from	an	integer	constant,	the	value	must	have	either	
a	decimal	point	or	an	exponent.	The	exponent	is	signi=ied	by	either	“E”	or	“e”.	

Examples	of	=loating	point	constants:	

.float 123.456

.float -3.4E-21

.float +4.5e+21

Floating	point	constants	are	used	in	the	.Wloat	pseudo-op,	and	nowhere	else.	

Comments	begin	with	the	hash	or	pound	symbol	(#)	and	extend	thru	end-of-line.	

Punctuation	symbols	The	following	have	special	meaning:	

,	 separates	operands
: follows	labels
= used	for	keyword	operands	in	.begin	pseudo-op
(expression	grouping
) expression	grouping
+ addition	and	unary	plus
- subtraction	and	unary	minus
* multiplication
/ integer	divison
% remainder	after	division
& bitwise	AND
| bitwise	OR
^ bitwise	XOR
! bitwise	NOT
<< shift	left	logical
>> shift	right	logical
<<< shift	left	arithmetic
>>> shift	right	arithmetic

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	23 284

Chapter	2:	Assembler	Syntax	

White	space	The	assembler	parses	each	line	by	=irst	identifying	lexical	tokens	and	
removing	comments.	Lexical	tokens	may	be	separated	by	“white	space”,	which	is	
de=ined	as	spaces	and	tabs.	

End-of-line	The	EOL	character	is	treated	as	a	token,	not	as	white	space;	the	EOL	is	
signi=icant	in	syntax	parsing.	The	source	=ile	can	use	\n	(i.e.,	NEWLINE,	0x0A)	or	\r	
(i.e.,	RETURN,	0x0D)	to	indicate	the	EOL;	either	will	work.	

Instruction	Syntax	

Each	line	in	the	assembly	source	=ile	must	have	the	following	syntax:	

				[label		:]			[opcode			operands]				[#			comment]			EOL	

(The	brackets	indicate	optional	material.)	
	 	 	
The	label	is	optional.	It	need	not	begin	in	column	one.	It	must	be	followed	by	a	colon	
token.	A	label	may	be	on	a	line	by	itself.	If	so,	it	will	be	attached	to	the	next	thing	
following	it.	In	other	words,	a	label	will	stand	for	the	address	of	an	instruction	and	
the	instruction	can	be	given	on	the	same	line,	or	on	the	following	line.	

The	opcode	must	be	a	legal	Blitz-64	instruction	or	a	pseudo-op.	The	opcode	is	
always	lowercase.	

Operands	are	separated	by	commas.	The	exact	syntax	of	the	operands	is	determined	
by	the	instruction	opcode.	Some	Blitz-64	instructions	take	no	operands	while	some	
instructions	require	several	operands.	

A	comment	is	optional	and	extends	to	the	end	of	the	line	if	present.	

Each	line	is	independent.	The	end-of-line	(EOL)	is	treated	as	a	separate	token,	not	as	
white	space	(as	occurs	in	many	programming	languages).	Every	instruction	must	be	
on	only	one	line,	although	lines	may	be	arbitrarily	long.	

Assembler	pseudo-ops	have	the	same	syntax.	Some	permit	labels	and	others	forbid	
labels.	

The	following	formatting	and	spacing	conventions	are	recommended:	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	24 284

Chapter	2:	Assembler	Syntax	

•	Labels	should	begin	in	column	1.	
•	The	op-code	should	be	indented	by	1	tab	stop.	
•	The	operands,	if	any,	should	be	indented	by	1	additional	tab	stop.	
•	Each	Blitz-64	instruction	should	be	commented.	
•	The	comment	should	be	indented	by	2	additional	tab	stops.	
•	A	single	space	should	follow	the	#	comment	character.	
•	Block	comments	should	occur	before	each	routine.	
•	Comments	should	be	indented	with	2	spaces	to	show	logical	organization.	

Here	is	an	example	of	the	recommended	style	for	Blitz-64	assembly	code.	(The	
header	line	shows	standard	tab	stops.)	

 t t t t t t
 #################
 #
 # MyFun
 #
 # This function does such and such. It uses…
 #
 #################
 .begin
 .align 4
 .export MyFun
 MyFun: stored 0(sp),r2 # Save registers
 stored 8(sp),r3 # .
 loop: # LOOP
 loadb r3,0(r2) # IF r4>*r2 THEN
 ble r4,r3,endif # .
 sub r1,r5,r3 # r1 := r5-(*r2)
 endif: # ENDIF
 addi r2,r2,1 # r2++
 # … etc …
 jump loop # ENDLOOP

Of	course	assembly	code	produced	by	a	compiler	will	probably	not	be	commented	or	
formatted	so	nicely.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	25 284

Chapter	2:	Assembler	Syntax	

Register	Names	

Register	names	must	be	in	lowercase.	Several	registers	have	two	names.	The	
programmer	can	use	either	name.	Generally,	the	alternate	name	is	recommended.	

	 	 Alternate	
	 	 				Name					 Function																			
	 r0	 	 Zero	
	 r1	 	 Argument	1	/	Return	Value	
	 r2	 	 Argument	2	
	 r3	 	 Argument	3	
	 r4	 	 Argument	4	
	 r5	 	 Argument	5	
	 r6	 	 Argument	6	
	 r7	 	 Argument	7	
	 r8	 t	 Temp	register,	used	by	assembler/linker	
	 r9	 s0	 Work	reg	(caller-saved)	
	 r10	 s1	 Work	reg	(caller-saved)	
	 r11	 s2	 Work	reg	(caller-saved)	
	 r12	 tp	 Thread	data	pointer	
	 r13	 gp	 Global	data	pointer	
	 r14	 lr	 Link	register	
	 r15	 sp	 Stack	pointer	

Register	“r0”	is	the	zero	register.	Its	value	is	always	read	as	zero	and	writes	are	
ignored.	The	programmer	often	uses	the	zero	register	as	a	destination	when	the	goal	
is	to	discard	a	value.	

Several	instructions	require	the	name	of	a	Control	and	Status	Register	(CSR).	

There	are	16	CSR	registers.	Their	names	must	be	written	in	lowercase.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	26 284

Chapter	2:	Assembler	Syntax	

	 	 	 								 Description								 	 	 										 									
	 0	 csr_version	 Version	of	the	BLITZ-64	architecture	ISA	
	 1	 csr_prod	 Product	Identi=ier	
	 2	 csr_core	 Core	number	
	 3	 csr_instr	 Instruction	counter	(Reset	upon	power-on-reset)	
	 4	 csr_cycle	 Cycle	counter	(Reset	upon	power-on-reset)	
	 5	 csr_timer	 Time	of	next	interrupt,	in	cycles	
	 6	 csr_status	 System	status	register	
	 7	 csr_stat2	 Previous	System	Status	Register	
	 8	 csr_trapvec	 Pointer	to	page	table	root	node	
	 9	 csr_pgtable	 Pointer	to	page	table	root	node	
	 10	 csr_prevpc	 Previous	PC	(for	trap	handler)	
	 11	 csr_cause	 Trap	code,	indicating	which	trap	just	happened	
	 12	 csr_bad	 Offending	instruction	
	 13	 csr_addr	 Offending	Virtual	Address	
	 14	 csr_ptr	 Ptr	to	Process	Control	Block	(&	reg	save	area)	
	 15	 csr_temp	 Temp	work	register	

Machine	and	Synthetic	Instructions	

The	Blitz-64	instructions	are	documented	separately	in	

	 “Blitz-64:	Instruction	Set	Architecture	Reference	Manual”	

For	each	instruction,	that	document	describes:	

	 •	what	operands	are	used	
	 •	what	each	instruction	does	when	executed	
	 •	how	each	instruction	is	represented	in	machine	code	

Each	line	in	the	assembly	program	contains	either:	

	 •	A	machine	instruction,	
	 •	A	synthetic	instruction,	or	
	 •	A	“pseudo-op”	instruction	

(In	addition,	some	lines	will	contain	only	labels	or	comments.	Blank	lines	can	be	
used	to	improve	readability.)	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	27 284

Chapter	2:	Assembler	Syntax	

By	“machine	instruction”,	we	mean	the	line	contains	the	human-readable	assembly	
code	form	of	an	instruction	implemented	directly	by	the	Blitz-64	hardware.	

The	opcode	(such	as	“addi”)	determines	exactly	which	machine	instruction	is	
intended	and	exactly	which	operands	are	required.	Each	opcode	corresponds	to	
exactly	one	machine	code	instruction,	so	there	is	a	one-to-one	correspondence	
between	machine	opcodes	(like	“addi”)	and	machine	instructions.	

For	each	machine	instruction,	there	is	exactly	one	allowable	syntax	for	the	operands.	
In	the	case	of	“addi”,	two	registers	and	an	immediate	value	(in	that	order	and	
separated	by	commas)	are	required:	

addi r3,r6,1234

The	assembler	will	translate	each	machine	opcode	into	a	single	32-bit	machine	code.	
For	example,	this	instruction	will	be	translated	to:	

0x0104d263

You	can	understand	this	instruction	as	follows:	

01 machine	opcode	for	“addi”	
	 04d2 hex	representation	for	1,234

6 register	“r6”
3 register	“r3”	(the	destination)

A	“synthetic	instruction”	does	not	correspond	to	exactly	one	machine	instruction.	
Instead,	the	assembler	will	translate	synthetic	instructions	into	machine	
instructions	that	perform	the	desired	operation.	

For	example,	the	following	synthetic	instruction:	

neg r7,r3 # r7 ← -(r3)

will	be	translated	into	this	machine	instruction:	

sub r7,r0,r3 # r7 ← 0-r3

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	28 284

Chapter	2:	Assembler	Syntax	

It	will	assembled	as	if	the	programmer	had	used	the	subtract	instruction	instead.	
(Note	that	register	“r0”	always	contains	the	the	value	zero.)	

The	translation	of	a	synthetic	instruction	will	usually	be	to	a	single	machine	
instruction.	However,	some	synthetic	instructions	will	require	several	machine	
instructions	and	may	require	as	many	as	four	instructions.	

For	example,	the	following	synthetic	instruction:	

movi r1,0x1122334455667 # r1 ← very large value

will	be	translated	into	the	following	sequence	of	three	machine	instructions:	

upper20 r1,0x11223
shift16 r1,r1,0x3445
xori r1,r1,0x5667

Assembler	Pseudo-ops	

A	pseudo-op	looks	very	similar	to	an	instruction	since	it	has	an	opcode	and	
operands.	

Pseudo-ops	can	be	easily	recognized	because	they	all	begin	with	a	period.	The	
pseudo	opcodes	are:	

.byte

.halfword

.word

.doubleword

.float

.string

.skip

.align

.export

.import

.equ

.begin

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	29 284

Chapter	2:	Assembler	Syntax	

(In	addition,	there	are	several	pseudo-ops	associated	with	debugging;	these	are	
listed	and	discussed	in	a	later	chapter.)	

The	period	is	part	of	the	opcode	keyword.	Spaces	are	not	allowed	after	the	period.	

Machine	and	synthetic	instructions	are	assembled	into	binary	codes	that,	when	
executed,	tell	the	processor	what	to	do.	Pseudo-ops	are	not	translated	into	machine	
instructions	to	be	executed	at	runtime.	Instead,	pseudo-ops	are	used	to	tell	the	
assembler	what	to	do	and	how	to	produce	the	object	code.	

Pseudo-ops	are	sometimes	called	“assembler	directives”.	

.byte,	.halfword,	.word,	.doubleword	

The	.byte,	.halfword,	.word,	and	.doubleword	pseudo-ops	are	used	to	allocate	1,	2,	
4,	and	8	bytes,	respectively.	For	example:	

MyVar: .doubleword 654321 # Allocate and initialize 8 bytes

A	single	operand	(which	is	an	expression)	is	required.	The	expression	speci=ies	an	
integer	value	which	will	be	placed	in	memory	before	execution	begins.	

another: .doubleword (789*5)<<6 # equal to 0x000000000003DA40

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	30 284

Chapter	2:	Assembler	Syntax	

The	expression	may	include	values	written	in	decimal	or	hex,	as	well	as	symbolic	
constants.	The	expression	appearing	in	the	operand	=ield	may	use:	

(expression	grouping
) expression	grouping
+ addition	and	unary	plus
- subtraction	and	unary	minus
* multiplication
/ integer	divison
% remainder	after	division
& bitwise	AND
| bitwise	OR
^ bitwise	XOR
! bitwise	NOT
<< shift	left	logical
>> shift	right	logical
<<< shift	left	arithmetic
>>> shift	right	arithmetic

The	expression	will	be	evaluated	and	the	value	will	be	computed	by	the	assembler	
and	not	at	“run-time”.	

All	expression	evaluation	will	be	performed	using	64	bit	signed	integers.	If	the	=inal	
value	fails	to	be	within	the	allowable	range	for	the	pseudo-op,	the	assembler	will	
issue	an	error	message.	

	 	 						Size	 	
	 	 		in	bytes			 																																							Range	of	values																																								 	
.byte	 1		 -128	…	127	
.halfword	 2	 -32,768	…	32,767	
.word	 4	 -2,147,483,648	…	2,147,483,647	
.doubleword	 8	 -9,223,372,036,854,775,808	…	9,223,372,036,854,775,807	

If	a	label	precedes	a	pseudo-op	or	instruction,	that	symbol	will	be	associated	with	
the	address	of	the	thing	that	follows.	(More	precisely,	the	symbol	will	be	associated	
with	the	address	of	the	Rirst	byte	of	the	thing	that	follows.)	The	label	may	appear	on	
the	same	line	or	on	the	preceding	line.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	31 284

Chapter	2:	Assembler	Syntax	

For	example,	this	

myVar: .doubleword 0x0123456789abcdef

is	equivalent	to:	

myVar:
.doubleword 0x0123456789abcdef

The	requirements	for	alignment	in	Blitz-64	are	discussed	elsewhere.	In	short,	data	
should	be	properly	aligned:	

	 •	Halfword	data	should	be	halfword-aligned	
	 •	Word	data	should	be	word-aligned	
	 •	Doubleword	data	should	be	doubleword-aligned	

There	is	no	alignment	requirement	for	byte-sized	data.	

If	the	data	is	improperly	aligned,	an	exception	will	be	generated	at	runtime	and	the	
instruction	will	invoke	an	emulation	routine.	There	will	be	a	very	heavy	
performance	penalty	for	this.	Therefore,	the	programmer	should	strive	to	ensure	
that	all	variables	are	properly	aligned.	

The	.align	instruction	can	be	used	for	this	purpose.	One	approach	is	to	proceed	each	
data	variable	with	an	.align	instruction:	

var1: .byte 0x01
.align 2

var2: .halfword 0x0123
.align 4

var3: .word 0x01234567
.align 8

var4: .doubleword 0x0123456789abcdef

A	simple	programming	trick	is	to	place	all	doubleword	data	=irst,	then	all	word	data,	
then	all	halfword	data,	and	=inally	all	byte	data.	Only	a	single	.align	is	required	at	the	
beginning:	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	32 284

Chapter	2:	Assembler	Syntax	

.align 8
var4: .doubleword 0x0123456789abcdef
var3: .word 0x01234567
var2: .halfword 0x0123
var1: .byte 0x01

The	.halfword,	.word,	.doubleword,	and	.Wloat	instructions	may	be	used	at	
unaligned	locations.	The	assembler	will	not	issue	warnings.	

For	the	value	of	the	.byte,	.halfword,.word,	and	.doubleword	pseudo-ops,	the	
programmer	may	use	either	absolute	value	or	may	use	addresses	and	symbols,	
which	may	be	de=ined	in	the	same	=ile	or	imported	from	another	.s	source	=ile.	For	
example:	

.doubleword MyLabel+4

.doubleword ExternSymbol

In	such	cases,	the	linker	will	not	be	able	to	compute	the	value	and	will	defer	to	the	
linker,	which	will	compute	and	=ill	in	the	=inal	values.	

The	linker	computes	all	values	using	64	bits	and	may	compute	any	value	within	this	
range.	However,	for	.byte,	.halfword,	and	.word	pseudo-ops,	there	may	be	
insuf=icient	space	to	contain	the	value.		Therefore,	for	.byte,	.halfword,	and	.word	
pseudo-ops,	the	linker	may	report	an	error	such	as:	

The	computed	value	of	a	HALFWORD	instruction	is	not	within	-32,768	...	+32,767	
(i.e.,	0x8000	...	0x7FFF).	

The	linker	will	also	print	additional	information,	including	=ilename,	line	number,	
symbol	name,	and	the	offending	value.	

.Wloat	

The	.Wloat	pseudo-op	is	used	to	allocate	8	bytes	and	=ill	it	with	the	IEEE	
representation	of	a	double-precision	(i.e.,	64-bit)	=loating	point	number.	The	
operand	should	be	a	=loating	point	constant.	Expressions	are	not	supported.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	33 284

Chapter	2:	Assembler	Syntax	

Examples	of	=loating	point	constants:	

.float 123.456

.float -3.4E-21

.float +4.5e+21

It	should	be	noted	that	Blitz-64	supports	only	double-precision	=loating	point	
arithmetic;	single-precision	is	not	supported.	

See	the	above	comments	regarding	alignment.	The	assembler	will	not	issue	a	
warning	when	the	.Wloat	instruction	occurs	on	an	improperly	aligned	address.	

.string	

The	.string	pseudo-op	is	used	to	place	character	data	in	memory.	

Escapes	(such	as	\n)	can	be	used.	These	were	described	previously.	

The	string	is	not	null-terminated.	If	desired,	the	null	character	can	be	included	in	
two	ways.	For	example:	

str: .string "Bye\0"

is	equivalent	to:	

str: .string "Bye"
.byte 0

The	characters	are	Unicode	characters	encoded	in	UTF-8.	For	example	the	following	
are	equivalent.	Since	the	UTF-8	encoding	of	“é”	is	the	two	byte	sequence	0xC3A9,	
both	will	place	5	bytes	in	memory.	

.string "café"

.string "caf\xc3\xa9"

Unicode	and	UTF-8	are	described	in	a	separate	document	titled	“An	Overview	of	
Unicode”.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	34 284

Chapter	2:	Assembler	Syntax	

.skip	

The	.skip	pseudo-op	causes	the	assembler	to	skip	over	a	number	of	bytes,	without	
specifying	initial	values.	The	operand	is	an	expression	which	is	evaluated	at	
assembly	time.	

The	bytes	are	guaranteed	to	be	=illed	with	zeros	before	execution	begins.	

If	a	label	precedes	the	.skip	pseudo-op,	then	that	symbol	is	associated	with	the	
address	of	the	=irst	byte	in	the	block	of	bytes	allocated	by	the	.skip	pseudo-op.	

Typically,	a	.skip	instruction	is	used	to	de=ine	the	memory	region	to	be	used	for	a	
large	data	structure,	such	as	an	array:	

MyArray: .skip 1000

However	a	.skip	instruction	can	be	used	for	any	variable.	In	KPL,	all	variables	are	
guaranteed	to	be	initialized	to	zero	values.	

MyVarWord: .word 0
MyVarWord: .skip 4 	←	equivalent

If	the	.skip	instruction	appears	in	a	segment	that	is	marked	“zero-=ill”,	then	no	bytes	
are	actually	stored	in	the	object	=ile.	(The	initializing	zeros	are	generated	at	runtime	
when	the	program	is	loaded	into	memory.)	Otherwise,	the	object	=ile	will	contain	N	
bytes,	all	=illed	with	zero.	Consequently,	the	programmer	should	normally	place	
uninitialized	variables	in	a	zero-=illed	segment,	particularly	if	they	are	large.	

This	expression	used	in	a	.skip	instruction	cannot	rely	on	imported	values	or	values	
that	cannot	be	determined	easily	by	the	assembler.	

[By	“easily”,	we	mean	this.	Several	synthetic	instructions	depend	on	addresses	and	
changes	to	addresses	can,	in	some	cases,	change	the	number	of	machine	instructions	
required	for	a	synthetic	instruction.	The	.skip	instructions	are	evaluated	before	such	
synthetic	instructions	are	evaluated.	However,	in	some	cases,	the	values	of	
expressions	can	depend	on	addresses,	and	the	translation	of	synthetic	instructions	
may	change	addresses.	The	.skip	pseudo-op	cannot	rely	on	values	that	cannot	be	
determined	early	in	the	assembly.	This	is	only	an	issue	for	pathological	programs;	
normally	the	value	for	a	.skip	instruction	is	a	simple	integer.]	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	35 284

Chapter	2:	Assembler	Syntax	

.align	

The	.align	pseudo-op	is	used	to	insert	padding	bytes	to	force	the	next	following	
thing	to	be	aligned.	

In	the	following	example,	the	string	may	end	on	an	improperly	aligned	address;	
the	.align	pseudo-op	will	insert	as	many	bytes	as	necessary	to	guarantee	that	the	
variable	“x”	is	properly	aligned.	

str: .string “hello”
.align 8

x: .doubleword 0x0123456789abcdef

The	padding	bytes	inserted	by	.align	are	guaranteed	to	be	zero-=illed.	

The	operand	for	.align	may	be	2,	4,	8,	16,	or	32.	The	keyword	“page”	may	be	used	as	
the	operand,	instead	of	an	integer:	

.align page

The	“.align	page”	instruction	will	add	padding	bytes	as	necessary	to	round	up	to	the	
next	page	aligned	address,	i.e.,	to	an	address	that	is	a	multiple	of	16,384	(i.e.,	a	
multiple	of	16	KiBytes	and	in	which	the	least	signi=icant	14	bits	are	zeros).	

The	.align	statement	will	insert	only	as	many	bytes	as	necessary.	If	the	address	is	
already	aligned,	then	no	bytes	will	be	inserted.	The	inserted	bytes	are	guaranteed	to	
have	value	0x00.	

The	.align	statement	is	not	normally	preceded	by	a	label.	However,	if	a	label	is	
present,	it	will	label	the	=irst	padding	byte.	If	no	padding	is	inserted,	the	label	will	
label	will	be	associated	with	the	address	of	the	following	byte.	

In	the	following	example,	the	value	of	“strX”	will	be	5	greater	than	the	value	of	“str”,	
regardless	of	how	many	bytes	are	inserted	by	the	.align:	

str: .string "hello"
strX: 	

.align 8

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	36 284

Chapter	2:	Assembler	Syntax	

The	assembler	will	keep	track	of	all	alignment	up	to	word	alignment	and	can	fully	
process	the	following	two	types	of	.align.	The	assembler	will	effectively	transform	
these	into	the	necessary	.skip	instructions.	

.align 2

.align 4

The	following	cannot	be	fully	handled	by	the	assembler	and	must	be	passed	to	the	
linker.	

.align 8

.align 16

.align 32

.align page

[When	expanding	synthetic	instructions,	the	linker	may	move	data	and	instructions	
in	memory.	However,	the	linker	will	always	insert	and	move	in	multiples	of	4.	Thus,	
word-alignment	will	be	preserved.]	

Instructions	must	be	halfword	aligned.	At	runtime,	the	Blitz-64	program	counter	
(PC)	will	always	contain	an	even	number	by	hardwiring	the	=inal	bit	to	0.	Thus,	
alignment	is	forced	and	no	exception	is	possible.	

Since	the	assembler	keeps	track	of	halfword	and	word	alignment,	it	can	detect	any	
attempt	by	the	programmer	to	place	an	instruction	at	an	odd	(non-halfword	aligned)	
address,	and	will	issue	a	warning.	

Often,	the	programmer	will	place	an	“.align	2”	instruction	directly	before	a	code	
sequence	(such	as	a	function)	to	make	certain	the	instructions	in	the	function	are	
aligned	properly,	regardless	of	what	preceded	the	code	sequence.	

.export	

This	pseudo-op	expects	a	single	symbol	as	an	operand.	This	symbol	must	be	given	a	
value	in	this	=ile,	either	with	an	.equ	instruction	or	used	as	a	label.	This	symbol	with	
its	value	will	be	placed	in	the	object	=ile	and	made	available	to	other	assembler	
source	programs	during	linking.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	37 284

Chapter	2:	Assembler	Syntax	

For	example:	

.export MyFun

.align 4
MyFun: add

…
ret

.export MyConstant
MyConstant: .equ 100

The	.export	instruction	may	appear	before	or	after	the	line	that	de=ines	the	symbol,	
as	the	programmer	prefers.	There	must	be	no	label	on	the	same	line	as	this	
instruction.	

If	a	symbol	is	not	exported,	then	that	symbol	may	only	be	used	within	the	assembly	
source	code	=ile	in	which	it	is	de=ined.	Other	=iles	are	free	to	de=ine,	export,	and	
import	symbols	with	the	same	spelling.	As	long	as	the	symbol	is	not	imported	in	the	
current	=ile,	these	other	=iles	will	de=ine	and	use	separate,	unrelated	symbols	that	are	
not	visible	in	the	current	=ile.	

.import	

This	pseudo-op	expects	a	single	symbol	as	an	operand.	This	symbol	must	not	be	
given	a	value	in	this	=ile;	instead	it	will	receive	its	value	from	another	assembly	
source	=ile	during	linking.	All	uses	of	this	symbol	in	this	=ile	will	be	replaced	by	that	
value	by	the	linker.	

For	example:	

.import OtherFun
call OtherFun

The	.import	instruction	may	appear	before	or	after	lines	that	use	the	symbol,	as	the	
programmer	prefers.	There	must	be	no	label	on	the	same	line	as	this	instruction.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	38 284

Chapter	2:	Assembler	Syntax	

A	symbol	must	not	be	both	imported	and	exported.	Every	symbol	used	in	a	given	
source	code	=ile	will	either	be:	

	 •	imported	
	 •	exported	
	 •	local	only	

.equ	

A	symbol	may	be	given	a	value	with	an	“equate”	instruction:	

	 symbol	:	 .equ	 	expression	

The	expression	may	give	an	absolute	value	or	a	relocatable	address.	For	example:	

Val_123: .equ MyConstant+23 ←	speciRies	absolute	value	123
MyAddr: .equ MyFun+8 ←	speciRies	an	address

The	expression	may	use	symbols	that	are	de=ined	later	in	the	=ile.	

A	line	containing		an	.equ	instruction	must	begin	with	a	symbol	followed	by	a	colon.	
(In	all	other	situations,	the	symbol	in	the	label	=ield	of	an	instruction	will	be	given	as	
its	value,	the	address	of	the	instruction.	However,	in	the	case	of	an	equate,	the	
symbol	is	being	associated	with	the	result	of	the	expression	evaluation.)	

X: .word 100 ←	X	=	address	of	4	bytes	containing	100
Y: .equ 100 ←	Y	=	100;	no	memory	or	addresses	are	involved

Some	expressions	may	depend	on	the	value	of	addresses:	

Z: .equ X+4 ←	Z	=	address	of	the	bytes	following	variable	X	

In	some	cases,	the	value	cannot	be	computed	by	the	assembler	and	the	evaluation	of	
such	expressions	must	be	deferred	to	the	link	stage.	

In	the	following	example,	the	assembler	is	unable	to	transform	a	synthetic	jump	
because	the	target	location	is	de=ined	in	another	=ile.	The	assembler	cannot	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	39 284

Chapter	2:	Assembler	Syntax	

determine	whether	to	produce	one	or	two	machine	instructions,	so	it	leaves	that	
task	to	the	linker.	As	a	result,	the	assembler	is	not	able	to	determine	the	value	to	be	
associated	with	“W”.	This	can	cause	an	error	if	the	symbol	is	used	in	a	context	where	
the	assembler	must	know	the	value,	such	as	an	instruction	which	requires	an	
immediate	value.	Since	the	assembler	must	be	able	to	guarantee	that	the	value	will	
=it	into	the	available	space	(i.e.,	a	16	bit	immediate	=ield),	the	assembler	must	be	able	
to	determine	the	value	at	assembly	time.	In	practice,	code	sequences	like	this	are	
unlikely	to	occur	and	will	not	be	produced	by	the	KPL	compiler.	

Addr1: …
jump ExtLab ←	Could	be	one	or	two	instructions	

Addr2: …

W: .equ Addr2-Addr1 ←	Can’t	compute	until	link	time

 addi r1,r2,W ←	Error:	must	know	the	value	at	asm	time

.begin	

The	.begin	pseudo-op	tells	the	assembler	when	to	produce	a	segment	of	code	and	is	
used	to	associate	several	parameters	with	the	segment.	

Many	programs	will	contain	only	a	single	.begin	pseudo-op	and	the	programmer	
will	place	it	at	the	beginning	of	the	assembly	code	source	=ile.	

Segments	are	described	later,	in	a	separate	chapter.	

The	.begin	pseudo-op	has	an	operand	=ield	that	can	contain	a	number	of	comma-
separated	parameters.	

.begin parameter	,	parameter	,	parameter	,	parameter

For	example:	

.begin startaddr=0x8000a0000,executable,writable

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	40 284

Chapter	2:	Assembler	Syntax	

The	following	parameters	are	indicated	by	a	keyword,	which	is	either	present	or	
absent.	

kernel
executable
writable
zerofilled

The	programmer	may	also	include	a	“startaddr=”	parameter:	

startaddr=value	

The	programmer	may	also	include	a	“gp=”	parameter:	

gp=value	

Segments	are	not	given	names	and	there	must	be	no	label	on	the	.begin	instruction.	
Any	label	directly	preceding	a	.begin	pseudo-op	will	be	associated	with	an	address	
in	the	previous	segment.	

As	an	example	to	illustrate	this,	the	value	of	“strEnd”	will	be	an	address,	namely	
“strStart+5”.	The	value	of	“msg”	will	also	be	an	address,	but	will	very	likely	be	
different	from	“strEnd”	since	the	linker	will	place	the	new	segment	at	somewhere	
different.	Perhaps	the	new	segment	will	be	placed	directly	following	the	bytes	
“hello”,	but	this	is	not	guaranteed.	In	any	case,	the	assembler	will	treat	“strEnd”	and	
“msg”	differently	because	they	are	in	different	segments.	

strLen: .equ strEnd-strStart
strStart: .string “hello”
strEnd:

.begin
msg:

.string “world"

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	41 284

Chapter	3:	Symbols	and	Expressions	

Quick	Summary	

•	A	symbol	may	be	de=ined	in	two	ways:		
	 •	A	label	on	an	instruction	de=ines	a	new	symbol.	
	 •	The	.equ	pseudo-op	equates	a	symbol	to	the	value	of	an	expression.	
•	The	value	of	a	symbol	will	either	be	an	absolute	value	or	relocatable	address	.	
•	The	assembler	can	usually	evaluate	and	determine	relative	offsets.	
•	Some	expressions	using	addresses	may	require	=inalization	by	the	linker.	
•	A	symbol	may	also	be	imported,	in	which	case	its	value	is	unknown.	
•	Use	of	imported	symbols	will	require	=inalization	by	the	linker.	
	 •	Errors	involving	imported	symbols	may	not	be	detected	until	link	time.	
•	Expressions	may	use	the	usual	operators:	+,	-,	<<,	>>,	&,	|,	…	
•	Operator	precedence	follows	traditional	languages	(C,	Java,	…).	
•	Expressions	are	used	in	instructions	that	take	immediate	values.	
•	Expressions	are	used	in	.byte,	.halfword,	.word,	.doubleword,	and	.skip.	
•	All	expression	evaluation	is	done	using	signed,	64	bit	integer	arithmetic.	
•	In	situations	requiring	fewer	bits,	the	assembler	will	detect	over=low	errors.	

Symbols	

The	assembler	builds	a	symbol	table,	mapping	identi=iers	to	values.	Each	symbol	is	
given	exactly	one	value.	There	is	no	notion	of	scope	or	lexical	nesting	levels,	as	in	
high-level	languages.	

Each	symbol	is	given	a	value	which	will	be	either:	

	 absolute	
	 relative	
	 external	

Blitz-64:	Assembler	and	Linker	/	Porter	 Page	 	of	42 284

Chapter	3:	Symbols	and	Expressions	

An	absolute	value	consists	of	a	64-bit	quantity.	A	relative	value	consists	of	a	64-bit	
(signed)	offset	relative	to	either	a	segment	or	to	an	external	symbol.	An	external	
symbol	will	have	its	value	assigned	in	some	other	assembly	=ile	and	its	value	will	not	
be	available	to	the	code	in	this	=ile	until	link	time.	However,	an	external	symbol	may	
be	used	in	expressions	within	this	=ile;	the	actual	data	will	not	be	=illed	in	until	link	
time.	

Symbols	may	be	de=ined	internally	or	externally.	If	a	symbol	is	used	in	this	=ile,	but	
not	de=ined,	then	it	must	be	“imported”	using	the	.import	pseudo-op.	If	a	symbol	is	
de=ined	in	this	=ile	and	used	in	other	=iles,	then	it	must	be	“exported"	using	
an	.export	pseudo-op.	If	a	symbol	is	not	exported,	then	its	value	will	not	be	known	
to	the	linker;	if	a	symbol	is	imported	in	some	=iles	but	never	exported,	then	an	
“unde=ined	symbol”	error	will	be	generated	at	link	time.	

If	a	symbol	is	neither	exported	nor	imported,	it	will	be	entirely	local	to	a	single	.s	=ile.	
Another	=ile	may	de=ine	another	symbol	with	the	same	spelling	without	any	
confusion;	it	will	be	an	entirely	distinct	symbol.	

Within	a	=ile,	a	symbol	may	be	de=ined	either…	

	 as	a	label	
	 in	an	equate	

A	symbol	may	be	de=ined	by	being	used	as	a	label,	in	which	case	it	is	given	a	value	
which	consists	of	an	offset	relative	to	the	beginning	of	whichever	segment	is	current	
when	the	label	is	encountered.	This	is	determined	by	whether	the	.begin	pseudo-op	
was	seen	last,	before	the	label	was	encountered.	Each	label	occurs	in	a	segment	and	
names	a	location	in	memory.	At	link	time,	the	segments	are	placed	in	their	=inal	
positions	in	memory.	Only	at	link	time	does	the	actual	address	of	the	location	in	
memory	become	known.	At	this	time,	the	label	is	assigned	an	absolute	value	by	the	
linker.	

When	a	symbol	is	de=ined	using	the	.equ	pseudo-op,	it	is	given	a	value	equal	to	the	
value	of	some	expression,	possibly	involving	other	symbols.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	43 284

Chapter	3:	Symbols	and	Expressions	

Labels	

The	label	on	any	instruction	will	de=ine	a	new	symbol,	and	the	symbol	will	be	given	
an	offset	relative	to	the	beginning	of	the	current	segment.	

Labels	de=ined	in	the	current	=ile	may	be	exported	and	labels	de=ined	in	other	=iles	
may	be	imported.	

A	label	will	name	an	address	in	memory,	and	as	such	a	label	cannot	be	given	a	=inal	
value	until	link	time.	

During	the	assembly	of	the	current	=ile,	labels	in	the	=ile	are	given	offsets	relative	to	
the	beginning	of	the	segment	in	which	they	appear.	

Equates	

An	.equ	pseudo-op	must	contain	a	label	and	an	expression.	For	example:	

MAX: .equ 1000*8

The	symbol	de=ined	in	an	equate	may	be	exported.	

The	expression	may	involved	various	operations	and	other	symbols,	as	in:	

SYM_2: .equ MAX + 0x18_0000

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	44 284

Chapter	3:	Symbols	and	Expressions	

Expression	Syntax	and	Evaluation	

Instructions	and	pseudo-ops	may	use	expressions	as	operands.	Expressions	may	be	
occur	in:	

	 .byte	
	 .halfword	
	 .word	
	 .doubleword	
	 .skip	
	 .equ	
	 various	Blitz-64	instructions	

The	syntax	of	expressions	is	given	by	the	following	context-free	grammar.	

	 expr	 ::=	 expr1			{			“|”			expr1			}	
	 expr1	 ::=	 expr2			{			“^”			expr2			}	
	 expr2	 ::=	 expr3			{			“&”			expr3			}	
	 expr3	 ::=	 expr4			{			(“<<”			|			“>>”			|			“<<<”			|			“>>>”)			expr4			}	
	 expr4	 ::=	 expr5			{			(“+”			|			“-”)			expr5			}	
	 expr5	 ::=	 expr6			{			(“*”			|			“/”			|			“%”)			expr6			}	
	 expr6	 ::=	 “+”			expr6			|			“-”				expr6			|			“!”			expr6	
	 	 	 	 |			ID			|			INTEGER			|			STRING			|			“(”			expr			“)”	

[In	this	grammar,	the	following	notation	is	used.	The	characters	enclosed	in	double	
quotes	are	terminals	in	the	grammar.	The	braces	{	}	are	used	to	mean	“zero	or	more”	
occurrences.	The	vertical	bar	|	is	used	to	mean	alternation.	Parentheses	are	used	for	
grouping.	The	start	symbol	is	“expr”.]	

This	syntax	results	in	the	following	precedences	and	associativities:	

	 highest:	 !				unary+				unary-			 (right	associative)	
			 	 *				/				%	 (left	associative)	
	 	 +				-	 (left	associative)	
	 	 <<				>>				<<<			>>>	 (left	associative)	
	 	 &	 (left	associative)	
	 	 ^	 (left	associative)	
	 lowest:	 |	 (left	associative)	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	45 284

Chapter	3:	Symbols	and	Expressions	

For	example,	

a + b * c

is	equivalent	to:	

a + (b * c)

Likewise,	

a + b >> - ! c & d * e

is	equivalent	to:	

((a + b) >> (- (! c))) & (d * e)

If	a	string	is	used	in	an	expression,	it	must	have	exactly	8	bytes.	The	string	will	be	
interpreted	as	a	64	bit	integer,	based	on	the	ASCII	values	of	the	8	characters,	or	the	
UTF-8	encodings	for	non-ASCII	characters.	With	strings,	Big	Endian	order	is	used:	
the	=irst	character	will	determine	the	most	signi=icant	byte.	

The	following	operators	are	recognized	in	expressions:	

	 unary+	 nop	
	 unary-	 64-bit	signed	arithmetic	negation	
	 !	 64-bit	logical	negation	(NOT)	
	 *	 64-bit	multiplication	
	 /	 64-bit	integer	division	with	64-bit	integer	result	
	 %	 64-bit	modulo,	with	64-bit	result	
	 binary+	 64-bit	signed	addition	
	 binary-	 64-bit	signed	subtraction	
	 <<	 left	shift	logical	(i.e.,	zeros	shifted	in	from	right)	
	 >>	 right	shift	logical	(i.e.,	zeros	shifted	in	from	left)	
	 <<<	 left	shift	arithmetic	(i.e.,	error	if	loss	of	signi=icant	bits)	
	 >>>	 right	shift	arithmetic	(i.e.,	sign	bit	shifted	in	on	left)	
	 &	 64-bit	logical	AND	
	 ^	 64-bit	logical	Exclusive-OR	
	 |	 64-bit	logical	OR	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	46 284

Chapter	3:	Symbols	and	Expressions	

With	the	shift	operators	(<<,	>>,	<<<,	and	>>>)	the	second	operand	must	evaluate	to	
an	integer	between	0	and	63.	The	logical	shift	operators	(<<,	>>)	will	shift	in	0	bits.	
The	right	shift	arithmetic	operator	(>>>)	will	shift	sign	bits	in	on	the	left.	The	left	
shift	arithmetic	operator	(<<<)	will	treat	the	argument	as	a	signed	integer	and	will	
signal	an	error	if	signi=icant	bits	are	shifted	out.	

With	the	division	operators	(/	and	%),	the	=irst	operand	must	be	non-negative	and	
the	second	operand	must	be	positive.	(In	the	“C”	language,	the/	and	%	operators	
have	machine-dependent	results	with	negative	operands.)	

All	operators	except	addition	and	subtraction	require	both	operands	to	evaluate	to	
absolute	values,	which	can	be	determined	by	the	assembler.	All	arithmetic	is	done	
with	signed	64-bit	values.	

If	the	next	two	paragraphs	are	confusing,	just	look	at	the	examples.	

The	addition	operator	+	requires	that	at	least	one	of	the	operands	evaluates	to	an	
absolute	value.	The	other	operand	may	be	an	address.	If	one	operand	is	an	address,	
then	the	result	will	be	relative	to	that	location.	Thus,	the	assembler	will	be	unable	to	
determine	the	value	and	the	linker	(which	will	place	the	segments	in	memory)	will	
be	required	to	determine	the	exact	value.	

For	the	subtraction	operator,	the	=irst	operand	may	be	an	absolute	value	or	an	
address.	If	the	=irst	operand	is	an	absolute	value,	then	the	second	must	also	be	an	
absolute	value.	If	the	=irst	operand	is	an	address	and	the	second	is	an	absolute	value,	
then	the	result	will	be	relative	to	that	address.	If	both	operands	are	addresses,	the	
result	will	be	an	absolute	value,	which	represents	the	difference	in	bytes	between	
the	two	addresses.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	47 284

Chapter	3:	Symbols	and	Expressions	

Lab_1: add r1,r2,r3 ←	Lab_1	is	a	relocatable	address
…

Lab_2: add r1,r2,r3 ←	Lab_2	is	a	relocatable	address
…

max: .equ 100 ←	max	is	an	absolute	value
…

u: .equ Lab_1 + 8 ←	The	value	is	a	relocatable	address
v: .equ 8 + Lab_1 ←	The	value	is	a	relocatable	address
bad_1: .equ Lab_1 + Lab_2 ←	Error,	not	allowed
w: .equ max + 8 ←	The	value	is	an	absolute	value
x: .equ max - 8 ←	The	value	is	an	absolute	value
y: .equ Lab_1 - 8 ←	The	value	is	a	relocatable	address
z: .equ Lab_2 - Lab_1 ←	The	value	is	an	absolute	value
bad_2: .equ 8 - Lab_2 ←	Error,	not	allowed

An	attempt	is	made	to	evaluate	all	expressions	at	assembly-time.	If	the	expression	
cannot	be	evaluated	at	assembly	time,	the	problem	is	passed	on	to	the	link	stage.	

The	following	will	prevent	an	expression	from	being	evaluated	at	assembly	time.	

	 •	The	expression	depends	on	symbols	which	are	imported.	
	 •	The	expression	depends	on	the	value	of	an	address.	

Here	are	the	instructions	which	might	depend	on	the	value	of	an	address:	

	 movi
jump
call
bXXX
loadX
storeX

In	most	uses	of	the	above	instructions,	the	assembler	will	be	able	to	determine	the	
exact	offset	and	produce	the	=inal	machine	code	translations.	However,	in	some	
cases,	the	assembler	will	be	unable	to	complete	the	translation	of	the	instruction	
and	must	pass	the	task	on	to	the	linker.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	48 284

Chapter	3:	Symbols	and	Expressions	

This	happens	whenever	one	of	the	above	instructions	uses	an	address	and	the	
assembler	cannot	determine	the	exact	offset	between	the	instruction	and	the	target	
address.	Whenever	the	assembler	is	unable	to	produce	the	=inal	machine	code,	the	
linker	will	be	required	to	complete	the	translation.	

Pseudo-ops	such	as	.word	and	.doubleword	may	also	use	expressions	which	
contain	values	that	cannot	be	determined	until	link	time.	

An	expression	may	evaluate	to	either	an	absolute	64-bit	value,	or	may	evaluate	to	a	
relocatable	value.	A	relocatable	value	is	a	64-bit	offset	relative	to	some	symbolic	
address.	If	the	expression	evaluates	to	a	relocatable	value	(i.e.,	an	address),	its	
absolute	value	cannot	be	determined	until	link	time.	

At	link	time,	the	absolute	locations	of	the	segments	will	be	determined	and	the	
absolute	values	of	all	symbols	will	be	determined.	At	link	time,	the	=inal,	absolute	
values	of	all	expressions	will	be	determined	by	adding	the	offsets	to	the	addresses	
assigned	to	the	relocatable	symbols.	

The	.skip	pseudo-op	requires	the	expression	to	evaluate	to	an	absolute	value.	

In	the	case	of	the	.equ	pseudo-op,	the	expression	may	evaluate	to	either	a	
relocatable	address	or	an	absolute	value.	In	either	case,	the	equated	symbol	will	be	
given	a	relocatable	or	absolute	value	(respectively).	The	actual	value	may	not	be	
determined	until	at	link	time.	Normally,	the	symbol	would	be	used	in	other	
instructions,	and	the	computed	value	will	be	placed	in	the	appropriate	bytes	in	
memory	at	link	time.	

NOTE:	At	this	time,	all	instructions	except	synthetic	instruction	of	format	S-1,	…,	S-7	
require	expressions	to	have	an	absolute	value	that	can	be	determined	by	the	
assembler	before	linking.	Here	are	the	instructions	with	formats	S-1,	…,	S-7:	

	 movi
jump
call
bXXX
loadX
storeX

All	other	instructions	require	values	that	must	be	computable	by	the	assembler	
alone.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	49 284

Chapter	3:	Symbols	and	Expressions	

NOTE:	In	the	case	of	a	subtraction	expression	where	both	operands	are	addresses,	
the	assembler	must	be	able	to	determine	the	relative	offset	between	the	two	
addresses.	The	computation	will	not	be	passed	on	to	the	link	stage.	While	the	
assembler	is	not	required	to	know	the	actual	addresses	involved	in	the	subtraction,	
it	must	be	able	to	determine	the	exact	size	of	everything	between	the	two	addresses.	
This	is	because	the	assembler	must	be	able	to	compute	the	difference	between	the	
addresses.	This	requires	that	all	of	the	following	conditions	hold:	(1)	Both	addresses	
must	be	in	the	same	segment.	(2)	If	any	synthetic	instructions	fall	between	the	two	
addresses,	the	assembler	must	be	able	to	fully	determine	the	length	of	the	
translations,	if	not	their	exact	translations.	(3)	If	any	.align	instructions	fall	between	
the	two	addresses,	the	assembler	must	be	able	to	fully	resolve	them.	This	means	that	
only	halfword	and	word	.align	instructions	may	be	used	between	the	two	addresses;	
larger	.aligns	cannot	be	fully	translated	by	the	assembler	and	must	wait	for	the	link	
stage.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	50 284

Chapter	4:	Segments	

Quick	Summary	

•	The	linker	combines	segments	to	produce	an	executable	=ile.	
•	Each	assembly	source	=ile	will	contain	one	or	more	segments.	
•	Segments	are	identi=ied	with	the	.begin	pseudo-op.	
•	All	the	bytes	in	each	segment	are	contiguous	and	placed	in	memory	as	a	unit.	
•	Segments	contain	instructions	and	data	bytes.	
	 	 •	Every	instruction	and	data	byte	is	in	exactly	one	segment.		
•	A	segment	may	be	pinned	to	a	speci=ic	location	or	may	be	relocatable.	
•	A	segment	may	be	marked	as	executable	or	not.	
•	Each	segment	is	either	read-only	or	read-write.	
•	The	“gp”	register	is	used	to	make	addressing	faster.	
	 	 •	Most	accesses	to	static	data	can	be	done	in	a	single	gp-relative	instruction.	

Segments	

The	linker	will	place	code	and	data	into	pages	of	memory.	Each	page	of	virtual	
address	space	will	be	marked	either	executable	or	not,	and	each	page	will	be	marked	
either	writable	or	not.	With	the	Blitz-64	hardware	design,	any	page	that	is	mapped	
into	the	virtual	address	space	will	be	readable,	so	there	is	no	such	status	as	“present,	
but	not	readable”.	

Each	assembly	code	source	=ile	consists	of	a	sequence	of	“segments”.	Each	segment	
starts	with	a	“.begin”	pseudo-op	and	consists	of	a	sequence	of	instructions.	The	
segments	are	listed	one-after-the-other	in	the	source	code	=ile.	Thus,	every	line	in	
the	source	=ile	will	belong	to	exactly	one	segment.	

An	assembly	source	=ile	will	typically	contain	just	a	couple	of	segments,	and	
sometimes	only	a	single	segment.	For	example	a	given	assembly	source	=ile	might	
contain	two	segments:	The	=irst	segment	contains	instructions	and	these	bytes	will	

Blitz-64:	Assembler	and	Linker	/	Porter	 Page	 	of	51 284

Chapter	4:	Segments	

go	into	pages	marked	“executable”	but	not	“writable”.	The	second	segment	contains	
data	and	variables,	and	these	bytes	will	go	into	pages	marked	“writable”	but	not	
“executable”.	

A	segment	may	have	any	size,	although	the	assembler	will	round	each	segment	up	to	
a	multiple	of	8	bytes,	by	appending	padding	zeros	at	the	end	as	necessary.	A	segment	
size	of	zero	is	possible,	but	pointless.	

[Note:	When	we	referred	to	the	“size	of	the	segment”	in	the	previous	paragraph,	we	
meant	the	size	as	the	assembler	determines	it	and	the	number	of	bytes	it	puts	in	
the	.o	object	=ile.	Later,	when	the	linker	is	processing	a	segment,	the	linker	may	
insert	bytes	in	the	course	of	translating	synthetic	instructions	and	processing	.align	
pseudo-ops.	Thus,	the	size	of	the	segment	may	be	changed	by	the	linker	and	may	no	
longer	be	a	multiple	of	8	bytes.	Although	the	assembler	adds	padding	bytes	to	the	
segment,	it	would	probably	have	been	a	better	design	if	the	assembler	did	not	add	
those	bytes.	Instead,	the	assembler	ought	to	add	“padding	bytes”	to	the	.o	object	=ile	
after	the	segment	data.	These	padding	bytes	would	be	to	ensure	that	the	following	
=ields	in	the	.o	=ile	are	properly	aligned,	and	would	not	increase	the	size	of	the	
segment	itself.]	

When	placed	in	memory,	each	segment	will	be	placed	on	a	doubleword	aligned	
address.	A	single	page	of	memory	may	contain	parts	of	several	segments.	

The	term	“segment”,	as	used	here,	is	a	purely	software	concept	used	only	by	the	
assembler	and	linker;	at	runtime	there	is	no	such	thing	as	a	segment.	(Other	
computer	systems	have	used	the	term	“segment”	differently,	e.g.,	for	regions	of	
memory	supported	by	various	hardware	features.)	

The	purpose	of	the	“.begin”	pseudo-op	is	delineate	segments	and	to	specify	some	
parameters	that	apply	to	the	segment,	like	“writable”	or	“executable”.	

Below	is	a	small,	arti=icial	example,	representing	a	single	assembly	source	code	=ile	
containing	three	segments:	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	52 284

Chapter	4:	Segments	

.begin executable
entry: loadd r1,myVar

addi r1,r1,300
stored myVar,r1
ret

.begin writable
myVar: .doubleword 12345
other: .doubleword 200

.begin
str: .string “Hello”

.byte 0
xor r1,r2,r3

Each	segment	must	start	with	a	.begin	pseudo-op.	A	segment	runs	from	a	.begin	
pseudo-op	until	just	before	the	next	.begin	pseudo-op,	or	until	the	end-of-=ile.	Every	
instruction	and	every	other	pseudo-op	will	be	located	in	exactly	one	segment,	based	
on	where	it	is	placed.	

There	is	no	requirement	that	an	“executable”	segment	contains	only	machine	
instructions;	it	may	contain	data	as	well.	There	is	no	requirement	that	a	“writable”	
segment	contains	only	data;	it	may	contain	machine	instructions	as	well.	

In	this	example,	the	third	segment	is	marked	with	neither	executable	nor	writable.	It	
contains	a	string	and	an	XOR	instruction.	This	segment	is	not	executable	and	the	
XOR	instruction	cannot	be	executed.	

The	.begin	pseudo-op	has	an	operand	=ield	that	can	contain	a	number	of	comma-
separated	parameters.	

.begin parameter , parameter , parameter , parameter

For	example:	

.begin startaddr=0x8000a0000,executable,writable

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	53 284

Chapter	4:	Segments	

The	following	parameters	are	indicated	by	a	keyword,	which	is	either	present	or	
absent.	

kernel
executable
writable
zerofilled

The	programmer	may	also	include	a	“startaddr=”	parameter:	

startaddr=integer	

The	programmer	may	also	include	a	“gp=”	parameter:	

gp=integer	

The	“value”	associated	with	a	“startaddr=”	or	“gp=”	parameter	must	be	an	integer;	
expressions	are	not	allowed.	Normally,	this	value	is	expressed	in	hex,	but	decimal	is	
also	okay.	The	following	(in	which	“undeWined”	is	a	keyword	recognized	by	the	
assembler)	is	also	allowed:	

gp=undefined	

The	parameters	can	be	given	in	any	order.	

Segments	are	not	given	names	and	a	source	line	containing	.begin	must	not	contain	
a	label.	Any	label	directly	preceding	a	.begin	pseudo-op	will	be	associated	with	an	
address	in	the	previous	segment.	

The	job	of	the	linker	is	to	determine	where	in	memory	to	place	the	segments.	More	
speci=ically,	the	input	to	the	linker	will	be	a	number	of	object	=iles,	each	containing	a	
number	of	segments.	These	segments	must	be	placed	into	memory	pages.	One	
constraint	is	that	two	segments	with	different	executable/writable	attributes	may	
not	be	placed	in	the	same	page.	Another	constraint	is	that	segments	may	not	
overlap.	The	linker	will	attempt	to	pack	segments	close	together	in	order	to	reduce	
the	number	of	pages	in	the	=inal	memory	image.	

Normally,	the	linker	will	be	free	to	choose	the	location	of	a	segment.	However,	the	
programmer	may	demand	that	the	linker	place	a	segment	at	a	given	memory	
address.	This	is	the	purpose	of	the	“startaddr=”	parameter,	which	gives	the	starting	
address	of	the	segment	as	an	absolute	value.	This	parameter	forces	the	linker	to	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	54 284

Chapter	4:	Segments	

place	a	segment	at	a	particular	location	in	memory.	The	startaddr=	value	must	be	a	
doubleword	aligned	address.	

If	there	is	no	starting	address	given	for	a	segment,	the	linker	is	free	to	place	the	
segment	where	it	best	=its.	By	default,	the	linker	will	place	segments	in	the	virtual	
address	region,	which	starts	at	0x8_0000_0000.	The	linker	will	more-or-less	place	
segments	one	after	another,	=illing	up	the	virtual	address	space	from	0x8_0000_0000	
on	up,	within	the	previously	mentioned	constraints.	

However,	the	presence	of	the	“kernel”	keyword	will	force	the	linker	to	place	the	
segment	in	the	lower,	physical	region	of	address	space.	Segments	with	this	keyword	
will	be	placed	in	low	memory,	starting	with	0x0_0000_0000	and	going	up.	

The	“zeroWilled”	keyword	is	used	to	indicate	that	a	segment	will	contain	only	zeros.	
Thus,	only	the	following	are	allowable	in	a	“zeroWilled”	segment:	

.byte 0

.halfword 0

.word 0

.doubleword 0

.float 0.0

.skip <any>

.align <any>

.equ <any>

.import <any>

.export <any>

The	data	in	zero=illed	segments	is	not	present	in	the	object	and	executable	=iles,	
since	the	pages	can	be	created	and	initialized	at	the	time	the	executable	=ile	is	loaded	
into	memory.	Zero=illed	segments	are	useful	for	large	data	structures	(such	as	
gigantic	arrays,	spaces	for	heaps,	and	so	on),	since	these	data	structures	would	
waste	a	large	amount	of	space	in	the	object	and	executable	=iles.	

For	example:	

.begin startaddr=0x900000000,writable,zerofilled
MyHeap: .skip 0x100000000 # 4 GiBytes

The	assembler	will	round	each	segment	up	in	size	to	a	multiple	of	8	bytes,	by	adding	
1	to	7	bytes	of	0x00,	as	necessary.	The	linker	will	place	each	segment	on	an	aligned	8	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	55 284

Chapter	4:	Segments	

byte	address.	Or,	to	put	it	another	way,	the	linker	will	assign	to	each	segment	a	
doubleword	aligned	address,	where	the	bytes	will	be	placed	when	the	executable	is	
loaded	at	runtime.	

Note	that	in	Unix/Linux	systems,	segments	are	given	names	such	as	

.text	

.data	

.rodata	

.bss	

Blitz	doesn’t	do	it	this	way.	Unix/Linux	confuses	segment	attributes	with	the	
segment	names.	We	see	no	good	reason	to	name	segments	in	the	=irst	place.	

The	Global	Pointer	Register,	gp	

Several	of	the	synthetic	instructions	include	an	operand	that	can	be	an	“address”.	
Examples	include:	

	 beq	 Reg1,Reg2,address	
	 loadb	 Reg1,address	
	 storew	 address,Reg2	
	 call	 address	
	 jump	 address	
	 movi	 Reg1,address	

In	the	course	of	generating	code,	the	assembler	and	linker	must	be	able	to	translate	
memory	addresses	into	the	forms	required	by	the	machine	instructions.	For	
example,	consider	this	line	from	an	assembly	source	=ile:	

loadb r1,MyVar

Assuming	the	address	of	MyVar	is	within	0	…	0x0_0000_7fff,	then	the	above	
instruction	can	be	assembled	as:	

load.b r1,0x7fff(r0)

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	56 284

Chapter	4:	Segments	

The	virtual	address	space	starts	at	0x8_0000_0000.	Thus,	this	optimization	only	
works	for	programs	running	in	kernel	mode,	since	user	programs	cannot	access	data	
using	addresses	that	are	not	in	the	virtual	memory	region.	

However,	the	global	pointer	register	(gp)	is	intended	to	be	used	for	the	same	
purpose,	making	a	range	of	addresses	in	the	virtual	address	region	particularly	
quick	to	access.	

For	user	programs	running	in	a	virtual	address	space,	the	default	assumption	is	that	
the	global	pointer	register	(gp)	will	contain	the	value	0x8_0000_8000	at	runtime.	

In	order	for	this	to	work,	the	gp	register	will	be	initialized	either	by	the	kernel	
during	thread-creation	or	within	the	=irst	couple	of	instructions	at	thread-startup,	as	
part	of	the	thread	initialization	prologue.	

User	programs	typically	place	their	data	at	the	beginning	of	the	virtual	address	
space,	i.e.,	at	0x8_0000_0000.	If	register	gp	contains	0x8_0000_8000	—	which	it	
normally	will	—	then	accessing	any	data	within	the	=irst	64	KiBytes	can	be	done	
with	only	one	instruction.		

For	kernel	code	programs,	the	default	assumption	is	that	the	global	pointer	register	
(gp)	will	contain	the	value	0x0_0001_0000.	In	combination	with	register	r0,	this	
makes	accessing	data	in	the	=irst	96	KiBytes	of	memory	especially	ef=icient.	(For	the	
=irst	32	KiBytes,	we	use	a	positive	offset	from	r0	and	for	the	following	64	KiBytes	we	
use	an	offset	from	gp.)		

By	assuming	the	gp	register	contains	one	of	these	known	values,	the	assembler	and	
linker	can	generate	shorter	code	sequences	when	translating	some	synthetic	
instructions.	

The	“gp=”	parameter	tells	the	assembler	and	linker	what	value	will	be	in	the	register	
gp	at	runtime.	

The	keyword	“undeWined”	can	also	be	used	to	override	any	assumption	about	the	
contents	of	the	gp	register.	In	this	case,	the	assembler	and	linker	will	not	make	any	
assumption	about	the	contents	of	the	gp	register	for	any	instructions	in	that	
segment.	This	would	be	used	for	code	in	which	the	gp	register	(i.e.,	register	r13)	is	
used	for	an	entirely	different	purpose.	

.begin gp=undefined

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	57 284

Chapter	4:	Segments	

When	the	assembler	is	synthesizing	a	MOVI	instruction	and	the	value	to	be	loaded	is	
within	a	certain	range	of	values,	the	assembler	may	use	gp,	as	shown	in	the	
following	example.	

Consider	the	following	code:	

movi r1,MyVar # Load address into reg
…

Put data segment in the usual place:
.begin startaddr=0x800000000,writable

Arr: .skip 0x84D0 # Size = 34,000 bytes
MyVar: .doubleword 1234

The	MOVI	instruction	is	a	synthetic	instruction	which	moves	the	address	of	a	
variable	into	a	register.	The	address	of	“MyVar”	is		

 0x8,0000,84D0
= 0x8,0000,0000 + 0x84D0
= 0x8,0000,8000 + 0x04D0

Since	the	assembler	can	assume	that	gp	contains	0x8_0000_8000,	it	can	translate	
the	MOVI	into	a	single	ADDI	instruction,	exactly	as	if	the	programmer	had	coded	
this:	

addi r1,gp,0x04D0

Without	this	assumption	about	gp,	the	assembler	would	be	forced	to	use	two	
instructions,	such	as:	

upper20 r1,0x80000
addi r1,r1,0x84D0

(This	example	was	simpli=ied.	Actually	XORI	would	be	used	and	we	failed	to	account	
for	sign	extension	properly,	but	you	get	the	idea.)	

More	precisely,	positive	offsets	will	be	used	for	addresses	above	0x8_0000_8000	and	
negative	offsets	will	be	used	for	addresses	below	that:	

	 8_0000_0000 … 8_0000_7fff	 negative	offset	8000	…	ffff	from	gp	
	 8_0000_8000 … 8_0000_ffff	 positive	offset	0	…	7fff	from	gp	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	58 284

Chapter	4:	Segments	

The	assembler/linker	can	deal	with	arbitrary	addresses,	but	addresses	outside	this	
range	might	require	additional	instructions	or	the	use	of	the	temp	register	“t”.	
Therefore,	the	programmer	is	encouraged	to	place	commonly	used	variables	at	the	
bottom	of	the	virtual	address	space,	in	the	=irst	64	KiBytes.	The	typical	practice	
would	be	to	place	all	static,	non-stack	data	at	the	bottom	of	the	virtual	address	
space,	with	the	code	segments	in	pages	following	the	data	pages.	

The	above	comments	about	register	gp	apply	not	only	to	MOVI	but	also	to	LOAD	and	
STORE	instructions.	LOAD	and	STORE	are	used	to	access	data	in	static,	=ixed	memory	
locations.	Thus,	the	gp-relative	addressing	scheme	of	Blitz-64	enables	the	vast	
majority	of	accesses	to	static	data	variables	to	be	performed	with	a	single	
instruction.	

The	BRANCH	(Bxx),	JUMP,	and	CALL	instructions	also	use	arbitrary	addresses	as	
targets.	For	them,	PC-relative	addressing	is	more	common.	However,	the	gp-relative	
addressing	mechanism	is	still	present	and	gp-relative	jumps	can	be	generated	
whenever	the	target	address	happens	to	be	in	low	memory.	As	a	consequence,	it	
might	make	sense	to	place	jump	tables	in	low-memory,	so	the	code	can	easily	branch	
to	various	entries.	

Kernel	code	will	not	be	running	in	a	virtual	address	space,	so	things	are	different.	All	
addresses	will	be	located	in	the	physical	memory	region.	

For	kernel	code,	the	gp	register	is	assumed	to	be	initialized	to	0x0_0001_0000.	This	
means	that	any	address	in	the	=irst	6	pages	(i.e.,	the	=irst	96	KiBytes	of	memory,	0	…	
0x0_0001_7fff)	can	be	accessed	with	a	single	instruction:	

	 0_0000_0000 … 0_0000_7fff	 offset	0	…	7fff	from	r0	
	 0_0000_8000 … 0_0000_ffff	 negative	offset	8000	…	ffff	from	gp	
	 0_0001_0000 … 0_0001_7fff	 positive	offset	0	…	7fff	from	gp	

If	the	“kernel”	keyword	is	present	in	the	.begin	pseudo-op,	the	default	assumption	
is	that	register	gp	will	contain	the	value	0x0_0001_0000.	If	the	“kernel”	keyword	is	
not	present,	the	assumption	is	that	gp	contains	0x8_0000_8000.	

If,	for	some	reason,	the	gp	register	will	have	a	different	value	at	runtime,	the	
programmer	can	override	the	default	assumption	with	the	“gp=”	parameter.	If	the	
programmer	wants	to	prevent	the	assembler	from	producing	code	which	relies	on	
the	value	in	in	gp,	then	“gp=undeWined”	can	be	used	on	the	.begin	pseudo-op.	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	59 284

Chapter	4:	Segments	

The	MOVI	/	gp	Exception		There	is	one	case	where	the	assembler	will	not	use	the	
assumed	value	in	gp:	Whenever	the	destination	register	of	a	MOVI	instruction	is	the	
gp	register	itself,	the	assembler	will	speci=ically	avoid	using	any	assumed	value	of	gp.	
This	exception	makes	it	possible	to	initialize	the	gp	register.	

For	example,	it’s	likely	that	gp	will	need	to	be	initialized	right	after	any	thread	begins	
execution	(in	the	“thread	prologue”)	to	contain	its	expected	value	of	0x8_0000_8000.	
To	do	this,	the	programmer	might	consider	using	the	MOVI	instruction.	Because	of	
this	exception,	the	MOVI	is	safe	to	use	for	this	purpose.	

NOTE:	The	“gp=”	parameter	is	not	required	on	the	.begin	instruction.	If	missing,	
then	the	assembler	will	determine	whether	the	“kernel”	parameter	is	present.	If	this	
is	a	kernel	segment,	the	assembler	will	assume	the	default	value	of	0x0_0001_0000.	
If	this	segment	is	not	marked	“kernel”,	then	the	assembler	will	make	no	
assumptions,	since	the	segment	might	go	into	kernel	memory	or	into	user	memory.	
The	assembler	will	defer	to	the	linker,	which	will	choose	the	correct	default	value.	

	 gp	=	value	 Programmer	gives	the	value.	
	 gp	=	undeWined	 The	gp	register	will	not	be	used	for	synthetic	instructions.	
	 kernel,	<no	gp=>	 A	value	of	0x0_0001_0000	will	be	assumed.	
	 <no	kernel>,	<no	gp=>	 Assembler	assumes	nothing.	
	 	 Linker	assumes:		 kernel	(-k):	 0x0_0001_0000	
	 	 	 user:	 0x8_0000_8000	

Blitz-64	Instruction	Set	Architecture	/	Porter	 Page	 	of	 	60 284

Chapter	5:	Synthetic	Instructions	

Quick	Summary	

•	The	assembler	recognizes	a	set	of	synthetic	instructions.	
•	Synthetic	instructions	are	not	implemented	in	hardware.	
•	The	assembler	translates	each	synthetic	instruction	into	an	equivalent	machine	
instruction.	
	 	 •	In	most	cases,	the	translation	is	to	a	single	machine	instruction.	
	 	 •	In	the	other	cases,	a	couple	of	instructions	will	be	required.	
•	The	technique	of	synthetic	instructions	expands	the	effective	instruction	set.	
	 	 •	Hardware	is	simpli=ied	since	only	machine	instructions	are	executed.	
•	In	most	cases,	the	assembler	can	perform	the	translation.	
	 	 •	In	some	cases,	the	assembler	will	have	to	pass	the	task	to	the	linker.	
•	The	algorithm	used	by	the	assembler	is	complex.	
	 	 •	The	sizes	of	the	translations	(1,	2,	3,	or	4	instructions)	affect	address	values.	
	 	 •	The	values	of	addresses	affect	how	many	instructions	are	required.	
	 	 •	Imported	symbols	introduce	uncertainty,	further	complicating	translation.	

Introduction	

The	technique	of	using	synthetic	instructions	yields	a	great	enlargement	of	the	
instruction	set	while	allowing	the	underlying	hardware	to	remain	very	simple.	

In	some	sense,	no	new	functionality	is	added	to	the	Instruction	Set	Architecture	
(ISA).	But	the	presence	of	the	synthetic	instructions	shows	how	the	underlying	
machine	instructions	were	designed	in	order	to	allow	easy	implementation	of	
common	operations.	

The	programmer	need	not	use	synthetic	instructions,	but	they	make	programming	
much	easier	and	the	programs	more	readable.	

Blitz-64:	Assembler	and	Linker	/	Porter	 Page	 	of	61 284

Chapter	5:	Synthetic	Instructions	

By	keeping	the	hardware	design	as	simple	as	possible,	we	achieve	the	following:	

	 •	The	processor	core	requires	fewer	transistors	and	wires.	
	 •	The	circuit	real-estate	is	smaller.	
	 •	More	cores	can	be	placed	on	a	single	die,	leading	to	improved	parallelism.	
	 •	The	circuits	are	easier	to	design,	debug,	and	verify.	

The	synthetic	instructions	are	documented	alongside	the	machine	instructions	in	
the	document	describing	the	Instruction	Set	Architecture	(ISA).	That	document	
contains	an	entry	for	each	synthetic	instruction,	specifying	what	it	does	and	how	it	is	
used.	

Simple	Translations	

A	number	of	synthetic	instructions	are	easy	to	translate.	Such	cases:	

	 •	Always	translate	to	exactly	one	instruction	
	 •	Have	no	error	conditions	

Next,	we	list	the	easy	translations	and	we	will	say	nothing	further	about	them.	

Arithmetic	Negation:	

	 Synthetic:	 neg RegD,Reg1	
	 Translation:	 sub RegD,r0,Reg1	

Bit	Negation	(NOT):	

	 Synthetic:	 bitnot RegD,Reg1
	 Translation:	 xori RegD,Reg1,-1	

Logical	Negation	(0=False;	other=True):	

	 Synthetic:	 lognot RegD,Reg1
	 Translation:	 testeq RegD,r0,Reg1

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	62 284

Chapter	5:	Synthetic	Instructions	

Move	(Register	to	Register):	

	 Synthetic:	 mov RegD,Reg1
	 Translation:	 ori RegD,Reg1,0	

Nop:	

	 Synthetic:	 nop
	 Translation:	 addi r0,r0,0

Call	(Through	Register):	

	 Synthetic:	 callr Reg1
	 Translation:	 jalr lr,0(Reg1)

Jump	(Through	Register):	

	 Synthetic:	 jr Reg1
	 Translation:	 jalr r0,0(Reg1)

Return:	

	 Synthetic:	 ret
	 Translation:	 jalr r0,0(lr)

CSR	Write:	

	 Synthetic:	 csrwrite CSRReg,Reg2
	 Translation:	 csrswap r0,CSRReg,Reg2	

Test	If	Greater	Than:	

	 Synthetic:	 testgt RegD,Reg1,Reg2
	 Translation:	 testlt RegD,Reg2,Reg1

Test	If	Greater	Than	Or	Equal:	

	 Synthetic:	 testge RegD,Reg1,Reg2
	 Translation:	 testle RegD,Reg2,Reg1

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	63 284

Chapter	5:	Synthetic	Instructions	

Test	If	Greater	Than	(Floating):	

	 Synthetic:	 fgt RegD,Reg1,Reg2
	 Translation:	 flt RegD,Reg2,Reg1

Test	If	Greater	Than	Or	Equal	(Floating):	

	 Synthetic:	 fge RegD,Reg1,Reg2
	 Translation:	 fle RegD,Reg2,Reg1

Test	If	Equal	To	Zero:	

	 Synthetic:	 testeqz RegD,Reg1
	 Translation:	 testeq RegD,Reg1,r0

Test	If	Not	Equal	To	Zero:	

	 Synthetic:	 testnez RegD,Reg1
	 Translation:	 testne RegD,Reg1,r0

Test	If	Less	Than	Zero:	

	 Synthetic:	 testltz RegD,Reg1
	 Translation:	 testlt RegD,Reg1,r0

Test	If	Lass	Than	Or	Equal	To	Zero:	

	 Synthetic:	 testlez RegD,Reg1
	 Translation:	 testle RegD,Reg1,r0

Test	If	Greater	Than	Zero:	

	 Synthetic:	 testgtz RegD,Reg1
	 Translation:	 testlt RegD,r0,Reg1

Test	If	Greater	Than	Or	Equal	To	Zero:	

	 Synthetic:	 testgez RegD,Reg1
	 Translation:	 testle RegD,r0,Reg1

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	64 284

Chapter	5:	Synthetic	Instructions	

Absolute	Value	

The	translation	of	the	“abs”	instruction	(which	computes	the	absolute	value	of	the	
contents	of	one	register	and	moves	the	result	into	another	register)	is	slightly	more	
complex,	since	the	translation	results	in	three	machine	instructions.	

However,	since	the	translation	always	results	in	exactly	three	instructions	and	no	
error	conditions	can	arise,	it	is	fairly	straightforward.	

Absolute	Value:	

	 Synthetic:	 abs RegD,Reg1

	 Translation:	 mov RegD,Reg1
	 	 bgez Reg1,+8
	 	 neg RegD,Reg1

Note	that	the	translation	itself,	as	expressed	above,	uses	synthetic	instructions.	
When	these	are	translated,	we	see	the	actual	translation:	

	 Translation:	 ori RegD,Reg1,r0
	 	 b.le r0,Reg1,+8
	 	 sub RegD,r0,Reg1

Branching	Instructions	

Recall	that	there	are	only	four	machine	instructions	which	do	a	“test	and	branch”	
operation:	

	 b.eq	 Reg1,Reg2,offset16	
	 b.ne	 Reg1,Reg2,offset16	
	 b.lt	 Reg1,Reg2,offset16	
	 b.le	 Reg1,Reg2,offset16	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	65 284

Chapter	5:	Synthetic	Instructions	

where	“offset16”	is	a	16	bit	signed	number	(i.e.,	-32,768	…	+32,767).	The	offset	will	
be	added	to	the	address	of	the	branch	instruction	(i.e.,	the	current	PC)	to	give	the	
address	of	the	branch	target.	

Out	of	these,	the	following	synthetic	instructions	are	constructed:	

	 beq	 Reg1,Reg2,Address	
	 bne	 Reg1,Reg2,Address	
	 blt	 Reg1,Reg2,Address	
	 ble	 Reg1,Reg2,Address	
	 bgt	 Reg1,Reg2,Address	
	 bge	 Reg1,Reg2,Address	

	 beqz	 Reg1,Address	
	 bnez	 Reg1,Address	
	 bltz	 Reg1,Address	
	 blez	 Reg1,Address	
	 bgtz	 Reg1,Address	
	 bgez	 Reg1,Address	

	 bfalse	 Reg1,Address	
	 btrue	 Reg1,Address	

where	“Address”	is	an	arbitrary	memory	location.	

In	the	=irst	stage	of	the	translation,	the	assembler	will	translate	the	above	
instructions	into	one	of	the	following	four	synthetic	instructions.	The	translation	of	
these	four	instructions	will	be	discussed	in	subsequent	sections.	

	 beq	 Reg1,Reg2,Address	
	 bne	 Reg1,Reg2,Address	
	 blt	 Reg1,Reg2,Address	
	 ble	 Reg1,Reg2,Address	

Here	are	those	=irst-stage	translations:	

	 Synthetic:	 bgt	 Reg1,Reg2,Address	
	 Translation:	 blt Reg2,Reg1,Address

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	66 284

Chapter	5:	Synthetic	Instructions	

	 Synthetic:	 bge	 Reg1,Reg2,Address	
	 Translation:	 ble Reg2,Reg1,Address

	 Synthetic:	 beqz	 Reg1,Address	
	 Translation:	 beq Reg1,r0,Address

	 Synthetic:	 bnez	 Reg1,Address	
	 Translation:	 bne Reg1,r0,Address

	 Synthetic:	 bltz	 Reg1,Address	
	 Translation:	 blt Reg1,r0,Address

	 Synthetic:	 blez	 Reg1,Address	
	 Translation:	 ble Reg1,r0,Address

	 Synthetic:	 bgtz	 Reg1,Address	
	 Translation:	 blt r0,Reg1,Address

	 Synthetic:	 bgez	 Reg1,Address	
	 Translation:	 ble r0,Reg1,Address

	 Synthetic:	 bfalse	 Reg1,Address	
	 Translation:	 beq Reg1,r0,Address

	 Synthetic:	 btrue	 Reg1,Address	
	 Translation:	 bne Reg1,r0,Address

The	Complex	Translations	

The	remaining	synthetic	instructions	are	listed	next.	We	group	them	into	seven	
“formats”	which	we	name	“Format	S-1”	through	“Format	S-7”.	

In	the	following,	“Value”	can	be	any	arbitrary	64-bit	value,	“Address”	can	be	any	36-
bit	address,	and	“Offset”	can	be	any	36-bit	offset	value.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	67 284

Chapter	5:	Synthetic	Instructions	

	 Format	S-1	
	 	 movi	 Reg,Value	

	 Format	S-2	
	 	 beq	 Reg1,Reg2,Address	
	 	 bne	 Reg1,Reg2,Address	
	 	 blt	 Reg1,Reg2,Address	
	 	 ble	 Reg1,Reg2,Address	

	 Format	S-3	
	 	 call	 Address	
	 	 jump	 Address	

	 Format	S-4	
	 	 loadb	 RegD,Address	
	 	 loadh	 RegD,Address	
	 	 loadw	 RegD,Address	
	 	 loadd	 RegD,Address	

	 Format	S-5	
	 	 storeb	 Address,Reg2	
	 	 storeh	 Address,Reg2	
	 	 storew	 Address,Reg2	
	 	 stored	 Address,Reg2	

	 Format	S-6	
	 	 loadb	 RegD,Offset(Reg1)	
	 	 loadh	 RegD,Offset(Reg1)	
	 	 loadw	 RegD,Offset(Reg1)	
	 	 loadd	 RegD,Offset(Reg1)	

	 Format	S-7	
	 	 storeb	 Offset(Reg1),Reg2	
	 	 storeh	 Offset(Reg1),Reg2	
	 	 storew	 Offset(Reg1),Reg2	
	 	 stored	 Offset(Reg1),Reg2	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	68 284

Chapter	5:	Synthetic	Instructions	

Addresses	are	typically	speci=ied	symbolically.	For	example:	

	 	 MyLabel:
…
jump MyLabel
…
blt r1,r3,MyLabel	
…
call MyLabel	

In	the	case	of	data,	addresses	are	often	used	like	this:	

loadd r1,MyVar
…

	 	 MyVar: .doubleword 1234

Addresses	may	also	be	speci=ied	as	absolute	values,	as	in:	

	 loadd r1,MyVar
MyVar: .equ 0x80000000c	

Although	unusual,	addresses	may	also	be	speci=ied	using	expressions,	such	as	the	
following	which	offsets	from	relocatable	symbolic	address:	

	 jump ExternLabel+8
…
.import ExternLabel	

Offsets	are	typically	speci=ied	with	numbers	or	symbols	that	are	equated	to	
integers:	

	 	 varX: .equ 12
…
loadd r1,varX(sp)
stored 16(r4),r2

However,	the	offset	can	be	speci=ied	using	an	expression.	

In	the	case	of	a	“movi”	instruction,	the	Value	being	loaded	into	the	register	can	be	
speci=ied	in	a	number	of	ways:	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	69 284

Chapter	5:	Synthetic	Instructions	

movi r1,0x1234	 An	immediate	value
movi r1,MyConst	 An	equated	value	
movi r1,MyVar	 An	address	of	data	
movi r1,MyFun	 An	address	of	code	
movi r1,(MyFun-MyVar)<<8	 Complex	expression	
…

MyConst: .equ 0x1234
MyVar: .skip 8
MyFun: add …

In	the	following	sections,	you	will	see	that	some	of	the	translations	make	use	of	the	
temporary	register	“t”	(i.e.,	r8).	The	programmer	should	be	aware	that	the	
assembler	and	linker	may	produce	code	which	silently	modi=ies	“t”.	Even	though	“t”	
does	not	appear	in	the	assembly	source	code	directly,	any	of	the	following	
instructions	may	result	in	a	translation	that	involves	“t”.	

bXX
jump
call
storeb
storeh
storew
stored

In	the	terminology	used	by	compiler-writers,	these	instructions	“kill”	register	“t”.	
(Note	that	the	translations	for	movi	and	loadX	or	the	other	synthetic	instructions	
will	never	silently	use	register	“t”.)	

Format	S-1:	“movi			RegD,Value”	

If	Value	is	an	absolute	integer	whose	value	can	be	determined	by	the	assembler,	then	
the	translation	selected	will	depend	on	the	magnitude	of	the	value	involved.	

If	Value	is	-32,768	…	+32,767,	then	the	synthetic	instruction	will	be	translated	as:	

	 Translation:	 xori RegD,r0,Value

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	70 284

Chapter	5:	Synthetic	Instructions	

Otherwise,	if	we	know	the	value	of	gp	and	Value	is	within	-32,768	…	+32,767	of	gp:	

	 Translation:	 addi RegD,gp,offset16

where	offset16	=	gp	-	Value.	

Otherwise,	if	Value	is	representable	with	a	36	bit	number	(-34,359,738,368	…	
+34,359,738,367):	

	 Translation:	 upper20 RegD,upper20
	 	 xori RegD,RegD,lower16

where	upper20	and	lower16	are	computed	appropriately.	

If	Value	is	an	address,	then	it	is	a	36	bit	value	within		0x0_0000_0000	…	
0xF_FFFF_FFFF.	(In	decimal,	this	is	0	…	68,719,476,735).	The	linker	will	do	
something	a	little	tricky	for	addresses	in	the	upper	half	of	this	range,	i.e.,	any	and	all	
addresses	in	the	user	address	space.	The	linker	will	translate	the	MOVI	using	only	
two	instructions,	but	since	bit	35	is	a	1	for	addresses	in	0x8_0000_0000	…	
0xF_FFFF_FFFF,	the	instructions	will	place	a	negative	number	in	the	registers.	That	
is,	the	linker	will	implicitly	sign-extend	the	address	from	36	bits	to	64	bits,	which	
will	make	all	addresses	in	the	user	address	space	negative.	After	this	sign-extension,	
the	value	will	lie	within	0xFFFF_FFF8_0000_0000	…	0x0000_0007_FFFF_FFFF	(i.e.,	
within	-34,359,738,368	…	+34,359,738,367)	which	=its	the	requirements	of	the	
translation	shown	above.	

Addresses	are	used	in	JUMP,	CALL,	Bxx,	LOADx,	and	STOREx	instructions.	All	of	these		
instructions	will	ignore	the	upper	bits,	so	it	doesn’t	matter	whether	the	upper	bits	
are	0s	or	1s.	

KPL	will	represent	all	pointers	with	signed	values.	For	code	running	in	user	space,	
addresses	will	always	be	negative	values.	

Some	care	must	be	taken	by	the	programmer.	As	long	as	the	programmer	keeps	
pointers	in	64	bit	variables,	the	operations	of	comparison	and	incrementing	will	
work	=ine.	However,	the	programmer	should	remember	that	the	pointers	will	usually	
be	negative	numbers.	

One	danger	arrises	when	the	programmer	attempts	to	specify	addresses	by	
constants.	For	example:	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	71 284

Chapter	5:	Synthetic	Instructions	

var myPtr: ptr to int = …
…
if (myPtr == 0x80001234) … Wrong;	always	false
if (myPtr == 0xFFFFFFF80001234) … Correct

Otherwise,	if	Value	is	within	52	bits	(-2,251,799,813,685,248	…	
+2,251,799,813,685,247):	

	 Translation:	 upper20 RegD,upper20
	 	 shift16 RegD,RegD,shift16
	 	 xori RegD,RegD,lower16

where	upper-20,	shift-16,	and	lower-16	are	computed	appropriately.	

Otherwise,	it’s	the	case	that	Value	requires	a	full	64	bits:	

	 Translation:	 upper16 RegD,r0,upper16
	 	 shift16 RegD,RegD,shift16a
	 	 shift16 RegD,RegD,shift16b
	 	 xori RegD,RegD,lower16

where	upper16,	shift16a,	shift16b,	and	lower16	are	computed	appropriately.	

If	Value	is	a	relocatable	address,	the	assembler	will	not	attempt	to	determine	its	
value.	Since	segments	are	generally	relocatable	(i.e.,	not	pinned	with	“startaddr=”	in	
the	.begin	instruction),	it	would	usually	be	impossible	for	the	assembler	to	
determine	the	exact	address	anyway.	

However,	it	is	much	more	likely	that	the	assembler	can	determine	the	relative	offset	
of	Address	from	the	current	PC.	If	that	offset	is	representable	with	a	20	bit	number	
(i.e.,	-524,288	…	+524,287),	then	the	synthetic	instruction	will	be	translated	as:	

	 Translation:	 addpc RegD,offset20

In	all	other	cases,	the	assembler	will	not	produce	a	translation	and	will	leave	the	
task	to	the	linker.	

(If	Value	is	an	address	but	the	assembler	cannot	determine	its	offset	from	the	movi	
instruction,	it	must	leave	the	task	to	the	linker.	If	Value	is	an	address	and	the	
assembler	can	determine	the	offset	from	the	PC,	but	the	offset	exceeds	20	bits,	the	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	72 284

Chapter	5:	Synthetic	Instructions	

assembler	will	leave	the	task	to	the	linker.	The	linker	will	know	the	exact	absolute	
value	and	may	be	able	to	=ind	a	translation	of	only	one	instruction.	If	Value	involves	
an	imported	symbol,	then	the	assembler	will	be	clueless	about	its	value	and	must	
defer	to	the	linker.)	

Note	that	any	address	can	be	loaded	into	a	register	with	only	two	instructions,	and	
many	addresses	will	require	only	one	instruction.	In	most	cases,	the	assembler	will	
be	able	to	translate	the	register	load	with	a	single	instruction.	However,	the	linker	
will	be	required	to	handle	the	cases	that	involve	two	instructions.	Also	note,	that	
almost	all	common	small-ish	constants	(i.e.,	any	number	within	-32,768	…	+32,767)	
can	be	loaded	into	a	register	with	only	one	instruction.	

Format	S-2:	“bXX			Reg1,Reg2,Address”	

If	a	conditional	branch	is	jumping	to	relatively	close	target	location,	then	the	
translation	will	be	a	single	instruction.	Otherwise,	two	instructions	will	be	used.	
Three	instructions	would	be	needed	almost	never,	but	can	be	used	to	cover	all	
possible	target	locations.	

[In	Blitz-64,	the	instruction	encoding	was	chosen	so	that	the	range		for	a	single	
branch	instruction	is	quite	large	(64	GiBytes).	Conditional	branches	(which	
generally	target	a	location	within	the	same	function	or	method)	will	almost	always	
be	translated	with	only	a	single	instruction.	Nevertheless,	aberrant,	extremal	cases	
are	also	accommodated.]	

If	Address	is	within	-32,768	...	+32,767	from	the	instruction	(i.e.,	if	a	16-bit	offset	
from	the	PC	can	be	used):	

	 Translation	of	beq	instruction:	
	 	 b.eq Reg1,Reg2,offset16

	 Translation	of	bne	instruction:	
	 	 b.ne Reg1,Reg2,offset16

	 Translation	of	blt	instruction:	
	 	 b.lt Reg1,Reg2,offset16

	 Translation	of	ble	instruction:	
	 	 b.eq Reg1,Reg2,offset16

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	73 284

Chapter	5:	Synthetic	Instructions	

If	a	single	instruction	cannot	be	used,	then	the	translation	takes	a	different	
approach.	The	condition	is	negated	and	we	jump	around	one	or	even	two	
instructions.	The	one	or	two	instructions	will	then	make	the	jump	unconditionally.	

Here’s	the	idea:	

	 	 if	x	<	y	then	goto	Target	

is	equivalent	to:	

	 	 if	y	≤	x	then	goto	L	
	 	 goto	Target	
	 L:	

Note	that	when	the	condition	“x	<	y”	is	negated,	we	get	“x	≥	y”.	There	is	no	machine	
code	to	test	for	greater-than-or-equal.	However,	if	we	swap	the	order	of	the	
registers,	this	test	becomes:	“y	≤	x”,	and	Blitz-64	has	a	machine	instruction	for	this	
test.	

In	the	following,	note	that	we	refer	to	the	“offset	from	the	PC”.	The	instruction	
making	the	jump	(JAL	and	JALR)	is	the	location	from	which	the	offset	will	be	
calculated.		

If	Address	is	within	-524,288	...	+524,287	from	the	jump	instruction	(a	20-bit	offset	
from	PC	must	be	used):	

	 Translation	of	beq	instruction:	
	 	 b.ne Reg2,Reg1,+8 The	test	is	changed	&	the	regs	are	swapped
	 	 jal r0,offset20	

	 Translation	of	bne	instruction:	
	 	 b.eq Reg2,Reg1,+8 The	test	is	changed	&	the	regs	are	swapped	
	 	 jal r0,offset20	

	 Translation	of	blt	instruction:	
	 	 b.le Reg2,Reg1,+8 The	test	is	changed	&	the	regs	are	swapped
	 	 jal r0,offset20	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	74 284

Chapter	5:	Synthetic	Instructions	

	 Translation	of	ble	instruction:	
	 	 b.lt Reg2,Reg1,+8 The	test	is	changed	&	the	regs	are	swapped
	 	 jal r0,offset20	

Otherwise,	a	36	bit	offset	will	be	used:	

	 Translation	of	beq	instruction:	
b.ne Reg2,Reg1,+12	 The	test	is	changed	&	the	regs	are	swapped
auipc t,upper20
jalr r0,lower16(t)

	 Translation	of	bne	instruction:	
	 	 b.eq Reg2,Reg1,+12 	The	test	is	changed	&	the	regs	are	swapped	
	 	 auipc t,upper20	
	 	 jalr r0,lower16(t)

	 Translation	of	blt	instruction:	
	 	 b.le Reg2,Reg1,+12		 The	test	is	changed	&	the	regs	are	swapped	
	 	 auipc t,upper20	
	 	 jalr r0,lower16(t)

	 Translation	of	ble	instruction:	
	 	 b.lt Reg2,Reg1,+12		 The	test	is	changed	&	the	regs	are	swapped	
	 	 auipc t,upper20	
	 	 jalr r0,lower16(t)

For	the	synthetic	branch	instructions	(beq,	bne,	blt,	…),	the	target	Address	must	be	a	
relocatable	address.	The	assembler	does	not	accommodate	absolute	values.	But	
keep	in	mind	that	this	sort	of	branch	is	extremely	rare.	

For	example,	the	following	would	cause	an	error	message:	

	 	 blt r3,r5,0xE47004	 Absolute	targets	are	not	legal	

In	the	unusual	event	that	the	programmer	really	needs	to	do	a	branch	using	a	target	
location	expressed	as	an	absolute	integer,	the	following	code	can	be	used.	(Unlike	
the	bXX	instructions,	the	jump	instruction	will	accept	absolute	integers	for	the	
target	address.)	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	75 284

Chapter	5:	Synthetic	Instructions	

	 	 ble r5,r3,NewLabel 	 Note	change	in	condition	&	reg	swap	 	 	
	 	 jump 0xE47004

NewLabel:

The	assembler	will	translate	this	as	follows,	achieving	the	desired	effect:	

	 	 b.le r5,r3,+12 	 	 	
	 	 upper20 t,0x000E4	
	 	 jalr r0,0x7004(t)

Format	S-3:	“jump/call			Address”	

The	two	synthetic	instructions	in	Format	S-3	are:	

	 	 jump Address
	 	 call Address

Recall	that	register	r14	is	the	“link	register”	(also	named	“lr”).	When	calling	a	
function,	the	JAL	and	JALR	instructions	will	save	the	return	address	in	register	lr.	A	
JUMP	is	identical	to	a	CALL,	except	that	the	return	address	is	not	retained,	and	is	
sent	to	“r0”	instead.		

Jumps	and	calls	to	an	address	speci=ied	using	an	absolute	integer	target	address	
(as	shown	here)	are	expected	to	be	extremely	rare.	Nevertheless,	the	assembler	will	
translate	such	a	jump	or	call.	

	 	 jump 0x000e70400
	 	 call 347810	

If	Address	is	an	absolute	value	within	0	…	+32,767,	the	translation	will	use	a	positive	
16	bit	offset	from	zero	(i.e.,	register	r0).	

If	the	Address	is	within	0xF_FFFF_8000	…	0xF_FFFF_FFFF,	then	the	translation	will	
use	a	negative	16	bit	offset	from	zero.	Recall	that	the	hardware	always	ignores	the	
uppermost	28	bits	of	any	64	bit	number,	so	we	can	address	the	upper	bytes	of	the	
memory	space	with	negative	numbers.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	76 284

Chapter	5:	Synthetic	Instructions	

[You	can	think	of	memory	as	“wrapping	around”	or,	equivalently,	taking	all	
addresses	“mod	0x0000_0010_0000_0000”.	For	example,	zero	-	0x4000	=	
FFFF_FFFF_FFFF_C000;	with	truncation,	we	have	0xF_FFFF_C000.	Note	that	address	
wrap-around	makes	the	uppermost	region	of	the	virtual	address	space	(above	the	
stack)	a	reasonable	place	to	put	jump	tables.]	

	 Translation	of	jump:		
 jalr r0,immed16(r0)
	 Translation	of	call:	
 jalr lr,immed16(r0)

Otherwise,	if	Address	is	an	absolute	value	within	-32,768	…	+32,767	of	the	value	
assumed	to	be	in	register	“gp”:	

	 Translation	of	jump:		
jalr r0,immed16(gp)

	 Translation	of	call:		
jalr lr,immed16(gp)

Otherwise,	if	Address	is	any	other	absolute	value	(i.e.,	a	full	36-bit	address	is	
required):	

	 Translation	of	jump:		
 upper20 t,upper20
 jalr r0,lower16(t)
	 Translation	of	call:		
 upper20 t,upper20
 jalr lr,lower16(t)

It	is	much	more	likely	that	the	address	will	be	given	as	a	symbolic	value,	as	shown	
next.	In	many	cases,	the	assembler	will	be	able	to	determine	the	relative	distance	
between	the	current	PC	(i.e.,	the	address	of	the	jump/call)	and	the	target.	

 jump loop_exit
 call MyFunction

(The	assembler	will	never	attempt	to	determine	the	absolute	integer	address	of	a	
symbolic	label,	but	it	can	usually	determine	the	relative	offset	between	two	
locations,	as	long	as	both	locations	are	within	the	same	segment.)	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	77 284

Chapter	5:	Synthetic	Instructions	

If	the	assembler	can	determine	the	relative	offset,	and	if	the	target	Address	is	within	
-524,288	...	+524,287	from	the	jump/call	instruction,	then	a	20-bit	offset	from	PC	
will	be	used.	

This	is	the	common	case.	Most	jumps	and	calls	will	be	to	targets	that	are	speci=ied	as	
symbolic	addresses	that	the	assembler	can	determine	are	within	512	KiBytes	from	
the	location	of	the	jump/call.	

	 Translation	of	jump:		
 jal r0,offset20
	 Translation	of	call:		
 jal lr,offset20

If	the	assembler	can	determine	the	relative	offset,	but	if	the	relative	offset	exceeds	
this	value,	then	a	36	bit	offset	relative	to	the	PC	will	be	used:	

	 Translation	of	jump:		
 auipc t,upper20
 jalr r0,lower16(t)
	 Translation	of	call:		
 auipc t,upper20
 jalr lr,lower16(t)

If	the	assembler	cannot	determine	the	target	Address	or	cannot	compute	a	relative	
offset	between	Address	and	the	current	PC,	the	task	of	translation	will	be	passed	on	
to	the	linker.	

Format	S-4:	“loadX			RegD,Address”		

The	memory	location	in	the	LOAD	and	STORE	instructions	can	be	speci=ied	in	two	
ways,	as	shown	in	these	examples:	

	 	 loadd r7,Address	 ←	Move	data	from	memory	to	register
	 	 stored Address,r7	 ←	Move	data	from	register	to	memory

	 	 loadd r7,Offset(r5)	 ←	Add	immed.	value	to	reg	to	give	address	
	 	 stored Offset(r5),r7	 ←	Add	immed.	value	to	reg	to	give	address	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	78 284

Chapter	5:	Synthetic	Instructions	

[Earlier,	we	said	that	the	opcode	exactly	and	uniquely	determines	the	format	of	the	
operands.	This	isn’t	quite	true.	The	LOAD	and	STORE	instructions	are	exceptions	to	
this	and	they	are	the	only	exceptions.]	

All	synthetic	LOAD	operations	—	regardless	of	whether	the	operand	has	the	form	
“Address”	or	“Offset(Reg)”	—	are	translated	using	the	following	machine	instructions.		
(Note	that	the	period	“.”	in	the	opcode	differentiates	between	synthetic	instructions	
and	machine	instructions.)	

	 	 load.b RegD,offset16(Reg1)
	 	 load.h RegD,offset16(Reg1)
	 	 load.w RegD,offset16(Reg1)
	 	 load.d RegD,offset16(Reg1)

In	this	section	we’ll	use	the	notation	loadX	where	X	stands	for	b,	h,	w,	or	d.	
Likewise,	we’ll	use	the	notation	load.X	as	shorthand	for	load.b,	load.h,	
load.w,	or	load.d.	

Format	S-4	includes	the	four	synthetic	LOAD	instructions	that	have	an	address	as	an	
operand.	

	 	 loadb r7,Address		 ←	Fetch	a	byte
	 	 loadh r7,Address		 ←	Fetch	a	halfword	(16	bits)
	 	 loadw r7,Address		 ←	Fetch	a	word	(32	bits)
	 	 loadd r7,Address		 ←	Fetch	a	doubleword	(64	bits)

The	LOAD	instructions	in	which	the	memory	address	has	the	form	“Offset(Reg)”	are	
discussed	later,	under	Format	S-6.	

The	Address	can	be	given	in	several	ways:	

	 	 loadb r7,MyVar		 ←	Symbolic,	relocatable	location
	 	 loadb r7,MyVar+100		 ←	Symbolic	plus/minus	integer
	 	 loadb r7,0x00E70040		 ←	Absolute	Address

If	the	assembler	can	compute	difference	between	the	LOAD	and	the	target	location,	
then	it	will	produce	code	using	PC-relative	addressing.	If	a	symbolic	label	is	used	but	
the	assembler	is	unable	to	determine	the	relative	offset,	then	the	task	will	be	passed	
on	to	the	linker.		(This	happens	whenever	the	symbol	is	externally	de=ined,	or	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	79 284

Chapter	5:	Synthetic	Instructions	

whenever	the	source	and	target	are	in	different	segments,	or	whenever	there	is	
something	of	unknown	size	between	the	source	and	target	locations.)	

Otherwise,	(i.e.,	if	Address	is	speci=ied	as	an	absolute	integer	value	known	to	the	
assembler),	the	translation	will	use	the	translations	shown	next.	

If	Address	is	an	absolute	value	within	0	…	+32,767,	the	translation	will	use	a	positive	
16	bit	offset	from	zero	(i.e.,	register	r0).	

If	the	Address	is	within	0xF_FFFF_8000	…	0xF_FFFF_FFFF,	then	the	translation	will	
use	a	negative	16	bit	offset	from	register	r0.	[Memory	“wraparound”	and	the	use	of	
negative	offsets	was	discussed	in	the	section	“Format	S-3:	jump/call”.]	

	 Translation:	 load.X RegD,immed16(r0)

If	Address	is	an	absolute	number	within	-32,768	...	+32,767	of	the	value	assumed	to	
be	in	register	“gp”:	

	 Translation:	 load.X RegD,immed16(gp)

If	Address	is	an	absolute	number	of	any	other	value:	

	 Translation:	 upper20 RegD,upper20
	 	 load.X RegD,lower16(RegD)

If	Address	has	a	PC-relative	value	that	the	assembler	can	determine:	

	 Translation:	 auipc RegD,upper20
	 	 load.X RegD,lower16(RegD)

Note:	In	some	cases,	the	assembler	will	be	able	to	determine	a	relative	offset	from	
the	PC	but	unable	to	determine	the	absolute	location.	In	such	cases,	the	assembler	
will	produce	the	two	instruction	sequence	just	shown.	If	it	happens	that	the	target	
location	is	also	within	±32	KiBytes	of	zero	(r0)	or	register	gp,	then	a	single	
instruction	would	have	suf=iced,	although	two	instructions	were	generated.	

This	situation	is	rare	and	not	considered	likely	to	occur	in	practice	because	the	
typical	programming	practice	is	to	put	variables	and	data	in	one	segment	(marked	
“writable”)	and	code	in	another	segment	(marked	“executable”).	The	data	segment	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	80 284

Chapter	5:	Synthetic	Instructions	

will	typically	be	placed	where	it	can	be	conveniently	accessed	with	the	default	value	
assumed	to	be	in	register	gp	(0x8_0000_8000):	

.begin writable,startaddr=0x800000000
Var_1: .doubleword 1234
Var_2: .byte 0x34

	 	

User	code	cannot	access	low	memory	so	positive	offsets	from	register	r0	are	only	
usable	by	the	kernel.	Kernel	code	will	place	its	data	in	a	segment	located	at	the	
beginning	of	memory:	

.begin kernel,writable,startaddr=0x0
Var_1: .doubleword 1234
Var_2: .byte 0x34

Since	the	source	LOAD	instruction	and	the	target	data	address	are	in	different	
segments,	the	assembler	will	be	unable	to	generate	a	PC-relative	address.	The	
assembler	will	be	forced	to	pass	the	task	off	to	the	linker.	The	linker	will	determine	
exact	addresses	and	will	generate	a	one-instruction	sequence	whenever	possible.	

This	comment	also	applies	to	the	STORE	instructions.	

Format	S-5:	“loadX			RegD,Offset(Reg1)”	

A	second	form	of	the	LOAD	and	STORE	instructions	allows	the	address	to	be	
computed	by	adding	a	=ixed	constant	value	to	the	contents	of	a	register.	This	form	is	
particularly	useful	for	accessing	variables	stored	in	a	stack	frame,	which	is	
commonly	done	for	variables	local	to	a	function	or	method.	

	 loadd	 RegD,local_x(sp)
	 stored	 8(sp),RegD

Another	important	use	of	the	“Offset(Reg)”	addressing	form	is	to	access	the	=ields	in	
an	object.	Each	=ield	(i.e.,	“data	member”)	is	located	at	a	known	offset	within	the	
object	and	the	object	itself	is	pointed	to	by	a	register.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	81 284

Chapter	5:	Synthetic	Instructions	

Next,	we	describe	the	translation	of:	

	 loadb	 RegD,Offset(Reg1)
	 loadh	 RegD,Offset(Reg1)
	 loadw	 RegD,Offset(Reg1)
	 loadd	 RegD,Offset(Reg1)

If	Offset	is	an	absolute	integer	value	within	-32,768	…	+32,767,	i.e.,	if	it	can	be	
represented	with	a	signed	16	bit	immediate	value:	

	 Translation:	 load.X	 RegD,immed16(Reg1)

If	Offset	is	an	absolute	integer	value	within	-2,147,483,648	…	+-2,147,483,647,	i.e.,	if	
it	can	be	represented	with	a	signed	32	bit	value:	

	 Translation:	 upper16	 RegD,Reg1,upper16	
	 	 load.X	 RegD,lower16(RegD)	

Otherwise,	Offset	requires	a	full	36	bits:	

	 Translation:	 upper20	 RegD,upper20	
	 	 add	 RegD,RegD,Reg1		 	
	 	 load.X	 RegD,lower16(RegD)

The	assembler	is	unable	to	handle	that	case	where	Offset	is	given	by	a	relocatable	
label,	as	shown	below.	Such	cases	will	be	passed	off	to	the	linker.	

MyArr: .skip 100000
 …

loadd r7,MyArr(r3)

It	is	often	the	case	where	the	programmer	has	an	address	in	a	register	and	wishes	to	
use	that	address	directly,	without	any	offset.	To	do	this,	the	programmer	can	code	it	
as	illustrated	by	the	following	example.	

loadd r7,0(r3)

which	will	be	assembled	identically	to	the	following	machine	instruction:	

load.d r7,0(r3)

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	82 284

Chapter	5:	Synthetic	Instructions	

We	considered	adding	additional	synthetic	forms	to	accommodate	shorthand	such	
as	shown	in	the	following	examples.	But	we	decided	against	it	because	it	violates	the	
fundamental	Blitz-64	design	goal	of	avoiding	complexity.	

loadd r7,(r3) ←	Syntax	error
stored (r3),r7 ←	Syntax	error

Additional	Detail		We	have	called	the	expression	“Offset”	and	implicitly	assumed	
that	the	register	contains	a	“base”	address.	The	effective	address	will	be	
“base+offset”.	This	is	typical	of	addressing	=ields	in	an	object,	where	the	register	
contains	a	pointer	to	the	object	and	the	literal,	immediate	value	is	the	offset	of	some	
=ield	in	that	object.	

However,	the	literal,	immediate	expression	might	supply	the	base	address	and	the	
register	might	contain	an	offset.	This	is	common	for	accessing	arrays	that	are	located	
at	statically	determine	addresses.	The	address	of	the	array	is	coded	directly	into	the	
instruction.	

In	this	comment,	we	discuss	the	range	of	legal	values	for	the	literal,	immediate	value	
“Expression”.	

In	general,	the	Expression	may	be	any	address	(i.e.,	any	value	within	0x	...	
0xF_FFFF_FFFF)	in	which	case	the	value	to	be	used	will	be	adjusted	to	a	signed	36-
bit	value	(i.e.,	within	0x8_0000_0000	...	0x7_FFFF_FFFF).	This	is	equivalent;	the	
lower-order	36	bits	are	identical,	and	there	are	no	more	bits	than	that	in	the	address	
calculations	performed	in	hardware.	

The	Expression	may	also	be	an	offset,	in	which	case	it	is	reasonable	to	allow	a	
negative	value	down	to	-0xF_FFFF_FFFF	(i.e.,	0xFFFF_FFF0_0000_0001).	For	
example,	consider	the	case	where	the	programmer	has	placed	a	very	high	address	
(such	as	0xF_FFFF_1234)	in	register	r1.	

An	offset	of	-0xF_FFFF_1231	can	be	used	to	address	location	0x0_0000_0003.	
Working	through	this	example,	-0xF_FFFF_1231	is	a	negative	number	and	is	
represented	as	0xFFFF_FFF0_0000_EDCF.	This	offset	will	be	truncated	to	36	bits	and	
sign-extended,	giving	0x0_0000_EDCF.	This	is	the	value	that	will	go	into	the	machine	
instructions.	At	runtime,	adding	0x0_0000_EDCF	to	0xF_FFFF_1234	gives	
0x10_0000_0003,	which	will	get	truncated	by	the	hardware	to	0x0_0000_0003,	
exactly	the	address	that	is	desired.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	83 284

Chapter	5:	Synthetic	Instructions	

Thus,	the	linker	will	accept	any	value	for	Expression	within	-0xF_FFFF_FFFF	..	
0xF_FFFF_FFFF	(i.e.,	-68,719,476,735	…	+	68,719,476,735)	without	complaint	or	
warning.	Any	value	for	Expression	outside	this	range	will	result	in	an	error	message.	

This	scheme	allows	location	0	to	be	reached	from	the	highest	address	
(0xF_FFFF_FFFF)	and	it	allows	the	highest	address	(0xF_FFFF_FFFF)	to	be	reached	
from	address	0.	Since	LOAD	and	STORE	instructions	are	designed	for	memory	
access,	any	Offset	value	beyond	36	bits	must	be	in	error.	

For	example,	consider	reaching	address	0	from	address	0xF_FFFF_FFFF.	This	
requires	an	offset	of	-0xF_FFFF_FFFF.	Expresses	as	36	bits,	this	value	is	
0xFFFF_FFF0_0000_0001	=	0x0_0000_0001.	Adding,	we	get	0x0_0000_0000,	as	
desired.	

However,	note	that	the	assembler	will	only	accept	values	for	Expression	within	a	
more	limited	range	of	0xFFFF_FFF8_0000_0000	…	0x0000_0007_FFFF_FFFF	(i.e.,	
-34,359,738,368	..	+34,359,738,367	which	is	-0x8_0000_0000	…	+0x7_FFFF_FFFF).	
If	the	assembler	can	determine	the	value	and	this	value	is	outside	this	range,	the	
assembler	will	generate	an	error	and	fail.	In	the	next	paragraph,	we	explain	why	this	
should	never	be	a	problem.	

If	the	programmer	uses	a	memory	address	for	Expression,	the	assembler	will	always	
defer	instruction	synthesis	to	the	linker.	So,	in	the	only	case	where	the	assembler	
might	potentially	generate	an	error,	we	can	assume	that	the	“base”	address	must	be	
placed	in	the	register,	and	Expression	is	an	“offset”.	In	other	words,	the	given	
Expression	must	be	an	offset	from	an	address,	not	an	address	itself.	For	user	mode	
programs	we	can	assume	the	address	in	the	register	must	be	an	address	in	the	user	
address	space.	The	range	limit	for	the	offset	expression	will	still	allow	any	address	in	
user	space	to	be	reached	from	whatever	address	was	in	the	register.	Likewise,	for	
kernel	mode	programs,	we	assume	that	any	address	calculation	will	be	from	an	
address	in	the	kernel	space	to	another	address	in	the	kernel	space.	Thus,	the	range	
limit	imposed	by	the	assembler	should	never	be	a	problem,	regardless	of	what	
address	will	be	in	the	register	and	what	offset	was	supplied.	However,	in	the	event	
that	an	Expression	outside	the	assembler’s	limit	is	desired	and	the	assembler	is	
balking,	there	is	a	simple	work-around.	The	large	value	can	be	placed	in	a	separate	.s	
=ile,	assembled	independently,	and	exported	to	the	source	=ile	needing	it.	Since	the	
assembler	will	not	have	access	to	the	value	of	the	Expression,	it	defer	synthesis	to	the	
linker,	which	accommodates	the	full	range	of	offsets.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	84 284

Chapter	5:	Synthetic	Instructions	

Of	course,	any	value	beyond	the	linker’s	range	make	no	sense.	The	value	will	be	
added	to	the	contents	of	the	register	and	will	be	used	as	an	address	for	a	LOAD	or	
STORE	instruction.	Since	the	hardware	addition	is	limited	to	36	bits,	the	upper	bits	
are	pointless.	

Format	S-6:	“storeX			Address,Reg2”	

The	memory	location	in	the	STORE	instructions	can	be	speci=ied	in	two	ways,	as	
shown	by	these	examples:	

	 	 stored Address,r7	 ←	Move	data	from	register	to	memory
	 	 stored Offset(r5),r7	 ←	Add	immed.	value	to	reg	to	give	address	

This	section	discusses	instructions	using	the	=irst	form.	

All	synthetic	STORE	operations	—	regardless	of	whether	the	operand	has	the	form	
“Address”	or	“Offset(Reg)”	—	are	translated	using	the	following	machine	
instructions:	

	 	 store.b offset16(Reg1),Reg2
	 	 store.h offset16(Reg1),Reg2
	 	 store.w offset16(Reg1),Reg2
	 	 store.d offset16(Reg1),Reg2

In	this	section	we	use	the	notation	storeX	where	X	stands	for	b,	h,	w,	or	d.	
Likewise,	we’ll	use	the	notation	store.X	as	shorthand	for	store.b,	store.h,	
store.w,	or	store.d.	

Format	S-6	includes	the	four	synthetic	STORE	instructions	that	have	an	address	as	
an	operand.	

	 	 storeb Address,Reg	 ←	Store	a	byte
	 	 storeh Address,Reg	 ←	Store	a	halfword	(16	bits)
	 	 storew Address,Reg	 ←	Store	a	word	(32	bits)
	 	 stored Address,Reg	 ←	Store	a	doubleword	(64	bits)

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	85 284

Chapter	5:	Synthetic	Instructions	

The	STORE	instructions	in	which	the	memory	address	has	the	form	“Offset(Reg)”	are	
discussed	later,	under	Format	S-7.	

The	Address	can	be	given	as	an	absolute	integer	value	or	as	a	relocatable	symbol.	

If	Address	is	an	absolute	value	within	0	…	+32,767,	the	translation	will	use	a	positive	
16	bit	offset	from	zero	(i.e.,	register	r0).	If	the	Address	is	within	0xF_FFFF_8000	…	
0xF_FFFF_FFFF,	then	the	translation	will	use	a	negative	16	bit	offset	from	register	r0.	

	 Translation:	 store.X immed16(r0),Reg2

If	Address	is	an	absolute	number	within	-32,768	...	+32,767	of	the	value	assumed	to	
be	in	register	“gp”:	

	 Translation:	 store.X immed16(gp),Reg2

If	Address	is	an	absolute	number	of	any	other	value:	

	 Translation:	 upper20 t,upper20
	 	 store.X lower16(t),Reg2

If	Address	has	a	PC-relative	value	that	the	assembler	can	determine:	

	 Translation:	 auipc t,upper20
	 	 store.X lower16(t),Reg2	

Note:	The	temporary	register	“t”	is	used	in	some	of	the	translations	for	STORE,	
although	“t”	is	never	used	for	LOAD	instructions.	

When	translating	LOAD,	the	assembler	can	use	the	target	register	for	any	address	
calculation,	since	it	will	obviously	be	available	for	use	as	a	work	register	directly	
before	the	load.X	instruction.	However,	there	is	no	such	free	register	for	use	in	the	
translation	of	STORE	instructions.	Instead,	register	“t”	will	be	used.	

The	programmer	should	not	forget	that	a	synthetic	STORE	instruction	may	result	in	
code	that	overwrites	the	register	“t”.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	86 284

Chapter	5:	Synthetic	Instructions	

Format	S-7:	“storeX			Offset(Reg1),Reg2”	

Next,	we	describe	the	translation	of	instructions	in	which	the	target	memory	
address	is	computed	by	adding	a	=ixed	constant	value	to	the	contents	of	a	register.	

	 storeb	 Offset(Reg1),Reg2
	 storeh	 Offset(Reg1),Reg2
	 storew	 Offset(Reg1),Reg2
	 stored	 Offset(Reg1),Reg2

If	Offset	is	an	absolute	integer	value	within	-32,768	…	+32,767,	i.e.,	if	it	can	be	
represented	with	a	signed	16	bit	immediate	value:	

	 Translation:	 store.X	 immed16(Reg1),Reg2

If	Offset	is	an	absolute	integer	value	within	-2,147,483,648	…	+-2,147,483,647,	i.e.,	if	
it	can	be	represented	with	a	signed	32	bit	value:	

	 Translation:	 upper16	 t,Reg1,upper16	
	 	 store.X	 lower16(t),Reg2	

Otherwise,	Offset	requires	a	full	36	bits:	

	 Translation:	 upper20	 t,upper20	
	 	 add	 t,t,Reg1		 	
	 	 store.X	 lower16(t),Reg2

The	assembler	is	unable	to	handle	that	case	where	Offset	is	given	by	a	relocatable	
label,	as	shown	below.	Such	cases	will	be	passed	off	to	the	linker.	

MyArr: .skip 100000
 …

stored MyArr(r3),r7

It	is	often	the	case	where	the	programmer	has	an	address	in	a	register	and	wishes	to	
use	that	address	directly,	without	any	offset.	To	do	this,	the	programmer	can	code	it	
as	illustrated	by	the	following	example.	

stored 0(r3),r7  

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	87 284

Chapter	6:	The	Linker	

Quick	Summary	

•	The	linker	tool	is	called	“link”	and	is	run	after	the	assembler.	
•	The	linker	takes	a	“.o”	object	=ile	as	input	and	produces	an	executable	=ile.	
	 —	 The	linker	can	combine	several	object	=iles	into	one	executable.	
•	The	linker	can	also	take	library	=iles	as	input.	
	 —	 The	linker	will	pull	out	any	object	module	that	is	referenced.	
•	The	linker	determines	memory	locations	for	each	segment.	
•	The	linker	matches	all	imported	and	exported	symbols.	
	 —	 An	error	is	reported	if	an	imported	symbol	is	not	exported	exactly	once.	
	 —	 This	is	the	“unde=ined	symbol”	error.	
•	The	linker	determines	the	exact	values	for	all	symbols.	
•	The	linker	translates	all	remaining	synthetic	instructions	into	machine	code.	
•	The	linker	inserts	bytes	as	necessary	for	.align	pseudo-ops.	
•	The	linker	algorithm	is	complex	and	is	described	in	an	appendix.	

Using	the	Linker	

The	Blitz-64	linker	tool	is	named	“link”.	In	the	simplest	use,	it	converts	a	single	
object	=ile	into	an	executable	=ile:	

link hello.o -o hello

The	linker	can	combine	several	object	=iles	into	a	single	executable:	

link file1.o file2.o file3.o -o myPgm

Blitz-64:	Assembler	and	Linker	/	Porter	 Page	 	of	88 284

Chapter	6:	The	Linker	

The	executable	=ilename	must	always	be	given.	It	doesn’t	default	to	“a.out”,	but	you	
can	always	say:	

link file1.o file2.o file3.o -o a.out

The	linker	can	also	be	suppled	with	library	=iles	as	input.	There	can	be	zero	or	more	
library	=iles	as	input:	

link hello.o MyLib1.lib MyLib2.lib MyLib3.lib -o hello

Typically,	the	object	=iles	have	a	=ilename	extension	of	“.o”	and	the	library	=iles	have	
an	extension	of	“.lib”,	however	this	is	not	enforced	by	the	linker.	The	linker	ignores	
the	extension	and	determines	whether	the	input	=ile	is	an	object	=ile	or	a	library	by	
looking	at	the	contents	of	the	=ile.	Object	=iles	and	library	=iles	begin	with	“magic	
numbers”	and	these	are	used	to	determine	what	type	of	=ile	is	actually	present.	

Concerning	the	names	of	library	=iles,	the	=ilename	is	given	directly,	just	as	for	other	
command	lines.	(In	Unix/Linux,	something	like	“-lm”	can	indicates	a	=ile	with	name	
“libm.a”	and/or	“libm.so”.	Furthermore,	this	can	result	in	a	search	of	the	directory	
hierarchy.	This	complex	behavior	is	absent	in	Blitz-64.)	

Error	Messages	

The	linker	will	sometimes	print	errors	and/or	warnings.	

In	all	cases,	an	error	will	cause	the	EXIT_FAILURE	code	to	be	returned	from	the	
linker	command	to	the	shell	that	invoked	it.	No	executable	=ile	will	be	produced.	If	
only	warnings	are	generated,	an	executable	=ile	will	be	produced.	

The	error	and	warning	messages	are	printed	on	stderr.	For	some	messages,	
additional	information	will	be	printed	on	stdout.	

Here	are	the	most	important	error	messages,	all	of	which	arise	from	programming	
mistakes:	

***** LINK ERROR: Undefined Symbol: xxx was imported on line xxx in
module "xxx" (file "xxx"/"xxx"). No matching export can be found.

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	89 284

Chapter	6:	The	Linker	

***** LINK ERROR: Symbol "xxx" is equated to "xxx" which is imported.
However, no matching export can be found. (line xxx from file
"xxx"/"xxx") *****

***** LINK ERROR: The symbol "xxx" was used on line xxx of module
"xxx" (file "xxx"/"xxx"). This symbol was imported but no matching
export was found. *****

***** LINK ERROR: This program contains no bytes. *****

***** LINK ERROR: Every program must have an exported symbol "_entry"

***** LINK ERROR: Symbol "_entry" is not a valid address within this
program *****

***** LINK ERROR: The EQU symbols xxx (from module "xxx") and xxx
(from module "xxx") are cyclicly defined *****

***** LINK ERROR: When synthesizing this LOADx instruction, an offset
value that was not in -0xF,FFFF,FFFF ... +0xF,FFFF,FFFF was
encountered. *****

***** LINK ERROR: When synthesizing this STOREx instruction, an
offset value that was not in -0xF,FFFF,FFFF ... +0xF,FFFF,FFFF was
encountered. ****

***** LINK ERROR: Symbol xxx is exported multiple times (from module
"xxx" in library "xxx" and module “xxx" in library "xxx") *****

***** LINK ERROR: Symbol xxx is exported multiple times (from module
"xxx" from file "xxx" and module "xxx" from file "xxx") *****

***** LINK ERROR: These segments have different (executable,
writable) attributes but try to occupy the same page. *****
(Segments are also printed)

***** LINK ERROR: In computing the value of the EQU symbol
"xxx" (from module "xxx"), overflow has occurred *****

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	90 284

Chapter	6:	The	Linker	

Additional	Errors	

There	are	a	large	number	of	additional	error	conditions	which	are	less	common.	
Each	of	these	conditions	will	cause	an	immediate	termination	of	the	linker	after	
printing	the	error	message.	

These	errors	fall	into	these	classes:	

•	 Invalid	Command	Line	Note	that	the	command	line	option	-h	is	always	valid	
and	will	do	nothing	but	produce	some	help	info	about	what	command	line	
options	are	expected.	

•	 Problems	with	the	Format	of	an	Input	File	The	linker	performs	a	number	of	
tests	and	checks	on	the	format	of	object	and	library	=iles.	If	something	seems	
wrong	with	an	input	=ile,	the	linker	will	terminate	immediately.	Such	a	message	
is	likely	to	be	the	result	of	a	bug	in	the	assembler	or	createlib	tools.	

•	 Memory	Allocation	Failure	There	is	not	enough	memory	for	the	linker	to	
allocate	its	internal	data	structures.	

•	 I/O	Error	A	problem	was	reported	by	the	host	OS	during	a	system	call	to	read	
input	=iles	or	write	output	=iles.	

•	 Failure	of	the	Linker	to	Find	a	Placement	for	the	Segments	The	algorithm	
used	by	the	linker	is	reasonably	clever	but	may,	for	some	extreme	cases,	fail	to	
=ind	a	solution.	That	is,	when	placing	the	segments	in	memory,	the	linker	was	
unable	to	=ind	legal	locations	for	all	the	segments.	Since	each	program	has	a	
0x8_0000_0000	byte	(i.e.,	32	GiByte)	address	space,	any	program	causing	such	
a	failure	would	have	to	be	extraordinarily	large.	

•	 Program	Logic	Error	The	linker	performs	a	large	number	of	internal	
consistency	checks.	If	any	test	fails,	the	linker	will	print	a	message	and	halt.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	91 284

Chapter	6:	The	Linker	

Warning	Messages	

The	following	messages	are	not	fatal	but	probably	indicate	programmer	errors:	

***** LINK WARNING: When synthesizing this Bxx instruction, an
illegal target address was encountered. (Use -w1 to suppress this
warning.) *****

***** LINK WARNING: When synthesizing this JUMP/CALL instruction, an
illegal target address was encountered. (Use -w1 to suppress this
warning.) *****

***** LINK WARNING: When synthesizing this LOADx instruction, a
target address that was not in 0x0 ... 0xF_FFFF_FFFF was
encountered. (Use -w1 to suppress this warning.) *****

***** LINK WARNING: When synthesizing this STOREx instruction, a
target address that was not in 0x0 ... 0xF_FFFF_FFFF was
encountered. (Use -w1 to suppress this warning.) *****

***** LINK WARNING: For reasons that are too complicated to explain,
a NOP was inserted following the translation for this synthetic
instruction. This shouldn't hurt anything, but in the interest of
full disclosure, it may slightly degrade performance. (Command
option -w2 will suppress this warning.) *****

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	92 284

Chapter	7:	Support	for	
Runtime	Debugging	

Quick	Summary	

•	There	are	a	number	of	assembler	pseudo-op	instructions	for	debugging	support.	
•	The	debugging	pseudo-ops	allow	the	compiler	to	provide	information	to	the	
debugger.	
•	The	compiler	will	add	debugging	pseudo-ops	to	the	.s	=ile.	
	 	 —	Human	assembly	programmers	will	not	typically	use	these	pseudo-ops.	
•	The	debugging	pseudo-ops	are	not	necessary	for	execution	and	only	play	a	role	
when	the	debugger	is	activated.	
•	The	debugging	pseudo-ops	direct	the	assembler	to	add	debugging	information	to	
the	.o	=ile.	
•	The	linker	will	process	the	debugging	information	and	add	it	to	the	executable	=ile.	
•	The	debugging	information	will	be	placed	at	the	end	of	the	executable	=ile.	
•	The	debugging	information	will	be	ignored	when	the	program	is	loaded	for	
execution.	
•	If	a	debugging	tool	is	used,	it	will	read	the	debugging	info	from	the	executable	=ile.	
•	The	debugging	information	describes:	
	 	 —	Function	and	method	names	
	 	 —	Local	variable	names,	types,	and	locations	
	 	 —	Global	variable	names,	types,	and	locations	
	 	 —	Source	level	statement	types	and	locations	
•	The	debugger	will	use	it	to	display	information	in	a	way	that	is	more	human-
readable.	
•	The	debugging	information	includes	source	=ile	name	and	line	numbers	which	can	
be	displayed	to	assist	the	programmer	during	debugging.	

Blitz-64:	Assembler	and	Linker	/	Porter	 Page	 	of	93 284

Chapter	7:	Support	for	Runtime	Debugging	

Debugging	Pseudo-ops	

The	following	pseudo-op	are	used	to	convey	debugging	information	to	the	debugger.	

.sourcefile

.function

.endfunction

.regparm

.local

.global

.stmt

.comment

These	pseudo-ops	are	normally	produced	by	the	compiler	and	inserted	into	the	.s	
assembly	code	=ile	it	produces.	

These	pseudo-ops	will	not	in	any	way	in=luence	how	the	program	executes	and	
which	error	and	exception	conditions	can	occur.	

Normally,	human	assembly	language	programmers	will	not	bother	to	use	any	
debugging	pseudo-ops.	Presumably,	an	assembly	programmer	thinks	more	in	terms	
of	labels	and	and	machine	instructions,	so	these	pseudo-ops	are	not	always	
meaningful	for	programs.	

However,	nothing	prevents	the	human	assembly	language	programmer	from	using	
the	debugging	pseudo-ops.	The	assembler	and	linker	tools	will	perform	error	
checking	designed	to	catch	egregious	errors	that	might	cause	problems	with	the	
assembler,	linker,	and	debugger	tools.	However,	nothing	prevents	the	human	
programmer	from	making	minor	mistakes	that	cause	the	debugger	general	
confusion	and	to	print	out	gibberish	in	its	attempt	to	display	debugging	information	
in	human-friendly	terms.	

A	label	is	not	allowed	on	any	of	the	debugging	pseudo-ops.	Most	of	them	require	
additional	operands,	which	will	be	discussed	later.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	94 284

Chapter	7:	Support	for	Runtime	Debugging	

The	.sourceWile	Pseudo-op	

The	.sourceWile	pseudo-op	is	used	to	associate	a	source	=ile	name	with	all	the	code	in	
the	.s	=ile.	It	requires	two	operands,	both	of	which	must	be	strings.	The	strings	will	
be	passed	on	to	the	debugger	and	will	be	associated	with	all	other	debugging	
information	in	the	=ile.	

.sourcefile "Filename","OtherInfo"

Here	is	an	example	usage.	

.sourcefile "MyPackage.c","KPL v1.0; Compiled 25-12-2019 19:30"

The	.sourceWile	pseudo-op	must	be	placed	near	the	top	of	the	.s	=ile,	before	any	
other	debugging	pseudo-ops.	If	the	=ile	contains	any	debugging	pseudo-ops,	then	it	
must	contain	a	.sourceWile	pseudo-op.	The	.s	=ile	must	not	contain	multiple	
occurrences	of	this	pseudo-op.	

The	Filename	string	is	passed	through	to	the	debugger,	but	is	not	otherwise	
examined	by	the	assembler	or	linker.	This	string	is	required	but	may	be	empty.	The	
debugger	will	display	the	Filename	to	the	programmer,	since	a	line	number	alone	is	
insuf=iciently	meaningful.	The	Filename	should	be	the	=ile	within	which	the	line	
numbers	have	meaning.	
		
The	OtherInfo	string	is	intended	to	contain	any	additional	documentation	
information,	such	as	the	nature	of	the	tool	that	produced	the	.s	=ile	and	perhaps	the	
date	and	time	at	which	the	=ile	was	created.	This	information	is	passed	through	to	
the	debugger,	but	is	not	otherwise	examined	by	the	assembler	or	linker.	This	string	
is	required	but	may	be	empty.	

	

The	.function	Pseudo-op	

The	.function	pseudo-op	is	used	to	associate	a	source	name	with	a	function	or	
method.	(For	code	bodies,	the	debugging	information	makes	no	distinction	between	
functions	and	methods.)	

.function "SourceName", line=NNN, framesize=NNN

.endfunction

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	95 284

Chapter	7:	Support	for	Runtime	Debugging	

Here	is	an	example	usage:	

P_Foo_34:
.function "foo", line=57, framesize=32
store.d -8(sp),lr
addi sp,sp,-32
…
addi sp,sp,32
load.d lr,-8(sp)
ret
.endfunction

The	.function	and	.endfunction	instructions	act	as	pair	to	indicate	which	
instructions	originated	from	a	single	source	code	function	or	method.	The	.function	
should	be	placed	directly	before	the	=irst	instruction	of	the	entry	prologue	and	
the	.endfunction	should	be	placed	directly	after	the	last	instruction	of	the	function.	

A	function	may	contain	several	RETURN	statements	and	the	compiler	may	elect	to	
include	several	copies	of	the	exit	epilogue	in	the	code.	Regardless	of	how	many	the	
compiler	includes,	there	must	be	exactly	one	.endfunction	and	it	must	be	placed	
after	the	last	instruction	that	belongs	to	the	function.	

The	.function	pseudo-op	requires	a	SourceName	string,	which	is	the	name	of	the	
function	or	method,	as	it	appeared	in	the	original	source	=ile.	Due	to	name	mangling,	
the	label	in	the	assembly	=ile	may	not	match	the	original	name	chosen	by	the	human.	

The	.function	pseudo-op	requires	the	number	of	the	line	number	on	which	this	
function	was	de=ined.	A	zero	value	is	legal	and	indicates	missing	information.	

The	.function	pseudo-op	requires	the	size	of	the	stack	frame	(i.e.,	the	activation	
record)	and	this	is	given	in	bytes.	Since	frames	are	always	a	multiple	of	8	bytes	in	
size,	this	number	must	be,	too.	It	may	be	zero,	but	may	not	be	negative.	A	leaf	frame	
will	always	have	a	frame	size	of	zero;	a	non-leaf	frame	will	have	a	frame	size	of	at	
least	8.	

For	leaf	functions,	the	debugger	will	assume	that	the	return	value	of	the	current	
function	is	in	register	lr.	For	non-leaf	functions,	the	debugger	will	assume	that	the	
return	value	of	the	current	function	is	at	offset	-8(fp).	Here,	we	use	fp	(frame	
pointer)	to	mean	the	address	of	the	caller’s	frame.	The	debugger	will	compute	fp	as	
sp	-	framesize.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	96 284

Chapter	7:	Support	for	Runtime	Debugging	

In	the	example	above,	note	that	the	frame	size	in	.function	(i.e.,	32)	is	the	same	
number	used	in	the	entry	prologue	and	exit	epilogue.	This	should	always	be	true,	or	
else	the	debugger	may	become	confused	when	looking	at	the	stack.	

The	.function	and	.endfunction	instructions	form	a	bracket.	
Any	.stmt,	.comment,	.local	or	.regparm	that	occurs	between	them	will	be	
associated	with	that	function.	Every	.stmt,	.comment,	.local,	and	.regparm	must	
occur	between	a	.function	and	an	.endfunction	pseudo-op.	

The	byte	range	given	by	the	.function	and	.endfunction	instructions	are	all	
associated	with	that	function.	

During	debugging,	if	execution	is	halted,	the	debugger	can	look	at	the	current	value	
of	the	PC	to	determine	whether	execution	was	halted	within	a	known	function.	

There	is	no	requirement	that	SourceNames	for	functions	be	unique;	due	to	
renaming	in	different	packages,	the	same	name	may	be	used	for	different	things.	An	
empty	string	is	legal	and	indicates	missing	information.	

The	.global	Pseudo-op	

Consider	a	KPL	variable	de=inition	that	occurs	outside	any	function	or	method	code.	
Thus,	the	variable	is	a	“global”	variable:	

var myVar: int = 123

The	purpose	of	the	.global	pseudo-op	is	to	associate	debugging	information	with	the	
memory	locations	that	will	store	this	variable’s	runtime	value.	

The	general	form	is:	

.global "SourceName",line=LineNumber,type="TypeCode"

For	example:	

P_MyPack_MyVar_19:
.global "myVar",line=24,type="I"
.doubleword 123

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	97 284

Chapter	7:	Support	for	Runtime	Debugging	

The	.global	should	be	placed	immediately	before	the	variable	as	shown	above,	so	as	
to	associate	the	SourceName	with	the	correct	memory	address.	

As	before,	the	SourceName,	and	the	LineNumber	associate	attributes	with	a	
memory	location.	There	is	no	requirement	that	SourceNames	for	global	variables	be	
unique;	due	to	renaming	in	different	packages,	the	same	name	may	be	used	for	
different	things.	

The	TypeCode	is	a	string	which	gives	the	debugger	information	about	the	KPL	type	
of	the	variable.	From	this,	the	debugger	will	determine	how	many	bytes	the	variable	
occupies	as	well	as	how	best	to	display	the	variable’s	value.	

The	following	type	codes	are	used:	

Easy	Types:	
	 I	 int	 64-bit	signed	integer	
	 W	 word	 32	bit	signed	integer	
	 H	 halfword	 16	bit	signed	integer	
	 C	 byte	(C	=	Char)	 8	bit	signed	integer	or	ASCII	char	
	 L	 bool	(L	=	Logical)	 TRUE	/	FALSE,	8	bits	
	 D	 double	 64	bit	double-precision	=loating	point	
	 S	 String	 Ptr	to	array	of	bytes	

Hard	Types:	
	 P	 ptr	 Pointer	to	anything,	64	bits	
	 A	 array	 	
	 O	 object	 	
	 R	 struct	(R	=	Record)	 Size	and	types	of	=ields	is	unspeci=ied	
	 U	 union	 Size	and	types	of	=ields	is	unspeci=ied	

A	String	is	a	pointer	to	an	array	of	bytes.	These	are	commonly	used	in	KPL	to	to	
represent	UTF-8	encoded	Unicode	strings.	Strings	are	common	enough	to	warrant	
their	own	type	code.	A	String	object	can	be	printed	by	the	debugger,	although	the	
debugger	should	make	no	assumptions	about	whether	the	bytes	are	UTF-8	codes.	

Each	object	carries	a	dispatch	pointer	at	runtime	and	this	pointer	points	to	a	jump	
table	which	also	contains	a	pointer	to	a	Class	Descriptor.	The	debugger	may	be	able	
to	extract	some	information	from	these	data	structures	in	the	target	program’s	
address	space	so	that	it	can	print	out	some	info	about	the	object.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	98 284

Chapter	7:	Support	for	Runtime	Debugging	

For	pointers,	arrays,	structs,	and	unions,	the	debugger	is	provided	with	no	further	
information.	Thus,	it	can’t	display	the	value	of	such	variables,	other	than	as	a	
sequence	of	bytes.	

Possible	Extensions	That	Were	Considered		The	one-letter	type	system	described	
above	is	obviously	limited	and	could	be	extended,	as	described	here.	

For	all	“easy"	types,	the	type	code	string	will	consist	of	a	single	character.	

For	“hard”	types,	the	idea	is	that	the	initial	character	may	be	followed	by	additional	
characters.	That	is,	we	will	allow	the	type	code	string	to	contain	additional	
characters	beyond	the	=irst	character.	

These	additional	characters	encode	additional	type	information	for	some	types.	For	
example,	the	type	

	 ptr	to	XXX	

can	be	encoded	with	the	string	

	 "PX"	

where	X	is	the	type	code	string	for	type	XXX.	For	example:	

type	 encoding	
ptr	to	int	 "PI"	
ptr	to	ptr	to	word	 "PPW"

This	also	works	for	arrays.	For	example:	

type	 encoding	
array	of	int	 "AI"	
ptr	to	array	of	ptr	to	array	of	bool	 "PAPAL"	

If	the	additional	characters	are	present,	the	debugger	can	use	them	for	a	more	
human-readable	display	of	values.	In	the	additional	characters	are	missing,	the	
debugger	will	be	less	adept	at	printing	values	for	these	types.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	99 284

Chapter	7:	Support	for	Runtime	Debugging	

At	this	time,	there	is	no	proposal	for	additional	characters	following	these	codes.	

	 O	 object	 	
	 R	 struct	(R	=	Record)	 	
	 U	 union	 	

Even	the	extension	proposed	is	not	able	to	fully	accommodate	the	KPL	type	system.	
Consider	this	KPL	code:	

	 type	MyType	=	ptr	to	MyType	
	 var	x:	MyType	

The	type	code	for	x	would	be	“PPPPP…”.	While	this	example	is	contrived,	it	shows	the	
existence	of	a	deeper	problem.	

We	could	propose	an	encoding	that	addresses	the	problem	of	an	object/struct/
union	that	contains	a	pointer	to	same	type,	but	it	will	be	complicated.	

However,	a	complex	type	system	is	just	not	needed	and	will	violate	our	fundamental	
goal	of	keeping	Blitz	simple.	

The	.local	and	.regparm	Pseudo-ops	

Consider	a	KPL	variable	that	is	local	to	some	function	or	method	code.	This	could	be	
a	parameter	or	a	local	variable:	

function foo (myParm1: bool, myParm2: MyClass)
 var myLocal: int = 123
 …
endFunction

The	purpose	of	the	.regparm	pseudo-op	is	to	associate	debugging	information	with	
a	register	that	will	be	used	to	pass	a	parameter.	

The	purpose	of	the	.local	pseudo-op	is	to	associate	debugging	information	with	
stack	locations	that	will	store	the	values	or	parameters	and	local	variables.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	100 284

Chapter	7:	Support	for	Runtime	Debugging	

The	general	forms	are:	

.regparm RegNum,"SourceName",line=LineNumber,type="TypeCode"

.local Offset, "SourceName",line=LineNumber,type="TypeCode"

For	example:	

P_Foo_34:
.function "foo", line=57, framesize=32
.regparm 1, "myParm1", line=57, type="L"
.local 32, "myParm2", line=57, type="O"
.local 8, "myLocal", line=58, type="I"
store.d -8(sp),lr
addi sp,sp,-32

Typically,	the	.regparm	and	.local	instructions	will	be	placed	immediately	after	
the	.function	as	shown	above.	

The	RegNum	is	a	number	(1	..	7)	which	tells	which	register	the	parameter	is	passed	
in:	r1	…	r7.	

The	Offset	tells	where	in	the	stack	a	parameter	or	local	can	be	found.	Note	that	the	
offsets	are	relative	to	the	stack	top	pointer	after	the	function	or	method	prologue.	In	
a	leaf	function,	the	sp	register	will	not	be	changed,	so	this	doesn’t	make	any	
difference.	However,	for	non-leaf	functions	it	matters.	In	this	example,	the	frame	size	
is	32	bytes	and	the	function	prologue	adjusts	register	sp	by	this	amount.	

Parameter	myParm2	is	located	at	the	very	top	of	the	stack	at	the	time	of	the	CALL	
instruction,	so	it	has	offset	0	upon	entry.	However,	after	the	prologue,	the	offset	of	
myParm2	is	+32.	

The	SourceName,	LineNumber,	and	TypeCode	work	as	described	earlier.	

The	.local	pseudo-op	may	also	be	included	by	the	compiler	for	any	temporary	
variables	the	compiler	creates	which	have	no	human-created	SourceName.	A	empty	
SourceName	is	legal	but	is	discouraged.	A	simple	name	of	“_temp”	is	acceptable,	but	
names	like	“_temp_23”	are	better.	

There	is	no	requirement	that	SourceNames	be	unique,	even	within	a	single	function.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	101 284

Chapter	7:	Support	for	Runtime	Debugging	

WARNING:		The	compiler	is	free	to	move	globals,	locals,	and	parameters	into	
registers.	The	compiler	will	take	great	effort	to	keep	them	in	registers	as	much	as	
possible.	

As	such,	the	values	stored	in	memory	will	often	be	out	of	date	and	memory	may	
contain	obsolete	values.	

The	programmer	should	never	forget	this	when	using	the	debugger.	

At	the	entry	to	a	function	or	method,	the	parameters	will	always	be	where	they	are	
expected	to	be.	Thus,	the	.local	and	.regparm	info	will	be	correct	and	an	attempt	to	
see	their	values	at	the	beginning	of	a	function	or	method	will	display	their	correct	
values.	However,	once	the	function	or	method	gets	underway,	the	current	values	may	
be	placed	in	registers	in	ways	that	are	likely	to	confuse	a	human.	Since	the	debugger	
doesn’t	know	about	how	the	compiler	has	choosen	to	use	the	registers,	the	debugger	
may	printout	incorrect	or	out-of-date	values.	

Likewise,	the	compiler	may	keep	a	global	variable	in	a	register,	instead	of	writing	it	
out	to	memory	immediately.	[In	the	case	of	“shared”	variables,	the	compiler	is	
forced	to	write	out	the	values	as	soon	as	possible	whenever	they	change	and	to	read	
from	memory	whenever	the	value	is	needed.]	

But	for	most	global	variables,	the	compiler	will	defer	writing	the	values	to	memory	
and	may	use	register	copies	to	avoid	memory	reads.	

The	result	is	that,	by	examining	variables	with	the	debugger,	it	is	easily	possible	that	
the	programmer	will	see	obsolete	values.	The	natural	response	is	to	ask	why	the	
variable	is	incorrect	and	to	focus	mental	effort	debugging	something	which	is,	in	
fact,	not	an	error	at	all.	

Even	when	the	value	in	memory	and	the	value	in	a	register	happen	to	be	the	same,	
the	compiler	may	make	all	accesses	and	updates	to	the	register	copy,	not	to	memory.	
Thus,	if	the	programmer	uses	the	debugger	to	make	a	change	to	a	variable’s	value	as	
stored	in	memory	(where	the	debugger	thinks	it	is),	the	actual	code	may	ignore	this	
value	and	continue	to	use	the	value	cached	in	a	register.	

So	again,	the	programmer	should	be	very	aware	that	examining	or	reading	a	
variable’s	value	(other	than	a	“shared”	global	or	a	parameter	at	the	very	beginning	of		
a	function	or	method	entry)	is	fraught	with	danger.		

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	102 284

Chapter	7:	Support	for	Runtime	Debugging	

	

The	.stmt	Pseudo-op	

Consider	a	KPL	assignment:	

x = y + 123

The	purpose	of	the	.stmt	pseudo-op	is	to	associate	debugging	information	with	the	
range	of	instructions	that	implements	a	single	source	level	statement.	

The	general	form	is:	

.stmt StatementType, line=LineNumber

There	are	a	number	of	Statement	Types.	

Each	.stmt	pseudo-op	must	be	placed	directly	before	the	sequence	of	instructions	to	
which	it	applies.	The	range	of	instructions	continues	until	the	next	.stmt	
or	.endfunction	pseudo-op.	The	.stmt	pseudo-op	may	only	occur	between	
a	.function	and	an	.endfunction	pseudo-op.	

.function …
…
.stmt assign,line=63
loadd r1,16(sp)
addi r1,r1,123
stored 32(sp),r1

.stmt if,line=64
…
.endfunction

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	103 284

Chapter	7:	Support	for	Runtime	Debugging	

Here	is	the	list	of	statement	types.	

0 <	.comment	> COMMENT
1 assign ASSIGNMENT	statement
2 if IF	statement
3 then THEN	statement
4 else ELSE	statement
5 call FUNCTION	CALL	
6 send SEND	statement
7 while_expr WHILE	LOOP	(expr	evaluation)	
8 while_body WHILE	LOOP	(body	statements)	
9 do_body DO	UNTIL	(body	statements)	
10 do_expr DO	UNTIL	(expr	evaluation)	
11 break BREAK	statement	
12 continue CONTINUE	statement	
13 return RETURN	statement	
14 for_init FOR	statement	(before	initialization)
15 for_body FOR	(body	statements)	

	 16 for_incr	 FOR	(before	increment)
17 for_expr	 FOR	(before	test)
18 switch SWITCH	statement

	 19 case	 CASE
20 default	 DEFAULT
21 try TRY	statement
22 throw THROW	statement
23 catch CATCH	clause
24 free FREE	statement
25 debug DEBUG	statement
26 init_arr INITIALIZE	ARRAY	statement
27 init_obj INITIALIZE	OBJECT	statement
28 set_arr_sz SET	ARRAY	SIZE	statement

	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	104 284

Chapter	7:	Support	for	Runtime	Debugging	

The	.comment	Pseudo-op	

The	.comment	pseudo-op	is	used	to	associate	an	arbitrary	comment	string	with	a	
memory	address.	Here	is	the	general	form:	

.comment "CommentString"

Here	is	an	example	usage:	

.comment "Reg 4 contains X"

This	string	is	associated	with	the	memory	location.	When	that	memory	location	is	
examined	using	the	debugger,	the	debugger	may	display	that	information.	

The	.comment	pseudo-op	is	designed	to	help	break	apart	complex	statements.	
The	.comment	instruction	can	be	inserted	by	the	compiler	to	explain	what	it	is	
doing	or	to	document	something	not	covered	by	the	.stmt	pseudo-ops.	A	prime	
example	would	be	to	document	a	function	or	method	invocation	within	a	larger	
expression.	

Example		Consider	this	KPL	source	code,	which	contains	a	function	call	(foo)	and	a	
message	send	(bar)	within	an	expression.	

…
i = foo (i) + x.bar (k)
if (a >= b)
…

The	compiler	might	produce	the	following	assembly	code.	We	assume	the	compiler	
is	smart	enough	to	insert	a	.stmt	pseudo-op	before	the	code	for	each	statement	and	
a	.comment	before	each	function	or	method	invocation.	(I’ve	highlighted	in	bold	the	
debugging	pseudo-ops	inserted	by	the	compiler.	I’ve	also	added	comments	to	
explain	what	the	code	is	doing,	although	it	is	unlikely	the	compiler	will	provide	such	
useful	comments.)	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	105 284

Chapter	7:	Support	for	Runtime	Debugging	

…
.stmt "AS",line=87
loadd r1,16(sp) # argument i
.comment "call foo"
call P_Foo_34 # perform call
stored 32(sp),r1 # save in temp
loadd r1,40(sp) # receiver x
loadd r2,48(sp) # argument k
.comment "send message bar"
loadd t,0(r1) # perform send
jalr lr,88(t) # .
loadd r2,32(sp) # retrieve temp
add r1,r1,r2 # perform addition
stored 16(sp),r1 # save in i
.stmt "IF",line=88
blt r3,r4,_Label_97 # if (a >= b) ...
…

Next,	assume	the	program	is	executed	and	an	error	has	occurred	at	runtime.	Assume	
the	debugger	tool	is	activated	and	the	programmer	wishes	to	use	the	“disassemble”	
command	to	display	the	contents	of	memory.	

Here	is	how	the	debugger	might	display	memory	contents.	Using	the	debugging	
information,	the	debugger	is	able	to	display	the	debugging	information	(highlighted	
in	bold).	This	additional	information	makes	a	straight	memory	dump	
comprehensible.	

...
ASSIGNMENT (line 87)
00000AB00: 1E0010F1 load.d r1,16(sp) # offset = 0x10

call foo
00000AB04: 190013CE call P_Foo_34 # PC + 0x13C
00000AB08: 220021F0 store.d 32(sp),r1 # offset = 0x20
00000AB0C: 1E0028F1 load.d r1,40(sp) # offset = 0x28
00000AB10: 1E0030F2 load.d r2,48(sp) # offset = 0x30

send message bar
00000AB14: 1E000018 load.d t,0(r1) # offset = 0x0
00000AB18: 1A00588E jalr lr,88(t) # offset = 0x58
00000AB1C: 1E0020F2 load.d r2,32(sp) # offset = 0x20
00000AB20: 00010211 add r1,r1,r2
00000AB24: 220011F0 store.d 16(sp),r1 # offset = 0x10

IF (line 88)
00000AB28: 12001434 b.lt r3,r4,0x14 # if (r3<r4) goto _Label_97
...

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	106 284

Chapter	7:	Support	for	Runtime	Debugging	

Perhaps	the	compiler	is	clever	and	is	able	to	generate	a	more	descriptive	string	for	
the	.comment.	For	example,	the	compiler	might	insert	something	like:	

.comment "call foo (i)"

.comment "send message x.bar(k)"

Of	course	the	more	numerous	the	.comments	are	and	the	more	descriptive	the	
strings	are,	the	more	space	will	be	consumed	in	the	object	and	executable	=iles	to	
contain	this	debugging	information.	Therefore,	the	compiler	may	elect	to	insert	
minimal	debugging	information.	[Note	that	the	assembler	identi=ies	identical	strings	
and	will	represent	each	string	only	once.	So	if	the	same	string	is	used	repeatedly	in	
many	.comment	pseudo-ops,	no	additional	space	will	be	required	for	subsequent	
uses	of	the	same	string.]	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	107 284

Chapter	8:	Assembler	
Programming	Conventions	

Quick	Summary	

•	Function	calling	conventions	are	described.	
•	Support	for	debugging	is	discussed.	
•	Representation	for	objects	and	classes	is	described.	
•	Method	dispatching	is	described.	
•	Examples	are	given	showing	how	code	can	be	compiled	into	assembly.	
	 —	Some	common	compilation	patterns	are	given.	
	 —	The	=it	of	the	Blitz-64	instruction	set	to	the	KPL	language	is	discussed.	

Function	Calling	Conventions	

Whenever	some	code	contains	a	“call	statement”	to	invoke	a	function,	we	refer	to	
that	code	as	the	“caller”	or	“calling	code”.	The	function	being	invoked	is	referred	to	
as	the	“called”	function	or	the	“callee”.	

The	caller	and	called	functions	are	often	compiled	separately	and	the	compiler	has	
no	knowledge	of	one	function	when	compiling	the	other.	Therefore,	a	set	of	
“function	calling	conventions”	is	adopted	and	used	for	all	functions.	Assuming	the	
code	generated	for	the	caller	and	for	the	called	functions	both	respect	these	
conventions,	the	function	invocation	and	return	will	work	properly.	

The	compiler	will	follow	these	conventions,	but	assembly	language	programmers	
are	free	to	do	anything	they	want.	For	hand-coded	assembly	functions	that	call	
compiler-generated	functions,	or	for	hand-coded	assembly	functions	that	are	meant	
to	be	called	by	compiler-generated	code,	it	is	mandatory	that	the	calling	conventions	
are	followed.	For	large	assembly	programs,	the	programmers	would	be	well-advised	

Blitz-64:	Assembler	and	Linker	/	Porter	 Page	 	of	108 284

Chapter	8:	Assembler	Programming	Conventions	

to	follow	the	standard	calling	conventions.	(Actually,	nobody	writes	large	assembly	
language	programs	any	more,	so	this	is	a	moot	point.)	

For	convenience,	we	repeat	the	register	usage	conventions:	

	 	 Alternate	
	 	 				Name					 Function																			
	 r0	 	 Zero	
	 r1	 	 Argument	1	/	Return	Value	
	 r2	 	 Argument	2	
	 r3	 	 Argument	3	
	 r4	 	 Argument	4	
	 r5	 	 Argument	5	
	 r6	 	 Argument	6	
	 r7	 	 Argument	7	
	 r8	 t	 Temp	register,	used	by	assembler/linker	
	 r9	 s0	 Work	reg	(caller-saved)	
	 r10	 s1	 Work	reg	(caller-saved)	
	 r11	 s2	 Work	reg	(caller-saved)	
	 r12	 tp	 Thread	data	pointer	
	 r13	 gp	 Global	data	pointer	
	 r14	 lr	 Link	register	
	 r15	 sp	 Stack	pointer	

Consider	a	function	named	“foo”;	we	use	the	CALL	and	RET	instructions	to	invoke	
the	function.	For	example:	

Source	=ile	of	caller:	

…
call foo
.import foo
…

Source	=ile	of	the	called	function:	

foo:
.export foo

	 …	Code	for	foo	…	
ret

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	109 284

Chapter	8:	Assembler	Programming	Conventions	

If	the	caller	and	the	called	code	are	in	the	same	source	=ile,	then	we	dispense	with	
the	.import	pseudo-op	instruction.	

Next,	we	give	the	basic	function	calling	register	conventions	including	the	rules	
for	passing	arguments.	

Let’s	de=ine	an	argument	to	be	“small”	if	its	size	is	8	bytes	or	smaller.	This	means	all	
arguments	with	a	basic	type—i.e.,	int,	word,	halfword,	byte,	bool,	double,	and	
pointer—are	small.	Some	objects,	structs,	and	unions	may	also	be	small.	Every	
object	requires	at	least	an	8	byte	header	(the	dispatch	table	pointer)	which	means	
the	object	would	have	no	=ields	in	order	to	be	“small”,	but	that	might	happen.	Arrays	
are	never	“small”	since	they	have	a	header	of	8	bytes	plus	at	least	1	element.	

•	The	=irst	7	“small”	arguments	will	be	passed	in	registers	r1,	…	r7.	

•	A	small	argument	that	is	passed	in	a	register	will	be	sign-extended	whenever	it	
is	of	less	than	64	bits.	For	example,	an	argument	of	type	“byte”	will	occupy	the	
entire	register.	

•	If	there	are	fewer	than	7	small	arguments,	they	will	be	passed	in	registers	r1	…	
rN.	For	example,	if	arguments	1,	2,	5,	and	9	are	the	only	small	arguments,	they	
will	be	passed	in	registers	r1,	r2,	r3,	and	r4.	The	remaining	registers	(r5,	r6,	
and	r7)	will	contain	garbage,	by	which	we	mean	they	contain	the	remnants	of	
previous	computations	by	the	caller.	

•	All	remaining	arguments	are	passed	from	caller	to	callee	by	being	placed	in	
memory	on	the	runtime	stack,	as	described	later.	

•	If	there	is	a	return	value	and	it	is	“small”,	it	will	be	returned	in	register	r1.	If	
there	is	a	return	value	but	it	is	not	small,	it	will	be	returned	on	the	runtime	
stack.	

•	Upon	return,	registers	r2	…	r7	will	contain	garbage.	Register	r1	will	also	
contain	garbage,	unless	the	function	returns	a	small	value,	in	which	case	r1	is	
used	to	return	that	value.	

•	Register	r8	(i.e.,	register	t)	is	the	“temporary	work	register”.	Upon	invocation	
it		will	contain	garbage	and	the	callee	can	make	no	assumptions	about	its	value.	
The	register	may	be	used	by	the	callee,	as	needed.	Upon	return,	the	register	is	
garbage	and	the	caller	can	make	no	assumptions	about	its	value.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	110 284

Chapter	8:	Assembler	Programming	Conventions	

•	Registers	r9,	r10,	r11	(i.e.,	s0,	s1,	s2)	are	known	as	the	“work	registers”.	Upon	
entry,	they	will	contain	garbage	and	the	callee	is	free	to	use	them	as	needed.	

•	Registers	r1	though	r11	(i.e.,	r1…r7,	t,	s0…s2)	are	said	to	be	“caller-saved”.	
The	caller	must	not	assume	their	values	will	be	preserved	across	the	call.	If	they	
contain	important	information	to	the	caller,	then	that	function	is	responsible	for	
saving	their	contents	before	the	call	and	restoring	them	after	the	called	function	
returns.	Thus,	the	callee	is	free	to	use	these	registers	without	saving	their	
contents	=irst.	

•	Register	r12	(i.e.,	tp)	is	the	“thread	pointer”.	Register	tp	is	typically	=ixed	and	
unchanging	throughout	the	execution	of	a	program.	It	is	used	to	point	to	a	
region	of	memory	that	is	speci=ic	to	an	individual	thread.	In	this	way,	a	function	
can	determine	in	which	thread	it	is	executing	and	can	access	any	per-thread	
data.	This	register	is	said	to	“callee	saved”	in	the	sense	that	it	must	not	be	
modi=ied	by	the	callee.	If,	for	some	strange	reason,	the	callee	changes	its	value,	it	
must	=irst	save	and	then	restore	that	value	before	returning.	

•	Register	r13	(i.e.,	gp)	is	the	“global	pointer”.	This	register	typically	contains	a	
=ixed	value	which	is	used	to	making	accessing	static	data	(i.e.,	global	variables)	
easier.	This	register	typically	remains	unchanged	throughout	the	entire	
program	execution.	This	register	is	said	to	be	“callee	saved”	in	the	sense	that	it	
must	not	be	modi=ied	by	the	callee.	If,	for	some	strange	reason,	the	callee	
changes	its	value,	it	must	=irst	save	and	then	restore	that	value	before	returning.	

•	Register	r14	(i.e.,	lr)	is	the	“link	register”	and	is	used	directly	by	the	CALL	and	
RET	instructions.	This	register	is	loaded	with	the	return	address	by	the	CALL	
instruction	so,	upon	invocation	of	a	function,	this	register	contains	the	return	
address.	The	RET	instruction	depends	on	this	register	containing	that	return	
address.	If	the	called	function	intends	to	call	other	functions,	it	must	=irst	save	
the	contents	of	register	lr	and	then	restore	lr	before	executing	its	own	RET	
instruction.	

•	Register	r15	(i.e.,	sp)	is	the	“stack	pointer”	register.	It	is	callee-saved	and	must	
not	be	modi=ied.	More	precisely,	anything	pushed	onto	the	runtime	stack	must	
be	popped	before	return,	so	there	must	be	no	net	change	to	this	register.	

By	“the	register	will	contain	garbage”,	we	mean	that	it	will	contain	some	
undetermined,	unspeci=ied	value.	Upon	invocation,	the	caller	may	have	left	the	
results	of	some	previous	computation	in	the	register.	However,	the	caller	will	no	
longer	need	that	value,	so	the	callee	need	not	save	that	value	and	is	free	to	use	the	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	111 284

Chapter	8:	Assembler	Programming	Conventions	

register.	Upon	return,	the	caller	must	assume	that	“garbage”	registers	contain	
unde=ined	values.	The	caller	cannot	assume	that	these	registers	contain	whatever	
the	caller	put	in	them	before	the	function	invocation.	

When	arguments	are	passed	in	registers,	the	register	will	contain	these	values:	

	 Arg	Type	 Register	Contains…	
	 int	 64	bit	signed	integer	
	 pointer	 36	bit	address;	the	upper	28	bits	are	unde=ined	
	 double	 64	bit	=loating	point	value	
	 word	 32	bit	signed	integer;	upper	32	bits	will	be	sign	extension	
	 halfword	 16	bit	signed	integer;	upper	48	bits	will	be	sign	extension	
	 byte	 8	bit	signed	integer;	upper	56	bits	will	be	sign	extension	
	 bool	 64	bits	(0=FALSE,	1=TRUE)	
	 object	 The	object,	which	must	be	exactly	64	bits	in	size	
	 struct/union	 The	struct/union,	which	must	be	≤	64	bits	in	size	

When	a	value	smaller	than	64	bits	is	passed	in	a	register,	the	value	will	be	sign-
extended.	

Whenever	the	processor	uses	the	contents	of	a	register	as	an	address,	the	upper	28	
bits	are	ignored.	We	never	care	about	the	upper	28	bits	of	an	address.	Generally,	the	
upper	bits	of	a	pointer	are	zeros.	

For	other	values,	it	is	critical	that	the	upper	bits	are	sign-extended.	Consider	how	a	
byte	value	of	-1	might	be	passed	in	a	register:	

0xFFFF_FFFF_FFFF_FFFF Correct
0x7FFF_FFFF_FFFF_FFFF Incorrect

Imagine	the	code	in	the	called	function	wishes	to	add	+1	to	the	value.	If	the	register	
contains	the	sign-extended	value,	then	it	works	correctly,	yielding	0.	If	the	register	
contains	the	incorrect	value,	an	Arithmetic	Exception	is	erroneously	generated.	

The	following	is	the	meaning	of	the	8	bits	stored	in	a	boolean	variable	are:	

	 0	=	FALSE	
	 anything	else	=	TRUE	

Typically,	the	value	1	is	used	for	TRUE.	(The	compiler	always	makes	the	comparison	
against	0,	and	never	against	1.	However,	when	comparing	two	bool	values,	the	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	112 284

Chapter	8:	Assembler	Programming	Conventions	

compiler	is	allowed	to	use	a	single	EQ	test.	This	guarantees	a	correct	result	as	long	
as	TRUE	is	always	represented	with	1	and	other	non-zero	values	are	avoided.)	

Commentary		Concerning	the	design	choices	for	register	calling	conventions,	there	
are	several	questions:	

•	 How	many	registers	shall	be	devoted	to	argument	passing?	
•	 Shall	some	registers	be	declared	to	be	“callee-saved”	and	how	many?	
•	 Shall	some	registers	be	“caller-saved	work	registers”	and	how	many?	

We	decided	to	devote	a	lot	of	registers	to	argument	passing.	

Note	that	almost	all	functions	have	7	or	fewer	arguments.	Passing	arguments	in	
registers	is	very	important	for	ef=iciency	and	7	covers	almost	all	cases.	Also	note	that	
any	register	set	aside	for	arguments	that	is	not	needed	for	that	purpose,	
automatically	becomes	a	“work	register”	for	the	callee	function.	So	in	many	cases,	7	
registers	will	suf=ice	for	all	arguments	and	a	few	work	registers.	Notice	that	the	
argument	numbers	1,	2,	3,	…	coincide	with	the	register	numbers	r1,	r2,	r3,	…	

The	thinking	here	is	that	every	argument	has	to	be	“marshaled”	(i.e.,	the	argument	
expression	must	be	evaluated	and	the	result	placed	somewhere	where	the	callee	can	
=ind	it).	In	order	to	perform	this	marshaling,	each	argument	must	at	least	be	moved	
into	a	register	in	the	caller’s	code.	Moving	the	argument	to	memory	is	an	additional	
step	which	may	or	may	not	be	necessary.	The	Blitz-64	strategy	is	to	try	to	avoid	
these	STORE	instructions.	

The	caller	can’t	know	which	arguments	are	best	kept	in	memory;	only	the	callee	can.	
So	the	idea	is	to	delay	saving	the	arguments	to	memory.	This	allows	the	callee	to	
save	whichever	arguments	to	memory	it	chooses.	Leaving	all	arguments	in	registers	
gives	the	maximal	freedom	to	the	callee	to	determine	which	arguments	to	keep	in	
registers	and	which	to	move	into	memory.	

For	functions	with	fewer	than	7	arguments,	there	will	naturally	be	left-over	registers	
which	can	be	used	as	“work”	registers	by	the	callee.	For	functions	with	7	or	more	
arguments,	all	registers	will	be	in	use	upon	function	entry.	Presumably	some	
arguments	will	be	needed	immediately,	but	the	caller	cannot	know	which.	If	the	
callee	needs	additional	work	registers	beyond	those	otherwise	available,	it	will	be	
required	“spill”	some	registers	to	memory.	But	only	the	callee	can	choose	the	best	
registers	to	spill.	With	up	to	7	arguments	in	registers,	we	are	effectively	giving	the	
decision	making	to	the	callee,	where	it	can	be	made	more	effectively.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	113 284

Chapter	8:	Assembler	Programming	Conventions	

The	t	register	is	a	very	local	temporary	work	register,	frequently	used	in	synthetic	
instructions,	so	its	use	is	=ixed.	

The	registers	tp,	gp,	lr,	and	sp	have	dedicated	uses.	

This	leaves	3	registers:	s0,	s1,	and	s2.	

Initially,	we	de=ined	s0,	s1,	and	s2	to	be	callee-saved,	but	reversed	this	decision	and	
made	them	caller-saved.	

Either	choice	has	pitfalls:	In	one	case,	the	caller	must	save	them	every	time	a	
function	call	is	made,	even	though	many	callees	may	ignore	them,	which	is	a	waste.	
In	the	other	case,	the	callee	must	save	them	if	they	will	be	needed	and	restore	them,	
even	if	they	don’t	contain	any	valid	caller	data;	again	a	waste.	

It	probably	makes	sense	to	have	a	few	callee-saved	registers.	The	compiler	can	look	
at	each	function	“f”	and	make	decisions	about	which	registers	to	use.	If	“f"	contains	
many	functions	calls,	it	makes	sense	to	keep	data	in	callee-saved	registers,	with	the	
hope	that	the	callees	will	be	able	to	avoid	using	these	registers.	If	there	are	few	
function	calls	in	“f”,	then	it	makes	better	sense	to	keep	data	in	caller-saved	registers,	
since	this	allows	“f”	to	avoiding	saving	the	registers,	with	the	hope	that	“f”s	caller	
does	not	use	the	register.	

Note	that	if	a	function	“f”	is	small-ish,	then	it	often	won’t	need	extra	registers.	
Furthermore,	if	“f”	is	small,	it	is	also	more	likely	to	be	in-lined,	in	which	case	the	
issue	is	moot.	On	the	other	hand,	if	“f”	is	large-ish,	then	it	is	likely	“f”	will	need	the	
extra	registers.	And	since	“f”	is	large,	it	is	likely	its	execution	will	require	a	lot	of	
time.	So	it	makes	sense	for	“f”s	caller	to	save	the	registers,	if	necessary,	relieving	“f”	
of	the	need	to	spill	registers	to	memory.	

We	chose	to	make	s0,	s1,	and	s2	caller-saved	but	not	contain	arguments	because	
there	are	few	functions	requiring	more	than	7	arguments.	In	those	few	cases	where	
there	are,	we	still	need	a	couple	of	work	registers	available	for	computation,	or	else	
we’ll	have	to	immediately	spill	the	arguments	to	memory,	which	defeats	putting	
them	in	registers	in	the	=irst	place.	

This	is	all	pretty	sketchy	reasoning	and	this	may	be	an	open	research	question	
deserving	serious	experimentation.	Perhaps	Blitz-64	can	be	used	to	try	variations	of	
the	calling	conventions,	to	try	to	locate	the	optimum	balance	between	caller-saved	
and	callee-saved	registers.	It	is	unclear	how	much	performance	potential	awaits	
discovery.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	114 284

Chapter	8:	Assembler	Programming	Conventions	

The	Runtime	Stack	

A	runtime	stack	is	maintained	and	the	sp	register	points	to	the	“top”	of	this	stack.	

The	stack	grows	downward,	from	high	memory	addresses	towards	location	0.	

The	“top”	of	the	stack	is	thus	“below”	the	items	deeper	in	the	stack,	in	terms	of	
memory	addresses.	

The	sp	register	is	decreased	in	value	for	a	“push”	operation	and	increased	in	value	
for	a	“pop”	operation.	

The	sp	register	points	to	the	=irst	byte	of	the	item	at	the	top	of	the	stack.	The	
remaining	bytes	of	the	top	item	can	be	accessed	with	positive	offsets	from	register	
sp.	Items	below	the	stack	top	(that	is,	deeper	in	the	stack)	are	also	accessible	with	
positive	offsets.	

When	referring	to	stacks,	we	use	the	words	“top”,	“above”	and	“upper”	to	mean	those	
items	which	are	closest	to	the	stack	top.	Since	the	runtime	stack	grows	downward,	
these	terms	can	be	confusing	since	those	items	actually	have	“smaller”	addresses	
and	are	located	“lower”	in	memory.	[This	can	be	confusing:	When	item	x	is	said	to	be	
“above”	item	y,	it	can	mean	item	x	is	closer	to	the	stack	top	and	thus	has	a	smaller	
address,	or	it	can	mean	that	item	x	has	a	larger	address	and	is	thus	farther	from	the	
stack	top.	The	best	approach	is	to	be	careful	to	say	“larger	or	smaller	addresses”,	or	
“closer	to	the	stack	top”	and	“deeper	in	the	stack”.]	

The	sp	register	will	always	be	an	even	multiple	of	8.	In	other	words,	whenever	an	
item	is	pushed	onto	the	stack,	that	item	will	be	rounded	up	in	size	to	an	integral	
number	of	doublewords.	

Upon	entry	to	a	function,	the	stack	top	register	sp	will	always	point	to	the	top	item	
in	the	stack,	or	more	precisely,	to	the	=irst	byte	of	the	top	item.	After	returning	from	
the	function,	there	will	be	no	net	changed	to	the	stack.	In	particular,	the	sp	register	
will	be	unchanged	at	the	time	of	the	RET	instruction.	Furthermore,	there	will	be	no	
changes	to	items	already	in	the	stack	(with	a	couple	of	exceptions	discussed	later).	
In	other	words,	the	bytes	with	addresses	equal	and	greater	than	sp	will	be	
unchanged	by	the	invocation	and	return	of	a	function.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	115 284

Chapter	8:	Assembler	Programming	Conventions	

However,	there	is	no	such	guarantee	about	bytes	above	the	top	of	the	stack,	i.e.,	the	
bytes	with	addresses	lower	than	the	value	in	sp.	The	called	function	is	free	to	push	
items	onto	the	stack	(thereby	overwriting	whatever	was	in	those	bytes),	as	long	as	
every	item	pushed	is	also	popped	before	return.	

While	we	said	that	register	sp	points	to	the	=irst	byte	of	the	item	at	the	top	of	the	
stack	upon	function	entry	and	function	exit,	there	is	no	constraint	that	bytes	with	
addresses	below	sp	cannot	be	used	during	the	function.	

A	“leaf	function”	is	a	function	that	does	not	invoke	any	other	functions.	Many	
functions	are	not	leaf	functions	because	they	may	call	other	functions.	In	other	
words,	a	leaf	function	does	not	contain	any	CALL	instructions,	and	a	function	that	
contains	CALL	instructions	is	not	a	leaf	function.	

Since	a	leaf	function	will	not	call	any	other	functions,	it	will	not	need	to	use	register	
lr.	Thus,	the	leaf	function	can	leave	its	own	return	address	in	lr.	There	is	no	need	for	
the	leaf	function	to	save	its	return	address.	On	the	other	hand,	a	non-leaf	function	
must	save	its	own	return	address	before	calling	other	functions.	A	non-leaf	function	
must	save	the	value	of	lr	and	must	restore	it	before	returning.	Thus,	a	non-leaf	
function	will	require	more	instructions	on	entry	and	on	return	than	a	leaf	function.	

Functions	are	free	to	make	use	of	memory	locations	above	the	stack	top	(i.e.,	at	
addresses	that	are	less	than	register	sp).	This	is	important	for	leaf	functions.	

Since	a	leaf	function	will	not	be	calling	other	functions,	it	does	not	need	to	worry	
about	another	function	pushing	data	onto	the	stack.	Therefore,	the	leaf	function	is	
free	to	use	memory	“above”	the	top	of	the	stack	(i.e.,	at	memory	addresses	less	than	
the	sp	register)	to	store	its	temporary	and	local	variables.	

A	leaf	function	does	not	need	to	decrement	sp	upon	function	entry	or	increment	sp	
upon	function	exit.	It	can	simply	use	negative	offsets	from	sp	for	the	storage	of	its	
data.	This	saves	two	additional	instructions	upon	the	entry	and	exit	of	the	leaf	
function.	

However,	it	is	important	to	note	that	the	OS	kernel	can	not	rely	on	the	sp	register	to	
delimit	the	runtime	stack.	The	OS	kernel	may	not	make	the	assumption	that	only	
bytes	with	addresses	greater	than	or	equal	to	the	sp	register	contain	valid	data.	
Because	leaf	functions	are	using	bytes	“above”	the	stack	top,	this	assumption	is	
incorrect.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	116 284

Chapter	8:	Assembler	Programming	Conventions	

Obviously,	the	OS	kernel	or	any	additional	interrupting	code	cannot	push	
information	onto	the	stack	using	the	sp	register	and	expect	a	return	to	the	
interrupted	code	to	be	possible.	Since	the	interrupted	code	could	have	been	a	leaf	
function,	such	an	interrupting	process	that	uses	bytes	beyond	the	stack	top	may	
possibly	alter	or	overwrite	bytes	that	were	in	use	by	the	interrupted	code.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	117 284

Chapter	8:	Assembler	Programming	Conventions	

Argument	Locations	and	the	Parameter	Block	

As	mentioned	previously,	the	=irst	7	arguments	of	basic	types	are	passed	in	registers	
and	all	remaining	arguments	are	passed	in	memory.	Next,	we	describe	this	in	detail.	

The	remaining	argument	values	are	passed	on	the	runtime	stack	and	will	be	at	the	
top	of	the	stack	upon	function	entry.	The	following	diagram	shows	the	stack	and	sp	
register	upon	function	entry,	just	before	the	=irst	instruction	is	executed.	
The	caller	will	allocate	space	for	all	arguments	in	the	parameter	block.	The	called	
function	will	rely	on	the	space	being	allocated	exactly	as	described	here.	

The	parameter	block	will	include	space	for	both	arguments	that	are	passed	in	
registers	and	for	arguments	that	must	be	passed	on	the	stack.	For	arguments	that	
are	not	passed	in	registers,	the	values	will	be	placed	in	the	parameter	block	by	the	
caller.	

For	arguments	that	are	passed	in	registers,	space	will	also	be	allocated	in	the	
parameter	block.	The	space	will	be	present,	but	will	contain	no	useful	data.	The	
called	function	is	free	to	use	that	space	as	a	place	to	store	the	argument	values	if	it	
wishes.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	118 284

Chapter	8:	Assembler	Programming	Conventions	

If	there	is	a	returned	value	of	8	bytes	or	smaller,	it	will	be	returned	in	register	r1.	If	
larger	than	8	bytes,	the	function	will	place	it	at	offset	0	in	the	parameter	block. 	In	2

any	case,	the	caller	must	assume	that	all	argument	values	stored	in	the	parameter	
block	before	the	call	are	lost	/	overwritten	/	trashed	by	the	called	function.	

(Note	that	allocating	extra	uninitialized	bytes	in	the	parameter	block	has	a	zero	
performance	cost.	The	caller	is	not	a	leaf	function,	so	it	must	allocate	a	stack	frame	
regardless.	Adding	several	bytes	to	the	size	of	the	stack	frame	only	changes	the	value	
by	which	sp	must	be	decremented	when	the	stack	frame	is	created,	and	incremented	
when	the	function	returns.	Since	the	bytes	are	uninitialized,	no	additional	
instructions	are	required.)	

The	parameter	block	will	occur	at	the	top	of	the	stack	and	will	contain	space	for	each	
argument.	The	arguments	will	be	placed	in	the	order	in	which	they	appear	in	the	
source	code.	Padding	bytes	will	be	inserted,	as	required	to	meet	the	alignment	
requirements	for	each	argument.	

To	illustrate,	here	is	a	function	prototype:	

function foo (
i1, i2: int,
p3, p4: ptr to …,
c5: MyClass,
b6, b7: bool,
a8: MyArray,
i9, i10: int,
c11: MyClass,
h12: halfword,
w13,w14: word,
h15: halfword,
w16: word,
d17: double,
b18: bool,
b19, b20: byte,
h21: halfword)

The	layout	of	the	parameter	block	is	shown	next. 	3

	In	the	event	that	the	returned	value	is	larger	than	all	argument	values	combined,	the	size	of	the	2

parameter	block	will	be	increased	as	necessary	to	accommodate	the	returned	value.

	We	assume	that	objects	of	MyClass	are	16	bytes	in	size	and	arrays	of	type	MyArray	require	80	3

bytes.

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	119 284

Chapter	8:	Assembler	Programming	Conventions	

The	=irst	7	arguments	that	are	8	bytes	or	shorter	will	be	transmitted	in	registers,	as	
shown.	All	other	arguments	will	be	placed	by	the	caller	on	the	stack.	Upon	entry	to	
the	called	function,	the	arguments	will	be	found	at	the	indicated	offsets	from	the	
stack	top,	sp.	

						Offset	 Size	
0 r1 8 i1: int
8 r2 8 i2: int
16 r3 8 p3: ptr to …
24 r4 8 p4: ptr to …
32 16 c5: MyClass
48 r5 1 b6: bool
49 r6 1 b7: bool
50 6 ...padding...
56 80 a8: MyArray
136 r7 8 i9: int
144 8 i10: int
152 16 c11: MyClass
168 2 h12: halfword
170 2 ...padding...
172 4 w13: word
176 4 w14: word
180 2 h15: halfword
182 2 ...padding...
184 4 w16: word
188 4 ...padding...
192 8 d17: double
200 1 b18: bool
201 1 b19: byte
202 1 b20: byte
203 1 ...padding...
204 2 h21: halfword
206 2 ...padding...

The	total	size	of	this	parameter	block	is	208	bytes;	the	parameter	block	will	always	
be	a	multiple	of	8	bytes	in	size.	

The	called	function	will	probably	not	be	a	leaf	function,	so	it	will	itself	need	its	own	
stack	frame.	Upon	entry,	the	called	function	will	begin	by	pushing	a	new	frame	by	
decrementing	sp	by	some	amount.	This	will,	of	course,	alter	the	offsets	it	must	use	to	
access	the	parameter	block.	

For	example,	if	function	foo	needs	a	stack	frame	of	(say)	3000	bytes,	then	it	will	
subtract	3000	from	sp	within	its	entry	prologue.	Then,	in	order	to	access	an	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	120 284

Chapter	8:	Assembler	Programming	Conventions	

argument	such	as	“w16”	at	offset	184	in	the	parameter	block,	the	called	function	will	
need	to	use	offset	3184	from	sp.	

Debugging	Support	

Bugs	occur	and	programs	must	be	debugged.	A	program	called	a	“debugger”	is	used	
to	assist	the	programmer	in	=inding	bugs.	

In	Blitz,	the	debugger	will	be	invoked	immediately	as	a	result	of	an	error	occurring.	
At	the	moment	the	debugger	becomes	active,	the	program	is	frozen.	Its	virtual	
memory	is	still	intact,	along	with	other	state	information	such	as	the	values	of	the	
registers.	

In	this	section,	we	will	discuss	how	the	code	generated	by	the	compiler	interacts	
with	the	debugger.	

The	debugger	is	itself	a	program,	separate	from	the	program	being	debugged.	There	
are	several	possible	organizations:	

(1)	The	debugger	will	is	integrated	with	the	target	program	and	inhabits	the	
same	virtual	address	space	as	the	program	being	debugged.	

(2)	The	debugger	is	integrated	within	the	kernel	and	is	a	part	of	the	kernel.	

(3)	The	debugger	is	a	separate	user-level	process	which	makes	use	of	special	
features	of	the	kernel	to	access	the	target	program’s	memory.	

(4)	The	code	is	being	emulated	and	the	debugger	is	part	of	the	emulator.	

As	of	this	writing,	the	last	option	is	fully	implemented	and	is	used	to	debug	
programs	written	in	KPL	and	assembly	language.	

In	KPL,	all	errors	result	in	“throwing”	an	error.	The	program	itself	may	catch	the	
error,	in	which	case	the	program	may	take	appropriate	actions.	But	if	not	caught,	the	
default	action	is	to	invoke	debugging.	

The	=irst	task	of	the	debugger	is	to	determine	where	execution	was	when	the	error	
occurred.	For	many	types	of	error,	there	will	be	additional	information	about	the	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	121 284

Chapter	8:	Assembler	Programming	Conventions	

error.	For	example,	if	an	array	index	is	out	of	range,	we	want	to	capture	and	make	the	
(incorrect)	index	value	available.	

In	Blitz,	errors	are	detected	in	either	of	two	ways.	First,	some	types	of	error	will	
cause	a	runtime	exception.	Second,	the	compiler	will	insert	code	that	will	explicitly	
test	for	other	types	of	errors.	

In	the	=irst	case,	errors	caught	by	runtime	exceptions	are	checked	by	the	hardware	
and	involve	no	overhead,	since	there	are	no	additional	instructions.	As	part	of	the	
exception	processing,	registers	(including	the	PC)	will	be	saved	and	an	error	
handling	function	will	be	invoked.	

In	the	second	case,	errors	caught	with	explicit	tests	will	cause	a	CALL	to	be	made	to	
error	handling	code.	(Typically,	the	code	generated	by	the	compiler	will	test	for	an	
error	condition	and	will	branch	around	a	CALL	instruction.)	The	CALL	instruction	
will	be	executed	only	if	the	error	happens	and,	as	normal	for	any	CALL,	the	return	
address	will	be	saved.	

Regardless	of	how	the	error	handler	was	invoked,	the	value	of	the	PC	register	at	the	
time	of	the	error	will	be	captured	and	used	to	locate	where	in	the	code	the	error	
arose.	Also,	any	other	pertinent	information	(such	as	an	invalid	array	index)	will	be	
captured	and	saved	by	the	error	handler	function.	

Unfortunately,	the	value	of	PC	is	a	memory	address,	i.e.,	a	binary	number	not	likely	
to	be	meaningful	to	a	human.	To	help	the	human,	this	address	must	be	translated	
into	meaningful	information,	such	as	a	line	number	within	some	source	code	=ile.	

Also,	the	programmer	may	wish	to	examine	the	contents	of	variables	and	
parameters.	These	will	be	stored	at	various	offsets	from	the	stack	top.	To	assist	the	
programmer,	the	debugger	will	need	to	know	which	function	was	executing	and	
what	offsets	were	used	for	various	parameters	and	local	variables.	

In	other	words,	the	debugger	will	need	some	information	about	the	program	being	
debugged.	Some	debugging	information	is	speci=ied	with	pseudo-ops	such	
as	.function,	.local,	and	.stmt.	

But	where	is	this	information	to	be	stored?	

Information	about	the	program	(which	will	be	used	by	the	debugger)	is	stored	in	
two	places:	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	122 284

Chapter	8:	Assembler	Programming	Conventions	

•	Within	the	executable	=ile	
•	Within	memory,	alongside	of	the	program	code	and	data	

Blitz	stores	most	of	the	debugging	information	in	the	executable	=ile,	but	stores	some	
information	in	memory	with	the	target	program’s	instructions.	

The	debugging	info	derived	from	pseudo-ops	(such	as	.function,	.local,	and	.stmt)	is	
stored	in	the	executable	=ile.	The	KPL	compiler	automatically	generates	the	
debugging	pseudo-ops	so	all	programs	carry	the	necessary	information	in	their	
executable	=iles.	

There	is	also	a	concern	with	hand-coded	assembly	language	routines.	However,	it	is	
not	a	signi=icant	burden	to	include	debugging	pseudo-ops	in	hand-coded	assembly	
functions.	

The	KPL	compiler	will	place	information	about	types	and	objects	directly	in	memory	
in	the	form	of	dispatch	tables	and	class	descriptors.	This	is	done	because	this	
information	may	be	needed	at	runtime	for	other	(non-error)	operations,	such	as	the	
isKindOf	and	isInstanceOf	functions.	

Generally	speaking,	storing	the	debugging	information	in	the	executable	=ile	is	
preferred	over	placing	information	in	the	program	itself.	Placing	the	information	in	
memory	at	runtime	increases	the	program	size	and	increases	the	time	to	load	the	
program,	as	well	as	enlarging	the	program’s	memory	footprint.	

However,	placing	the	debugging	information	in	the	executable	=ile	requires	
participation	by	the	assembler	and	linker.	Since	the	debugging	information	contains	
information	about	the	placement	of	code	and	variables	in	memory,	the	assembler	
and	linker	are	required	to	carry	this	information	through	from	the	.s	=ile	and	add	it	
to	the	executable	=ile.	Also,	at	the	time	of	an	error,	the	debugger	must	read	in	the	
executable	=ile,	parse	it,	and	build	an	internal	representation.	

We	consider	it	mandatory	that	the	debugger	must	always	be	invoked	for	any	
program	that	has	an	error.	This	means	the	hooks	for	error	handling	must	be	present	
in	every	program.	The	programmer	must	never	be	required	to	recompile	the	
program	with	special	options	or	rerun	a	faulting	program.	

In	Blitz,	the	debugger	is	always	invoked	on	error	and	begins	by	accessing	the	
original	executable	=ile	from	which	the	program	was	loaded	to	obtain	the	necessary	
debugging	information.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	123 284

Chapter	8:	Assembler	Programming	Conventions	

One	issue	concerns	the	question	of	locating	the	executable	=ile	from	which	the	
program	was	loaded.	

(It	is	possible	that	the	executable	=ile	will	get	modi=ied	or	deleted	between	the	time	
the	program	is	loaded	and	the	time	the	debugger	is	invoked.	We	place	the	burden	of	
guarding	against	this	on	the	programmer	who	is	using	the	debugger.)	4

The	key	question	the	debugger	must	answer	is:	

	 Which	source	statement	was	executing	at	the	time	of	the	error?	

The	debugger	must	determine	which	source	level	statement	was	executing	and	
within	which	function.	

To	accomplish	this,	the	debugger	builds	a	reverse	mapping	from	PC	values	to	source	
statements.	From	the	PC	value	captured	by	the	error	handler,	the	debugger	can	
search	and	determine	the	source	statement	and	the	identity	of	the	function	that	
contains	that	statement.	

Experience	has	shown	that	naming	the	error	and	simply	identifying	the	source	
statement	line	number	is	incredibly	useful	in	debugging.	This	cannot	be	overstated.	

This	reverse	mapping	will	fail	if	a	bug	causes	a	program	to	make	a	jump	to	a	
“random”	location.	In	that	case,	the	PC	value	is	garbage.	

But	how	likely	is	such	a	random	jump?	And	how	can	it	occur	in	KPL	code?	

We	assume	that	user-level	code	is	always	kept	in	read-only	pages	so	it	can	never	be	
overwritten.	Jump	tables	(e.g.,	dispatch	tables	or	switch	jump	tables)	are	also	kept	in	
read-only	pages.	Therefore,	these	are	not	a	source	of	random	jumps.	

Consider	a	program	working	with	values	of	type	“ptr	to	function”.	While	a	mistake	
may	cause	incorrect	output,	the	KPL	type	checking	system	will	prevent	the	program	

		If	the	debugging	information	had	been	stored	in	memory	alongside	the	code,	this	would	not	be	a	4

problem;	the	debugging	information	is	already	there	when	needed.	

One	approach	is	to	disallow	the	debugger	to	be	used	on	a	program	that	was	loaded	in	the	past.	In	
other	words,	to	debug	a	program,	the	programmer	must	restart	the	program	from	within	the	
debugger.	But	this	has	the	shortcoming	of	making	it	dif=icult	to	debug	transient	errors.	The	bug	
may	not	manifest	itself	upon	restarting	the	program.	We	must	be	able	to	begin	debugging	a	failed	
program	immediately,	without	having	to	restart	it.

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	124 284

Chapter	8:	Assembler	Programming	Conventions	

from	taking	a	random	jump	which	could	confuse	the	debugger.	However,	if	the	
programmer	uses	an	“unsafe”	operation	on	a	function	pointer,	this	could	cause	a	
program	to	take	a	random	jump. 	5

This	leaves	return	addresses	stored	in	stack	frames.	Of	course	a	bug	can	corrupt	the	
stack	and	result	in	a	RET	instruction	jumping	to	a	random	location. 	6

Random	jumps	are,	in	fact,	almost	non	existent.	

In	practice,	the	Blitz	debugger	reports	the	location	of	errors	very	reliably.	

Function	Prologue	and	Epilogue	

Often	a	function	needs	a	stack	frame	to	be	pushed	on	the	stack,	in	which	to	store	
local	variables.	The	sp	register	is	used	to	point	to	the	current	top	of	the	stack.	

In	some	processors,	a	second	register	is	devoted	to	pointing	to	and	accessing	the	
stack	frame.	This	register	might	be	called	the	“frame	pointer”	(or	“fp”	register).	The	
Blitz-64	architecture	is	designed	so	a	second	register	is	not	needed.	In	Blitz,	there	is	
no	“fp”	register.	Instead,	the	sp	register	is	used	to	access	the	stack	frame,	as	we	
describe	next.	

The	sequence	of	instructions	occurring	at	the	beginning	of	a	function	is	called	the	
function	prologue.	The	sequence	of	instructions	occurring	at	the	end	of	a	function	
(executed	directly	before	returning)	is	called	the	function	epilogue.	

The	prologue	creates	and	pushes	a	stack	frame	on	to	the	stack	when	the	function	
begins	execution.	The	epilogue	pops	the	stack	frame	off	the	stack	before	returning.	

The	same	approach	can	be	used	for	methods,	as	well	as	functions,	so	these	
sequences	are	sometimes	called	the	method	prologue	and	method	epilogue.	In	
this	discussion,	we’ll	just	talk	about	functions,	although	the	same	works	for	
methods.	Sometimes,	the	terms	entry	code	sequence	and	exit/return	code	
sequence	are	used.	

	Programs	that	perform	unsafe	pointer	manipulations	on	function	pointers	are	extremely	rare	and	5

weird.

	Let’s	not	forget	that	another	source	of	random	jumps	in	is	the	presence	of	a	compiler	error.6

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	125 284

Chapter	8:	Assembler	Programming	Conventions	

Of	course,	the	programmer	can	place	a	return	statement	anywhere	within	a	
function	and	the	function	can	contain	many	returns.	In	the	following,	we	will	place	
the	function	epilogue	as	if	there	is	only	a	single	return	statement	at	the	bottom	of	the	
function.	

Most	likely,	the	compiler	will	place	a	copy	of	the	epilogue	sequence	at	every	place	
where	a	return	statement	occurs. 	7

Leaf	Functions	

A	leaf	function	is	de=ined	as	a	function	that	does	not	call	other	functions.	As	such,	
the	return	address	—	which	is	in	register	lr	on	entry	to	the	function	—	can	remain	in	
lr	and	does	not	need	to	be	saved	on	the	stack.	

Here	is	the	code	that	will	be	used	for	the	entry	and	return	in	a	leaf	function.	

Leaf function
foo:

…
ret

There	is	zero	prologue	and	epilogue	overhead	for	a	leaf	function.	

Note	there	is	no	need	to	touch	or	access	memory,	as	long	as	all	arguments	and	work	
variables	are	kept	in	registers.	

	An	alternative	is	for	the	compiler	to	include	a	single	copy	of	the	epilogue	statements.	The	7

compiler	will	insert	a	JUMP	to	the	epilogue	sequence	wherever	a	return	statement	is	used.	Since	
the	epilogue	is	about	3	statements,	inserting	a	JUMP	instruction	is	generally	considered	too	much	
overhead.

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	126 284

Chapter	8:	Assembler	Programming	Conventions	

If	the	leaf	function	needs	additional	storage	for	locals	and	temporary	variables,	it	can	
place	these	on	the	stack,	above	the	stack	top,	i.e.,	using	negative	offsets	from	
register	sp.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	127 284

Chapter	8:	Assembler	Programming	Conventions	

Non-Leaf	Functions	

If	a	function	calls	other	functions,	we	call	it	a	non-leaf	function. 	8

For	a	non-leaf	function,	the	code	must	save	register	lr	and	adjust	the	stack	top	
pointer	to	push	a	new	stack	frame	onto	the	stack:	

Non-leaf function
foo:

store.d -8(sp),lr
addi sp,sp,-FRAME_SIZE
…
addi sp,sp,FRAME_SIZE
load.d lr,-8(sp)
ret

In	the	above	code,	“FRAME_SIZE”	is	an	integer	which	gives	the	size	of	the	frame.	The	
frame	size	and	layout	will	be	computed	by	the	compiler.	The	compiler	must	compute	
the	size	needed	to	store	parameters	for	each	of	the	functions	that	“foo”	invokes	(the	
maximum	size	needed	for	all	functions	will	become	the	size	of	the	parameter	block).	
The	compiler	will	also	determine	the	amount	of	storage	needed	for	locals	and	
temporaries	within	foo,	plus	8	bytes	in	which	to	store	the	return	address.	

	The	KPL	compiler	will	often	insert	error	checking	tests	and,	if	triggered,	the	code	will	execute	a	8

CALL	to	an	error	handler	function.	While	the	source	code	may	not	call	any	functions	explicitly,	any	
such	implicit	error-related	CALLs	will	render	the	function	a	non-leaf	function.

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	128 284

Chapter	8:	Assembler	Programming	Conventions	

Here	is	what	a	stack	frame	looks	like:	

Within	foo,	the	local	and	temporary	variables	will	be	accessed	with	positive	offsets	
from	sp.	Access	to	the	arguments	to	foo	will	also	be	made	using	positive	offsets	to	
sp.	The	exact	offsets	to	the	arguments	can	only	be	determined	after	the	size	of	foo’s	
frame	has	been	determined.	

The	above	code	sequences	will	need	a	slight	modi=ication	if	FRAME_SIZE	exceeds	
32,767	since	the	ADDI	instruction	has	that	limit. 	9

Reconstructing	the	Call	Stack	

Note	that	this	organization	provides	enough	information	for	the	debugger.	After	an	
error	occurs,	the	debugger	is	given	only:	

	For	larger	frames,	the	compiler	will	need	to	generate	an	additional	instruction	for	the	prologue	9

and	an	additional	instruction	for	the	epilogue.	See	the	commentary	in	the	ISA	Reference	Manual	
immediately	following	the	description	of	the	UPPER16	instruction	for	more	information.

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	129 284

Chapter	8:	Assembler	Programming	Conventions	

PC	 The	address	at	which	the	error	occurred	
sp	 A	pointer	to	the	stack	top	at	the	time	of	the	error	

From	the	PC,	the	debugger	will	use	the	reverse	mapping	(described	elsewhere	in	
this	document)	to	determine	which	source	statement	was	executing	and,	from	that,	
which	function	was	currently	active.	From	the	function	information,	the	debugger	
can	determine	the	size	of	the	stack	frame,	which	will	allow	it	to	locate	the	slot	
containing	the	return	address.	Then,	it	can	compute	the	stack	top	on	entry	to	the	
function	and	the	statement	from	which	the	function	was	called.	

In	this	way,	the	debugger	can	work	backwards	through	the	stack,	showing	the	entire	
call	history.	

Object	Representation	

Consider	the	following	class	de=inition:	

	 class	MyClass	
	 	 i:	int	
	 	 b:	bool	
	 	 w:	word	
	 	 p:	ptr	to	MyClass	
	 	 h:	halfword	
	 endClass	

Every	object	will	be	located	on	a	doubleword	aligned	address	and	all	=ields	within	
the	object	will	be	properly	aligned,	according	to	their	individual	requirements.	For	
example,	the	offset	of	the	word	=ield	w	will	be	an	even	multiple	of	4,	ensuring	that	it	
will	be	word	aligned.	

Each	object	of	the	class	MyClass	will	have	the	=ive	=ields	shown	above,	along	with	a	
hidden	=ield,	known	as	the	“dispatch	table	pointer”.	

Every	object	will	contain	a	dispatch	table	pointer,	which	will	always	be	the	=irst	=ield	
in	the	object,	i.e.,	the	pointer	will	always	be	at	offset	0	of	the	object.	This	pointer	will	
be	a	64-bit	=ield	containing	the	address	of	a	“dispatch	table”.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	130 284

Chapter	8:	Assembler	Programming	Conventions	

Objects	described	by	the	above	de=inition	will	be	laid	out	as:	

	 														Wield														 type	 offset	 size	
	 <dispatch	pointer>	 	 0	 8	
	 i	 int	 8	 8	
	 b	 bool	 16	 1	
	 <padding>	 	 17	 3	
	 w	 word	 20	 4	
	 p	 ptr	 24	 8	
	 h	 halfword	 32	 2	
	 <padding>	 	 34	 6	
	 	 	 40	 size	of	object	

There	will	be	0-7	bytes	of	padding	added	to	force	the	size	of	every	object	up	to	a	
multiple	of	8	bytes.	

If	the	class	is	a	subclass	of	another	object,	then	all	the	=ields	of	the	superclass	will	be	
placed	before	the	=ields	of	the	subclass.	The	size	of	the	superclass	will	be	a	multiple	
of	8,	which	will	ensure	that	the	=ields	of	the	subclass	(which	follow)	will	be	properly	
aligned.	

There	will	only	be	one	dispatch	pointer	and	it	will	always	be	at	offset	0.	

The	compiler	will	know	the	offset	of	every	=ield	in	an	object	and	these	=ields	will	
always	be	properly	aligned.	Thus,	the	LOADx	and	STOREx	synthetic	instructions	can	
be	used	directly	to	retrieve	and	update	=ields.	

For	example,	assume	that	register	r1	contains	a	pointer	to	an	object	of	type	MyClass:	

	 To	retrieve	the	“int”	Wield	at	offset	8:	
loadd …,8(r1)

	 To	update	the	“word”	Wield	at	offset	20:	
storew 20(r1),…

Note	that	LOADx	and	STOREx	are	synthetic	instructions.	Any	offset	can	be	speci=ied	
in	the	assembly	code,	up	to	the	full	range	of	memory.	The	assembler	will	generate	
only	as	many	machine	instructions	as	required.	For	any	object	under	32,767	bytes	in	
size,	a	single	instruction	will	suf=ice.	Since	it	is	unusual	for	objects	to	be	this	large,	in	
most	cases	a	single	instruction	will	be	used.	However,	notice	that	extremely	large	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	131 284

Chapter	8:	Assembler	Programming	Conventions	

objects	will	be	automatically	accommodated	without	additional	measures	or	
exceptions.	

Method	Invocation	and	Dynamic	Dispatching	

For	every	class	de=inition,	the	compiler	will	produce	a	single	dispatch	table.	The	
dispatch	table	will	begin	with	a	64	bit	=ield	called	the	“class	pointer”.	This	pointer	
will	be	followed	by	a	number	of	64	bit	=ields,	called	“jump	slots”.	Each	jump	slot	will	
correspond	to	one	message	that	objects	of	this	class	understand.	The	dispatch	table	
will	contain	a	jump	slot	for	each	message	de=ined	in	the	class,	as	well	as	a	jump	slot	
for	each	message	de=ined	in	superclasses.	

Each	jump	slot	will	contain	a	JUMP	instruction.	The	JUMP	instruction	is	a	synthetic	
instruction	that	will	be	expanded	to	either	one	or	two	machine	instructions.	This	
expansion	will	be	done	by	the	linker,	after	it	has	determined	the	exact	address	of	the	
target	location.	

Thus,	the	JUMP	will	be	either	4	or	8	bytes.	All	jump	slots	are	8	bytes	and,	for	JUMPs	
that	require	only	4	bytes,	the	linker	will	insert	padding	bytes.	

The	target	of	the	JUMP	will	be	the	code	for	the	corresponding	method.	That	is,	the	
JUMP	will	branch	to	the	=irst	instruction	of	the	“entry	prologue”	sequence.	

A	message	is	very	similar	to	a	function.	In	fact,	the	code	for	a	message	is	identical	to	
the	code	for	a	function,	with	the	exception	that	there	is	an	additional	argument.	This	
argument	is	always	the	=irst	argument	and	is	a	pointer	to	the	receiving	object	itself.	

Thus,	the	“self	variable”	is	a	pointer	to	the	receiver	and	will	be	in	register	r1	upon	
method	entry.	The	=irst	normal	argument	to	the	message	will	go	into	r2,	with	
remaining	arguments	in	r3	…	r7.	In	other	words,	arguments	are	passed	to	method	
exactly	the	same	way	they	are	passed	to	functions,	with	the	addition	of	an	additional	
argument	(the	self	pointer)	inserted	before	the	other	arguments.	

Likewise,	the	remaining	calling	conventions	and	parameter	passing	rules	are	
identical	for	both	functions	and	methods.	

The	only	difference	is	in	the	caller’s	code	that	invokes	the	method.	When	invoking	a	
function	named	“foo”,	the	caller’s	code	looks	something	like	this:	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	132 284

Chapter	8:	Assembler	Programming	Conventions	

Function Invocation
mov r1,… # Evaluate argument 1
mov r2,… # Evaluate argument 2
mov r3,… # Evaluate argument 3
call foo
mov …,r1 # Retrieve returned value

Now	let’s	consider	invoking	a	method	named	“meth”.	

For	each	method,	the	compiler	will	determine	the	offset	into	the	dispatch	table.	The	
code	will	jump	indirectly	through	this	table.	We	do	this	because	the	compiler	must	
perform	dynamic	dispatching.	The	compiler	cannot	know	the	exact	class	of	the	
object.	Thus,	the	compiler	doesn’t	know	which	dispatch	table	will	be	used	or	which	
method	implementation	will	be	executed.	The	compiler	only	knows	the	offset	into	
the	dispatch	table	where	a	JUMP	to	“meth”	will	be	found.	

Let	us	assume	that	the	offset	into	the	dispatch	table	for	“meth”	is	some	number	
“xxx”.	Then	the	following	code	sequence	will	perform	message	sending.	

Method Invocation
mov r1,… # Evaluate ptr to receiver
mov r2,… # Evaluate argument 1
mov r3,… # Evaluate argument 2
loadd s0,0(r1)
jalr lr,xxx(s0)
mov …,r1 # Retrieve returned value

The	LOADD	instruction	will	move	a	pointer	to	the	dispatch	table	into	register	s0.	The	
JALR	instruction	will	save	the	return	address	in	the	linker	register	lr	and	jump	
directly	to	an	entry	in	the	dispatch	table.	This	entry	will	be	the	jump	slot	for	“meth”	
and	will	contain	a	jump	to	the	appropriate	code.	In	other	words,	this	code	performs	
a	“call”	to	the	jump	slot	itself.	Then,	immediately,	a	jump	is	made	to	the	=irst	
instruction	of	the	appropriate	method.	

Thus,	the	overhead	for	a	message	send,	above	what	is	required	for	a	function	call	is	
typically	only	two	additional	instructions:	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	133 284

Chapter	8:	Assembler	Programming	Conventions	

Function	call:	
call/jal

Message	send	(typical):	
loadd # load ptr to dispatch table
jalr # jump to jump slot
jump/jal # jump to method prologue

[In	comparing	a	method	invocation	to	a	function	invocation,	we	are	ignoring	the	
additional	code	to	load	the	pointer	to	the	receiver	object.	If	we	are	using	a	method	
instead	of	a	function,	then	the	assumption	is	that	there	is	some	object	involved	(i.e.,	
the	receiver	object)	and	this	object	would	have	been	passed	as	a	normal	argument	
had	the	programmer	coded	this	as	a	function.	In	any	case,	a	single	instruction	will	
often	be	used	to	load	register	r1	regardless	of	whether	it	is	a	function	or	a	method.]	

A	CALL	instruction	will	normally	expand	to	a	single	JAL	instruction,	but	in	some	
cases	it	may	expand	into	two	instructions.	

Recall	that	the	JALR	instruction	contains	a	16-bit	immediate	=ield,	ranging	-32,768	…	
+32,767.	The	above	code	sequence	for	a	message	send	will	work	as	long	as	the	offset	
into	the	dispatch	table	doesn’t	exceed	this	number.	(In	particular,	the	dispatch	table	
cannot	contain	more	than	4,094	jump	slots,	plus	the	class	pointer.)	It	is	unlikely	that	
any	class	will	have	(or	inherit)	this	many	methods.	But	if	so,	the	compiler	will	have	
to	insert	an	additional	UPPER16	instruction.	

Normally,	the	jump	slot	will	contain	a	single	JAL	instruction,	which	can	branch	up	to	
-524,288	…	+524,287	bytes	relative	to	the	jump	slot’s	location.	The	compiler	will	
typically	place	the	dispatch	table	and	the	methods	it	references	in	the	same	segment,	
so	they	will	end	up	near	each	other	in	memory.	So	in	most	cases	the	jump	slot	will	
contain	only	a	single	instruction,	but	in	some	cases	it	may	contain	two.	

Thus,	the	very	worst	case	scenario	is	that	a	message	send	requires	four	more	
instructions	than	a	function	invocation.	

Function	call:	
call/jal

Message	send:	
loadd s0,0(r1) # load pointer to dispatch table
upper16 t,s0,xxx # call to jump slot
jalr lr,xxx(t) # .
upper20 t,yyy # jump to method prologue
jalr lr,yyy(t) # .

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	134 284

Chapter	8:	Assembler	Programming	Conventions	

But	keep	in	mind	that	the	CALL	itself	might	have	a	long	distance	target	and	require	
two	instructions.	

Object	Initialization	

In	KPL,	objects	must	be	initialized	before	being	used.	The	initialization	is	nothing	
more	than	initializing	the	dispatch	table	pointer.	Without	a	valid	dispatch	table	
pointer,	methods	cannot	be	invoked	on	the	object.	

The	KPL	compiler	will	insert	a	test	to	make	sure	the	object	has	been	initialized.	This	
test	is	inserted	in	every	code	sequence	that	invokes	a	method.	This	test	requires	an	
additional	instruction	to	test	the	dispatch	table	pointer	to	make	sure	it	is	not	null.	

For	clarity,	this	test	was	not	shown	in	the	above	code	examples.	

If	the	dispatch	table	pointer	is	null,	error	handling	will	be	invoked.	In	particular,	an	
error	will	be	thrown.	The	error	is	named	ERROR_UninitializedObject.	Perhaps	the	
program	will	catch	this	error,	but	if	not,	it	will	result	in	the	debugger	becoming	
active.	

[Without	the	explicit	test,	what	would	happen?	Since	the	dispatch	table	pointer	is	
missing,	register	s0	will	be	loaded	with	zero.	Then,	using	some	offset	(xxx),	a	jump	
will	be	made.	This	would	result	in	a	jump	to	absolute	address	xxx.	Assuming	this	is	
user-mode	code	running	in	a	virtual	address	space,	this	will	cause	a	“Page	Illegal	
Address	Exception”.	Unfortunately,	the	location	of	the	actual	error	would	be	lost.	
Would	it	be	wise	to	add	an	option	to	the	KPL	compiler	to	give	programmers	the	
ability	to	leave	these	tests	out?	This	was	considered	and	rejected.]	

Compilation	Examples	

In	this	section,	we	give	some	examples	code	fragments	and	suggest	how	a	compiler	
might	translate	them	into	assembly	language.	The	higher-level	code	is	expressed	in	
KPL,	the	programming	language	of	Blitz-64,	although	any	similar	language	(like	“C”	
or	“C++”)	could	have	been	used.	

These	examples	are	intended	to	show	how	the	Blitz-64	ISA	can	be	used;	they	are	not	
necessarily	the	way	the	KPL	compiler	actually	works.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	135 284

Chapter	8:	Assembler	Programming	Conventions	

For	the	purposes	of	this	appendix,	we	de=ine	“basic	types”	as:	

	 int	 64-bit	signed	integers	
	 word	 32	bit	quantities	
	 halfword	 16	bit	quantities	
	 byte		 8	bit	quantities	
	 bool	 TRUE	/	FALSE,	stored	in	a	byte	
	 double	 64	bit	double-precision	=loating	point	
	 ptr	 Pointer	to	anything,	stored	in	64	bit	doubleword	

Non-basic	types	are	de=ined	as	follows.	Their	sizes	will	vary:	

	 arrays	 	
	 structs	/	records	
	 unions	
	 objects	
	 …	anything	else	…	

Access	of	Variables	

Global	variables	(i.e.,	variables	de=ined	outside	any	function	or	method)	will	be	
allocated	in		=ixed,	unchanging	locations	in	memory.	This	can	be	done	with	a	single	
pseudo-op.	

	 KPL:	
var
 i: int
 w: word
 h: halfword
 c: byte
 b: bool
 d: double
 p: ptr to …
 a: array […] of …

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	136 284

Chapter	8:	Assembler	Programming	Conventions	

	 Assembly	translation:	
i: .doubleword 0
w: .word 0
h: .halfword 0
c: .byte 0
b: .byte 0
d: .double 0.0
p: .doubleword 0
a: .skip …

(Global	variables	are	called	“static	variables”	by	some	people.)	

In	KPL,	all	variables	are	assumed	to	be	initialized	to	zero	values.	The	above	
translations	work	because	.skip	is	guaranteed	to	=ill	the	space	with	zeros.	

If	the	programmer	provides	an	initial	value,	this	value	can	always	be	determined	by	
the	compiler	and	the	translation	will	cause	the	global	variable	to	be	initialized	when	
the	program	is	loaded,	before	execution	begins.	

	 KPL:	
i: int = MAX_SIZE-1

	 Assembly	translation:	
i: .doubleword 99

The	translation	of	a	simple	assignment	involving	a	global	variable	of	basic	type	will	
involve	the	use	of	a	register,	as	in:	

	 KPL:	
i = i + 7

	 Assembly	translation:	
loadd r2,i
addi r2,r2,7
stored i,r2

NOTE:	The	LOADx	and	STOREx	instructions	are	synthetic	instructions.	They	can	be	
used	to	access	any	location	in	memory.	In	many	cases,	the	synthetic	will	expand	to	a	
single	machine	instruction,	but	for	some	harder-to-reach	addresses,	a	second	
instruction	will	be	automatically	inserted	by	the	linker.	Thus	there	is	no	limit	
imposed	by	the	ISA,	assembler,	or	linker	on	global	variable	access.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	137 284

Chapter	8:	Assembler	Programming	Conventions	

Local	variables	are	handled	differently.	In	some	cases,	the	compiler	will	be	smart	
enough	to	place	the	variable	in	a	register	and	avoid	all	memory	references.	

	 KPL:	
function foo (…)

var local: int
…
local = local + 7

	 Assembly	translation:	
addi r5,r5,7 # assumes “local” is in r5

In	other	cases,	the	local	variable	will	be	placed	on	the	runtime	stack.	(“Stack	
frames”	are	often	called	“activation	records”.)	

[Stack	frames	will	be	discussed	later,	but	the	basic	idea	is	that	a	stack	is	maintained	
for	the	duration	of	program	execution.	This	is	a	stack	of	“frames”	and	the	top	of	the	
stack	is	pointed	to	by	register	sp	(i.e.,	“r15”).	When	a	function	is	called,	a	new	stack	
frame	is	pushed	onto	the	stack	and	when	the	function	returns,	the	frame	is	popped	
off	the	stack.	The	sp	register	will	point	to	the	=irst	byte	of	the	stack	frame	(i.e.,	the	
byte	with	the	lowest	address).	All	locations	within	the	frame	will	accessed	using	
positive	offsets.	The	“pushing”	of	a	new	stack	frame	is	a	quick	and	simple	operation,	
requiring	only	that	the	sp	register	be	decremented	by	the	frame	size.	Likewise,	
“popping”	is	accomplished	quickly	by	simply	incrementing	sp	by	the	same	amount.]	

The	compiler	may	determine	that	a	local	variable	cannot	be	kept	in	a	register.	In	
such	cases,	it	will	allocate	some	space	within	the	stack	frame	for	the	variable.	This	
can	be	because:	

•	The	variable	is	not	a	basic	type.	
•	There	are	not	enough	registers	available.	
•	Some	code	asks	for	the	address	of	the	variable	(using	the	“&”	operator	in	KPL).	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	138 284

Chapter	8:	Assembler	Programming	Conventions	

By	“basic	type”	we	mean:	

basic	type	 size	in	bytes	
int	 8	
word	 4	
halfword	 2	
byte	 1	
bool	 1	
double	 8	
ptr	to	…	 8	

KPL	also	supports	the	following	types,	which	are	“compound	types”:	

array	
object	
struct	/	record	
union	

As	an	example,	assume	that	variable	local	has	been	placed	at	offset	16	within	the	
frame.	Now	the	compiler	will	need	to	issue	LOAD	and	STORE	instructions	to	access	
the	variable.	

	 KPL:	
function foo (…)

var local: int
…
local = local + 7

	 Assembly	translation:	
loadd r5,16(sp) # assumes “local” is in the frame
addi r5,r5,7
stored 16(sp),r5

NOTE:	The	LOADx	and	STOREx	instructions	are	synthetic	instructions.	They	can	be	
used	to	access	any	offset	from	sp.	In	most	cases,	the	synthetic	will	expand	to	a	single	
machine	instruction.	Occasionally	a	stack	frame	may	exceed	32	KiBytes	in	size	and	a	
second	instruction	will	be	automatically	inserted	by	the	linker.	Frame	sizes	above	2	
GiBytes	in	size	are	not	expected,	but	will	be	handled	by	the	linker,	which	will	
automatically	insert	a	third	machine	instruction.	So	there	is	no	limit	imposed	by	the	
ISA,	assembler,	or	linker	on	frame	sizes	and	offsets.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	139 284

Chapter	8:	Assembler	Programming	Conventions	

Parameters	will	be	either	passed	in	registers	or	placed	on	the	stack.	Details	will	be	
discussed	later.	But	the	accessing	of	the	parameter	variables	will	use	these	same	
instructions.	

Arithmetic	Computation	

The	Blitz-64	ISA	and	the	KPL	language	have	been	designed	together,	to	work	
together.	The	arithmetic	and	logical	operators	of	KPL	correspond	exactly	in	
semantics	to	the	machine	instructions	in	the	ISA.	

	 KPL:	 	 	 Machine	Instruction	
i + j add r1,r2,r3
i - j sub r1,r2,r3
i * j mul r1,r2,r3
i / j div r1,r2,r3
i % j rem r1,r2,r3
-i neg r1,r2
i & j and r1,r2,r3
i | j or r1,r2,r3
i ^ j xor r1,r2,r3
!(i) bitnot r1,r2
!(b) lognot r1,r2
i << j sll r1,r2,r3
i >> j srl r1,r2,r3
i <<< j sla r1,r2,r3
i >>> j sra r1,r2,r3
i == j beq r1,r2,label
i != j bne r1,r2,label
i < j blt r1,r2,label
i <= j ble r1,r2,label
i > j bgt r1,r2,label
i >= j bge r1,r2,label
b = (i==j) testeq r1,r2,r3
b = (i!=j) testne r1,r2,r3
b = (i<j) testlt r1,r2,r3
b = (i<=j) testle r1,r2,r3
b = (i>j) testgt r1,r2,r3
b = (i>=j) testge r1,r2,r3
d + e fadd r1,r2,r3
d - e fsub r1,r2,r3
d * e fmul r1,r2,r3
d / e fdiv r1,r2,r3
-d fneg r1,r2

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	140 284

Chapter	8:	Assembler	Programming	Conventions	

d == e feq r1,r2,r3
d != e feq r1,r2,r3
d < e flt r1,r2,r3
d <= e fle r1,r2,r3
d > e fgt r1,r2,r3
d >= e fge r1,r2,r3

In	particular,	the	error	and	boundary	cases	are	carefully	designed	to	match	exactly.	
For	example,	for	many	KPL	operators,	over=low	is	required	to	“throw	an	error”.	[The	
TRY-THROW-CATCH	mechanism	in	KPL	is	discussed	elsewhere.]	

The	Blitz-64	ISA	speci=ies	that	the	corresponding	machine	instruction	will	cause	an	
exception.	For	example,	KPL	requires	integer	addition	to	throw	an	error	in	the	case	
of	over=low;	likewise,	the	Blitz-64	ISA	requires	the	ADD	and	ADDI	instructions	to	
signal	an	Arithmetic	Exception	when	over=low	occurs.	

In	the	course	of	translating	some	arithmetic	expressions,	the	compiler	will	need	to	
store	temporary	results.	In	the	following	example,	no	temporary	storage	is	needed:	

	 KPL:	
i = (i + j - k) * m

	 Assembly	translation:	
Assume i: r1
Assume j: r2
Assume k: r3
Assume m: r4

add r1,r1,r2
sub r1,r1,r3
mul r1,r1,r4

However,	in	the	next	example,	the	result	of	the	addition	must	be	kept	in	a	temporary	
location,	until	after	the	subtraction	is	performed.	In	many	cases,	the	compiler	will	be	
able	to	keep	this	temporary	value	in	a	register.	In	this	example,	the	compiler	has	
chosen	to	use	register	t	(i.e.,	r8).	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	141 284

Chapter	8:	Assembler	Programming	Conventions	

	 KPL:	
i = (i + j) * (k - m)

	 Assembly	translation:	
Assume i: r1
Assume j: r2
Assume k: r3
Assume m: r4
Assume temp: t

add r1,r1,r2
sub t,r3,r4
mul r1,r1,t

The	compiler	may	be	able	to	use	a	register	to	store	the	temporary	result,	as	in	the	
previous	example.	However,	if	no	additional	registers	are	available,	the	compiler	will	
be	forced	to	allocate	space	in	the	stack	frame	and	store	the	temporary	result	there.	

in	the	next	example,	the	complier	has	set	aside	space	in	the	stack	frame	at	offset	24	
to	temporarily	store	the	value	of	(i+j)	until	it	is	needed.	

	 KPL:	
i = (i + j) * ((k - m) / (n + p))

	 Assembly	translation:	
Assume i: r1
Assume j: r2
Assume k: r3
Assume m: r4
Assume n: r5
Assume p: r6
Assume (i+j) is at offset 24 in stack frame

add t,r1,r2 # temp = i + j
 stored 24(sp),t # save temp in frame

sub r1,r3,r4 # r1 = k - m
 add t,r5+r6 # t = n + p

div r1,r1,t # r1 = (k-m) / (n+p)
 loadd t,24(sp) # retrieve temp = i+j
 mul r1,t,r1 # r1 = (i+j) * ((k-m) / (n+p))

In	the	above	example,	you	will	notice	that	all	operations	are	done	in	the	same	order	
speci=ied	by	the	source	code.	The	compiler	maintains	the	same	order	to	ensure	that	
the	over=low	behavior	at	runtime	will	be	exactly	what	the	programmer	expects.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	142 284

Chapter	8:	Assembler	Programming	Conventions	

For	example:	

(a + b) + c

may	not	over=low	while	the	following	will	cause	an	over=low	exception:	

(a + c) + b

(This	can	happen	when	a	and	c	are	very	large	numbers	and	b	is	a	very	negative	
number.)	

In	some	cases,	the	compiler	may	be	able	to	perform	some	operations	at	compile	time	
or	may	be	able	to	re-order	the	operations	with	no	fear	of	changing	the	over=low	
behavior.	For	example,	the	following:		

(a + 123) + 456

will	over=low	in	exactly	the	cases	that	the	following	will	over=low:	

a + 579

As	long	as	there	is	no	change	in	the	behavior	of	the	program,	including	exceptional	
and	error	behavior,	the	compiler	is	free	to	reorder	the	operations.	

In	most	programming	languages,	wherever	the	programmer	can	specify	a	variable,	
he	or	she	can	insert	a	function	call	instead:	

i + j + k
i + foo1(…) + foo2(…)

Whenever	a	function	is	called,	it	tends	to	involve	a	lot	of	register	usage,	forcing	the	
compiler	to	move	temporary	results	into	“save”	locations	in	the	stack	frame.	

The	KPL	compiler	avoids	rearranging	expressions	since	it	does	not	always	fully	
understand	what	the	code	is	doing.	In	the	above	example,	KPL	guarantees	that	foo1	
will	be	called	after	the	value	of	i	is	retrieved	and	before	foo2	is	invoked.	After	all,	
foo1	might	have	some	side-effect	that	alters	the	behavior	of	foo2,	or	even	the	value	
of	variable	i.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	143 284

Chapter	8:	Assembler	Programming	Conventions	

Flow	of	Control	Examples	

Conditional	statements	can	be	translated	as	shown	in	this	example:	

	 KPL:	

if		(…condition…)
 …Then	statements…

endIf

	 Translation	Idea:	

…Evaluate	condition…
if true goto Then_label
if false goto Endif_label

Then_label:
 …Then	statements…

Endif_label:

If	there	are	“else	statements”,	the	general	form	is	a	little	more	complicated:	

	 KPL:	

if		(…condition…)	
 …Then	statements…

else
 …Else	statements…

endIf

	 Translation	Idea:	

…Evaluate	condition…
if true goto Then_label
if false goto Else_label

Then_label:
 …Then	statements…

jump Endif_label
Else_label:

 …Else	statements…
Endif_label:

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	144 284

Chapter	8:	Assembler	Programming	Conventions	

For	example:	

	 KPL:	

	 	 if		(i	<	j)	
		 	 	 i	=	23	
	 	 else	
	 	 	 i	=	j	+	45	
	 	 endIf	

	 Assembly	translation:	

Assume i: r1
Assume j: r2

bge r1,r2,_label_67
movi r1,23
jump _label_68

_label_67:
addi r1,r2,45

_label_68:

In	order	to	translate	=low-of-control	statements,	the	compiler	will	often	create	new	
labels	and	give	them	automatically	generated	names,	such	as	“_label_67”.	

Note	the	reversal	of	the	condition	testing	in	the	above	example.	The	“less	than”	test	
with	a	branch	to	the	“THEN”	statements	is	changed	to	a	“greater-than-of-equal”	test	
to	the	“ELSE”	statements.	

	 Condition	 Reversed	Condition	
== beq != bne
!= bne == bge
< blt >= bge
<= ble > bgt
> bgt <= ble
>= bge < blt

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	145 284

Chapter	8:	Assembler	Programming	Conventions	

Notice	that	,	if	done	literally,	the	translation	of:	

	 	 if		(i	<	j)		then	...	

according	to	the	general	form:	

…Evaluate	condition…
if true goto Then_label
if false goto Else_label

Then_label:

is	this:	

blt r1,r2,_label_66
bge r1,r2,_label_67

_label_66:

But	simple	patterns	like	this	can	be	reduced.	In	this	case,	the	following	is	equivalent:	

bge r1,r2,_label_67

With	=loating	point	numbers,	we	have	the	following	instructions	which	implement	
operations	directly.	

	 Condition	
== feq
< flt
<= fle
> fgt
>= fge

Blitz-64	does	not	contain	a	FNE	instruction.	Equal	and	not-equals	are	logical	
opposites,	so	we	use	FEQ	to	implement	!=.	However,	with	=loating	point,	note	that	<	
(FLT)	and	>=	(FGE)	are	not	opposites.	Likewise,	<=(FLE)	and	>	(FGT)	are	not	
opposites.	The	difference	arises	when	one	argument	is	not-a-number	(NaN).	So	the	
compiler	must	be	careful	not	to	switch	FLT	into	FGE,	or	switch	FLE	into	FGT.	

There	are	a	number	of	other	types	of	conditional	expressions	and	there	are	a	
number	of	specialized	Blitz-64	instructions	that	are	designed	speci=ically	to	support	
them.	For	example,	a	boolean	variable	can	be	tested.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	146 284

Chapter	8:	Assembler	Programming	Conventions	

	 KPL	Example:	
	 	 if		(boolVar)	…	

	 Relevant	Assembly	Instructions:	
btrue Reg1,Label
bfalse Reg1,Label

A	pointer	can	be	tested	directly	and	these	same	instructions	can	be	used	for	that.	
Note	that	these	instructions	compare	against	zero.	Thus,	non-null	pointers	will	be	
interpreted	as	TRUE	and	null	pointers	will	be	interpreted	as	FALSE.	

	 KPL	Example:	
	 	 if		(ptr)	…	

	 Relevant	Assembly	Instructions:	
btrue Reg1,Label
bfalse Reg1,Label

When	the	source	code	compares	an	integer	to	a	constant	value,	it	will	typically	
require	an	additional	MOVI	instruction,	as	in:	

	 KPL	Example:	
	 	 if		(i	==	123)	…	

	 Assembly	Translation:	
movi t,123
beq Reg1,t,Label

	 or	
bne Reg1,t,Label

However,	if	the	comparison	is	against	zero,	there	are	specialized	Blitz-64	
instructions	which	can	be	used	instead,	avoiding	the	MOVI	instruction.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	147 284

Chapter	8:	Assembler	Programming	Conventions	

	 KPL	Examples:	
	 	 if		(i	==	0)	…	
	 	 if		(i	<	0)	…	
	 	 …etc…	

	 Relevant	Assembly	Instructions:	
beqz Reg1,Label
bnez Reg1,Label
bltz Reg1,Label
blez Reg1,Label
bgtz Reg1,Label
bgez Reg1,Label

Sometimes	the	programmer	will	evaluate	a	conditional	expression	and	want	the	
result	in	the	form	of	a	boolean	value,	not	in	the	form	of	branching.	There	are	
specialized	Blitz-64	instructions	which	make	that	sort	of	operation	easy:	

	 KPL	Examples:	
	 	 boolVar	=	(i	>=	j)	
	 	 return		i<j	

	 Relevant	Assembly	Instructions:	
testeq RegD,Reg1,Reg2
testne RegD,Reg1,Reg2
testlt RegD,Reg1,Reg2
testle RegD,Reg1,Reg2
testgt RegD,Reg1,Reg2
testge RegD,Reg1,Reg2

According	to	the	semantics	of	KPL,	all	subexpressions	in	a	larger	expression	must	be	
evaluated	in	the	order	in	which	they	appear	in	the	source.	The	following	are	not	
equivalent,	and	the	code	must	perform	the	function	invocation	in	the	order	given.	

	 if	(foo(…)	&&	bar(…))	…	
	 if	(bar(…)	&&	foo(…))	…	

With	the	short-circuit	AND	operator	(&&),	whenever	the	=irst	operand	is	evaluated	
and	found	to	be	FALSE,	the	second	operand	need	not	be	evaluated,	since	the	result	
will	be	FALSE	regardless.	The	KPL	language	speci=ies	that	the	second	operand	must	
de=initely	not	be	evaluated	whenever	the	=irst	is	FALSE.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	148 284

Chapter	8:	Assembler	Programming	Conventions	

Likewise,	with	the	short-circuit	OR	operator	(||),	whenever	the	=irst	operand	is	
evaluated	and	found	to	be	TRUE,	the	second	operand	need	not	be	evaluated,	since	
the	result	will	be	TRUE	regardless.	The	KPL	language	speci=ies	that	the	second	
operand	must	de=initely	not	be	evaluated	whenever	the	=irst	is	TRUE.	

With	the	use	of	short-circuit	operators,	the	evaluation	of	conditional	expressions	
becomes	more	complex,	as	the	next	example	illustrates.	

	 KPL:	

	 	 if		((i	<	j)	&&	(i	==	k))	||	((k	<	m)	&&	(i	==	m))	
		 	 	 i	=	23	
	 	 else	
	 	 	 i	=	j	+	45	
	 	 endIf	

	 Assembly	translation:	

Assume i: r1
Assume j: r2
Assume k: r3
Assume m: r4

bge r1,r2,_label_65
beq r1,r3,_label_66

_label_65:
bge r3,r4,_label_67
bne r1,r4,_label_67

THEN STMTS...
_label_66:

movi r1,23
jump _label_68

ELSE STMTS...
_label_67:

addi r1,r2,45

ENDIF...
_label_68:

In	the	above	example,	the	full	bene=it	of	the	short-circuit	operators	is	not	
demonstrated,	since	the	operands	are	all	simple	variables	that	are	read-only.	But	
keep	in	mind	that	the	programmer	could	substitute	function	invocations	for	each	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	149 284

Chapter	8:	Assembler	Programming	Conventions	

operand,	thus	involving	arbitrary	computation.	Thus,	short-circuit	behavior	is	
required	from	&&	and	||.	

The	translation	of	a	“while	loop”	follows	this	general	form:	

	 KPL:	

while		(…conditional…)	
…statements…

endWhile

	 Translation	Idea:	

goto Continue_label
Loop_label:

 …statements…
Continue_label:

 if (…conditional…) goto Loop_label
Exit_label:

For	example:	

	 KPL:	

while		(i	<	j)	
…BodyStatements…

endWhile

	 Assembly	translation:	

goto _label_35 # goto Continue_label
_Label_34:

…BodyStatements…
_Label_35:

blt r1,r2,_label_34 # If i<j goto Loop_Label
_Label_36:

A	loop	containing	a	“break	statement”	will	cause	a	jump	to	the	“Exit_label”.	A	loop	
containing	a	“continue	statement”	statement	will	cause	a	jump	to	the	
“Continue_label”.	For	example:	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	150 284

Chapter	8:	Assembler	Programming	Conventions	

	 KPL:	

while		(…Conditional…)
…	

	 	 	 break
…	

	 	 	 continue
…	

endWhile

	 Translation	Idea:	

goto Continue_label
Loop_label:

…
jump Exit_label # Break
…
jump Continue_label # Continue
…

Continue_label:
if (…conditional…) goto Loop_label

Exit_label:

KPL	contains	a	“do-until”	statement,	which	is	similar	to	a	“do-while”	or	“repeat-
until"	statement.	The	translation	follows	this	general	form:	

	 KPL:	

do	
…statements…

until		(…conditional…)

	 Translation	Idea:	

Loop_label:
 …statements…

Continue_label:
 if !(…conditional…) goto Loop_label

Exit_label:

Here	is	an	example	of	a	“do-until”	statement	containing	a	short-circuit	operator	in	
the	condition:	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	151 284

Chapter	8:	Assembler	Programming	Conventions	

	 KPL:	

do	
…BodyStatements…

until		(i	<	j)	&&	(k	==	m)

	 Assembly	translation:	

_Label_34:
…BodyStatements…

_Label_35:
bge r1,r2,_label_36 # If i>=j goto Loop_Label
bne r3,r4,_label_34 # If k!=m goto Loop_Label

_Label_36:

The	translation	of	a	“for	loop”	follows	this	general	form:	

	 KPL:	

for	(…InitializationStmts…	;	…Conditional…	;	…IncrementStatements…)
…	

	 	 	 break	
…	

	 	 	 continue	
…	

	 	 endWhile	

	 Translation	Idea:	

…InitializationStmts…
goto Check_label

Loop_label:
 …

jump Exit_label # Break
 …

jump Continue_label # Continue
 …
Continue_label:
 …IncrementStatements…	
Check_Label:
 if (…Conditional…) goto Loop_label
Exit_label:

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	152 284

Chapter	8:	Assembler	Programming	Conventions	

There	are	several	ways	to	translate	a	“switch	statement”.	The	simplest	translation	
involves	performing	a	series	of	tests.	

	 KPL:	

switch	(…TestExpr…)
…	

	 	 	 case	(…ExprN…):	
…StatementsForCaseN…	

…	
	 	 	 default:	

…DefaultStatements…	
	 	 endSwitch	

	 Translation	Idea:	

…Evaluate	TestExpr…	
	 	 	 	

…Evaluate	Expr1…
 if (TestExpr != Expr1) goto Case_1

…Evaluate	Expr2…
 if (TestExpr != Expr2) goto Case_2

…Evaluate	Expr3
 if (TestExpr != Expr3) goto Case_3

…Evaluate	Expr4
 if (TestExpr != Expr4) goto Case_4

jump Case_Default

Case_1:
…StatementsForCase1…	

Case_2:
…StatementsForCase2…	

Case_3:
…StatementsForCase3…	

Case_4:
…StatementsForCase4…	

Case_Default:
…DefaultStatements…	

Exit_label:

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	153 284

Chapter	8:	Assembler	Programming	Conventions	

Any	“break”	statement	within	any	of	the	code	blocks	is	just	translated	into	a	JUMP	to	
“Exit_label”.	Any	code	block	not	ending	with	a	“break”	will	simply	fall	through	to	the	
next	code	block.	

As	you	can	see,	a	translation	based	on	this	scheme	will	execute	the	switch	by	testing	
each	possible	value	in	turn.	Of	course,	whenever	there	are	more	than	just	a	couple	of	
cases,	this	will	result	in	poor	performance.	There	are	better	translation	schemes	for	
the	switch	statement.		

The	decision	about	which	translation	scheme	is	best	to	use	can	depend	on	the	
number	of	cases	and	other	factors.	If	the	various	case	values	all	happen	to	fall	with	a	
small	range	of	integer	values,	a	superior	translation	approach	is	to	create	a	“jump	
table”	of		indirect	pointers.	The	code	will	=irst	compute	the	value	of	“TestExpr”	and	
then	use	that	value	as	an	index	into	the	jump	table.	Then	the	code	will	branch	
directly	to	the	correct	statement	block.	For	switch	statements	with	hundreds	of	
cases,	this	approach	to	translation	is	clearly	superior.	We	will	not	discuss	this	
translation	technique	any	further	here,	although	it	is	the	key	to	making	switch	
statements	work	well.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	154 284

Chapter	9:	Format	of	Object	Files	

Quick	Summary	

•	Object	=iles	use	the	extension	“.o”.	
•	Running	the	assembler	tool	will	produce	an	object	=ile.	
•	The	linker	tool	takes	one	or	more	object	=iles	as	input.	
•	Running	the	linker	tool	will	produce	an	executable	=ile.	
•	Each	object	=ile	contains	the	following:	
	 	 —	Information	about	each	segment	
	 	 —	The	data	bytes	of	each	segment	
	 	 —	Information	about	each	symbol	
	 	 —	Information	about	each	patch	
	 	 —	Info	to	support	the	runtime	debugging	(optional)	
•	A	“patch”	is	a	relocation	entry,	telling	how	to	modify	the	bytes	in	an	instruction.	
•	The	assembler	creates	a	patch	entry	for	every	instruction	it	cannot	complete.	
•	Each	synthetic	instruction	will	result	in	a	single	patch.	
	 	 —	The	assembler	will	fully	translate	some	synthetic	instructions,	
	 	 	 in	which	case	no	patch	is	necessary.	
•	The	linker	has	more	information	available	to	it	than	the	assembler.	
•	The	linker	will	=irst	place	the	segments	in	memory.	
•	Once	placed,	the	value	of	every	symbol	will	become	known.	
•	The	linker	will	process	each	patch,	updating	the	bytes	in	memory.	
•	The	linker	will	complete	by	creating	an	executable	=ile.	

Terminology	and	Files	

This	chapter	describes	the	format	of	the	object	=ile.	The	object	=ile	generally	ends	
with	a	“.o”	extension.	The	format	of	the	executable	=ile	is	described	in	a	different	
chapter.	

Blitz-64:	Assembler	and	Linker	/	Porter	 Page	 	of	155 284

Chapter	9:	Format	of	Object	Files	

For	example,	an	assembly	source	=ile	named	“simple.s”	would	typically	be	used	to	
produce	an	object	=ile	named:	

	 simple.o	

The	object	=ile	is	used	as	input	to	the	Blitz-64	linker,	which	produces	an	“executable	
=ile”.	The	linker	will	take	one	or	more	object	=iles,	and	will	produce	a	single	
executable	=ile.	

The	executable	=ile	is	often	call	the	“a.out”	=ile,	although	it	is	generally	given	a	more	
meaningful	name.	Often	the	name	of	the	executable	=ile	is	the	same	as	one	of	the	
original	source	=iles,	after	removing	the	“.o”.	For	example:	

	 simple	

An	extension	is	optional,	but	if	present,	.exe	is	recommended.	For	example,	the	
output	=ile	might	be	given	this	named	instead:	

	 simple.exe	

At	some	later	time,	the	executable	=ile	will	be	loaded	by	an	operating	system	and	
executed.	Therefore,	it	must	contain	all	that	is	necessary	for	executing	the	program.	

The	Blitz-64	assembler	tool	is	called	“asm”	and	the	linker	tool	is	called	“link”.	
Another	Blitz-64	tool,	called	“dumpobj”,	can	be	used	to	print	out,	in	a	human	
readable	form,	either	object	or	executable	=iles.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	156 284

Chapter	9:	Format	of	Object	Files	

The	Object	File	

The	object	=ile	has	the	following	format.	The	=ile	can	be	considered	as	series	of	=ields.	
The	length	of	each	=ield	is	given	in	the	left-hand	column.	

bytes	 Wield	description	

The	following	Rields	constitute	the	header	information...		
	 8	 Magic	number	"B64objct"	(in	hex:	0x4236_346F_626A_6374)	
	 8	 Version	Number	(0x0000_0000_0000_0001)	
	 2	 Blitz-64	ISA	Architecture	(e.g.,	0x0002)	
	 4	 Number	of	segments	
	 4	 Number	of	symbols	(0	…	2,147,483,647)	
	 4	 Source	=ile	name:	number	of	characters	(M);	0=source	came	from	stdin	
	 M	 Source	=ile	name:	the	ASCII	characters	(no	terminating	\0)	
	 8	 Separator	“********”	(in	hex:	0x2A2A_2A2A_2A2A_2A2A)	

The	following	Rields	are	repeated	once	for	every	segment...		
	 4	 Segment	number	(1,	2,	3,	…)	
	 4	 Source	=ile	line	number	
	 8	 Length	of	segment	in	bytes	(possibly	zero)	
	 1	 Is	Kernel	(0=user,	1=kernel)	
	 1	 Is	Executable	(0=not	executable,	1=executable)	
	 1	 Is	Writable	(0=read-only,	1=read	and	write)	
	 1	 Is	Zero-=illed	(0=normal,	1=all	data	is	zero)	
	 8	 Starting	address	from	“startaddr=”	(-1	=	=loating)	
	 8	 Assumed	value	of	“gp”	from	“gp=”	(-1	=	unde=ined,	-2=default)	

After	all	segments...	
	 4	 Zero	to	terminate	(in	hex:	0x00000000)	
	 8	 Separator	“********”	(in	hex:	0x2A2A_2A2A_2A2A_2A2A)	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	157 284

Chapter	9:	Format	of	Object	Files	

The	following	Rields	are	repeated	once	for	every	symbol...		
	 4	 Symbol_number	(1,	2,	3,	...)	
	 4	 Source	=ile	line	number	
	 1	 Type:	
	 	 	 1	=	imported	
	 	 	 2	=	label	
	 	 	 3	=	equate	(de=inition	appeared	in	.equ)	

	 If	type	=	1	(imported)…	

	 If	type	=	2	(label)…	
	 	 4	 Segment	number	in	which	symbol	was	de=ined	
	 	 8	 Offset	into	segment	(where	label	occurred)	
	 	 1	 Was	this	symbol	exported	(0	=	local	only,	1	=	exported)	

	 If	type	=	3	(equate)…	
	 	 4	 RelativeTo	symbol	number	(0	=	offset	is	an	absolute	value)	
	 	 8	 Offset	(from	relativeTo	symbol,	or	value	if	absolute)	
	 	 1	 Was	this	symbol	exported	(0	=	local	only,	1	=	exported)	

	 4	 Symbol	name:	number	of	characters	(L)	
	 L	 Symbol	name:	the	ASCII	characters	(no	terminating	\0)	

After	all	symbols...	
	 4	 Zero	to	terminate	(in	hex:	0x00000000)	
	 8	 Separator	“********”	(in	hex:	0x2A2A_2A2A_2A2A_2A2A)	

The	following	Rields	are	repeated	once	for	every	patch...		
	 1	 The	patch	type	(1,	2,	…)	
	 4	 Source	=ile	line	number	
	 4	 The	segment	where	the	patch	must	be	made	
	 8	 The	location	to	be	patched	(i.e.,	offset	into	the	segment)	

	 4	 The	target	symbol	(0	=	absolute)	
	 8	 Offset	from	target	symbol	(often	zero)	
	 	 	 For	patch	type	=	“align”,	offset	will	be	8,	16,	32,	or	16384	

	 1	 Exact	size	of	result	in	bytes	(4,	8,	12,	16)	or	-1	if	don’t	care	
	 	 	 Used	for	Formats	S1,S2,…S7.	For	ALIGN	this	will	be	-1.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	158 284

Chapter	9:	Format	of	Object	Files	

After	all	patch	entries...	
	 1	 Zero	to	terminate	(in	hex:	0x00)	
	 8	 Separator	“********”	(in	hex:	0x2A2A_2A2A_2A2A_2A2A)	

The	following	Rields	are	repeated	once	for	every	segment...		
	 4	 Segment	number	
	 N	 The	data	bytes,	where	N	is	the	size	of	the	segment	in	bytes	
	 8	 Separator	“********”	(in	hex:	0x2A2A_2A2A_2A2A_2A2A)	

The	following	Rields	concern	debugger	information…			
	 4	 Package	name:	number	of	bytes	(M);	0	=	No	debugger	info	present	
	 M	 Package	name:	the	UTF-8	encoded	characters	(with	terminating	\0)	
	 4	 The	second	string:	number	of	bytes	(N)	
	 N	 The	second	string:	the	UTF-8	encoded	characters	(with	terminating	\0)	
	 4	 The	number	of	globals;	0	=	none	present	/	missing	info	
	 4	 The	number	of	functions;	0	=	none	present	/	missing	info	
	 8	 Separator	“********”	(in	hex:	0x2A2A_2A2A_2A2A_2A2A)	

The	following	Rields	are	repeated	once	for	every	global…	
	 4	 Global	name:	number	of	bytes	(M);	will	be	>	0	
	 M	 Global	name:	the	UTF-8	encoded	characters	(with	terminating	\0)	
	 4	 Source	=ile	line	number	
	 1	 Type	Code	(One	character	code,	e.g.	‘I’)	
	 4	 Location:	The	segment	number	
	 8	 Location:	Offset	into	segment	

After	all	global	entries...	
	 8	 Separator	“********”	(in	hex:	0x2A2A_2A2A_2A2A_2A2A)	

The	following	Rields	are	repeated	once	for	every	function…	
	 4	 Function	name:	number	of	bytes	(M);	will	be	>	0	
	 M	 Function	name:	the	UTF-8	encoded	characters	(with	terminating	\0)	
	 4	 Source	=ile	line	number	
	 4	 Location:	The	segment	number	
	 8	 Starting	Location:	Offset	into	segment	
	 8	 Beyond	Location:	Offset	into	segment	(i.e.,	address	of	last	byte	+	1)	
	 4	 Frame	size	(not	negative;	0	=	leaf	function)	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	159 284

Chapter	9:	Format	of	Object	Files	

The	following	Rields	are	repeated	once	for	every	register	parameter…	
	 4	 Source	=ile	line	number	(>=	0)	
	 1	 Register	number	(1	…	15)	
	 4	 Parameter	name:	number	of	characters	(M);	will	be	>	0	
	 M	 Parameter	name:	the	UTF-8	encoded	chars	(with	terminating	\0)	
	 1	 Type	Code	(One	character	code,	e.g.	‘I’)	

After	all	register	parameters…	
	 4	 -1	to	terminate	
	 8	 Separator	“********”	(in	hex:	0x2A2A_2A2A_2A2A_2A2A)	

The	following	Rields	are	repeated	once	for	every	local	variable…	
	 4	 Source	=ile	line	number	(>=	0)	
	 4	 Offset	from	stack	top	
	 4	 Variable	name:	number	of	bytes	(M);	will	be	>	0	
	 M	 Variable	name:	the	UTF-8	encoded	chars	(with	terminating	\0)	
	 1	 Type	Code	(One	character	code,	e.g.	‘I’)	

After	all	local	variables…	
	 4	 -1	to	terminate	
	 8	 Separator	“********”	(in	hex:	0x2A2A_2A2A_2A2A_2A2A)	

The	following	Rields	are	repeated	once	for	every	statement…	
	 4	 Source	=ile	line	number	(>=	0)	
	 4	 Location	of	code:	Segment	number	
	 4	 Location	of	code:	Offset	into	segment	
	 1	 Type	Code	(0=comment,	1=assign,	…)	
If	and	only	if	type	code	=	comment,	the	following	will	be	present…	

	 4	 Comment	String:	number	of	bytes	(M);	will	be	>	0	
	 M	 Comment	String:	the	UTF-8	encoded	chars	(with	terminating	\0)	

After	all	local	statements…	
	 4	 -1	to	terminate	
	 8	 Separator	“********”	(in	hex:	0x2A2A_2A2A_2A2A_2A2A)	

After	all	function	entries...	
	 4	 Zero	to	terminate	
	 8	 Separator	“********”	(in	hex:	0x2A2A_2A2A_2A2A_2A2A)	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	160 284

Chapter	9:	Format	of	Object	Files	

Integers	

All	integers	in	the	=ile	are	stored	as	signed	binary	values	in	Big	Endian	order,	i.e.,	the	
most	signi=icant	byte	will	appear	=irst.	

Integers	of	the	following	sizes	are	used:	

	 number	 	number	
		 of	bytes	 of	bits	 	
	 byte	 1	 8	
	 word	 4	 32	
	 doubleword	 8	 64	

Magic	Number	

The	=irst	eight	bytes	of	the	object	=ile	serve	to	identify	it	as	a	Blitz-64	object	=ile.	
These	bytes	are	the	ASCII	character	codes	for	the	letters	“B64objct”	(for	Blitz-64	
Object),	namely	the	value	0x4236_346F_626A_6374.	

The	magic	number	idea	is	not	a	foolproof	way	to	identify	=iles.	Although	highly	
unlikely	to	occur	by	chance,	there	may	happen	to	be	other	=iles	that	happen	to	begin	
with	these	same	eight	bytes.	Although	this	techniques	is	by	no	mean	secure,	it	is	a	
good	way	for	the	linker	to	check	that	it	is	being	given	a	meaningful	=ile.	Also,	it	allows	
a	human	looking	at	the	=ile	to	guess	what	sort	of	data	it	contains.	Although	much	of	
the	=ile	will	contain	bytes	that	are	not	interpretable	as	text	data,	the	eight	bytes	of	
the	magic	number	are	human-readable,	so	they	should	give	the	reader	a	clue	about	
the	=ile’s	nature.	

This	technique	is	also	used	in	other	=iles:	

	 Magic	Number	 ASCII	Interpretation	
	 object	=ile	 0x4236_346F_626A_6374		 “B64objct”	
	 executable	=ile	 0x4236_3461_2e6f_7574		 “B64a.out”	
	 object	library	=ile	 0x4236_346F_5F6C_6962		 “B64o_lib”	
	 load-and-go	=ile 	 0x4236_346C_642B_676F		 “B64ld+go”	10

	The	load-and-go	format	is	no	obsolete.	The	assembler	can	no	longer	produce	this	type	of	=ile.10

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	161 284

Chapter	9:	Format	of	Object	Files	

The	Version	Number	and	ISA	Architecture	Fields	

Following	the	magic	number	is	a	“version	number”.	We	understand	that	future	
changes	may	be	required	to	the	format	of	object	=iles.	This	=ield	exists	to	
accommodate	changes,	updates,	and	extensions	to	this	=ile	format.	

This	document	describes	“version	1”	of	the	=ile	format.	All	=iles	conforming	to	this	
speci=ication	will	have	the	value	1	in	this	=ield.	Any	other	value	indicates	that	the	
remainder	of	the	=ile	will	conform	to	a	different	speci=ication.	

At	this	time,	there	is	only	one	version	of	this	=ile	format	and	the	assembler	and	linker	
are	is	only	capable	of	dealing	with	“version	1”	=iles.	Future	versions	may	be	capable	
of	handling	different	versions.	

Details	about	future	version	and	compatibility	between	the	tools	must	be	
documented	in	the	future,	obviously.	

The	“ISA	Architecture”	=ield	speci=ies	which	type	of	machine	this	code	is	intended	to	
be	run	on.	This	value	must	match	the	value	from	the	version	number	in	bits	[30:16]	
of	the	CSR	register	csr_version.	In	other	words,	the	numbers	used	in	this	=ield	and	
the	in	csr_version	are	drawn	from	the	same	set	and	therefore	have	the	same	values	
and	meanings.	

At	this	time,	the	current	version	Blitz-64	Instruction	Set	Architecture	(ISA)	is	

	 0x0002	

In	the	future,	changes	and/or	additions	to	the	machine	code	instructions	are	likely.	
For	example,	we	plan	to	specify	and	implement	the	compressed	instruction	set	in	
the	future.	When	changes	are	made	to	the	ISA	,	the	csr_version	will	be	changed	
(incremented)	to	re=lect	a	modi=ied	architecture.	

Commentary		We	separate	out	the	“=ile	version	number”	and	the	“ISA	architecture	
version”	into	two	=ields	because	these	really	track	two	different	kinds	of	changes	
that	can	be	made	in	the	future.	A	change	to	the	machine	architecture	may	not	
require	a	change	to	the	=ile	format.	Conversely,	a	change	to	the	=ile	format	may	be	
implemented	even	though	there	is	no	change	to	the	ISA.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	162 284

Chapter	9:	Format	of	Object	Files	

Separators	(********)	

As	an	internal	consistency	check,	there	will	be	8	bytes	of	“separator”	data	placed	at	
the	indicated	points	in	the	=ile.	These	eight	bytes	are	the	ASCII	character	codes	for	
the	characters	“********”.	That	is,	the	separator	doubleword	is	
0x2A2A_2A2A_2A2A_2A2A.	

If	there	is	some	inconsistency	between	the	text	or	data	segment	sizes	and	the	actual	
number	of	bytes	provided,	then	these	separators	may	help	to	catch	the	error.	The	
linker	will	check	that	the	separator	characters	appear	correctly	at	the	places	in	the	
object	=ile	where	they	are	supposed	to	appear,	and	print	error	messages	if	not.	

Segment	Information	

Each	segment	in	the	object	=ile	is	given	a	sequential	number,	starting	with	1.	

[Typically	we	expect	the	number	of	segments	to	be	under	10.	There	will	be	at	least	
one	segment	in	the	=ile	and	it	is	likely	that	other	constraints	will	prevent	the	upper	
limit	of	2,147,483,647	segments	ever	being	reached.]	

Each	segment	corresponds	to	a	single	.begin	instruction	in	the	source	=ile.	

A	segment	represents	a	block	of	bytes	containing	instructions	and/or	data.	The	
segment	will	be	loaded	into	memory	by	the	operating	system	at	the	time	the	
program	is	to	be	executed.	

The	block	of	bytes	will	appear	in	the	object	=ile	and	the	linker	will	copy	the	block	to	
the	executable	=ile.	However,	if	the	segment	is	marked	“zero-Willed”,	the	block	of	
bytes	(which	will	all	be	0x00)	will	not	be	stored	in	the	object	=ile	or	in	the	executable	
=ile.	At	execution	time,	the	operating	system	will	initialize	the	bytes	of	the	segment	
to	zeros,	as	it	allocates	memory	pages	for	the	process.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	163 284

Chapter	9:	Format	of	Object	Files	

The	linker	will	determine	where	in	memory	to	place	each	segment.	The	following	
pieces	of	data	will	be	used	by	the	linker	to	determine	where	to	place	the	segment:	

	 •	Length	of	segment	in	bytes	
	 •	Starting	address	from	“startaddr=”	
	 •	Is	Kernel	(0=user,	1=kernel)	
	 •	Is	Executable	(0=not	executable,	1=executable)	
	 •	Is	Writable	(0=read-only,	1=read	and	write)	
	 •	Is	Zero-=illed	(0=normal,	1=all	data	is	zero)	

The	length	of	the	segment	is	given	in	bytes	and	may	even	be	zero,	although	why	a	
programmer	would	create	such	a	segment	is	hard	to	imagine.	

The	.begin	instruction	may	include	the	“startaddr=”	parameter.	If	so,	the	
programmer	has	speci=ied	exactly	where	in	memory	to	place	the	segment.	

If	the	startaddr=	parameter	is	unde=ined,	the	linker	will	rely	the	“Is	Kernel”	value.	
Kernel	segments	will	be	placed	in	low	memory,	as	near	to	address	0x0_0000_0000	
as	possible.	User	segments	will	be	placed	in	the	virtual	address	region,	which	begins	
at	address	0x8_0000_0000.	

The	linker	will	begin	by	placing	the	segments	with	predetermined	addresses	at	their	
locations.	Then	the	linker	will	place	=loating	segments	(i.e.,	segments	without	a	
startaddr=	parameter)	in	the	remaining	area.	(The	placement	algorithm	is	
described	elsewhere	in	this	document.)	

The	linker	is	aware	of	pages	and	the	fact	that	each	page	will	either	be	marked	
“writable”	or	not,	and	that	each	page	will	either	be	marked	“executable”	or	not.	

The	following	kinds	of	pages	are	possible.	The	linker	will	determine	how	many	
pages	are	required	at	runtime	and	will	only	place	like	segments	in	any	page.	

	 	 writable	 executable	
	 read-only	 no	 no	
	 read-write	 yes	 no	
	 code-only	 no	 yes	
	 code-and-data	 yes	 yes	

Each	segment	will	also	have	a	“gp=”	parameter.	This	parameter	will	have	as	its	value	
a	36	bit	address	(0x0	…	0x0000_000F_FFFF_FFFF).	This	parameter	may	also	be	
“unde=ined”,	in	which	case	the	object	=ile	will	contain	the	value	-1	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	164 284

Chapter	9:	Format	of	Object	Files	

(0xFFFF_FFFF_FFFF_FFFF).	This	parameter	may	also	be	“default”,	in	which	case	the	
object	=ile	will	contain	the	value	-2	(0xFFFF_FFFF_FFFF_FFFE).	

The	gp=	parameter	will	be	used	by	the	linker	when	processing	the	patches.	For	
example,	one	patch	might	indicate	that	a	segment	contains	the	following	synthetic	
instruction:	

loadb r5,MySymbol

where	“MySymbol”	was	imported.	Since	the	value	of	the	symbol	will	not	be	known	
until	link	time,	the	linker	will	be	tasked	with	translating	this	synthetic	instruction	
into	one	or	more	machine	instructions.	

Assuming	that	register	“gp”	contains	a	value	such	as	0x8_0000_8000	(which	is	
typical	for	user	programs)	and	that	“mySymbol”	has	a	value	such	as	0x8_0000_8123,	
the	linker	can	replace	the	synthetic	instruction	with	this	machine	instruction:	

load.b r5,0x123(gp)

However,	if	register	gp	happens	to	be	unde=ined	or	has	some	other	value,	the	linker	
will	be	required	to	use	a	different	instruction.	

After	the	symbol	information	in	the	object	=ile,	the	segment	data	will	actually	appear.	

The	segments	will	be	given	in	order.	In	other	words,	the	data	for	segment	#1	will	
come	=irst,	followed	by	the	data	for	segment	#2,	and	so	on.	

For	zero-=illed	segments,	there	will	be	not	be	an	entry	with	zero	bytes;	the	entry	will	
simply	be	missing.	

The	segment	length	is	not	constrained	to	be	a	multiple	of	anything	and	may	be	zero.	

Symbols	in	the	Object	File	

A	single	executable	program	may	originate	from	several	source	=iles.	Each	source	=ile	
will	be	assembled	into	an	object	=ile.	These	object	=iles	will	then	be	combined	in	the	
linking	phase	to	produce	a	single	executable	=ile.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	165 284

Chapter	9:	Format	of	Object	Files	

The	program	is	composed	of	several	object	=iles	and	each	object	=ile	corresponds	to	a	
single	source	=ile.	The	linking	process	then	combines	the	object	=iles	to	produce	the	
executable	=ile.	

Code	in	one	object	=ile	may	refer	to	addresses,	instructions,	data,	and	values	de=ined	
in	other	object	=iles.	As	an	example,	object	=ile	A	may	de=ine	a	function	called	“printf”	
and	object	=ile	B	may	call	this	function.	When	object	=ile	B	is	assembled,	there	is	no	
information	about	where	the	“printf”	function	will	be	located	or	even	what	object	
=ile	it	will	be	in.	As	the	linker	processes	all	object	=iles,	it	will	modify	the	“call”	
instruction	to	=ill	in	the	=inal	address	of	the	“printf”	function,	in	a	process	we	call	
“patching”.	(Traditionally,	this	has	also	been	called	“relocation”.)	

Symbols	are	used	to	share	such	things	as	the	address	of	the	“printf”	function	across	
object	=ile	boundaries.	Object	=ile	A	would	export	the	symbol	“printf”	and	object	=ile	
B	would	import	“printf”.	

Ultimately	each	symbol	must	be	assigned	a	value	which	will	be	a	64	bit	signed	
integer.	The	linker	will	determine	that	value	and	will	issue	an	error	if	it	cannot	
determine	the	value	of	some	symbol.	

The	value	of	each	symbol	will	be	either	(1)	the	address	of	a	location	in	some	
segment	or	(2)	an	absolute	value,	which	is	not	the	address	of	any	location.	

Since	addresses	are	not	determined	until	link	time,	any	symbol	which	originates	as	a	
label	(or	an	.equ	to	a	label)	will	not	have	an	actual	value	until	link-time.	Some	
symbols	may	have	an	absolute	value	known	in	the	object	=ile	where	it	is	de=ined,	but	
this	value	will	be	unknown	in	any	object	=ile	that	imports	the	symbol.	

The	Symbol	List	

The	next	section	of	the	object	=ile	consists	of	a	number	of	symbols.	For	example,	an	
object	=ile	may	contain	100	symbols.	Each	of	the	100	symbols	is	represented	in	the	
object	=ile	with	a	“symbol	entry”,	which	will	have	information	such	as	“symbol	
number”,	“type”,	“relative	to”,	and	the	characters	of	the	symbol’s	name.	

The	symbols	within	each	object	=ile	are	sequentially	numbered,	starting	with	1.	
These	numbers	are	local	to	only	that	object	=ile.	The	numbers	are	used	in:	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	166 284

Chapter	9:	Format	of	Object	Files	

	 •	The	de=inition	of	other	symbols	
	 	 A	symbol	can	be	given	a	value	of	“OtherSymbol	+	offset”	
	 •	The	patch	entries	
	 	 A	synthetic	instruction	may	use	a	symbol	as	its	argument.	

Each	symbol	has	a	name,	which	is	a	character	string,	and	the	symbol	entry	contains	
the	string.	The	symbol	name	is	used	to	match	an	exported	symbol	from	one	=ile	with	
an	imported	symbol	in	another	=ile.	For	this	matching,	symbol	names	are	case-
sensitive	and	must	match	exactly.	The	string	is	speci=ied	using	length	in	bytes.	No	
terminating	character	(\0	or	\n)	is	used.	ASCII	encoding	is	used;	only	ASCII	
characters	are	allowed	in	symbols.	

Each	symbol	in	an	object	=ile	has	a	type	code,	which	indicates	how	that	symbol	was	
de=ined:	

	 1	=	imported	
	 2	=	label	
	 3	=	equate	

If	a	symbol	is	“imported”,	then	the	object	=ile	contained	no	de=initions	that	symbol.	
Instead,	the	symbol	is	assumed	to	be	exported	by	some	other	=ile.	The	linker	must	
locate	the	de=inition	(by	matching	the	characters	in	the	symbol	name)	and	must	tie	
the	uses	of	the	symbol	in	this	object	=ile	to	the	de=inition	in	the	other	object	=ile.	

For	a	symbol	of	type	“label”,	the	symbol	was	de=ined	by	labeling	an	address	in	this	
object	=ile.	The	de=inition	consists	of	the	segment	that	contained	the	label	and	the	
offset	into	that	segment	of	the	byte	location	that	had	the	label.	

Note	that	the	linker	will	translate	synthetic	instructions	into	machine	instructions.	
When	translating	a	synthetic	instruction	which	requires	more	than	one	machine	
instruction,	the	linker	may	be	required	to	insert	additional	bytes	into	the	middle	of	
some	segment.	Whenever	the	linker	inserts	such	additional	bytes,	it	will	update	and	
shift	the	de=inition	of	all	labels	in	that	segment	following	the	insertion.	

The	other	way	in	which	a	symbol	can	be	de=ined	is	with	a	.equ	equate	instruction.	A	
symbol	can	either	be	equated	to	an	absolute	value	that	was	known	to	the	assembler	
or	to	some	other	symbol.	

For	any	symbol	given	an	absolute	value	(which	will	be	a	64	bit	signed	integer),	the	
symbol	entry	in	the	object	=ile	will	be	marked	“equate”	and	will	use	the	special	value	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	167 284

Chapter	9:	Format	of	Object	Files	

of	zero	for	the	“relativeTo”	=ield	and	the	“offset”	=ield	will	contain	the	actual	value.	
(Perhaps	an	absolute	value	should	be	thought	of	as	an	offset	from	zero.)	

For	any	symbol	that	is	given	a	value	in	a	.equ	equate	instruction	where	the	value	is	
not	an	absolute	value	known	to	the	assembler,	the	de=inition	will	be	of	the	form:	

Symbol: .equ OtherSymbol + IntegerOffset

The	de=inition	may	not	have	that	exact	form,	but	it	will	be	reduced	to	that.	For	
example:	

Sym43: .equ (-0x123 <<4) + Lab_98

The	OtherSymbol	may	be	de=ined	in	the	current	object	=ile	or	may	be	an	imported	
symbol.	If	it	is	de=ined	in	this	=ile,	then	it	will	be	a	“label”	type	symbol.	(If	
OtherSymbol	had	been	an	absolute	value,	then	the	assembler	would	have	evaluated	
the	expression,	determined	the	value,	and	made	this	symbol	an	absolute	value,	not	a	
“relative	to”	symbol.)	

Regardless	of	how	the	symbol	was	de=ined	(either	as	a	label	or	in	an	equate),	the	
symbol	may	or	may	not	have	been	exported.	Another	=ield	in	the	symbol	entry	will	
indicate	whether	or	not	the	symbol	is	exported.	

If	a	symbol	is	exported,	then	the	linker	will	link	it	with	any	identically	spelled	
symbol	that	is	imported	in	another	object	=ile.	

All	exported	symbols	from	all	object	=iles	must	be	unique.	It	is	an	error	for	the	same	
symbol	to	be	exported	from	more	that	one	object	=ile.	The	linker	will	catch	and	
report	this	error.	

Symbols	that	are	not	exported	are	considered	to	be	“local”	to	a	single	object	=ile.	
Different	object	=iles	may	use	identically	spelled	symbol	names	for	different	
purposes;	such	symbols	are	completely	unrelated	and	will	have	totally	different	
de=initions.	

The	purpose	for	including	local	symbols	in	the	object	=ile	is	that	they	can	provide	
useful	information	to	a	debugger.	Local	symbols	will	be	included	in	the	executable	
=ile,	but	only	for	the	purpose	of	debugging.	They	will	not	impact	execution	in	any	
way.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	168 284

Chapter	9:	Format	of	Object	Files	

For	example,	it	is	common	for	the	programmer	to	create	many	local	labels	as	targets	
for	BRANCH,	JUMP,	and	CALL	instructions.	It	is	very	helpful	when	disassembling	
instructions	in	a	debugger	to	be	able	to	show	the	local	labels	to	help	the	
programmer	get	oriented	and	make	sense	of	the	disassembled	instructions.	As	
another	example,	unusual	constants	may	be	equated	to	local	symbol	names;	
displaying	these	symbolic	names	during	debugging	may	make	dissembled	code	
easier	to	interpret.	

The	symbols	are	given	in	numerical	order	in	the	object	=ile.	After	the	last	symbol,	the	
list	will	be	followed	with	a	zero	and	a	“********”	separator.	These	will	signal	the	end	
of	the	list.	

Patch	Entries	

Next	in	the	=ile	will	be	a	list	of	patch	entries,	each	describing	a	patch	that	must	be	
made	by	the	linker.	

Each	patch	entry	will	begin	with	a	“type”	code.	The	list	of	patch	entries	will	be	
followed	by	a	zero	and	a	“********”	separator.	These	will	signal	the	end	of	the	list.	

Each	path	entry	has	this	form	(repeated	from	above):	

The	following	Rields	are	repeated	once	for	every	patch...		

	 1	 The	patch	type	(1,	2,	…)	
	 4	 Source	=ile	line	number	
	 4	 The	segment	where	the	patch	must	be	made	
	 8	 The	location	to	be	patched	(i.e.,	offset	into	the	segment)	

	 4	 The	target	symbol	(0	=	absolute)	
	 8	 Offset	from	target	symbol	(often	zero)	
	 	 	 For	patch	type	=	“align”,	offset	will	be	8,	16,	32,	or	16384	

	 1	 Exact	size	of	result	in	bytes	(4,	8,	12,	16)	or	-1	if	don’t	care	
	 	 	 Only	for	Format	S1,S2,…S7.	

The	“patch	type”	tells	which	synthetic	instruction	appeared	in	the	source	=ile,	so	the	
linker	can	know	what	instructions	to	generate.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	169 284

Chapter	9:	Format	of	Object	Files	

The	.byte,	.halfword,	.word,	and	.doubleword	pseudo-ops	can	have	as	an	operand	
an	expression	which	has	a	value	that	cannot	be	determined	until	link	time.	There	are	
4	patch	types,	one	for	each	of	these.	

The	.align	pseudo-op	may	also	require	linker	attention	and	there	is	a	special	patch	
type	for	it,	as	well.	

The	“source	line	number”	is	used	in	error	messages	printed	by	the	linker,	but	not	
otherwise	used,	with	one	interesting	exception.	Consider	the	following	assembly	
code:	

label:
 .align 16

The	assembler	will	insert	zero	bytes	for	the	.align	pseudo-op,	leaving	the	task	to	the	
linker.	Thus,	the	label	and	the	align	will	both	be	located	at	the	same	offset	in	the	
segment.	As	far	as	the	object	=ile	goes,	this	code	is	indistinguishable	from	the	
following:	

 .align 16
label:

But	what	happens	if	the	linker	is	required	to	insert	several	bytes	for	the	.align	
pseudo-op?	These	cases	must	be	handled	differently!	In	the	=irst	case,	the	label	must	
be	associated	with	the	=irst	padding	byte;	in	the	second	case,	the	label	must	be	
associated	with	the	=irst	byte	after	the	padding.	

The	line	number	on	the	symbol	and	the	line	number	on	the	patch	are	used	by	the	
linker	to	distinguish	these	cases.	

The	“segment	number”	and	“location	to	be	patched”	give	the	location	that	must	be	
modi=ied.	The	linker	is	required	to	change	and/or	insert	bytes	at	that	location.	

For	synthetic	instructions	that	must	be	patched,	there	is	always	an	“address”	or	
“value”	that	could	not	be	determined	by	the	assembler.	There	are	two	cases:	

	 An	absolute	number	
	 	 The	“target	symbol”	will	be	zero	and	“offset”	will	contain	the	value	
	 A	symbolic	address	
	 	 The	“target	symbol”	will	indicate	which	symbol	was	used.	
	 	 There	may	be	an	optional	“offset”	from	the	target	symbol.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	170 284

Chapter	9:	Format	of	Object	Files	

Once	the	linker	determines	the	=inal	address	of	the	target	symbol,	the	linker	will	add	
in	the	“offset”,	which	is	often	zero.	Then	the	linker	can	determine	exactly	which	
machine	instructions	are	required	and	can	modify	the	segment	accordingly.	

For	synthetic	instructions,	the	linker	will	be	replacing	the	synthetic	instruction	by	1,	
2,	3,	or	4	machine	instructions.	Generally	speaking,	the	assembler	will	either	be	
unable	to	determine	what	the	linker	will	do	or	will	not	care.	In	such	cases,	the	“exact	
size”	=ield	will	be	-1	(i.e.	“don’t	care”).	

However,	in	some	cases,	the	size	of	the	translation	was	important	during	assembly.	
The	“exact	size”	=ield	gives	information	about	how	many	bytes	the	assembler	has	
concluded	will	be	needed	for	the	translation.	

Even	though	the	assembler	may	have	been	able	to	determine	that	some	instruction	
could	be	translated	by	a	given	number	of	bytes,	it	may	have	been	unable	to	perform	
the	actual	translation.	This	might	have	occurred	because	the	assembler	was	unable	
to	know	exactly	what	the	linker	would	do	for	some	other	instructions	somewhere	
else.	However,	the	assembler	may	have	depended	on	the	translation	for	the	
instruction	being	some	exact	size.	This	size	expectation	is	captured	in	the	“exact	
size”	=ield.	The	linker	must	ensure	that	its	translation	is	the	size	expected	by	the	
assembler,	but	this	will	never	be	a	problem	since	the	assembler	will	only	make	such	
assumptions	when	it	knows	the	linker	can	meet	its	size	expectations.	

For	the	BYTE,	HALFWORD,	WORD,	and	DOUBLEWORD	patches,	the	exact	size	=ield	
will	be	1,	2,	4,	and	8,	respectively.	

In	the	case	of	ALIGN	patches,	all	=ields	are	present:	

	 target	symbol	—	ignored	(will	be	0)	
	 offset	—	will	be	8,	16,	32,	or	16384	
	 exact	size	—	ignored	(will	be	-1)	

How	many	bytes	will	be	present	in	the	=ile?	

For	synthetic	instructions	(i.e.,	S-1	through	S-7),	if	the	exactSize	=ield	is	4,	8,	12,	or	
16,	then	the	object	=ile	will	contain	exactly	that	number	of	bytes.	It	the	exactSize	=ield	
is	-1	(don’t	care),	then	the	=ile	will	contain	exactly	4	bytes.	

If	registers	were	used	in	the	synthetic	instruction,	the	=irst	4	bytes	will	contain	the	
register	identities	in	their	proper	places.	To	be	more	precise,	when	expressed	in	hex,	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	171 284

Chapter	9:	Format	of	Object	Files	

the	=irst	word	will	have	the	following	format,	where	3,	2,	1,	and	D	symbolically	
represent	the	bit	=ields	for	encoding	registers	Reg3,	Reg2,	Reg1,	and	RegD,	
respectively.	

	 0000321D	

Since	each	register	is	encoded	with	4	bits,	the	=irst	word	will	have	this	format,	
expressed	in	binary:	

	 0000 0000 0000 0000 3333 2222 1111 DDDD	

For	the	BYTE,	HALFWORD,	WORD,	and	DOUBLEWORD	patches,	the	object	=ile	will	
contain	1,	2,	4,	and	8	bytes,	respectively.	

For	all	ALIGN	patches,	the	object	=ile	will	contain	0	bytes.	

The	Patch	Types	

There	are	25	patch	types,	numbered	1	…	25:	

Format	S-1:	
	 Patch	Type	1	
	 	 MOVI	(regD	≠	gp)	
	 Patch	Type	2	
	 	 MOVI	(regD	=	gp)	

Format	S-2:	
	 Patch	Type	3	
	 	 BEQ				Reg1,Reg2,Address	
	 Patch	Type	4	
	 	 BNE				Reg1,Reg2,Address	
	 Patch	Type	5	
	 	 BLT				Reg1,Reg2,Address	
	 Patch	Type	6	
	 	 BLE				Reg1,Reg2,Address	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	172 284

Chapter	9:	Format	of	Object	Files	

Format	S-3:	
	 Patch	Type	7	
	 	 JUMP			Address	
	 Patch	Type	8	
	 	 CALL				Address	

Format	S-4:	
	 Patch	Type	9	
	 	 LOADB				Regd,Address	
	 Patch	Type	10	
	 	 LOADH				Regd,Address	
	 Patch	Type	11	
	 	 LOADW				Regd,Address	
	 Patch	Type	12	
	 	 LOADD				Regd,Address	

Format	S-5:	
	 Patch	Type	13	
	 	 LOADB				Regd,Offset(Reg1)	
	 Patch	Type	14	
	 	 LOADH				Regd,Offset(Reg1)	
	 Patch	Type	15	
	 	 LOADW				Regd,Offset(Reg1)	
	 Patch	Type	16	
	 	 LOADD				Regd,Offset(Reg1)	

Format	S-6:	
	 Patch	Type	17	
	 	 STOREB				Address,Reg2	
	 Patch	Type	18	
	 	 STOREH				Address,Reg2	
	 Patch	Type	19	
	 	 STOREW				Address,Reg2	
	 Patch	Type	20	
	 	 STORED				Address,Reg2	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	173 284

Chapter	9:	Format	of	Object	Files	

Format	S-7:	
	 Patch	Type	21	
	 	 STOREB				Offset(Reg1),Reg2	
	 Patch	Type	22	
	 	 STOREH				Offset(Reg1),Reg2	
	 Patch	Type	23	
	 	 STOREW				Offset(Reg1),Reg2	
	 Patch	Type	24	
	 	 STORED				Offset(Reg1),Reg2	

Align:	
	 Patch	Type	25	
	 	 “offset”	contains	the	alignment	requirement	

Data:	
	 Patch	Type	26	
	 	 BYTE	—	The	linker	will	print	an	error	if	the	value	will	not	=it	
	 Patch	Type	27	
	 	 HALFWORD	—	The	linker	will	print	an	error	if	the	value	will	not	=it	
	 Patch	Type	28	
	 	 WORD	—	The	linker	will	print	an	error	if	the	value	will	not	=it	
	 Patch	Type	29	
	 	 DOUBLEWORD	

Order	of	patches	within	an	object	Wile:	

Each	patch	applies	to	a	location	within	a	segment.	The	patches	in	an	object	=ile	must	
be	in	proper	order,	as	discussed	next:	

The	patches	for	all	segments	must	appear	together.	The	segments	must	appear	in	
order.	For	example,	all	patches	for	segment	#1	must		be	placed	before	the	patches	
for	segment	#2.	

Furthermore,	all	patches	for	a	given	segment	must	be	in	order	by	the	location	to	be	
patched.	For	example,	a	patch	to	offset	0x40	in	segment	#2,	must	come	before	a	
patch	to	offset	0x44	in	that	segment.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	174 284

Chapter	9:	Format	of	Object	Files	

The	following	patch	types	are	not	used:	

All	instructions	of	format	B,	C,	and	D	instructions	require	an	immediate	value	as	an	
operand.	The	assembler	requires	such	an	immediate	value	to	be	knowable	by	the	
assembler	from	the	information	in	the	assembly	source	=ile.	Thus,	for	these	
instructions,	the	assembler	will	produce	the	=inal	machine	code	and	the	linker	will	
never	need	to	modify	them.	

Therefore,	the	following	patch	types	are	not	required,	not	used,	and	not	
implemented.	

Format	B:	
	 Patch	Type	XXX	
	 	 immed-16	—	Errors	would	occur	if	the	value	will	not	=it	

Format	C:	
	 Patch	Type	XXX	
	 	 immed-16	—	Errors	would	occur	if	the	value	will	not	=it	

Format	D:	
	 Patch	Type	XXX	
	 	 immed-20	—	Errors	would	occur	if	the	value	will	not	=it	
	 	 Normally	UPPER20/AUIPC/JAL/ADDPC	
	 	 	 are	the	result	of	synthetic	instruction	translation.	

Debugging	Information	-	Header	Info	

The	segments,	the	symbols,	and	the	patches	are	not	optional.	Every	.o	object	=ile	will	
contain	that	information.	

But	after	these,	the	=ile	might	or	might	not	contain	additional	information	to	support	
the	runtime	debugger,	which	we	describe	next.	

The	debugging	information	is	optional.	If	the	-nodebug	option	was	speci=ied	on	the	
assembler	command	line,	then	no	debugging	information	will	be	added	to	the	object	
=ile.	Also,	if	the	=ile	contained	no	debugging	pseudo-ops,	then	no	debugging	
information	will	added	to	the	object	=ile.	Otherwise,	the	information	will	be	included	
at	the	end	of	the	=ile.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	175 284

Chapter	9:	Format	of	Object	Files	

The	debugging	information	begins	with	a	header	block	of	data.	If	debugging	
information	is	not	included	in	the	=ile,	the	the	header	information	will	contain	the	
following	values	to	signal	this	and	the	object	=ile	will	include	nothing	further.	

Field	 Value	
Package	name,	number	of	bytes	 0	
Package	name	string	 <	no	bytes	>	
The	second	string,	number	of	bytes	 0	
The	second	string	 <	no	bytes	>	
The	number	of	globals	 0	
The	number	of	functions	 0	
Separator	(“********”)	 0x2A2A_2A2A_2A2A_2A2A	

Otherwise,	the	package	name	and	the	second	string	(which	come	from	
the	.sourceWile	pseudo-op	will	be	present.	These	are	null-terminated	UTF-8	strings,	
and	their	sizes	(in	bytes,	including	the	\0)	are	also	given.	

Since	both	strings	will	contain	at	least	the	\0	character,	their	lengths	will	be	greater	
than	0.	The	empty	header	can	be	differentiated	by	the	=irst	=ield,	i.e.,	the	number	of	
bytes	in	the	package	name	string.	

Following	the	debugging	header	block	there	will	be	a	number	of	globals	and	a	
number	of	functions.	

Debugging	Information	-	Global	Blocks	

For	each	appearance	of	a	.global	pseudo-op	in	the	source	=ile,	there	will	be	a	single	
block	of	information.	Each	block	will	include	these	=ields:	

bytes	 Wield	description	
	 4	 Global	name:	number	of	bytes	(M);	will	be	>	0	
	 M	 Global	name:	the	UTF-8	encoded	string	(with	terminating	\0)	
	 4	 Source	=ile	line	number	
	 1	 Type	Code	(One	character	code,	e.g.	‘I’)	
	 4	 Location:	The	segment	number	
	 8	 Location:	Offset	into	segment	

The	name	of	the	variable	(as	given	in	the	.global	pseudo-op)	is	a	null-terminated	
UTF-8	string;	its	size	(in	bytes,	including	the	\0)	is	also	given.	This	is	followed	by	the	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	176 284

Chapter	9:	Format	of	Object	Files	

source	code	line	number,	as	given	in	the	.global	following	“line=”.	(This	is	
presumably	the	line	number	from	a	KPL	source	code	=ile	and	not	the	line	number	in	
the	.s	=ile.).	

The	type	of	the	variable	is	indicated	by	a	single	character.	This	simple	typing	scheme	
doesn’t	match	the	richness	of	KPL’s	type	system,	but	is	enough	to	support	debugging	
at	the	machine	code	level.	

The	.global	pseudo-op	should	be	placed	in	the	.s	=ile	directly	before	the	variable	to	
which	it	applies.	For	example:	

.global "myVar", line = 60, type = "I"
P_MyPack_myVar_43:

.doubleword 0

The	name	in	the	.global	is	what	the	KPL	programmer	used;	the	label	in	the	.s	=ile	is	
the	(presumably	mangled)	name	generated	by	the	compiler.	

The	address	of	the	next	thing	following	the	.global	will	be	associated	with	this	
debugging	information.	The	“location”	=ields	in	the	global	data	block	give	the	
segment	and	offset	at	which	that	thing	will	be	located.	During	the	linking	step,	the	
linker	will	place	the	segments	in	memory,	and	will	determine	the	actual	address	at	
that	time.	The	debugger	will	use	this	information	to	know	that	an	integer	(a	signed	
64-bit	value)	with	name	“myVar”	(de=ined	on	source	code	line	60)	is	stored	at	the	
address.	

The	assembler	and	linker	do	not	check	whether	the	.global	is	placed	before	the	
correct	instruction	and	do	not	check	whether	the	type	code	is	correct.	For	example,	
the	assembler	and	linker	will	accept	the	following	with	no	complaint.	Obviously,	the	
location	will	contain	a	couple	of	machine	code	instructions,	not	a	pointer	(P).	This	
will	trick	the	debugger,	which	will	display	“myVar”	as	a	pointer,	interpreting	the	
machine	code	bits	for	these	instructions	as	an	address.	(Since	this	would	confuse	
anyone	using	the	debugger,	the	compiler	will	only	place	a	.global	pseudo-op	directly	
before	the	data	bytes	to	which	it	applies.)	

.global "myVar", line = 60, type = "P"
add r1,r2,r3
xori r3,r4,567

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	177 284

Chapter	9:	Format	of	Object	Files	

Type	Codes	Used	for	Debugging	

Here	are	the	single	character	codes	used.	The	type	code	will	be	a	single	character.	
Compound	types	(such	as	“PI”	for	“ptr	to	int”)	are	not	supported.	

	 I	 int	 64-bit	signed	integer	
	 W	 word	 32	bit	signed	integer	
	 H	 halfword	 16	bit	signed	integer	
	 C	 byte	(C	=	Char)	 8	bit	signed	integer	or	ASCII	char	
	 L	 bool	(L	=	Logical)	 TRUE	/	FALSE,	8	bits	
	 D	 double	 64	bit	double-precision	=loating	point	
	 S	 String	 Array	of	bytes;	UTF-8	encoded	
	 P	 ptr	 Pointer,	64	bits	
	 A	 array	 	
	 O	 object	 	
	 R	 struct	(R	=	Record)	 	
	 U	 union	 	
	 ?	 other	/	unknown	/missing	

The	same	type	code	characters	are	used	in	.global,	.regparm,	and	.local	pseudo-ops.	

Debugging	Information	-	Function	Blocks	

For	each	appearance	of	a	.function	pseudo-op	in	the	source	=ile,	there	will	be	a	
single	block	of	information.	

The	.function	pseudo-op	is	used	to	give	the	debugger	information	about	a	function	
or	a	method.	The	debugger	treats	methods	and	functions	the	same	way.	The	receiver	
(i.e.,	“self”)	is	always	a	pointer	to	an	object	and	is	always	the	=irst	parameter,	so	it	
will	be	in	register	r1.	Otherwise,	the	code	for	methods	and	functions	is	identical.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	178 284

Chapter	9:	Format	of	Object	Files	

Each	function	block	will	include	these	=ields:	

bytes	 Wield	description	
	 4	 Function	name:	number	of	bytes	(M);	will	be	>	0	
	 M	 Function	name:	the	UTF-8	encoded	string	(with	terminating	\0)	
	 4	 Source	=ile	line	number	
	 4	 Location:	The	segment	number	
	 8	 Starting	Location:	Offset	into	segment	
	 8	 Beyond	Location:	Offset	into	segment	(i.e.,	address	of	last	byte	+	1)	
	 4	 Frame	size	(not	negative;	0	=	leaf	function)	

Following	each	function	block,	will	be	zero	or	more	“register	parameter	blocks”	with	
one	for	each	.regparm	pseudo-op	appearing	after	the	.function.	

Following	the	register	parameter	blocks,	will	be	zero	or	more	“local	variable	blocks”	
with	one	for	each	.local	pseudo-op	appearing	after	the	.function.	

Following	the	local	variable	blocks,	will	be	zero	or	more	“statement	blocks”	with	one	
for	each	.stmt	/	.comment	pseudo-op	appearing	after	the	.function.	

The	name	of	the	function	or	method	(as	given	in	the	.function	pseudo-op)	is	a	null-
terminated	UTF-8	string;	its	size	(in	bytes,	including	the	\0)	is	also	given.	This	is	
followed	by	the	source	code	line	number,	as	given	in	the	.function	pseudo-op	
following	“line=”.	(This	will	be	the	line	number	from	a	KPL	source	code	=ile	and	not	
the	line	number	in	the	.s	=ile.).	

The	function	block	tells	where	the	function’s	code	begins	and	where	it	ends,	as	
determined	by	the	placement	of	the	.function	and	.endfunction	pseudo-ops.	These	
are	given	by	offsets	into	a	segment	and	these	locations	will	be	turned	into	addresses	
by	the	linker.	The	ending	address	is	given	as	the	location	just	past	the	end	of	the	
function	(i.e.,	the	location	of	the	next	thing	following	the	function).	

The	framesize	=ield	gives	the	size	of	the	stack	frame	in	bytes	and	will	always	be	a	
positive	multiple	of	8.	A	zero	value	indicates	that	this	block	describes	a	leaf	function.	
The	debugger	needs	this	information	in	order	to	go	down	into	the	stack	to	retrieve	
information	from	buried	stack	frames.	

Note	that	the	framesize	is	the	amount	that	register	sp	is	adjusted	whenever	this	
function	is	invoked.	Leaf	functions	will	often	use	elements	above	the	stack	top	(i.e.,	
with	lower	addresses),	but	they	must	not	adjust	register	sp,	or	else	the	debugger	
will	become	very	confused.	(This	is	because	the	debugger	must	be	able	to	locate	the	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	179 284

Chapter	9:	Format	of	Object	Files	

return	address	=ield	in	buried	frames.	From	the	return	address,	the	debugger	can	
deduce	which	function	was	executing	and,	from	that,	the	debugger	can	deduce	the	
frame	sizes	of	buried	frames,	which	it	needs	to	know	in	order	to	work	its	way	
further	down	the	stack.)	

Debugging	Information	-	Register	Parameter	Blocks	

For	each	appearance	of	a	.regparm	pseudo-op	following	a	.function,	there	will	be	a	
single	block	of	“register	parameter”	information.	Each	block	will	include	these	=ields:	

bytes	 Wield	description	
	 4	 Source	=ile	line	number	(>=	0)	
	 1	 Register	number	(1	…	15)	
	 4	 Parameter	name:	number	of	bytes	(M);	will	be	>	0	
	 M	 Parameter	name:	the	UTF-8	encoded	string	(with	terminating	\0)	
	 1	 Type	Code	(One	character	code,	e.g.	‘I’)	

The	name	of	the	parameter	is	a	null-terminated	UTF-8	string	which	comes	from	
the	.regparm	pseudo-op.	Likewise,	the	source	code	line	number	comes	from	“line=”	
the	.regparm	pseudo-op.	

The	line	number	will	never	be	negative.	The	line	number	=ield	is	listed	=irst	and	a	
value	of	-1	is	used	to	terminate	the	list	of	register	parameter	blocks.	

The	register	number	will	normally	be	1	…	7	since	the	standard	calling	conventions	
use	only	registers	r1	…	r7	for	passing	parameters.	The	debugger	may	or	may	not	be	
able	to	cope	with	values	8	…	15.	

The	type	code	character	meanings	were	listed	above.	

All	the	register	parameter	blocks	for	a	given	function	will	occur	in	the	object	=ile	
directly	after	the	function	block	and	before	the	local	variable	blocks	and	statement	
blocks,	regardless	of	their	order	in	the	.s	=ile.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	180 284

Chapter	9:	Format	of	Object	Files	

Debugging	Information	-	Local	Variable	Blocks	

For	each	appearance	of	a	.local	pseudo-op	following	a	.function,	there	will	be	a	
single	block	of	“local	variable”	information.	Each	block	will	include	these	=ields:	

bytes	 Wield	description	
	 4	 Source	=ile	line	number	(>=	0)	
	 4	 Offset	from	stack	top	
	 4	 Variable	name:	number	of	bytes	(M);	will	be	>	0	
	 M	 Variable	name:	the	UTF-8	encoded	string	(with	terminating	\0)	
	 1	 Type	Code	(One	character	code,	e.g.	‘I’)	

The	name	of	the	local	variable	is	a	null-terminated	UTF-8	string	which	comes	from	
the	.local	pseudo-op.	Likewise,	the	source	code	line	number	comes	from	“line=”	on	
the	.local	pseudo-op.	

The	line	number	will	never	be	negative.	The	line	number	=ield	is	listed	=irst	and	a	
value	of	-1	is	used	to	terminate	the	list	of	local	variable	blocks.	

The	offset	tells	where	in	the	stack	frame	the	parameter	or	local	variable	will	be	
located.	The	offset	is	in	bytes,	relative	to	the	stock	top.	A	more	positive	offset	is	
buried	deeper	in	the	stack.	

For	parameters	passed	on	the	stack,	the	data	in	memory	will	be	valid	at	the	time	the	
function	is	called.	In	other	words,	the	calling	conventions	require	that	the	argument	
be	placed	in	the	stack	at	the	given	offset	before	the	CALL	instruction	is	executed.	

However,	during	the	execution	of	any	function	(or	method),	parameters	and	local	
variables	will	often	be	cached	in	registers.	Even	though	the	compiler	has	included	
a	.local	pseudo-op	to	describe	a	parameter	or	a	local	variable,	it	is	likely	that	the	
value	will	be	cached	in	a	register	for	much	of	the	execution	of	the	function,	and	the	
debugger	will	not	know	about	this.	Be	aware	of	this.	

The	type	code	character	meanings	were	listed	above.	

All	the	local	variable	blocks	for	a	given	function	will	occur	in	the	object	=ile	directly	
after	the	register	parameter	blocks	and	before	the	statement	blocks,	regardless	of	
their	order	in	the	.s	=ile.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	181 284

Chapter	9:	Format	of	Object	Files	

Debugging	Information	-	Statement	Blocks	

For	each	appearance	of	a	.stmt	pseudo-op	following	a	.function,	there	will	be	a	
single	block	of	“statement”	information.	The	.comment	pseudo-op	is	handled	as	a	
special	case	of	the	statement	block.	For	each	.comment	there	will	be	a	single	
statement	block	as	described	here.	In	other	words,	the	following	block	of	
information	describes	either	a	.stmt	or	.comment	pseudo-op,	as	differentiated	by	
the	typecode	=ield.	

Each	statement	block	will	include	these	=ields:	

bytes	 Wield	description	
	 4	 Source	=ile	line	number	(>=	0)	
	 4	 Location:	Segment	number	
	 4	 Location:	Offset	into	segment	
	 1	 Type	Code	(0=comment,	1=assign,	…)	

If	and	only	if	type	code	=	0/comment,	the	following	will	be	present…	
	 4	 Comment	String:	number	of	bytes	(M);	will	be	>	0	
	 M	 Comment	String:	the	UTF-8	encoded	string	(with	terminating	\0)	

The	source	code	line	number	comes	from	“line=”	on	the	.stmt.	There	is	no	associated	
line	number	for	a	.comment	so	this	=ield	will	be	0	for	.comment	pseudo-ops.	The	
line	number	will	never	be	negative.	The	line	number	=ield	is	listed	=irst	and	a	value	of	
-1	is	used	to	terminate	the	list	of	statement	blocks.	

The	.stmt	or	.comment	applies	to	the	thing	that	follows	it.	The	location	given	here	
will	be	translated	by	the	linker	into	an	address.	

Furthermore,	the	statement	blocks	for	a	given	function	are	guaranteed	to	be	in	order	
by	location.	They	will	be	in	the	same	order	they	occurred	in	the	.s	=ile.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	182 284

Chapter	9:	Format	of	Object	Files	

The	type	code	are	integer	codes.	For	example:	

0 comment <	from	.comment	pseudo-op	>
1 assign ASSIGNMENT	statement
2 if IF	statement
3 then THEN	statements
4 else ELSE	statements
5 call CALL	statement	
6 send SEND	statement
7 while_expr WHILE	LOOP	(expr	evaluation)	
8 while_body WHILE	LOOP	(body	statements)	
9 do_body DO	UNTIL	(body	statements)	

	 	 …	etc…		

All	the	statement	blocks	for	a	given	function	will	occur	in	the	object	=ile	directly	after	
the	local	variable	blocks.	

If,	and	only	if,	the	type	code	is	0,	then	this	statement	block	of	data	describes	
a	.comment	pseudo-op.	For	such	a	block,	there	will	also	be	a	string,	which	gives	the	
comment	information.	The	comment	is	a	null-terminated	UTF-8	string.	
The	.comment	does	not	have	a	“line=“	=ield;	the	value	of	the	source	code	line	
number	will	be	0.	

Future	Work	

The	=ields	of	the	.o	object	=ile	are	not	properly	aligned.	This	creates	a	potential	
performance	problem	for	the	=ile	I/O	performed	by	the	asm,	link,	and	createlib	
tools.	

Typically,	=iles	are	implemented	with	memory-mapped	I/O.	File	READ	and	WRITE	
operations	end	up	becoming	nothing	more	than	memory-to-memory	data	
movement.	Thus,	proper	alignment	may	speed	up	=ile	operations,	at	the	cost	of	
increasing	=ile	size.	

Perhaps	the	=ile	format	needs	to	be	rede=ined	so	that	all	=ields	are	properly	aligned.	
This	would	require	changes	to	the	asm,	link,	createlib,	and	dumpobj	tools.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	183 284

Chapter	9:	Format	of	Object	Files	

Segment	sizes	are	not	constrained	to	be	a	multiple	of	any	number.	We	ought	to	add	a	
padding	=ield	(with	0	…	7	padding	bytes)	to	follow	the	data	for	each	segment,	in	
order	to	make	sure	that	all	subsequent	segment	data	chunks	are	doubleword	
aligned.	

The	changes	described	here	can	be	expected	to	have	only	a	modest	impact	on	the	
performance	of	the	asm,	link,	and	createlib	tools.	We	think	“modest”	because	these	
tools	don’t	spend	much	time	performing	I/O.	The	bulk	of	processing	for	these	tools	
is	spent	manipulating	in-memory	data	structures.	

On	the	other	hand,	the	.o	object	=ile	format	has	been	designed	to	minimize	=ile	size,	
which	also	contributes	to	performance.	Without	empirical	testing,	it	is	not	certain	
that	performance	would	be	signi=icantly	improved	by	redesigning	the	object	=ile	
format.	

Therefore,	these	proposed	changes	will	not	be	pursued.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	184 284

Chapter	10:	Executable	File	Format	

Quick	Summary	

•	The	linker	produces	an	executable	=ile.	
•	The	executable	=ile	is	loaded	by	the	OS	kernel	at	runtime.	
•	The	format	of	the	executable	=ile	is	given,	including:	
	 —	Version	and	machine	architecture	identi=ication	
	 —	The	number	of	pages,	and	addresses	of	the	pages	
	 	 	 For	each	page,	its	“writable”	and	“executable”	attributes	are	given.	
	 —	A	number	of	segments	
	 	 	 For	each	segment,	the	address,	length,	and	data	bytes	are	given.	
	 —	The	entry	point,	an	address	at	which	to	begin	execution	
•	The	executable	=ile	also	contains	a	“debugger	info	section”.	
	 —	The	debugger	info	is	used	in	reporting	runtime	error	messages.	
	 —	The	debugger	info	will	be	used	by	the	debugger	tool.	
	 	

Introduction	

The	linker	tool	takes	one	or	more	object	=iles	and	combines	them,	producing	an	
executable	=ile.	The	executable	=ile	contains	all	the	information	needed	by	the	OS	
kernel	to	load	the	program	into	memory	and	begin	execution.	

In	this	chapter	we	give	the	format	of	the	executable	=ile.	

In	Unix/Linux,	executable	=iles	are	sometimes	called	“a.out”	=iles.	

Blitz-64:	Assembler	and	Linker	/	Porter	 Page	 	of	185 284

Chapter	10:	Executable	File	Format	

File	Format	

An	executable	=ile	has	two	sections	called	the	“executable	section”	and	the	
“debugger	info	section”.	The	=irst	part	of	the	=ile	contains	all	information	needed	to	
load	a	virtual	address	space	and	commence	execution.	The	second	part	of	the	=ile	
contains	information	that	will	only	be	needed	if	errors	arise	during	execution	or	if	a	
debugging	tool	is	used.	

Every	=ile	always	has	both	sections.	The	debugger	info	section	always	follows	the	
executable	section.	There	are	no	bytes	outside	of	the	sections.	In	other	words,	the	
length	of	the	=ile	is	simply	the	length	of	the	executable	section	plus	the	length	of	the	
debugger	info	section.	The	sections	are	concatenated	to	create	the	complete	=ile.	

The	debugger	info	section	can	be	safely	ignored	for	now.	The	debugger	info	section	
is	discussed	later	in	this	chapter,	after	the	description	of	the	execution	section.	

The	=ile	can	be	considered	as	series	of	=ields.	The	length	of	each	=ield	is	given	in	the	
left-hand	column.	

The	executable	section	of	the	=ile	has	the	following	format.	

bytes	 Wield	description	

The	following	Rields	constitute	the	header	information...		
	 8	 Magic	number	“B64a.out”	(in	hex:	0x4236_3461_2E6F_7574)	
	 8	 Version	Number	(0x0000_0000_0000_0001)	
	 2	 Blitz-64	ISA	Architecture	(e.g.,	0x0002)	
	 2	 Padding	(0x0000)	
	 4	 Number	of	pages	(0	if	this	is	a	kernel	program)	
	 8	 Lowest	used	address	
	 8	 Highest	used	address	
	 8	 Entry	Point	
	 4	 Number	of	modules	
	 4	 Number	of	symbols	
	 8	 Separator	“********”	(in	hex:	0x2A2A_2A2A_2A2A_2A2A)	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	186 284

Chapter	10:	Executable	File	Format	

The	following	Rields	are	repeated	once	for	every	region...		
	 8	 Starting	Address	(0x0	…	0xF_FFFF_C000)	
	 4	 Number	of	pages	
	 1	 Is	Executable?		(1=pages	should	be	marked	“executable”)	
	 1	 Is	Writable?		(1=pages	should	be	marked	“writable”)	
	 2	 Padding	(0x0000)	
	 8	 Separator	“********”	(in	hex:	0x2A2A_2A2A_2A2A_2A2A)	

After	all	regions...		
	 8	 -1	to	terminate	(in	hex:	0xFFFF_FFFF_FFFF_FFFF)	

The	following	Rields	are	repeated	once	for	every	segment...		
	 8	 Starting	Address	(0x0	…	0xF_FFFF_FFF8).	Will	be	a	multiple	of	8.	
	 8	 Length	in	bytes	(N).	Will	be	a	multiple	of	8.	
	 4	 Number	of	module	from	which	this	came	
	 4	 Source	code	line	number	
	 7	 Padding	(0x00_0000_0000_0000)	
	 1	 Is	zero-=illed?	(1=zero=illed;	0=data	bytes	are	present)	
	 N	 The	bytes	to	load	into	memory.	(Only	if	IsZero=illed=0)	
	 8	 Separator	“********”	(in	hex:	0x2A2A_2A2A_2A2A_2A2A)	

After	all	segments...		
	 8	 -1	to	terminate	(in	hex:	0xFFFF_FFFF_FFFF_FFFF)	
	 8	 Separator	“********”	(in	hex:	0x2A2A_2A2A_2A2A_2A2A)	

The	following	Rields	are	repeated	once	for	every	module...	
	 4	 Number	of	module	(1,	2,	3,	…)	
	 4	 Name	of	.s	source	=ile:	number	of	characters	(L)	
	 L	 Name	of	.s	source	=ile:	the	ASCII	characters	(no	terminating	\0)	

After	all	modules...	
	 8	 -1	to	terminate	(in	hex:	0xFFFF_FFFF_FFFF_FFFF)	
	 8	 Separator	“********”	(in	hex:	0x2A2A_2A2A_2A2A_2A2A)	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	187 284

Chapter	10:	Executable	File	Format	

The	following	Rields	are	repeated	once	for	every	symbol...	
	 4	 Number	of	module	which	de=ined	this	symbol	(1,	2,	3,	…)	
	 4	 Source	=ile	line	number	
	 8	 Value	of	this	symbol	
	 1	 Is	Label?	
	 	 	 0	=	this	value	is	probably	not	an	address	
	 	 	 1	=	this	symbol	derives	from	a	label	de=inition	
	 4	 Symbol	name:	number	of	characters	(M)	
	 M	 Symbol	name:	the	ASCII	characters	(no	terminating	\0)	

After	all	symbols...	
	 4	 -1	to	terminate	(in	hex:	0xFFFF_FFFF_FFFF_FFFF)	
	 8	 Separator	“********”	(in	hex:	0x2A2A_2A2A_2A2A_2A2A)	

After	the	Executable	Section...	
	 (The	Debugger	Info	Section,	which	is	discussed	later)	

Magic	Number	

Every	executable	=ile	begins	with	a	special	doubleword	value.	This	value	of	this	
“magic	number”	can	be	interpreted	as	the	ASCII	encoding	of	the	characters	
“B64a.out”.	

Since	all	valid	executable	=iles	begin	with	this	value	and	since	this	particular	value	is	
highly	unlikely	to	occur	in	other	=iles,	this	is	a	fairly	good	way	to	catch	accidental	
user	errors.	For	example,	any	attempt	to	execute	a	“.o”	object	=ile	or	to		give	an	
executable	=ile	as	input	to	the	linker	tool	will	be	caught	by	the	magic	number	check.	

The	Version	Number	and	ISA	Architecture	Fields	

Following	the	magic	number	is	a	“version	number”.	We	understand	that	future	
changes	may	be	required	to	the	format	of	executable	=iles.	This	=ield	exists	to	
accommodate	changes,	updates,	and	extensions	to	this	=ile	format.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	188 284

Chapter	10:	Executable	File	Format	

This	document	describes	“version	1”	of	the	=ile	format.	All	=iles	conforming	to	this	
speci=ication	will	have	the	value	1	in	this	=ield.	Any	other	value	indicates	that	the	
remainder	of	the	=ile	will	conform	to	a	different	speci=ication.	

At	this	time,	there	is	only	one	version	of	this	=ile	format	and	the	linker	is	only	capable	
of	producing	“version	1”	=iles.	Future	versions	of	the	linker	tool	may	be	capable	of	
producing	different	versions.	

Future	versions	of	the	Blitz	kernel	may	or	may	not	be	able	to	load	and	execute	=iles	
in	the	“version	1”	format	or	other	versions.	Details	about	future	compatibility	must	
be	documented	in	the	future,	obviously.	

The	“ISA	Architecture”	=ield	speci=ies	which	type	of	machine	this	code	is	intended	to	
be	run	on.	This	value	must	match	the	value	from	the	version	number	in	bits	[30:16]	
of	the	CSR	register	csr_version.	In	other	words,	the	numbers	used	in	this	=ield	and	
the	in	csr_version	are	drawn	from	the	same	set	and	therefore	have	the	same	values	
and	meanings.	

At	this	time,	the	current	version	Blitz-64	Instruction	Set	Architecture	(ISA)	is	

	 0x0002	

In	the	future,	changes	and/or	additions	to	the	machine	code	instructions	are	likely.	
For	example,	we	plan	to	specify	and	implement	the	compressed	instruction	set	in	
the	future.	When	changes	are	made	to	the	ISA	,	the	csr_version	will	be	changed	
(incremented)	to	re=lect	a	modi=ied	architecture.	

Commentary		We	separate	out	the	“=ile	version	number”	and	the	“ISA	architecture	
version”	into	two	=ields	because	these	really	track	two	different	kinds	of	changes	
that	can	be	made	in	the	future.	A	change	to	the	machine	architecture	may	not	
require	a	change	to	the	=ile	format.	Conversely,	a	change	to	the	=ile	format	may	be	
implemented	even	though	there	is	no	change	to	the	ISA.	

Commentary		A	“Fat	Executable”	=ile	contains	multiple	copies	of	the	executable	
code,	each	assembled	for	a	different	architecture.	This	effectively	combines	several	
executable	modules	into	a	single	=ile.	The	bene=it	of	doing	this	is	that	a	single	
executable	=ile	can	be	run	on	different	machines	and	is	therefore,	to	this	extent,	
portable.	At	this	time,	we	avoid	fat	executables,	but	if	this	added	in	the	future,	the	=ile	
format	will	need	to	be	modi=ied	to	accommodate	multiple	architectures.	At	that	time,	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	189 284

Chapter	10:	Executable	File	Format	

the	=ile	format	“version	number”	will	be	increased	to	re=lect	the	changes	to	the	=ile	
format.	

Padding	Bytes	

Executable	=iles	contain	a	large	amount	of	data	that	must	be	moved	from	the	=ile	into	
memory.	It	is	crucial	that	loading	an	executable	into	memory	be	made	as	fast	as	
possible,	since	load-time	is	consumed	whenever	a	program	is	executed.	

In	order	to	speed	up	this	copying,	it	is	important	for	the	data	to	be	properly	aligned.	

To	make	sure	subsequent	=ields	are	doubleword	aligned,	there	are	“padding	bytes”	
inserted	into	the	executable	=ile	in	a	couple	of	places.	These	byte	should	be	zeros.	

Number	of	Pages	

Every	executable	is	either	a	“kernel	program”	or	a	“user	program”.	Kernel	programs	
will	be	loaded	into	kernel	memory		(i.e.,	addresses	within	0x0	…	0x3_FFFF_FFFF).	
User	programs	will	be	loaded	into	the	virtual	memory	region	(i.e.,	addresses	within	
0x8_0000_0000	…	0xF_FFFF_FFFF).	

If	this	=ile	contains	a	kernel	program,	the	“number	of	pages”	=ield	will	be	0	and	there	
will	be	no	regions.	Otherwise,	this	=ield	will	indicate	the	number	of	memory	pages	
that	are	required	to	run	this	program.	

Typically,	the	OS	kernel	will	allocate	the	required	number	of	pages	all	at	once,	and	
then	=ill	them	in	subsequently.	(This	is	because	allocating	the	pages	piecemeal	may	
result	in	a	deadlock.	Consider	the	situation	in	which	some	processes	have	grabbed	
some	of	the	pages	they	need	but	are	waiting	to	get	additional	pages.)	

In	order	to	know	how	many	pages	are	required	(so	they	can	all	be	obtained	before	
any	are	needed),	this	=ield	tells	how	many	will	be	required.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	190 284

Chapter	10:	Executable	File	Format	

Lowest	and	Highest	Used	Addresses	

These	values	give	the	full	range	of	addresses	that	will	be	used	by	the	program.	

For	user	programs,	the	lowest	address	will	always	be	a	page-aligned	address	and	the	
highest	address	will	a	page-aligned	address,	minus	1.	

For	kernel	programs,	the	lowest	and	highest	addresses	used	will	not	necessarily	be	
page-aligned.	These	values	are	important	for	loading	a	kernel.	The	kernel	program	
will	be	loaded	by	some	form	of	“boot	loader”.	Both	the	boot	loader	and	the	kernel	
will	reside	in	the	kernel	address	space.	This	check	is	important	so	that	the	boot	
loader	can	make	sure	that	the	material	it	is	loading	will	not	overwrite	the	boot	
loader	itself.	

Entry	Point	

Every	program	must	de=ine	a	value	for	and	export	the	symbol	“_entry”.	This	value	
should	be	a	legal	address.	Once	loaded	into	memory	by	the	kernel	at	runtime,	
execution	will	begin	at	this	location.	In	the	case	of	the	kernel	program,	the	boot	
loader	program	will	end	by	jumping	to	this	address.	

If	the	linker	is	compiling	a	kernel	program	(i.e.,	if	the	-k	command	line	option	is	
present),	the	linker	will	ensure	that	the	value	is	within	the	kernel	address	space,	i.e.,	
0x0	…	0x3_FFFF_FFFF.	Otherwise,	the	linker	will	ensure	the	address	is	within	the	
user	address	space,	i.e.,	0x8_0000_0000	…	0xF_FFFF_FFFF.	

The	linker	will	not	ensure	that	the	address	is	within	an	allocated	page	or	segment.	If	
this	entry	address	is	not	an	allocated	address,	the	program	will	presumably	signal	an	
unrecoverable	page	fault	or	addressing	error	immediately	upon	execution	at	
runtime,	if	it	is	a	user	program.	If	it	is	the	kernel	program,	an	illegal	instruction	
exception	will	probably	be	signaled.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	191 284

Chapter	10:	Executable	File	Format	

Separators	

The	separators,	which	were	discussed	earlier,	serve	as	a	check	to	make	sure	the	=ile	
format	is	followed.		

List	of	Regions	

There	will	be	zero	or	more	regions	listed	after	the	header	information.	

Kernel	programs	will	have	no	regions;	user	programs	will	have	one	or	more	regions.	

For	each	region,	several	=ields	will	appear.		The	=irst	=ield	is	“starting	address”,	which	
will	never	be	negative.	Following	the	regions,	a	value	of	0xFFFF_FFFF_FFFF_FFFF	
(i.e.,	-1)	will	appear.	The	-1	value	will	mark	the	end	of	the	list	of	regions.	

A	region	is	a	set	of	one	or	more	pages,	all	of	which	are	contiguous,	i.e.,	placed	
sequentially	in	memory,	one	after	the	other,	with	no	intervening	gaps.	The	=ield	
called	“number	of	pages”	tells	how	large	the	region	will	be.	You	can	multiply	the	
number	of	pages	by	the	page	size	to	determine	the	size	of	the	region	in	bytes.	

A	page	can	be…	

	 •	Either	writable	or	read-only,	and	
	 •	Either	executable	or	not	executable	

The	next	two	=ields	“Is	Executable?”	and	“Is	Writable?”	tell	how	the	pages	should	be	
marked	before	execution	begins.	All	the	pages	in	a	region	will	have	the	same	
protection	attributes.	That	is,	all	pages	in	the	region	are	to	be	marked	identically.	

The	collection	of	pages	in	the	region	list	describes	how	the	kernel	should	set	up	the	
virtual	address	space	before	the	program	begins.	(The	kernel	will	also	add	
additional	pages,	e.g.,	for	stack	and	environment	variables).	

Each	region	is	ends	with	a	separator.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	192 284

Chapter	10:	Executable	File	Format	

List	of	Segments	

After	the	header	list	there	will	be	a	list	of	segments.	Each	segment	is	described	by	a	
block	of	=ields	that	begins	with	“starting	address”	and	ends	with	a	separator.	

The	starting	address	will	never	be	negative.	After	the	list	of	segment	blocks,	there	
will	be	a	=ield	with	value	-1	(i.e.,	0xFFFF_FFFF_FFFF_FFFF).	This	-1	value	will	occur	
in	place	of	the	starting	address	of	the	next	segment	and	is	used	to	determine	when	
the	list	of	segment	blocks	ends.	

A	segment	(as	discussed	in	the	context	of	the	executable	=ile	format)	gives	the	actual	
data	bytes	that	must	be	loaded	into	memory.	Each	segment	contains	a	starting	
address,	a	length	in	bytes,	and	a	block	of	data.	The	“starting	address”	tells	where	to	
place	the	data	and	the	“length	in	bytes”	tells	how	big	the	block	of	data	is.	

Some	segments	are	“zero-=illed”,	which	means	that	they	contain	nothing	but	zeros.	
To	avoid	storing	long	strings	of	zeros	in	the	=ile,	the	segment	is	marked	“zero-=illed”	
and	the	block	of	data	is	not	given.	The	=ield	“Is	Zero=illed?”	is	used	to	determine	
whether	(A)	a	data	block	is	present	and	must	be	moved	into	memory,	or	(2)	no	data	
block	is	present	and	the	memory	is	to	be	zero-ed	instead.	

Every	assembly	language	segment	starts	with	a	.begin	pseudo-op	and	there	is	a	one-
to-one	correspondence	between	.begin	pseudo-ops	and	segments.	

Every	segment	in	an	assembly	language	source	=ile	will	result	in	one	segment	being	
placed	into	the	executable	=ile.	

Caveat		Segments	in	the	assembly	language	=ile	can	actually	have	zero	length.	This	is	
not	an	error,	although	a	segment	of	zero	length	is	meaningless	and	the	product	of	
sloppy	programming.	For	a	segment	of	zero	size,	nothing	will	be	placed	in	the	
executable	=ile.	

So,	more	precisely:	For	every	assembly	code	segment	of	length	greater	than	zero,	
there	will	be	a	segment	in	the	executable	=ile.	Segments	from	the	assembly	=ile	will	
never	be	broken	apart	and	correspond	to	no	more	than	one	segment	in	the	
executable	=ile.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	193 284

Chapter	10:	Executable	File	Format	

Furthermore,	the	linker	may	also	insert	additional	segments	that	do	not	correspond	
to	any	.begin	in	the	assembly	source	=ile.	These	segments	will	always	be	zero-=illed.	
These	extra	zero-=illed	zones	result	from	and	=ill	the	gaps	between	the	segments.	

Every	byte	in	every	page	in	every	region	included	in	the	executable	=ile	will	be	given	
a	value	exactly	once.	Most	bytes	in	the	executable	will	come	from	the	code	and/or	
data	speci=ied	in	the	assembly	source	=ile.	However,	any	byte	not	explicitly	speci=ied	
is	required	(by	the	Blitz-64	design	spec)	to	be	initialized	to	zero.	

When	the	linker	places	the	segments	into	pages,	there	may	be	gaps.	These	gaps	can	
occur	because	the	programmer	speci=ied	“startaddr=“	values	and	these	resulted	in	
gaps	between	segments	or	resulted	in	unused	space	at	the	beginning	of	the	page.	
Gaps	will	also	occur	whenever	segments	fail	to	completely	=ill	a	page.	

To	ensure	that	these	gaps	are	properly	initialized,	the	linker	creates	additional	zero-
=illed	segments	that	describe	the	areas	that	must	be	initialized	at	load-time.	

Commentary		Copying	bytes	and	initializing	bytes	may	perhaps	be	done	by	special	
DMA	hardware	outside	the	processor	core.	However,	it	is	reasonable	in	many	
systems	to	perform	these	operations	directly	by	machine	code	executing	in	the	core.	

Let’s	compare	the	cost	of	copying	bytes	versus	zero-=illing	bytes.	

To	copy	bytes,	a	loop	such	as	this	may	be	required:	

r1 = destination ptr
r2 = source ptr
r3 = stop value
loop:

load.d r4,0(r2)
store.d 0(r1),r4
addi r1,r1,8
addi r2,r2,8
blt r1,r3,loop

This	example	omits	a	lot	of	details,	including	loop	setup	and	boundary	conditions.	It	
also	assumes	the	addresses	are	properly	aligned.	Regardless,	this	seems	to	be	the	
minimal	loop	needed	for	the	bulk	of	a	large	copy	operation.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	194 284

Chapter	10:	Executable	File	Format	

On	the	other	hand,	the	code	to	initialize	a	large	block	of	memory	might	depend	on	a	
loop	such	as	this:	

r1 = destination ptr
r3 = stop value
loop:

store.d 0(r1),r0
addi r1,r1,8
blt r1,r3,loop

The	bottom	line	is	that	zero-=illing	a	large	region	of	memory	will	be	substantially	
faster	than	copying	bytes	into	that	region.	And	this	doesn’t	even	consider	the	cost	of	
storing	and	reading	in	data	from	the	executable	=ile.	

So	there	is	good	reason	to	accommodate	zero-=illed	segments.	

Modules	and	Symbols	

The	executable	=ile	contains:	

	 •	A	list	of	all	modules	
	 •	A	list	of	all	symbols	

This	information	is	not	necessary	to	load	and	execute	the	program.	Typically,	the	OS	
kernel	will	ignore	and	skip	this	information	when	a	program	is	read	and	loaded	into	
memory	prior	to	execution.	

This	information	is	provided	for	use	in	disassembling	and	debugging	a	program.	
After	loading	a	program	into	memory,	a	debugging	tool	can	go	back	to	the	executable	
=ile	and	retrieve	this	additional	information	for	use	in	the	debugging	process.	

A	single	module	is	included	in	the	=ile	for	every	.o	object	module	that	was	included	
by	the	linker	in	the	executable	=ile.	The	only	information	included	is	the	name	of	the	
original	.s	source	=ile	from	which	the	module	came.	This	module	information	is	
included	so	that	each	symbol	can	be	associated	with	the	name	of	the	=ile	in	which	it	
was	de=ined.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	195 284

Chapter	10:	Executable	File	Format	

The	executable	=ile	also	includes	a	number	of	symbols.	The	information	for	each	
symbol	includes	both	a	reference	to	the	module	number	(so	the	source	=ilename	in	
which	this	symbol	was	de=ined	can	be	retrieved),	along	with	the	line	number	in	that	
=ile.	

Every	symbol	that	is	used	as	a	label	is	included	in	the	executable	=ile.	Every	symbol	
that	is	de=ined	with	a	.equ	pseudo-op	is	included.	

Each	symbol	has	an	associated	value.	The	symbols	do	not	appear	in	the	executable	
=ile	in	any	particular	order.	The	are	neither	in	alphabetical	order	nor	in	numerical	
order	by	value.	

Each	symbol	has	a	=lag	to	indicate	whether	it	is	thought	to	be	an	address	or	not.	This	
information	is	not	precise.	For	example,	consider	this	code:	

loc: .equ 0x800000000
…
movi r1,loc
loadb r7,0(r1)
…
loadb r7,loc

As	you	can	see	from	the	way	it	is	used,	the	symbol	“loc”	is	clearly	an	address.	Yet	
“loc”	will	not	be	identi=ied	within	the	executable	=ile	as	an	address.	

In	the	following	example,	the	symbols	“var1”	and	“var2”	will	be	identi=ied	as	
addresses	in	the	executable	=ile:	

var1: .word 0
var2: .equ var1+2

…
loadb r7,var1

When	displaying	out	the	contents	of	memory,	a	debugger	tool	is	free	to	use	the	
symbols	information	when	displaying	information.	Although	the	following	example	
is	only	suggestive,	it	shows	how	a	debugger	might	display	the	contents	of	memory	
and	the	value	of	having	information	about	symbolic	addresses	during	debugging.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	196 284

Chapter	10:	Executable	File	Format	

 800000b80: a4
 800000b81: 02
var1:
 800000b82: 7c
 800000b83: 15
var2:
 800000b84: 8f
 800000b85: 44
 800000b86: 28
 800000b87: 05

The	Debugger	Info	Section	

The	initial	portion	of	the	executable	=ile	contains	the	information	necessary	to	load	
and	execute	the	program.	The	format	of	the	initial	section	of	the	=ile	was	described	
above.	After	the	initial	executable	section,	the	=ile	includes	a	second	section	of	data	
which	is	only	used	for	error	reporting	and	runtime	debugging.	

The	second	section	is	called	the	debugger	info	section.	During	normal,	error-free	
executions	of	the	program,	the	debugger	info	will	never	be	read	from	the	=ile.	
However,	when	a	runtime	error	occurs	or	whenever	the	programmer	wants	to	use	
the	debugger	tool,	the	debugger	section	will	be	read	from	the	=ile.	

The	format	of	the	debugging	section	is	designed	to	promote	simple	and	fast	loading	
into	memory.	This	is	important	because	when	an	error	occurs	at	runtime,	the	goal	is	
to	display	an	error	message	quickly.	

A	typical	error	message	might	look	like	this:	

NULL	POINTER	EXCEPTION:	Assignment	stmt	in	“myFunction”	in	package	
“MyPack”,	line	N	

One	purpose	of	the	debugger	info	is	to	supply	the	underlined	information:	

	 Function	Name	—	The	currently	executing	function	
	 Package	Name	—	The	source	package	name	associated	with	this	function	
	 Statement	Type	—	The	most	relevant	statement	information	
	 Line	Number	—	The	line	number	of	the	statement	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	197 284

Chapter	10:	Executable	File	Format	

The	error	reporting	will	have	only	the	current	address	(i.e.,	the	PC)	at	which	the	
error	occurred.	From	this	value,	it	must	be	possible	to	quickly	determine	the	above	
information.	

The	error	reporting	code	may	be	a	part	of	the	failing	program.	That	is,	the	error	
handling	code	may	be	linked	and	loaded	with	the	failing	program	and	the	program	
may	be	responsible	for	printing	the	error	message	itself.	Or,	it	may	be	that	the	OS	
kernel	will	produce	the	error	message	and	the	failing	program	will	not	execute	any	
more	instructions.	

In	any	case,	the	error	reporting	code	will	need	the	identity	of	the	executable	=ile,	
from	which	the	debugger	info	section	can	be	read.	How	that	=ile	is	obtained	is	not	
discussed	further	here.	

Another	purpose	of	the	debugger	info	is	for	use	by	a	debugger	tool.	In	that	scenario,	
the	debugger	tool	will	read	in	the	debugger	info	from	the	executable	=ile	upon	
startup.	The	performance	constraints	are	not	as	important	in	this	scenario.	The	tool	
is	free	to	read	in	the	information	and	build	complex	internal	data	structures	that	it	
will	use	during	the	debugging	session.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	198 284

Chapter	10:	Executable	File	Format	

Layout	of	Debugging	Information	

Here	is	the	format	of	the	debugger	section:		

bytes	 Wield	description	

The	following	Rields	constitute	the	header...		
	 4	 Number	of	modules	(K);	will	be	>	0	
	 4	 Number	of	Global	blocks	included	below	
	 4	 Number	of	Function	blocks	included	below	
	 4	 Number	of	Statement	blocks	included	below	

The	following	Rields	are	repeated	once	for	every	Module...		
	 4	 Module	number	(1,	2,	3,	…,	K)	
	 	 	 Same	module	numbers	as	in	executable	section.	
	 	 	 These	will	be	in	numerical	order.	
	 	 	 Every	module	will	be	represented	here,	even	if	there	is	no	info.	
	 	 	 No	info	means	that	both	strings	are	“\0”.	
	 4	 Package	name:	number	of	bytes	(M;	will	be	>	0)	
	 M	 Package	name:	the	UTF-8	encoded	characters	(with	terminating	\0)	
	 4	 The	second	string:	number	of	bytes	(N;	will	be	>	0)	
	 N	 The	second	string:	the	UTF-8	encoded	characters	(with	terminating	\0)	
	 4	 The	.o	object	=ilename:	number	of	bytes	(P;	will	be	>	0)	
	 P	 The	.o	object	=ilename:	the	UTF-8	encoded	characters	(with	term.	\0)	
	 4	 The	.s	source	=ilename:	number	of	bytes	(R;	will	be	>	0)	
	 R	 The	.s	source	=ilename:	the	UTF-8	encoded	characters	(with	term.	\0)	
	 8	 Separator	“********”	(in	hex:	0x2A2A_2A2A_2A2A_2A2A)	

After	all	Modules...	
	 4	 Zero	to	terminate	(in	hex:	0x00000000)	
	 8	 Separator	“********”	(in	hex:	0x2A2A_2A2A_2A2A_2A2A)	

The	following	Rields	are	repeated	once	for	every	Global…	
	 4	 Module	number	(will	be	>	0)	
	 4	 Source	line	number	
	 1	 Type	Code	(One	character	code,	e.g.	‘I’)	
	 8	 Address	in	memory	
	 	 	 (The	globals	are	not	in	any	order)	
	 4	 Global	name:	number	of	bytes	(M);	will	be	>	0	
	 M	 Global	name:	the	UTF-8	encoded	characters	(with	terminating	\0)	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	199 284

Chapter	10:	Executable	File	Format	

After	all	Global	entries...	
	 4	 -1	to	terminate	(in	hex:	0xFFFFFFFF)	
	 8	 Separator	“********”	(in	hex:	0x2A2A_2A2A_2A2A_2A2A)	

The	following	Rields	are	repeated	once	for	every	Function…	
	 4	 Source	line	number	
	 4	 Module	number	(will	be	>	0)	
	 4	 Frame	size	(not	negative;	0	=	leaf	function)	
	 8	 Starting	Address	in	memory	
	 	 	 (The	functions	are	not	in	any	order)	
	 8	 Beyond	Address	in	memory	
	 4	 Function	name:	number	of	bytes	(M);	will	be	>	0	
	 M	 Function	name:	the	UTF-8	encoded	characters	(with	terminating	\0)	

The	following	Rields	are	repeated	once	for	every	Register	Parameter…	
	 4	 Source	line	number	(>=	0)	
	 1	 Register	number	(1	…	15)	
	 1	 Type	Code	(One	character	code,	e.g.	‘I’)	
	 4	 Parameter	name:	number	of	characters	(M);	will	be	>	0	
	 M	 Parameter	name:	the	UTF-8	encoded	chars	(with	terminating	\0)	

After	all	Register	Parameters…	
	 4	 -1	to	terminate	
	 8	 Separator	“********”	(in	hex:	0x2A2A_2A2A_2A2A_2A2A)	

The	following	Rields	are	repeated	once	for	every	Local	Variable…	
	 4	 Source	line	number	(>=	0)	
	 4	 Offset	from	stack	top	
	 1	 Type	Code	(One	character	code,	e.g.	‘I’)	
	 4	 Variable	name:	number	of	bytes	(M);	will	be	>	0	
	 M	 Variable	name:	the	UTF-8	encoded	chars	(with	terminating	\0)	

After	all	Local	Variables…	
	 4	 -1	to	terminate	
	 8	 Separator	“********”	(in	hex:	0x2A2A_2A2A_2A2A_2A2A)	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	200 284

Chapter	10:	Executable	File	Format	

The	following	Rields	are	repeated	once	for	every	Statement…	
	 4	 Source	line	number	(>=	0)	
	 8	 Address	in	memory	

	 	 	 	 	 (The	statements	are	not	in	any	order)	
	 1	 Type	Code	(0=comment,	1=assign,	…)	
If	and	only	if	type	code	=	comment,	the	following	will	be	present…	

	 4	 Comment	String:	number	of	bytes	(M);	will	be	>	0	
	 M	 Comment	String:	the	UTF-8	encoded	chars	(with	terminating	\0)	

After	all	Statements…	
	 4	 -1	to	terminate	
	 8	 Separator	“********”	(in	hex:	0x2A2A_2A2A_2A2A_2A2A)	

After	all	Function	entries...	
	 4	 -1	to	terminate	(in	hex:	0xFFFFFFFF)	
	 8	 Separator	“********”	(in	hex:	0x2A2A_2A2A_2A2A_2A2A)	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	201 284

Chapter	11:	Object	Libraries	

Quick	Summary	

•	A	“library	object	=ile”	is	a	binary	=ile.	
•	The	library	=ile	has	an	extension	of	“.lib”.	
	 	 •	The	library	=ile	is	identi=ied	by	its	own	magic	number	(“B64o_lib”).	
•	The	library	=ile	begins	with	an	index.	
•	Each	index	entry	contains:	
	 —	File	name	of	original	“.o”	=ile	
	 —	Where	in	the	library	=ile	the	module	begins	(Length	is	unnecessary.)	
	 —	A	list	of	all	symbols	exported	by	that	module	
•	The	index	is	followed	by	object	modules.	
	 	 •	There	will	be	one	or	more	modules	in	the	=ile.	
	 	 •	Each	module	has	the	same	format	as	the	object	=ile	it	came	from.	
•	Object	modules	may	import	symbols.	
	 	 •	There	is	no	checking	to	make	sure	the	imported	symbols	are	de=ined.	
•	A	library	is	created	by	the	“createlib”	tool.	
	 	 •	The	tool	takes	one	or	more	object	=iles	as	input.	
	 	 •	The	tool	adds	all	object	modules	to	the	newly	created	library	=ile.	
•	The	“createlib”	tool	will	issue	an	error	if	the	same	symbol	is	exported	by	more	
than	one	object	module.	
•	The	linker	tool	will	issue	an	error	if	the	same	symbol	is	exported	in	two	different	
libraries	or	con=licts	with	an	input	object	=ile.	
•	The	“dumpobj”	tool	can	be	used	to	display	the	contents	of	an	object	library,	as	well	
as	an	object	=ile.	

The	Format	of	a	Library	File	

The	library	=ile	has	the	following	format.	The	=ile	can	be	considered	as	series	of	
=ields.	The	length	of	the	=ields	is	given	in	the	left-hand	column.	

Blitz-64:	Assembler	and	Linker	/	Porter	 Page	 	of	202 284

Chapter	11:	Object	Libraries	

bytes	 description	

The	following	Rields	constitute	the	header	information...		
	 8	 Magic	number	"B64o_lib"	(in	hex:	0x4236_346F_5F6C_6962)	
	 8	 Version	Number	(0x0000_0000_0000_0001)	
	 8	 Number	of	object	modules	
	 8	 Separator	“********”	(in	hex:	0x2A2A_2A2A_2A2A_2A2A)	

The	following	Rields	are	repeated	once	for	every	object	module...		
	 4	 Name	of	original	.o	=ile:	number	of	characters	(M)	
	 M	 Name	of	original	.o	=ile:	the	ASCII	characters	(no	terminating	\0)	
	 8	 Offset	into	=ile	of	this	object	module	

Repeated	once	for	every	exported	symbol	in	this	module…		
	 4		 Symbol	name:	number	of	characters	(N)	
	 N	 Symbol	name:	the	ASCII	characters	(no	terminating	\0)	

To	terminate	the	list	of	symbols…		
	 4	 Zero	
	 8	 Separator	“********”	(in	hex:	0x2A2A_2A2A_2A2A_2A2A)	

The	following	data	blocks	are	repeated	once	for	every	object	module...		

	 X	 The	object	=ile	contents	(X	bytes	=	size	of	original	.o	=ile)	

Introduction	and	Motivation	for	Libraries	

A	typical	program	will	use	functions	that	have	been	written	previously	by	someone	
else.	Typically	there	exists	a	large	collection	of	functions	that	are	intended	for	re-use	
by	many	different,	unrelated	programs.	

For	example,	consider	a	collection	of	math-related	functions,	such	as:	

	 sin,	cos,	sqrt,	log,	…	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	203 284

Chapter	11:	Object	Libraries	

These	functions	are	written	once	and	used	in	many	different	programs.	There	may	
be	hundreds	of	such	math	functions	although	a	particular	program	will	use,	at	most,	
only	a	few	of	them.	

When	creating	an	executable	=ile,	we	need	a	way	to	include	only	the	functions	that	
are	needed,	without	including	code	that	is	not	needed.	The	simple	solution	of	
including	all	math	functions	in	every	program	is	unacceptable.	This	would	lead	to	
very	large	executable	=iles	and	constitute	a	waste	of	memory.	

A	library	is	a	single	=ile	containing	the	entire	collection	of	all	the	functions.	In	this	
example,	the	“math	library”	is	a	single	=ile	containing	all	the	math	functions	that	are	
available	for	use.	Since	there	are	many	math	functions,	this	=ile	may	be	quite	large.	

First,	let’s	consider	a	program	which	does	not	use	a	library.	

After	writing	and	assembling	a	program,	a	“.o”	object	=ile	will	be	created.	In	fact,	a	
large	program	may	have	several	assembly	source	=iles,	and	several	“.o”	object	=iles	
may	be	needed.	The	linker	will	combine	all	the	object	=iles	and	produce	the	
executable	=ile.	The	linker	will	include	all	the	code	and	data	bytes	in	all	the	object	
=iles,	regardless	of	whether	it	is	necessary	or	not.	

Next,	we	discuss	how	a	library	=ile	is	used.	

When	linking	the	program,	the	linker	tool	may	also	consult	a	library	=ile.	Typically,	
the	input	to	the	linker	consists	of	a	list	of	object	=iles,	as	well	as	a	library	=ile	to	
consult.	

If	the	program	makes	use	of	some	math	function	—	say	“cos”	for	example	—	the	
linker	will	include	the	code	for	that	function	in	the	executable.	If	a	function	is	not	
used	—	for	example,	the	“sqrt”	function	—	the	code	for	that	function	will	not	be	
included.	

The	linker	understands	the	format	of	the	library	=ile	and	will	extract	from	it	only	the	
functions	that	are	needed.	

So	far,	we	have	only	mentioned	a	single	library	=ile.	In	our	example,	we	discussed	a	
library	=ile	containing	all	the	math	functions.	There	may	be	more	than	one	library	
=ile.	For	example,	a	second	library	=ile	might	contain	all	the	functions	related	to	
formatting	output.	A	third	library	=ile	might	contain	functions	related	to	the	
graphical	user	interface.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	204 284

Chapter	11:	Object	Libraries	

The	linker	is	capable	of	taking	as	input	more	than	one	library	=ile.	Whenever	a	
function	(such	as	“cos”)	is	used	but	not	de=ined,	the	linker	will	search	all	the	library	
=iles	in	order	to	locate	a	module	containing	the	“cos”	function	and	will	include	it	in	
the	executable.	
	 	

About	the	Library	File	

Each	“.o”	object	=ile	contains	all	the	data	and	code	bytes	speci=ied	in	a	single	“.s”	
assembly	source	code	=ile.	

Within	that	object	=ile,	there	will	typically	be	a	number	of	symbols	which	are	de=ined	
and	exported.	There	may	also	be	symbols	which	are	imported	and	used,	but	not	
de=ined	in	the	=ile.	The	object	=ile	may	contain	a	single	function	or	several	functions	
and	may	contain	data	as	well.	

(As	mentioned	in	previous	chapters	in	this	document,	the	code	and	data	within	a	
single	object	=ile	is	broken	into	segments,	but	we	will	ignore	segments	in	this	
discussion.)	

A	library	=ile	consists	of	an	index,	followed	by	a	number	of	“object	modules”.	

An	object	module	is	nothing	more	than	an	object	=ile:	they	have	exactly	the	same	
format.	We	say	object	“module”	instead	of	object	“=ile”	because	—	in	this	context	—	
it	is	only	a	part	of	the	library	=ile,	not	a	=ile	on	its	own.	

Another	way	to	say	this	is:	

A	library	Rile	consists	of	a	number	of	object	Riles	concatenated	
together,	one	after	the	other,	with	an	index	placed	at	the	front.	The	
size	in	bytes	of	the	library	Rile	is	exactly	the	sum	of	the	sizes	of	all	the	
object	Riles	that	went	into	it,	along	with	the	size	of	the	index.	

A	library	=ile	is	created	with	the	“createlib”	tool.	The	input	to	this	tool	is	a	list	of	
all	the	object	=iles	that	are	to	be	placed	into	the	library	=ile.	The	tool	reads	all	the	
object	=iles,	creates	the	index,	then	copies	the	index	and	all	the	object	=iles	into	the	
newly	created	library	=ile.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	205 284

Chapter	11:	Object	Libraries	

The	index	contains	an	entry	for	each	object	module	in	the	library.	The	entry	lists	the	
symbols	which	are	exported	by	that	object	module.	

For	example,	here	is	the	command	to	create	a	library	=ile.	We	assume	that	a	number	
of	=iles	(such	as	“sin.s”,	“cos.s”,	“sqrt.s”,	“log.s”,	…)	have	been	previously	
assembled.	This	command	will	create	a	new	=ile,	which	is	given	a	name	following	the	
“-o”	output	option.	

createlib sin.o cos.o sqrt.o log.o … -o math.lib

Now	assume	that	a	programmer	has	created	a	program	consisting	of	two	assembler	
source	code	=iles	called	“MyProg.s”	and	“MoreCode.s”,	and	wishes	to	create	an	
executable	=ile	“MyExe”.	

asm MyProg.s	 Creates	“MyProg.o”
asm MoreCode.s 	 Creates	“MoreCode.o”

In	order	to	create	an	executable	=ile,	the	linker	tool	will	be	used	to	combine	the	
material	from	“MyProg.o”	and	“MoreCode.o”.	In	addition,	the	library	=ile	called	
“math.lib”	will	be	consulted,	along	with	a	second	library	=ile	called	
“output.lib”,	which	contains	functions	related	to	output	formatting.	

Here	is	the	command	to	create	the	executable.	The	executable	=ilename,	“MyExe”,	is	
given	after	the	“-o”	output	option.	

link MyProg.o MoreCode.o math.lib output.lib -o MyExe

When	the	linker	tool	is	used,	it	begins	by	reading	the	index	for	each	and	every	
library	=ile	that	is	to	be	consulted.	

Then	the	linker	will	read	every	“.o”	=ile	and	include	that	material	in	the	executable	
=ile.	After	this	step,	if	there	are	symbols	which	have	been	imported	but	not	exported	
by	any	of	the	object	=iles,	the	linker	will	consult	the	library	indexes.	

If	the	linker	tool	can	locate	an	object	module	in	one	of	the	libraries	that	exports	the	
needed	symbol,	the	linker	will	include	the	material	from	that	object	module	in	the	
executable.	If	the	linker	cannot	=ind	any	module	that	exports	the	needed	symbol,	it	
will	issue	an	error	message	to	the	effect	that	“The	symbol	xxx	is	unde=ined;	it	is	
imported	but	not	exported	by	any	object	=ile.”	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	206 284

Chapter	11:	Object	Libraries	

The	linker	will	continue	to	add	modules	from	the	library	=iles	until	all	symbols	have	
been	de=ined.	

An	object	module	in	a	library	may	itself	import	a	symbol.	This	will	cause	other	object	
modules	to	be	added	to	the	growing	executable	=ile.	

The	order	in	which	the	object	=iles	and	library	=iles	are	listed	on	the	linker	command	
line	does	not	matter.	The	material	from	all	object	=iles	will	be	added	to	the	
executable	=ile.	

The	linker	is	able	to	determine	whether	an	input	=ile	is	an	object	=ile	or	a	library	=ile.	
The	linker	ignores	the	“.o”	and	“.lib”	extensions.	These	extensions	are	customary	
and	useful	for	humans	to	know	what	is	in	the	=ile,	but	the	linker	doesn’t	use	them	to	
determine	what	sort	of	=ile	it	is.	Instead,	the	linker	looks	at	the	=ile	contents	directly.	
Object	=iles	can	be	distinguished	from	library	=iles	because	each	type	of	=ile	begins	
with	a	different	“magic	number”,	which	the	linker	uses	to	determine	what	the	=ile	
contains.	

The	=irst	8	bytes	of	the	=ile	will	be:	

	 Magic	number	 As	ASCII	 Meaning	
0x4236_346F_626A_6374 B64objct	 This	is	an	object	=ile	

	 0x4236_346F_5F6C_6962 B64o_lib	 This	is	a	library	=ile	

Typically,	each	object	module	in	a	library	=ile	will	contain	a	single	function,	but	this	
doesn’t	have	to	be	the	case.	Next,	we	examine	a	more	complex	example	in	which	a	
single	object	module	may	export	several	symbols	and	where	an	object	module	in	a	
library	can	itself	import	a	symbol	from	another	object	module.	

A	single	object	module	may	contain	several	functions.	Such	an	object	module	would	
presumably	export	several	symbols,	one	for	each	function	it	contains.	In	other	
words,	whenever	a	single	module	in	a	library	=ile	contains	several	functions,	the	
name	of	each	function	would	presumably	be	exported.	Each	function	will	begin	with	
a	labeled	instruction	and	those	labels	would	be	exported.	

If	any	single	symbol	is	used	in	the	main	program,	it	will	cause	the	linker	to	pull	in	the	
entire	module,	with	all	the	functions	it	includes,	as	well	as	all	the	symbols	the	
module	de=ines	and	exports.	So,	in	the	case	where	a	single	module	contains	several	
functions,	the	use	of	any	one	of	those	functions	will	cause	all	the	functions	in	the	
module	to	be	included	in	the	executable.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	207 284

Chapter	11:	Object	Libraries	

Normally	this	behavior	is	not	what	is	wanted,	and	the	builder	of	the	library	will	
place	each	function	in	a	separate	module.	Then,	the	inclusion	of	one	function	will	not	
cause	the	other	functions	to	be	added,	unless	it	speci=ically	uses	some	other	function	
(i.e.,	it	imports	the	symbol	naming	some	other	function).		

The	object	modules	in	a	library	need	not	contain	only	functions.	They	can	contain	
arbitrary	bytes.	

As	an	example	of	modules	that	contain	data,	consider	the	implementation	of	the	
“sin”	and	“cos”	functions.	One	possible	implementation	is	to	include	a	table	of	pre-
computed	values	and	compute	the	“sin”	function	by	simply	looking	up	the	value	in	
the	table.	

The	value	of	sin(x),	where	x	ranges	from	0°	to	90°,	is	suf=icient	to	capture	the	shape	
of	the	entire	sin	curve,	since	sin(x)	for	all	other	values	of	x	can	be	computed	using	
simple	identities.	

A	reasonable	implementation	is	to	include	data	points	for	(say)	10,000	values	of	x	
from	0°	to	90°		in	a	look-up	table.	Of	course	there	are	an	in=inity	of	values	between	0°	
to	90°,	but	10,000	seems	like	a	reasonable	number	to	include.	For	intermediate	
values	of	x	not	included	in	the	table,	the	algorithm	will	look	up	the	values	for	the	
nearest	two	points	and	perform	a	linear	extrapolation.	Using	this	general	approach,	
very	precise	values	for	sin	can	be	computed.	

The	shape	of	the	cos	curve	is	identical	to	the	sin	curve,	only	shifted	in	phase,	and	one	
implementation	of	cos	might	make	use	of	the	same	table	of	values.	The	table	is	
relatively	large	and	we	only	want	to	include	it	in	the	executable	=ile	if	either	sin	or	
cos	is	used.	

In	this	example,	there	will	be	three	separate	modules:	(1)	the	sin	function,	(2)	the	
cos	function,	and	(3)	the	table	of	values,	which	is	needed	by	both	functions.	The	use	
of	either	sin	or	cos	will	cause	the	module	containing	the	table	to	be	loaded.	If	both	
sin	and	cos	are	used,	then	only	one	copy	of	the	table	will	be	loaded.	

This	can	be	achieved	as	follows:	The	source	=ile	containing	the	table	will	export	a	
single	symbol,	namely	the	label	addressing	the	=irst	element	in	the	table.	Both	the	
source	=iles	for	sin	and	cos	will	import	this	symbol.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	208 284

Chapter	11:	Object	Libraries	

[This	example	was	somewhat	contrived.	It	seems	more	likely	that	the	sin	function	
and	the	table	would	be	combined	into	a	single	module,	while	cos	would	be	
implemented	as	a	function	that	adds	90°	to	x	and	then	calls	the	sin	function	to	do	all	
the	work.	I	believe	a	better	design	would	be	to	put	sin,	cos,	and	the	table	all	into	a	
single	module.]	

When	a	library	=ile	is	created,	the	createlib	tool	combines	a	number	of	object	
=iles	into	a	single	=ile.	Each	object	=ile	will	export	one	or	more	symbols	and	may	
import	symbols,	as	well.	

Each	object	module	in	a	library	must	export	at	least	one	symbol,	otherwise	there	is	
no	way	for	that	object	module	to	be	pulled	in	to	the	executable	=ile.	The	createobj	
tool	will	check	this,	and	issue	an	error	message	if	necessary.	

Two	object	modules	in	a	single	library	must	not	export	the	same	symbol.	The	
createlib	tool	will	check	this,	and	issue	an	error	message	if	necessary.	Likewise,	
during	linking,	the	same	symbol	must	not	be	exported	multiple	times,	from	different	
object	=iles	or	from	modules	brought	in	from	different	libraries.	The	linker	tool	will	
check	this,	and	issue	an	error	message	if	necessary.	

However,	we	do	allow	an	object	module	to	export	a	symbol	that	is	also	exported	
from	a	module	in	a	library	=ile,	as	long	as	the	library	module	is	not	brought	in	for	
inclusion	in	the	executable	=ile.	The	reason	is	this:	It	is	possible	that	the	library	
contains	some	function	which	just	happens	to	have	a	common	name	that	a	
programmer	has	coincidentally	chosen	for	an	unrelated	meaning.	

For	example,	a	program	concerned	with	computing	the	energy	ef=iciency	of	a	wind	
turbine	might	reasonably	de=ine	a	function	named	“power”	to	compute	the	wattage	
of	a	turbine.	Unknown	to	the	programmer,	the	math	library	might	contain	a	module	
which	happens	to	export	the	symbol	“power”,	for	example	to	compute	the	function	
xn.	No	error	will	be	reported	since	there	is	no	ambiguity.	The	programmer	need	not	
ever	know	that	he/she	happened	to	choose	a	symbol	spelling	that	coincided	with	a	
symbol	in	the	math	library.	

Each	object	module	in	a	library	may	import	symbols.	A	symbol	imported	by	one	
object	module	need	not	be	exported	by	another	module	in	that	library.	During	
linking,	any	imported	symbol	(regardless	of	whether	imported	by	an	object	=ile	or	by	
an	object	module	included	from	a	library)	must	be	exported	exactly	once	by	some	
other	object	=ile	or	object	module.	The	linker	tool	will	check	this,	and	issue	an	error	
message	if	necessary.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	209 284

Chapter	11:	Object	Libraries	

The	Version	Number	Field	

Following	the	magic	number	is	a	“version	number”.	This	document	describes	
“version	1”	of	the	=ile	format.	

Note		The	object	=ile	format	and	the	executable	=ile	format	both	contain	an	“ISA	
Architecture”	=ield,	in	addition	to	the	“version	number”.	There	is	no	“ISA	
Architecture”	=ield	in	the	library	=ile	header,	since	our	approach	is	not	dependent	on	
the	ISA.	A	modi=ication	or	change	to	the	ISA	should	never	require	a	change	to	the	
library	header.	

However,	note	that	the	individual	object	modules	each	contain	an	“ISA	Architecture”	
=ield,	so	any	alteration	to	the	architecture	version	will	be	represented	in	the	library	
=ile,	within	the	individual	modules.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	210 284

Appendix	1:	Machine	Instructions	

	 Format	A-0	 <no	operands>	
	 	 ILLEGAL Canonical	form	of	illegal	instruction
	 	 SYSRET PC	←	csr_prev;	csr_status	←	csr_stat2
	 	 SLEEP1 Enter	light	sleep	state
	 	 SLEEP2 Enter	deep	sleep	state
	 	 RESTART Same	as	Power-On-Reset
	 	 DEBUG
	 	 BREAKPOINT
	 	 TLBCLEAR	 Invalidate	all	TLBs	for	current	ASID	
	 	 FENCE	 	

	 Format	A-1	 Reg1	
	 	 CHECKB	 r1 Trap	if	reg	not	within	-128	…	+127
	 	 CHECKH	 r1 Trap	if	reg	not	within	-32768	…	+32767
	 	 CHECKW	 r1 Trap	if	reg	not	within	32	bit	range

PUTSTAT r1 CSR_STATUS	[9:3]	←	Reg1	[9:3]
TLBFLUSH r1 Invalidate	TLB	for	virtual	address	in	Reg1

	 Format	A-2	 RegD,Reg1	
	 	 ENDIANH	 r7,r1 Reorder	bytes:	76543210	→	67452301
	 	 ENDIANW	 r7,r1	 Reorder	bytes:	76543210	→	45670123
	 	 ENDIAND	 r7,r1	 Reorder	bytes:	76543210	→	01234567
	 	 SEXTB	 r7,r1 Sign	extend	byte	to	64	bits
	 	 SEXTH	 r7,r1	 Sign	extend	16	bits	to	64	bits
	 	 SEXTW	 r7,r1	 Sign	extend	32	bits	to	64	bits
	 	 FNEG	 r7,r1
	 	 FABS	 r7,r1
	 	 FSQRT	 r7,r1
	 	 FCLASS	 r7,r1 RegD	←	classify(Reg1)	||	FLOAT_STATUS
	 	 FCVTFI	 r7,r1 Convert:	=loating-point	←	int

Blitz-64:	Assembler	and	Linker	/	Porter	 Page	 	of	211 284

Appendix	1:	Machine	Instructions	

	 	 FCVTIF	 r7,r1 Convert:	int	←	=loating-point

	 Format	A-3	 RegD,Reg1,Reg2	
	 	 ADD	 r7,r1,r2
	 	 ADDOK	 r7,r1,r2
	 	 SUB	 r7,r1,r2
	 	 MUL	 r7,r1,r2
	 	 DIV	 r7,r1,r2
	 	 REM	 r7,r1,r2
	 	 AND	 r7,r1,r2
	 	 OR	 r7,r1,r2
	 	 XOR	 r7,r1,r2
	 	 SLL	 r7,r1,r2
	 	 SLA	 r7,r1,r2 Shift-left-arithmetic;	checks	for	over=low
	 	 SRL	 r7,r1,r2
	 	 SRA	 r7,r1,r2
	 	 ROTR	 r7,r1,r2	 Rotate	right;	no	over=low	check
	 	 TESTEQ	 r7,r1,r2	 RegD	←	(Reg1	=	Reg2)	?	1	:	0
	 	 TESTNE	 r7,r1,r2	 RegD	←	(Reg1	≠	Reg2)	?	1	:	0
	 	 TESTLT	 r7,r1,r2	 RegD	←	(Reg1	<	Reg2)	?	1	:	0
	 	 TESTLE	 r7,r1,r2	 RegD	←	(Reg1	≤	Reg2)	?	1	:	0
	 	 FEQ	 r7,r1,r2	 RegD	←	(Reg1	=	Reg2)	?	1	:	0	(=loat	compare)
	 	 FLT	 r7,r1,r2 RegD	←	(Reg1	<	Reg2)	?	1	:	0	(=loat	compare)
	 	 FLE	 r7,r1,r2	 RegD	←	(Reg1	≤	Reg2)	?	1	:	0	(=loat	compare)
	 	 FADD	 r7,r1,r2
	 	 FSUB	 r7,r1,r2
	 	 FMUL	 r7,r1,r2
	 	 FDIV	 r7,r1,r2
	 	 FMIN	 r7,r1,r2
	 	 FMAX	 r7,r1,r2

	 Format	A-4	 RegD,Reg1,Reg2,Reg3	
	 	 ADD3		 r7,r1,r2,r3	 Reg3	←	Reg1+Reg2+Reg3	(unsigned)	
	 	 ALIGNH		 r7,r1,r2,r3	 Reg3	(unaligned	addr)	gives	shift	amount	
	 	 ALIGNW		 r7,r1,r2,r3	 Reg3	(unaligned	addr)	gives	shift	amount	
	 	 ALIGND		 r7,r1,r2,r3	 Reg3	(unaligned	addr)	gives	shift	amount	
	 	 INJECT1H		 r7,r1,r2,r3	 RegD	←	Reg1;	inject	Reg2	per	addr	in	Reg3		

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	212 284

Appendix	1:	Machine	Instructions	

	 	 INJECT2H		 r7,r1,r2,r3	 RegD	←	Reg1;	inject	Reg2	per	addr	in	Reg3	
	 	 INJECT1W		 r7,r1,r2,r3	 RegD	←	Reg1;	inject	Reg2	per	addr	in	Reg3	
	 	 INJECT2W	 r7,r1,r2,r3	 RegD	←	Reg1;	inject	Reg2	per	addr	in	Reg3	
	 	 INJECT1D		 r7,r1,r2,r3	 RegD	←	Reg1;	inject	Reg2	per	addr	in	Reg3	
	 	 INJECT2D		 r7,r1,r2,r3	 RegD	←	Reg1;	inject	Reg2	per	addr	in	Reg3	
	 	 FMADD	 r7,r1,r2,r3 RegD	←	(Reg1	×	Reg2)	+	Reg3
	 	 FNMADD	 r7,r1,r2,r3 RegD	←	(-(Reg1	×	Reg2))	+	Reg3
	 	 FMSUB	 r7,r1,r2,r3 RegD	←	(Reg1	×	Reg2)	-	Reg3
	 	 FNMSUB	 r7,r1,r2,r3 RegD	←	(-(Reg1	×	Reg2))	-	Reg3	
	 	 MULADD	 r7,r1,r2,r3 RegD	←	(Reg1	×	Reg2)	+	Reg3	
	 	 MULADDU	 r7,r1,r2,r3 RegD	←	(Reg1	×	Reg2)	+	Reg3	(unsigned)	
	 	 INDEX0	 r7,r1,r2,r3 Reg1=arrayPtr,	Reg2=header,	Reg3=index	
	 	 INDEX1	 r7,r1,r2,r3 .			RegD	←	Reg1	+	8	+	(Reg3	*	scale)	
	 	 INDEX2	 r7,r1,r2,r3 .			Reg2=header=[ArrayMAX||ArrayCURR]	
	 	 INDEX4	 r7,r1,r2,r3 .			Trap	if	(Reg3	<	0)	or	(Reg3	≥	ArrayCURR)	
	 	 INDEX8	 r7,r1,r2,r3 .																										or	(ArrayMAX	=	0)	
	 	 INDEX16	 r7,r1,r2,r3 .	
	 	 INDEX24	 r7,r1,r2,r3 .	
	 	 INDEX32	 r7,r1,r2,r3 .	
	 	 CAS	 r7,r1,r2,r3 Compare	and	Swap:	If	*r1=r2	then	*r1←r3	

	 Format	A-5	 Reg1,Reg2	
	 	 <no	longer	used>	

	 Format	A-6	 Reg2	
	 	 <no longer used>	

	 Format	A-7	 RegD,Reg1,Reg2	
	 	 CSRSWAP	 r7,csr,r2 Reg1	encodes	CSR;	RegD	←	CSR;	CSR	←	Reg2		

	 Format	A-8	 RegD,Reg1	
	 	 CSRREAD	 r7,csr Reg1	encodes	CSR;	RegD	←	CSR;		

	 Format	A-9	 RegD	
	 	 GETSTAT	 r7,csr RegD	←	CSR_STATUS	&	0x0000…03f8		

	 	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	213 284

Appendix	1:	Machine	Instructions	

Format	B-1	 RegD,Reg1,immed-16	
	 	 ADDI	 r7,r1,0x1234
	 	 ANDI	 r7,r1,0x1234
	 	 ORI	 r7,r1,0x1234
	 	 XORI	 r7,r1,0x1234
	 	 TESTEQI	 r7,r1,0x1234 RegD	←	(Reg1=immed)	?	1	:	0
	 	 TESTNEI	 r7,r1,0x1234	 RegD	←	(Reg1≠immed)	?	1	:	0
	 	 TESTLTI	 r7,r1,0x1234	 RegD	←	(Reg1<immed)	?	1	:	0
	 	 TESTLEI	 r7,r1,0x1234	 RegD	←	(Reg1≤immed)	?	1	:	0
	 	 TESTGTI	 r7,r1,0x1234	 RegD	←	(Reg1<immed)	?	1	:	0
	 	 TESTGEI	 r7,r1,0x1234	 RegD	←	(Reg1≥	immed)	?	1	:	0
	 	 UPPER16	 r7,r1,0x1234 RegD	←	(immed<<16)	+	Reg1
	 	 SHIFT16	 r7,r1,0x1234 RegD	←	(Reg1+immed)	<<	16	
	 	 CONTROL	 r7,r1,0x1234
	 	 CONTROLU	 r7,r1,0x1234

ENTERFUN sp,sp,32	 	 Push	frame	onto	stack,	save	lr	in	frame 	11

EXITFUN sp,sp,32	 	 Retrieve	lr,	pop	frame,	and	return	

	 Format	B-2	 RegD,immed-16(Reg1)	
	 	 LOAD.B	 r7,offset(r1) Value	is	sign-extended	to	64	bits
	 	 LOAD.H	 r7,offset(r1) .	May	cause	unaligned	exception
	 	 LOAD.W	 r7,offset(r1) .	No	over=low	check	on	addr	calculation
	 	 LOAD.D	 r7,offset(r1)
	 	 JALR	 lr,offset(r1) RegD	←	return	addr;	Target	←	offset+Reg1	

	 Format	B-3	 RegD,Reg1,immed-3	
	 	 CHECKADDR	r7,r1,5	 Reg1	=	virt	addr;	RegD	←	except.	code	or	0

	 Format	B-4	 immed-10	
	 	 SYSCALL	 123 immed-10	selects	one	of	1,024	syscalls	

	For	ENTERFUN	and	EXITFUN,	any	source	and	destination	registers	can	be	used,	but	these	11

instructions	only	make	sense	for	sp.

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	214 284

Appendix	1:	Machine	Instructions	

	 Format	B-5	 RegD,Reg1,immed-6	
	 	 SLLI	 r7,r1,5
	 	 SLAI	 r7,r1,5	 Shift-left-arithmetic	checks	for	over=low
	 	 SRLI	 r7,r1,5
	 	 SRAI	 r7,r1,5
	 	 ROTRI	 r7,r1,5	 Rotate	right;	no	over=low	check	

	 Format	B-6	 Reg1,immed-16	
	 	 CSRSET	 csr,0x1234 Reg1	encodes	CSR;	Set	selected	bits	in	CSR
	 	 CSRCLR	 csr,0x1234	 Reg1	encodes	CSR;	Clear	selected	bits	in	CSR

	 Format	C-1	 immed-16(Reg1),Reg2	
	 	 STORE.B	 offset(r1),r2	 Upper	bits	in	reg	are	ignored
	 	 STORE.H	 offset(r1),r2	 .	May	cause	unaligned	exception
	 	 STORE.W	 offset(r1),r2	 .	No	over=low	check	on	addr	calculation
	 	 STORE.D	 offset(r1),r2

	 Format	C-2	 Reg1,Reg2,immed-16	
	 	 B.EQ	 r1,r2,MyLabel Branch	if	Reg1=Reg2;	Offset	is	PC-relative
	 	 B.NE	 r1,r2,MyLabel	 Branch	if	Reg1≠Reg2;	Offset	is	PC-relative
	 	 B.LT	 r1,r2,MyLabel	 Branch	if	Reg1<Reg2;	Offset	is	PC-relative
	 	 B.LE	 r1,r2,MyLabel	 Branch	if	Reg1≤Reg2;	Offset	is	PC-relative	

	 Format	D-1	 RegD,immed-20	
	 	 UPPER20	 r7,MyLabel RegD	←	(immed<<16)
	 	 AUIPC	 r7,MyLabel RegD	←	(immed<<16)	+	PC
	 	 ADDPC	 r7,MyLabel RegD	←	immed+PC	
	 	 JAL	 lr,MyLabel RegD	←	return	addr	;	Target	←	PC+immed	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	215 284

Appendix	2:	Command	Line	Tools	

Quick	Summary	

•	The	following	tools	are	discussed:	
	 asm	 Assembler	
	 link	 Linker	
	 createlib	 Tool	to	create	library	=iles	
	 dumpobj	 Tool	to	display	object	=iles	
	 hexdump	 Tool	to	display	contents	of	binary	=iles	
•	For	each	tool,	the	command	line	options	are	described.	

The	Assember	Tool	

The	assembler	tool	is	a	program	named	“asm”.	A	typical	use	is:	

asm hello.s

A	particularly	useful	option	is	“-l”,	which	will	produce	a	listing.	This	is	useful	in	
seeing	exactly	what	machine	codes	are	being	produced	by	the	assembler.	

asm hello.s -l

The	following	command	line	options	may	be	given	in	any	order:	

Rilename	

The	input	source	will	come	from	this	=ile.	(Normally	this	=ile	will	end	with		
“.s”.)		If	an	input	=ile	is	not	given	on	the	command	line,	the	assembly	source	
code	program	will	come	from	stdin.	Only	one	input	source	=ile	is	allowed.	

Blitz-64:	Assembler	and	Linker	/	Porter	 Page	 	of	216 284

Appendix	2:	Command	Line	Tools	

-o Rilename

(oh)	If	there	are	no	errors,	an	object	=ile	will	be	created.	The	-o	option	can	be	
used	to	give	the	object	=ile	a	speci=ic	name.	If	this	option	is	not	used,	then	the	
input	source	=ile	must	be	named	on	the	command	line	(the	source	must	not	
come	from	stdin).	If	-o	is	not	used,	the	name	of	the	object	=ile	will	be	
computed	from	the	name	of	the	input	=ile	by	removing	the		“.s”	extension,	if	
any,	and	appending		“.o”.	For	example:		

test.s → test.o
foo → foo.o

-h

Print	information	describing	the	command	line	options,	which	is	roughly	
identical	to	the	information	in	this	section.	All	other	options	are	ignored	and	
the	tool	terminates	immediately.	

-l

(el)	Print	a	listing	on	stdout.	The	listing	shows	the	entire	source	=ile	and,	for	
every	line,	indicates	what	bytes	have	been	produced.	The	listing	is	best	
viewed	in	a	=ixed-width	font.	

-w

This	option	will	suppress	all	warning	messages.	

-z

Wait	for	the	linker.	Defer	the	translation	of	some	synthetics	instructions	to	the	
linker,	which	may	=ind	slightly	shorter	translations	in	a	few	rare	cases.	

This	option	will	force	the	assembler	to	defer	to	the	linker	all	synthetic	
translations	that	are	not	guaranteed	to	be	optimal.	

This	primarily	concerns	a	JUMP/CALL	to	an	absolute	value	that	the	assembler	
determines	can	be	done	in	two	instructions.	However,	if	the	linker	happens	to	
place	the	segment	containing	the	JUMP/CALL	close	to	the	segment	containing	
the	target	address,	it	might	be	possible	for	the	linker	to	translate	the	JUMP/

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	217 284

Appendix	2:	Command	Line	Tools	

CALL	using	a	single	PC-relative	JAL	instruction.	This	option	forces	the	
assembler	to	only	translate	JUMP/CALL	instructions	when	it	can	be	done	in	
one	instruction,	or	when	the	target	address	is	not	a	valid	memory	address.	

A	similar	situation	occurs	with	a	MOVI	that	is	moving	an	absolute	value	in	the	
range	0x0_0000_8000	...	0xF_FFFF_FFFF	into	a	register.	Such	an	instruction	is	
likely	to	be	loading	the	address	of	a	JUMP/CALL	target	and	will	require	two	
instructions	if	done	by	the	assembler.	The	linker	may	be	able	to	translate	the	
MOVI	with	a	single	ADDPC	instruction.	This	option	will	prevent	the	assembler	
from	translating	the	MOVI	using	two	instructions.	

This	situation	can	also	be	triggered	for	a	segment	which	is	not	assigned	a	
value	for	“gp=“.	Since	the	assembler	doesn’t	know	whether	this	segment	will	
be	in	kernel	space	or	in	user	space,	it	cannot	assigned	the	default.	It	is	
possible	that	the	linker	will	assign	a	default	value	that	will	make	shorter	
instruction	sequences	for	MOVI,	JUMP,	CALL,	Bxx,	LOADx,	and	STOREx	
instructions	usable.	

-zw

This	option	is	related	to	the	-z	option.	This	option	will	cause	warnings	to	be	
generated	whenever	the	assembler	is	synthesizing	an	instruction	in	a	way	
that	might	not	be	optimal.	

-s

Print	the	symbol	table	on	stdout.	This	listing	lists	each	symbol	in	the	source	
=ile	and,	for	each,	shows	its	attributes,	including	its	value	(if	known),	whether	
the	symbol	is	imported	or	exported,	and	which	line	the	symbol	was	de=ined	
on.	The	output	should	be	viewed	in	a	=ixed-width	font.	

-nodebug

By	default,	the	assembler	adds	debugging	info	to	the	.o	output	=ile.	This	
option	suppresses	this;	if	present	no	debugging	information	will	be	put	into	
the	output	=ile.	This	option	causes	the	assembler	to	ignore	the	debugging	
pseudo-ops,	namely:	

	 .sourceWile	
	 .function	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	218 284

Appendix	2:	Command	Line	Tools	

	 .endfunction	
	 .global	
	 .local	
	 .regparm	
	 .stmt	
	 .comment	

-d

Print	internal	assembler	info	(for	debugging	asm.c).	This	option	may	become	
disabled	in	the	future.	Generally	speaking,	this	option	will	cause	the	
“instruction	list”	to	be	printed.	This	is	the	internal	representation	of	all	
instructions	after	the	source	=ile	has	been	read	in	and	parsed.	

This	option	will	also	cause	.skip	instructions	with	extremely	large	values	to	be	
treated	differently.	Such	instructions	occur	in	the	test	=iles;	with	this	option	
long	runs	of	0x00	will	not	be	written	out	to	the	object	=ile.	

-d2

Print	internal	assembler	info	(for	debugging	asm.c).	This	option	may	become	
disabled	in	the	future.	Generally	speaking,	this	option	will	print	info	tracing	
the	ProcessSynthetics	algorithm.	

The	Linker	Tool	

The	linker	tool	is	a	program	named	“link”.	A	simple	use	is:	

link hello.o -o hello

At	least	one	object	=ile	(such	as	“hello.o”)	is	required.	

The	executable	=ile	that	is	to	be	produced	(e.g.,	“hello”)	must	also	be	speci=ied.	The	“-
o”	option	must	be	followed	by	the	=ilename	of	the	executable.	

A	more	typical	example	includes	several	object	=iles	and	libraries:	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	219 284

Appendix	2:	Command	Line	Tools	

link hello.o fred.o myLib.lib math.lib -o hello

The	following	command	line	options	may	be	given	in	any	order:	

-h

Print	information	describing	the	command	line	options,	which	is	roughly	
identical	to	the	information	in	this	section.	All	other	options	are	ignored	and	
the	tool	terminates	immediately.	

Rilename	

One	or	more	input	=iles	must	be	speci=ied	on	the	command	line.		Each	is	
assumed	to	be	either	a	“.o”	object	=ile	or	a	“.lib”	library	=ile.	They	may	be	given	
in	any	order.	There	must	be	at	least	one	object	=ile	speci=ied.	

-o Rilename

The	name	of	the	=ile	to	be	created	is	required.	If	the	=ile	already	exists,	it	will	
be	overwritten.	

-k

If	this	option	is	present,	all	code	and	data	segments	will	be	placed	in	the	
kernel	address	space.	Otherwise,	they	will	be	placed	in	the	user	address	
space.	
	 	 From	 To	
	 Kernel	Address	Region:	 0x0_0000_0000 0x3_FFFF_FFFF	
	 User	Address	Region:	 0x8_0000_0000 0xF_FFFF_FFFF	

-s

This	option	causes	the	linker	to	print	out	the	internal	symbol	table	and	other	
information	about	the	linking	process.	The	output	should	be	viewed	in	a	
=ixed-width	font.	

-s1

This	option	causes	the	linker	to	print	out	an	overview	of	memory	usage	for	
the	resulting	executable	=ile.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	220 284

Appendix	2:	Command	Line	Tools	

-s2

The	linker	will	add	information	to	the	executable	=ile	that	is	intended	only	to	
be	used	by	a	debugger	tool.	This	option	will	print	out	this	information	in	
human-readable	form.	This	option	is	independent	of	option	-s;	they	each	
print	different	information.	The	output	should	be	viewed	in	a	=ixed-width	
font.	

-w

This	option	will	suppress	all	warning	messages.	It	is	equivalent	to	“-w1	-w2	
…”.	If	-w	is	used,	the	others	(-w1,	-w2,	…)	must	not	be	used.	

-w1

When	synthesizing	some	instructions	(e.g.,	JUMP,	LOADx,	STOREx,	Bxx),	the	
linker	will	compute	the	target	address.	If	the	value	is	not	within	the	legal	36	
bit	range,	(i.e.,	not	within	0x0	…	0xF_FFFF_FFFF)	the	linker	will	print	a	
warning	and	ignore	the	upper	28	bits.	

The	-w1	option	causes	the	linker	to	suppress	this	warning.	

-w2

When	synthesizing	some	instructions,	the	linker	may	occasionally	insert	a	
NOP	instruction	after	the	machine	code	translation.	If	this	occurs,	a	warning	
will	be	printed.	

The	-w2	option	causes	the	linker	to	suppress	this	warning.	

The	insertion	of	a	NOP	is	a	side-effect	of	the	algorithm	and	does	not	indicate	
an	error.	It	can	occur	when	a	forward	JUMP	initially	required	two	machine	
code	instructions;	later,	the	translation	of	other	instructions	can	move	the	
JUMP	forward,	suddenly	making	a	single	machine	code	instruction	adequate.	
To	ensure	algorithm	termination,	the	translations	can	only	grow,	never	
shrink.	The	NOP	should	be	harmless,	aside	from	a	small	impact	on	execution	
speed.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	221 284

Appendix	2:	Command	Line	Tools	

-w3

Normally	variables	should	be	placed	in	a	segment	marked	“writable,	but	not	
executable”.	Code	should	be	placed	in	a	segment	marked	“executable,	but	not	
writable”.	Read-only	constants	can	go	into	either	a	code	segment	marked	
“executable,	but	not	writable”	or	a	segment	marked	“not	executable	and	not	
writable.”	

A	segment	marked	“executable	and	writable”	is	unusual	and	is	not	
recommended.	Programs	that	are	able	to	modify	themselves	make	life	much	
easier	for	malware.	Such	segments	are	discouraged	and	a	warning	will	be	
generated	if	the	linker	encounters	such	a	segment.	

The	-w3	option	causes	the	linker	to	suppress	this	warning.	

-shownop

Prints	a	warning	whenever	a	NOP	is	inserted..	

-dXXX

Options	of	this	form	(such	as	-d	and	-d4)	were	used	during	debugging	of	the	
linker	tool	itself.	They	cause	the	printing	of	various	internal	data	structures.	
These	options	are	not	useful	to	users	and	may	be	disabled	in	the	future.	For	
details,	consult	the	source	code	of	the	linker	tool.	

The	“createlib”	Tool	

To	create	a	new	library	=ile,	a	tool	named	“createlib”	is	used.	For	example:	

createlib sin.o cos2.o sqrt.o log.o -o math.lib

At	least	one	object	=ile	is	required	and	there	are	typically	many.	

The	“-o”	option	must	be	followed	by	the	=ilename	of	the	output	=ile.	It	is	required.	

The	following	command	line	options	may	be	given	in	any	order:	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	222 284

Appendix	2:	Command	Line	Tools	

-h

Print	information	describing	the	command	line	options,	which	is	roughly	
identical	to	the	information	in	this	section.	All	other	options	are	ignored	and	
the	tool	terminates	immediately.	

Rilename	

One	or	more	input	=iles	must	be	speci=ied	on	the	command	line.		Each	is	
assumed	to	be	a	“.o”	object	=ile.	There	must	be	at	least	one	object	=ile	
speci=ied,	and	their	order	is	irrelevant.	

-o Rilename

The	name	of	the	=ile	to	be	created	is	required.	If	the	=ile	already	exists,	it	will	
be	overwritten.	It	will	typically	end	with	“.lib”	but	this	is	not	required.	

-s

Print	the	symbol	table	on	stdout.	A	listing	of	each	exported	symbol	and	the	
module	that	exported	it	is	printed.	

The	“dumpobj”	Tool	

The	“dumpobj”	tool	will	read	a	=ile	and	print	its	contents	in	a	human-readable	form	
on	stdout.	It	can	handle	the	following	types	of	=iles:	

	 Object	(.o)	=iles	
	 Library	(.lib)	=iles	
	 Executable	(a.out)	=iles	
	 Load-and-go	=iles	

The	dumpobj	tool	understands	the	formats	used	in	these	=iles.	It	will	read	a	=ile	and	
display	the	information	in	a	form	that	is	appropriate	for	the	=ile	type.	This	tool	will	
also	do	some	error	checking	on	the	=ile	and,	if	problems	in	the	=ile	are	encountered,	
the	tool	will	print	an	error	message	and	terminate.	This	tool	will	not	modify	any	
=iles.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	223 284

Appendix	2:	Command	Line	Tools	

The	following	command	line	options	may	be	given	in	any	order:	

Rilename	

The	input	source	will	come	from	this	=ile.	If	an	input	=ile	is	not	given	on	the	
command	line,	the	input	will	come	from	stdin.		Only	one	input	=ile	is	allowed.	

-h

Print	information	describing	the	command	line	options,	which	is	roughly	
identical	to	the	information	in	this	section.	All	other	options	are	ignored	and	
the	tool	terminates	immediately.	

-v

The	“v”	stands	for	“verbose”.	Header	information,	symbol	information,	and	
patch	information	is	always	printed.	This	option	controls	whether	the	data	in	
the	segments	is	printed.	If	present,	the	instructions	and	data	are	also	printed.	

The	“hexdump”	Tool	

The	“hexdump”	tool	will	read	a	=ile	and	print	its	contents	on	stdout.	It	can	handle	
any	kind	of	=ile.	The	=ile	contents	will	be	printed	both	in	hex	and	interpreted	as	
ASCII.	

For	example,	the	following	command:	

% hexdump hexdump.c

will	produce	this	output:	

000000000: 2F2F 2054 6865 2042 6C69 747A 2D36 3420 // The Blitz-64
000000010: 2268 6578 6475 6D70 2220 546F 6F6C 0A2F "hexdump" Tool./
000000020: 2F0A 2F2F 2062 7920 4861 7272 7920 482E /.// by Harry H.
000000030: 2050 6F72 7465 7220 4949 490A 2F2F 2043 Porter III.// C
000000040: 6F70 7972 6967 6874 2032 3031 380A 2F2F opyright 2018.//
000000050: 0A2F 2F20 5468 6973 2070 726F 6772 616D .// This program
000000060: 2072 6561 6473 2061 2066 696C 6520 616E reads a file an

...

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	224 284

Appendix	2:	Command	Line	Tools	

This	tool	will	not	modify	any	=iles.	

If	the	=ile	happens	to	be	a	properly	formatted	UTF-8	=ile,	then	all	ASCII	characters	
will	be	displayed,	but	all	remaining	Unicode	characters	will	be	replaced	with	dots	on	
the	righthand	side.	This	tool’s	output	is	purely	ASCII.	

For	example,	a	=ile	containing	these	characters:	

	 café, naïve, x←(2÷3)

will	be	displayed	as:	

000000000: 6361 66C3 A92C 206E 61C3 AF76 652C 2078 caf.., na..ve, x
000000010: E286 9028 32C3 B733 29 ...(2..3)

The	following	command	line	options	may	be	given	in	any	order:	

Rilename	

The	input	will	come	from	this	=ile.		If	a	=ile	is	not	given	on	the	command	line,	
the	input	will	come	from	stdin.		Only	one	input	=ile	is	allowed.	

-h

Print	information	describing	the	command	line	options,	which	is	roughly	
identical	to	the	information	in	this	section.	All	other	options	are	ignored	and	
the	tool	terminates	immediately.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	225 284

Appendix	3:	The	Assembler	Algorithm	

Introduction	

We	next	describe	the	assembler	algorithm	that	translates	the	remaining	synthetic	
instructions	into	machine	code	instructions.	Some	synthetic	instructions	cannot	be	
translated	until	link	time	and	these	will	remain	untranslated.	Those	that	can	be	
translated	will	be	replaced	with	the	correct	machine	instruction	sequences.	

ProcessSynthetics	

The	function	in	the	assembler	(i.e.,	in	asm.c)	which	uses	this	algorithm	is	called	
“ProcessSynthetics”.	

Before	this	function	is	called,	the	simpler	synthetic	instructions	will	have	been	dealt	
with.	Each	remaining	synthetic	instructions	will	be	one	of	

	 Format-S1	
	 Format-S2	
	 Format-S3	
	 Format-S4	
	 Format-S5	
	 Format-S6	
	 Format-S7	

For	each	of	these,	the	translation	has	a	variable	length.	This	means	the	synthetic	
instruction	may	be	expanded	into	several	machine	instructions.	Possible	
translations	are:	

Blitz-64:	Assembler	and	Linker/	Porter	 Page	 	of	226 284

Appendix	3:	The	Assembler	Algorithm	

	 4	bytes	 1	machine	instruction	
	 8	bytes	 2	machine	instructions	
	 12	bytes	 3	machine	instructions	
	 16	bytes	 4	machine	instructions	

The	function	that	performs	an	individual	translation	is	called	
“SynthesizeInstruction”.	It	takes	two	arguments:	

	 •	Instruction	Pointer	
	 •	wantAction	

Each	instruction	is	represented	with	an	instance	of	“struct	Instruction”.	All	
instructions	in	the	source	code	=ile	are	kept	in	a	single	linked	list	of	these	
Instruction	objects.	

The	“instruction	pointer”	points	to	an	Instruction	object	in	the	linked	list	of	
instructions.	If	translation	is	possible,	this	function	will	replace	a	single	synthetic	
instruction	by	one	or	more	machine	instructions.	

The	“wantAction”	parameter	is	a	boolean.	If	TRUE,	the	translation	will	take	place	
and	the	instruction	list	will	be	modi=ied.	If	FALSE,	then	no	modi=ications	will	occur;	
This	happens	when	the	function	is	being	called	to	determine	if	synthesis	could	take	
place,	given	the	current	conditions,	and	if	so,	how	big	the	translation	would	be.	

The	SynthesizeInstruction	function	will	return	an	integer	indicating	success	or	
failure,	and	the	size	of	the	translation.	

	 -1	 FAILURE:		There	was	a	problem	and	the	translation	could	not	
	 	 	 be	done.	
	 4,	8,	12,	16	 SUCCESS:	 The	size	of	the	translation,	in	bytes.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	227 284

Appendix	3:	The	Assembler	Algorithm	

Each	instruction	is	represented	with	one	Instruction	object.	The	following	=ields	on	
Instruction	are	used	by	this	algorithm:	

	 actualSize		 The	number	of	bytes	required	for	this	synthetic	instruction	
	 	 	 Could	be	4,8,12,16.	-1	means	variable/unknown/linker	
	 	 	 required.	
	 maximumSize		 The	maximum	number	of	bytes	required	for	this	synthetic	
	 	 	 instruction.	Could	be	4,8,12,16.	Set	once	and	then	used	once	
	 	 	 we	determine	we	can’t	do	anything	with	this	instruction.	
	 myLC	 The	offset	of	this	instruction	from	the	beginning	of	
	 	 	 this	domain.	
	 myDomain		 Which	domain	this	instruction	is	in.	

A	“domain”	is	a	sequence	of	instructions.	All	instructions	in	the	sequence	have	an	
exact,	known	size,	except	possibly	the	last	instruction.	Relative	offsets	within	a	single	
domain	can	be	computed	with	certainty.	

In	general,	the	assembler	does	not	know	where	in	memory	the	linker	will	place	each	
segment.	

The	.align	instruction	presents	a	unique	challenge.	Since	the	assembler	doesn’t	
know	exactly	where	in	memory	the	segment	will	be	placed,	it	cannot	determine	how	
many	bytes	will	be	inserted	by	the	linker	for	each	.align	instruction.	Thus,	.align	
instructions	are	like	synthetic	instructions	that	must	be	handled	by	the	linker.	

[Prior	to	this	algorithm,	all	“.align	2”	and	“.align	4”	instructions	were	replaced	with	
“.skip	1/2/3”	instructions,	so	they	are	gone.	All	remaining	.align	instructions	—	
that	is,	8,	16,	32,	or	page	—	are	treated	as	unknowable	by	this	algorithm.	Even	if	a	
“startaddr=”	is	given	for	the	segment,	it	will	not	be	used	for	.align	instructions,	even	
though	we	could,	in	theory,	determine	exactly	how	many	bytes	some	.align	
instructions	would	insert.]	

The	last	instruction	in	a	domain	will	be	either	a	synthetic	instruction	whose	size	we	
cannot	determine,	an	.align	instruction,	or	the	last	instruction	in	a	segment.	
Every	.begin	instruction	will	cause	a	new	domain	to	be	started.	Likewise,	a	new	
domain	will	be	started	directly	after	a	synthetic	instruction	whose	size	we	cannot	
determine,	and	after	every	.align	instruction.	

Consider	a	synthetic	instruction	within	some	domain.	The	assembler	can	compute	
the	exact	offset	from	that	synthetic	instruction	to	another	location,	as	long	as	that	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	228 284

Appendix	3:	The	Assembler	Algorithm	

location	is	in	that	domain.	If	the	target	location	is	in	another	domain,	then	the	
assembler	cannot	determine	the	relative	distance	between	them.	(This	is	because	
they	are	either	in	different	segments	or	are	separated	by	an	.align	or	synthetic	
instruction	whose	size	we	cannot	determine.)	

Domains	are	identi=ied	by	numbers	and	numbers	are	assigned	sequentially	so	it	is	
easy	to	determine	whether	two	domains	are	equal.	

If	the	exact	starting	locations	of	segments	are	given	in	the	.begin	instructions	(using	
“startaddr=“),	then	it	might	be	possible	to	deduce	the	relative	offset	between	two	
locations	in	different	segments.	However,	this	algorithm	will	not	handle	relative	
offsets	between	segments,	even	if	they	could,	in	theory,	sometimes	be	inferred.	

First	Phase	

In	the	=irst	phase	of	the	algorithm,	we	make	the	assumption	that	every	synthetic	
instruction	will	be	translated.	The	best	case	assumption	is	that	each	segment	will	be	
reduced	to	a	single	domain.	

In	this	case,	some	synthetics	will	simply	be	impossible	to	translate,	because	they	rely	
on	imported	symbols.	In	the	=irst	phase,	we	will	identify	these	synthetic	instructions	
and	immediately	give	up	on	them.	We	will	assume	these	will	take	the	maximum	size,	
and	we	will	use	a	negative	number	(-4,	-8,	-12,	or	-16)	to	indicate	that	they	cannot	be	
translated.	

However,	for	the	remainder	of	the	synthetic	instructions,	there	is	some	hope	that	we	
will	ultimately	be	able	to	translate	them.	So	we	will	begin	by	assuming	those	
synthetic	instructions	can	be	translated	with	only	one	(4	byte)	instruction.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	229 284

Appendix	3:	The	Assembler	Algorithm	

	 //	Initialize	domain	and	myLC...	
	 LOOP	thru	the	instruction	list...	
	 	 Place	each	segment	into	a	single	domain	
	 	 Set	“actualSize"	
	 	 	 For	machine	instructions,	use	the	exact	size	(i.e.,	4	bytes)	
	 	 	 For	synthetics	and	.align,	use	the	maximum	possible	sizes	
	 	 Also	set	"myDomain"	and	“myLC”	for	each	instruction.	
	 	 For	symbols	used	as	labels,	set	their	“domain”	and	“offset”	=ields.	

	 //	Determine	which	synthetics	are	simply	not	translatable...	
	 LOOP	thru	the	instruction	list;	look	only	at	Format	S	instructions.	
	 	 Call	"SynthesizeInstruction"	—	with	arg	“wantAction”	=	NO	
	 	 	 Get	a	size	for	this	instruction,	or	-1	if	not	synthesizable.	
	 	 	 If	we	get	a	number,	save	it	in	"maximumSize",	for	later.	
	 	 	 Otherwise	if	we	get	-1,	set	"actualSize"	to	-(maxSize	for	this	
	 	 	 	 type	of	instruction)	
	 	 	 If	size	is	a	number,	set	"actualSize"	to	4,	the	minimum.	

The	reason	we	must	do	it	this	way	is	shown	by	the	following	example:	

1 .import Undef
2 L3:
3 jump Undef # Unknown size - Can't synthesize
4 L4:
5 jump L3 # Size 4, but can't synthesize
6 L5:
7 jump L4 # Size 4, can synthesize

The	jump	on	line	3	cannot	be	synthesized.	However,	it	can	be	8	bytes	at	most,	which	
is	the	maximum	size	for	any	JUMP	instruction.	Since	the	distance	from	the	JUMP	on	
line	5	to	“L3”	is	small,	the	assembler	can	determine	that	the	JUMP	on	line	5	will	
require	exactly	4	bytes.	But	the	assembler	can’t	know	exactly	what	that	distance	is,	
so	it	can’t	synthesize	the	JUMP	on	line	5.	Since	the	assembler	knows	the	size	of	the	
JUMP	on	line	5,	if	not	the	exact	value,	it	can	synthesize	the	JUMP	on	line	7.	

The	information	we	pass	to	the	linker	is:	

	 The	linker	must	synthesize	the	JUMPS	on	lines	3	and	5.	
	 	 The	jump	on	line	3	can	be	any	size.	
	 	 The	jump	on	line	5	will	take	exactly	4	bytes.	
	 The	jump	on	line	7	has	already	been	synthesized;	the	linker	will	ignore	it.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	230 284

Appendix	3:	The	Assembler	Algorithm	

Second	Phase:	Relaxation	

The	second	phase	of	the	algorithm	is	essentially	a	“relaxation	algorithm”.	We	have	
previously	set	the	size	of	every	synthetic	instruction	that	might	be	synthesizable	to	4	
bytes.	Each	“slot”	is	set	to	the	minimum	size	and	will	gradually	be	enlarged	until	
every	slot	is	large	enough	to	accommodate	the	translation.	

First,	we	go	through	and	assign	addresses	to	all	instructions	and	labels.	We	also	re-
assign	domains.	

Then,	given	the	assignment	of	addresses	and	domains,	we	determine	which	
synthetic	instructions	can	actually	be	synthesized	in	the	amount	of	space	we	have	
set	aside	for	them.	In	some	cases,	the	4	bytes	will	be	enough.	However,	for	some,	we	
may	need	more	than	4	bytes.	If	so,	we	increase	the	number	of	bytes	to	accommodate	
the	translation.	

Then,	if	any	synthetic	instruction	required	more	bytes	than	we	had	initially	counted	
on,	we	need	to	repeat.	We	keep	repeating	until	nothing	further	changes.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	231 284

Appendix	3:	The	Assembler	Algorithm	

	 somethingChanged	=	TRUE	
	 LOOP	WHILE	(somethingChanged)	
	 	 somethingChanged	=	FALSE	

	 	 //	Re-assign	LCs...	
	 	 LOOP	thru	instruction	list	
	 	 	 Set	“myLC”	based	on	“actualSize”	
	 	 	 Set	“myDomain”	
	 	 	 	 For	.begin	and	.align,	start	a	new	domain	
	 	 	 	 Otherwise,	create	one	domain	per	segment			
	 	 	 For	symbols	used	as	labels,	set	their	“domain”	and	“offset”	

	 	 //	Check	that	"ActualSize"	is	adequate	and	enlarge	as	necessary...	
	 	 LOOP	thru	instruction	list;	look	only	at	format	S	instructions.	
	 	 	 If	“actualSize”	>	0	
	 	 	 	 Call	SynthesizeInstruction()	—	with	arg	“wantAction”	=	NO	
	 	 	 	 If	returned	value		==		-1	
	 	 	 	 	 It	was	synthesizable	before,	but	now	it	can't	be.	
	 	 	 	 	 Set	“actualSize”	=	saved	“maximumSize”.	
	 	 	 If	newSize	>	“actualSize”	
	 	 	 	 “actualSize”	=	newSize	
	 	 	 	 somethingChanged	=	TRUE	
	 END	WHILE	LOOP	

[Since	we	are	enlarging	the	slot	sizes	on	each	iteration	and	there	is	a	maximum	
possible	slot	size	(12	bytes),	this	repeat-until-no-changes	loop	will	terminate.	Most	
likely,	the	=irst	iteration	will	determine	the	sizes	we	need	and	a	few	synthetic	
instruction	slots	will	be	enlarged	to	whatever	is	actually	needed.	In	the	second	
iteration,	there	will	likely	be	no	changes	and	the	looping	will	be	done.	However,	it	is	
possible	that	the	growth	of	one	slot	will	have	the	consequence	of	moving	two	other	
things	a	little	farther	apart,	requiring	some	other	instruction	that	previously	
required	4	bytes	to	suddenly	pass	a	threshold	and	require	8	bytes.	In	some	
pathological	case,	there	might	several	iterations.]	

In	the	fourth	phase,	the	algorithm	will	again	run	through	the	instructions	and	
assign	locations	to	everything.	Then	it	will	loop	through	the	instructions	and	
actually	perform	the	translations.	We	have	already	determined	how	many	bytes	are	
required,	so	we	know	when	the	translation	can	be	done	and	how	big	it	will	be.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	232 284

Appendix	3:	The	Assembler	Algorithm	

	 //	Assign	accurate	LCs...	
	 LOOP	thru	instruction	list	
	 	 Set	“myLC”	based	on	“actualSize”	
	 	 Set	“myDomain”	
	 	 	 For	.begin	and	.align,	start	a	new	domain	
	 	 	 If	“actualSize”	<	0,	then	start	a	new	domain	
	 	 For	symbols	used	as	labels,	set	their	“domain”	and	“offset”	

	 //	Perform	the	transformations...	
	 LOOP	thru	instruction	list;	look	only	at	format	S.	
	 	 If	“actualSize”	>	0	
	 	 	 Call	SynthesizeInstruction()	—	with	arg	“wantAction”	=	YES	
	 	 	 If	returned	size	==	-1	
	 	 	 	 Ignore;	the	target	moved	to	a	different	domain	
	 	 	 If	returned	size	≠	“actualSize”	
	 	 	 	 ProgramLogicError	

In	the	Winal	step,	we	may	make	one	last	pass	through	the	instructions	to	set	the	
addresses	and	sizes	so	everything	is	consistent.	In	particular,	we	allocate	zero	bytes	
for	all	.align	instructions	(which	the	linker	may	increase)	and	4	bytes	for	every	
remaining	untranslated	synthetic	instruction	(which	the	linker	may	increase).	

	 //	Finalize	the	“actualSize”	and	“LC”	values…	
	 LOOP	thru	the	instruction	list	
	 	 For	remaining	synthetics,	set	“actualSize”	to	4	bytes.	
	 	 For	.align,	set	“actualSize”	to	0	bytes.	
	 	 Set	“myLC”	based	on	“actualSize”	

BUGS	AND	PROBLEMS:	We	still	have	some	issues	that	need	attention.	

After	this	algorithm,	actualSize	will	be…	
	 Negative	(-4,	-8,	-12,	-16)…	indicates	a	mandatory	size	
	 4	=	no	assumptions	about	size	were	made.	

In	the	code,	we	consider	expanding	a	synthetic	instruction	into	a	larger	sequence.	
Right	now,	the	code	in	SynthesizeInstruction	always	assumes	the	slot	size	is	4.	It	
adjusts	the	offset	if	the	target	is	BEFORE	the	synthetic	but	not	AFTER.	This	is	
because	it	will	be	inserting	an	instruction.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	233 284

Appendix	3:	The	Assembler	Algorithm	

Furthermore,	it	determines	whether	the	adjustment	is	needed	by	looking	to	see	if	
the	target	is	in	the	current	or	following	domain.	We	have	changed	things	so	that	the	
target	is	always	in	the	same	domain.	

It’s	possible	that	the	slot	size	is	8	and	is	being	enlarged	to	12	(or	from	12	to	16).	
Furthermore,	the	test	about	whether	the	adjustment	is	needed	is	wrong.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	234 284

Appendix	4:	The	Linker	Algorithm	

Quick	Summary	

•	A	speci=ic	implementation	of	the	linker	tool	is	described.	
•	The	code	in	the	C	program	“link.c”	is	documented.	
•	This	appendix	can	safely	be	ignored	unless	there	is	a	bug	in	the	linker.	
•	This	appendix	may	be	separated	out	into	a	separate	document	in	the	future.	

Introduction	

The	linker	tool	is	a	C	program	named	“link.c”	and	the	executable	is	named	“link”.	
The	C	code	includes	some	standard	C	libraries	and	some	additional	C	code	from	
BlitzSupport.c.	The	command	line	parameters	are	documented	elsewhere.	The	
program	terminates	with	a	standard	Unix/Linux	error	code	(EXIT_FAILURE,	
EXIT_SUCCESS).	

Error	messages	and	warnings	go	to	the	stderr	output.	Additional	information	may	
be	printed	for	error	and	warning	messages	and	this	goes	to	stdout.	Several	
command	line	options	(such	as	-s	and	the	various	-d	debugging	options)	print	
output	which	goes	to	stdout.	

The	following	=iles	contain	all	the	linker	code:	

	 link.c	
	 BlitzSupport.c	
	 CheckHostCompatibility.c	

There	are	no	.h	header	=iles,	which	is	somewhat	atypical	of	Linux/Unix	coding	style.	

The	=ile	BlitzSupport	contains	a	number	of	functions	that	are	used	by	the	linker,	as	
well	as	other	tools	in	the	Blitz	project,	such	as	the	assembler	and	the	emulator.	

Blitz-64:	Assembler	and	Linker/	Porter	 Page	 	of	235 284

Appendix	4:	The	Linker	Algorithm	

The	CheckHostCompatibility.c	=ile	contains	a	function	named	
CheckHostCompatibility	which	tries	to	ensure	that	all	assumptions	about	the	host	
(e.g.,	byte-order,	word	size,	and	C	“implementation	dependencies”)	are	as	expected.	
This	function	is	called	once	at	startup	and	any	problems	cause	an	immediate	halt.	

In	addition,	the	following	well-known	Linux/Unix	“includes”	are	used:	

#include	<stdlib.h>	
#include	<stdio.h>	
#include	<stdarg.h>	
#include	<string.h>	
#include	<errno.h>	

The	linker	primarily	relies	on	the	following	“C”	types,	as	well	as	pointers,	arrays,	and	
structs.	

int	 32	signed	integers	
int64_t	 64	bit	signed	integers	
char	 bytes:	8	bit	quantities	
FILE	*	 For	=ile	I/O	

For	boolean	values,	we	use	type	int	and	use	0	and	1	for	FALSE	and	TRUE.	

All	sizes	and	lengths	are	in	terms	of	bytes,	and	never	in	terms	of	words	or	
doublewords.	

I	have	a	tendency	to	avoid	de=ining	constants	with	#deWine	and	tend	to	specify	the	
value	directly.	I	do	this	because	I	have	lost	too	many	debugging	hours	because	I	
made	incorrect	assumptions	about	the	value	of	a	“constant”.	

Linux/Unix	system	functions	that	are	most	heavily	used	are:	

calloc	
free	
fopen	
fclose	
fread	
fwrite	
fseek	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	236 284

Appendix	4:	The	Linker	Algorithm	

feof	
perror	
errno	(a	variable)	
exit	
printf	
fprintf	

The	following	functions	are	also	used	in	other	Blitz	tools:	

strlen	
strcmp	
fscanf	
putchar	
fread	
fwrite	

The	most	common	formatting	codes	used	in	printf	are:	

%d	
%lld	
%x	
%llx	
%s	
%c	

The	program	is	compiled	with	a	make	=ile	named	“makeWile”,	which	contains	
roughly	these	lines:	

CheckHostCompatibility1.s: CheckHostCompatibility.c
gcc -g -std=c99 -Wall -DBLITZ_HOST_IS_LITTLE_ENDIAN \

-DWithoutOpt CheckHostCompatibility.c \
-S -o CheckHostCompatibility1.s

CheckHostCompatibility2.s: CheckHostCompatibility.c
gcc -g -std=c99 -Wall -O2 -DBLITZ_HOST_IS_LITTLE_ENDIAN \

-DWithOpt CheckHostCompatibility.c -S \
-o CheckHostCompatibility2.s

link: link.c BlitzSupport.c checkHostCompatibility1.s \
checkHostCompatibility2.s

gcc -g -std=c99 -Wall -O2 -DBLITZ_HOST_IS_LITTLE_ENDIAN \
-lm link.c checkHostCompatibility1.s \

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	237 284

Appendix	4:	The	Linker	Algorithm	

checkHostCompatibility2.s -o link

Error	Handling	

The	program	often	performs	internal	consistency	checks	and	calls	function	
ProgramLogicError	if	anything	is	wrong.	The	program	also	performs	checks	to	
make	sure	the	input	is	well	formed	and	error-free.	If	anything	is	amiss,	it	calls	one	of	
the	functions:	FatalError,	FatalErrorInFile,	or	FatalErrorInModule.	All	of	these	
functions	print	a	message	and	terminate	the	program	immediately.	

Other	types	of	errors	are	not	fatal	and	the	linker	will	keep	going.	In	these	cases,	it	
prints	an	error	message	to	stderr.	There	is	a	counter	named	errorCount	which	is	
incremented.	Later,	this	counter	is	used	to	determine	whether	the	program	should	
return	EXIT_FAILURE	or	EXIT_SUCCESS.	The	program	also	prints	warning	messages	
and	there	is	a	counter	named	warningCount	which	is	incremented	every	time	a	
warning	is	printed.	

At	certain	moments,	the	program	will	call	a	function	named	CheckForAbort,	which	
will	take	a	look	at	errorCount	and	immediately	terminate	the	program	if	any	errors	
have	been	encountered.	This	prevents	earlier	errors	from	possibly	leading	to	
inconsistent	data	structures	that	might	cause	serious	confusion	or	program	logic	
errors	in	later	stages	of	processing.	

If	the	program	terminates	due	to	errors,	it	will	remove	the	output	=ile	it	created,	if	it	
was	created.	

Pointers	and	Objects	

There	are	a	number	of	types	of	objects	created	by	the	linker:	

InFile	 one	per	input	=ile	
Module	 one	per	.o	=ile;	one	per	library	module	
Segment	 one	per	.begin	statement	
Symbol	 one	per	symbol	exported	or	imported	
Patch	 one	per	patch	entry	in	an	input	module	
TableEntry	 one	per	exported	symbol	in	a	library	
Region	 one	per	chunk	of	memory	(containing	one	or	more	segments)	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	238 284

Appendix	4:	The	Linker	Algorithm	

For	each	of	these,	there	is	a	“C	struct”	with	a	number	of	=ields.	

Sometimes,	we	refer	to	structs	as	“objects”.	(Of	course	since	the	linker	is	a	C	
program,	there	is	no	subclassing	relationship	involved.)	

Many	objects	contain	=ields	pointing	to	another	object.	For	example,	each	Segment	
object	contains	a	=ield	named	myModule,	which	points	to	the	object	representing	
the	module	which	contains	this	segment.	Likewise,	each	Symbol	contains	a	=ield	
named	usedInModule,	which	contains	a	pointer	to	the	module	that	de=ined	that	
symbol.	And	each	Patch	object	contains	a	=ield	named	segment,	which	contains	a	
pointer	to	the	segment	where	that	patch	is	to	be	applied.	

This	input	=iles	read	by	the	linker	(the	object	=iles	and	library	=iles)	identify	things	by	
number.	For	example,	every	segment	in	a	module	is	numbered.	Likewise,	every	
symbol	is	numbered.	

Initially,	the	linker	will	enter	segments	and	symbols	into	arrays	and	use	the	array	
indices	to	locate	the	objects.	But	later,	once	the	linker	has	identi=ied	the	object	by	
number,	it	will	refer	to	in	with	a	pointer.	

There	are	a	number	of	linked	lists.	Mostly,	the	linked	lists	are	singly	linked,	with	a	
“next”	pointer.	An	exception	is	the	list	of	Region	objects,	since	it	is	necessary	to	
insert	objects	into	the	middle	of	the	list.	The	list	of	Regions	is	doubly	linked,	with	
=ields	named	next	and	prev.	

Most	linked	list	are	headed	by	a	pointer	to	the	=irst	element.	An	example	is	the	global	
list	of	all	segments	in	the	executable,	which	is	pointed	to	by	a	variable	named	
segmentList.	

However,	some	linked	lists	have	to	be	constructed	in	order,	so	the	new	elements	
have	to	be	added	at	the	tail	end.	Examples	are	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	239 284

Appendix	4:	The	Linker	Algorithm	

	 The	list	of	input	=iles:	
	 	 WirstInWile	
	 	 lastInWile	
	 The	list	of	modules:	
	 	 WirstModule	
	 	 lastModule	
	 The	list	of	symbols:	
	 	 symbolList	
	 	 symbolListLast	
	 The	list	of	patches:	
	 	 patchList	
	 	 patchListLast	

The	list	of	Region	objects	is	handled	differently.	This	doubly-linked	list	is	
maintained	as	a	circular	list.	In	other	words,	the	are	no	NULL	pointers	among	the	
next	and	prev	pointers.	Instead,	there	is	a	special	dummy	“header”	Region	object,	
which	does	not	represent	a	valid	region.	The	next	pointer	of	the	header	points	to	the	
=irst	real	region.	The	prev	pointer	of	the	header	points	to	the	last	real	region.	The	
global	variable	regionHeader	points	to	the	special	dummy	region.	Region	objects	
also	contain	a	=ield	(regionStatus)	to	tell	what	sort	of	region	it	is;	a	special	value	
(-1)	is	used	to	identify	the	dummy	header	object.	

Print	Routines	

There	are	a	number	of	functions	which	will	send	characters	to	stdout.	These	
functions	are	useful	in	debugging	link.c	and	for	printing	information	during	normal	
operation,	e.g.,	for	the	“-s”	option.	

PrintLExportedIndex	()	
PrintLibraryIndex	()	

PrintSymbolList	()	
PrintSymbolHeader	()	
PrintSymbol	(Symbol	*	sym)	

PrintSegmentList	()	
PrintSegmentSublist	()	
PrintSegment	()	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	240 284

Appendix	4:	The	Linker	Algorithm	

PrintModuleList	()	

PrintPatchList	()	
PrintPatch	(Patch	*	pat)	
PrintPatch2	(Patch	*	pat)	
PrintPatch3	(Patch	*	pat)	

PrintRegionList	()	
PrintRegion	(Region	*	reg)	

DumpAllDataStructures	()	

The	print	functions	always	leave	the	data	structures	unchanged.	In	some	cases,	the	
functions	check	for	errors	in	the	data	structures	and	abort	the	linker	if	any	errors	
are	detected.	

The	source	code	for	link.c	contains	a	lot	of	print	statements	that	have	been	
commented	out.	These	were	used	during	debugging	and	they	have	been	left	in	to	aid	
future	debugging.	These	print	statements	may	help	the	reader,	since	some	of	them	
effectively	serve	as	comments.	

Additionally,	for	some	error	conditions,	the	code	may	call	a	print	functions,	which	
will	additional	useful	information	to	be	printed,	before	producing	the	error	
messages	itself.	

The	function	DumpAllDataStructures	is	invoked	by	the	-s	command	line	option,	as	
well	as	some	of	the	debugging	options.	

DumpAllDataStructures	()	
This	function	begins	by	renumbering	the	symbols,	segments,	and	regions.	Initially	
symbol	and	segment	numbers	are	local	to	the	input	.o	modules;	after	
renumbering,	every	symbol	and	every	segment	will	have	a	unique	number,	
making	the	numbers	meaningful	to	humans.	

This	function	then	prints:	
	 A	table	with	one	line	per	module	
	 A	table	with	one	line	per	symbol	
	 A	table	with	one	line	per	symbol	(grouped	by	segment)	
	 A	table	with	one	line	per	patch	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	241 284

Appendix	4:	The	Linker	Algorithm	

	 A	table	with	one	line	per	region	
	 A	table	with	one	line	per	segment	

Before	we	print	things,	we	renumber	the	everything,	which	is	useful	in	the	
debugging	printouts.	

RenumberSymbolsSegmentsAndRegions	()	
Run	through	all	symbols,	segments,	and	regions.	Re-assign	identi=ication	
numbers.	

Segment	numbers	will	start	at	1.	Any	and	all	dummy	zero-=illed	segments	will	be	
numbered	-1.	

Recall	that	each	input	=ile	numbered	the	symbols	1,	2,	3,	…,	the	numbers	were	not	
unique;	each	=ile	will	have	a	symbol	#1,	etc.	We	abandon	the	numbers	that	were	
used	in	the	original	=iles.	After	reading	in	the	input	and	creating	the	data	structures,	
we	identify	Symbols	by	objects	and	pointers.	

However,	the	numbers	are	very	needed	in	the	debugging	printout.	

This	function	also	assigns	a	number	to	each	segment	(1,	2,	3,	…)	and	a	number	to	
each	region	(1,	2,	3,	…).		

Initialization	

Upon	startup,	the	program	calls	a	function	named	CheckHostCompatibility	to	
make	sure	some	basic	assumptions	(word	size,	byte-ordering,	etc.)	are	met.	

Next,	some	internal	data	structures	are	initialized.	

The	“library	index”	is	a	hash	table	that	will	map	the	exported	symbols	in	a	library	
to	the	modules	in	that	library	that	exported	them.	It	is	initialized.	

The	“export	index”	is	a	hash	table	that	will	map	the	exported	symbols	from	any	
module	included	in	the	output	program	to	the	internal	representation	for	that	
symbol.	It	is	initialized.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	242 284

Appendix	4:	The	Linker	Algorithm	

Next,	the	command	line	is	processed	by	a	function	named	ProcessCommandLine.	If	
the	“-h”	(help)	option	is	present,	this	function	prints	the	help	info	and	terminates	the	
program.	Some	options	are	=lags	(either	present	or	absent).	For	such	options,	we	set	
the	following	variables	to	TRUE	or	FALSE:	

commandOptionS	 -s	
commandOptionK	 -k	
commandOptionD1	 -d1	
commandOptionD2	 -d2	
commandOptionD3	 -d3	
commandOptionD4	 -d4	
commandOptionD5	 -d5	
commandOptionD6	 -d6	
commandOptionD7	 -d7	
commandOptionDsmall	 -small	
commandOptionW1	 -w1	
commandOptionW2	 -w2	
commandOptionW3	 -w3	
commandOptionW	 -w	

The	following	options	are	used	only	for	debugging	the	linker.	They	result	in	printing	
additional	information	during	the	linking:	

-d1	 Print	all	data	after	=iles	read	in,	before	the	main	algorithm	
-d2	 Print	all	data	after	algorithm	=inishes	placement	and	patches	
-d3	 Print	a	trace	during	segment	placement	(implies	-d1	&	-d2)	
-d4	 Print	a	trace	during	equate	processing	
-d5	 Print	a	trace	during	the	synthesizing	of	patches	
-d6	 Print	a	trace	during	region	rounding	
-d7	 Print	a	trace	during	output	=ile	creation	
-dsmall	 Set	memory	size	to	0x1,0000	=	4	pages	

There	must	be	exactly	one	output	=ilename	following	“-o”.	This	=ile	is	opened	for	
writing	as	the	variable	outputFile	(of	type	FILE	*).	There	will	be	a	number	of	input	
=ilenames.	For	each,	we	create	an	InFile	data	structure.	Each	InWile	contains	a	“FILE	
*”	and	we	open	each	input	=ile	and	determine	whether	it	is	a	library	or	an	ordinary	
object	=ile	by	reading	its	magic	number.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	243 284

Appendix	4:	The	Linker	Algorithm	

The	InFile	Data	Structure	

There	is	a	linked	list	of	InFile	structures,	with	one	per	input	=ile.	There	is	one	InFile	
struct	for	every	.o	=ile	and	one	for	every	.lib	=ile.	

The	variable	WirstInWile	points	to	the	=irst	and	lastInWile	points	to	the	tail	of	the	list.	
The	name	of	the	original	=ile	is	retained	for	use	in	error	messages.	The	=ilenames	are	
also	placed	into	the	output	=ile.	

[qqqq	Verify	that	the	previous	sentence	is	true.	This	code	is	not	yet	written.	????]	

struct InFile {
 char * filename; // The name of an input file
 FILE * filePtr; // The input file
 int isLibrary; // 1 = this is a .lib file; 0 = .o file
 InFile * next; // Next pointer in linked list
};

Functions	for	Reading	and	Writing	

There	are	a	number	of	support	functions	used	to	read	data	from	=iles.	These	
functions	are	located	in	BlitzSupport.c:	

ReadByte	(FILE	*)	—>	int	
ReadInteger16	(FILE	*)	—>	int	
ReadInteger32	(FILE	*)	—>	int	
ReadInteger64	(FILE	*)	—>	int65_t	

We	use	this	notation	as	shorthand	to	describe	functions,	along	with	their	arguments	
and	return	values.	

There	are	a	number	of	functions	used	to	write	to	the	output	=ile.	These	functions	are	
located	in	link.c:	

WriteInteger8	(int)	
WriteInteger16	(int)	
WriteInteger32	(int)	
WriteInteger64	(int64_t)	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	244 284

Appendix	4:	The	Linker	Algorithm	

Reading	the	Input	Files	

In	the	next	step	(in	the	main	function),	we	run	through	the	linker	list	of	input	=iles	
and	read	each	=ile.	The	=ile	is	either	a	normal	(simple)	object	=ile	containing	a	single	
module,	or	it	is	a	library	=ile.	

If	the	=ile	is	a	simple	object	=ile,	we	create	a	Module	structure	and	add	it	to	the	list	of	
Module	objects.	

If	the	input	=ile	is	a	library,	we	create	a	single	Module	object	for	each	module	in	the	
library.	However,	we	do	not	add	it	to	the	linked	list	of	Modules.	The	linked	list	is	for	
modules	that	will	de=initely	be	included	in	the	output	=ile;	at	this	stage	we	can	not	
assume	that	any	library	module	will	be	added	to	the	output	=ile.	

Instead,	we	read	through	all	the	exported	symbol	names	for	a	module.	For	each	
symbol,	we	add	the	name	to	the	Library	Index.	The	Library	Index	maps	symbol	
names	to	Module	objects.	We	call	a	function	named	AddToLibraryIndex	to	do	this.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	245 284

Appendix	4:	The	Linker	Algorithm	

The	Module	Structure	

One	Module	object	is	created	for	every	input	=ile.	A	library	will	contain	one	or	more	
modules	and	one	Module	object	will	also	be	created	for	each	module	in	the	library.	

struct Module {
 char * moduleName; // The name of the original .o file
 int moduleNumber; // Sequential number (assigned
 // when created)
 char * filename; // The name of the input file
 FILE * filePtr; // The input file containing this module
 int64_t startingLoc; // Where in the file this module begins

// (after magic number)
 Module * next; // Next pointer in linked list
 char * sourceFilename; // The name of the original .s file
 int numberOfSegments; // Number of segments in this module
 int numberOfSymbols; // Number of symbols in this module
 Symbol * * symbolArray; // Ptr to an array of ptrs to symbol
 // objects
 Segment * * segmentArray; // Ptr to an array of ptrs to segment
 // objects
};

Each	module	has	a	name	(such	as	“Hello.o”)	and	this	name	is	stored	in	the	object.	
Each	module	come	from	a	=ile:	either	a	simple	object	=ile	or	from	a	library	=ile.	The	
Module	object	contains	information	(WilePtr,	startingLoc)	about	where	the	module	
can	be	found.	

Module	objects	are	kept	in	a	linked	list.	The	variable	WirstModule	points	to	the	head	
of	this	list	and	lastModule	points	to	the	tail.	The	=ield	next	is	used	for	this	linked	
list.	This	linked	list	is	a	list	of	all	modules	that	will	go	into	the	output	=ile.	

Each	module	originated	in	an	assembly	language	program	“.s”	=ile.	The	name	of	this	
=ile	is	retained	as	sourceFilename.	The	=ilename	is	used	in	printing	error	messages.	

A	module	consists	of	a	number	of	“segments”.	Recall	that	each	segment	was	
introduced	in	the	assembly	=ile	with	a	“.begin”	pseudo-op.	The	linker	must	process	
each	segment	(e.g.,	=inding	a	place	for	it	in	memory)	and,	for	each	segment	in	the	
module,	a	Segment	object	will	be	created.	The	module’s	segments	are	pointed	to	by	
an	array	named	segmentArray.	We	also	maintain	a	=ield	named	
numberOfSegments	so	we	can	run	through	the	array	in	order.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	246 284

Appendix	4:	The	Linker	Algorithm	

The	segments	are	numbered	in	order	(1,	2,	3,	…)	starting	with	1.	To	make	the	
segmentArray	indices	match	the	segment	numbers,	the	array	will	contain	an	extra	
unused	entry	for	index	0.	As	a	result,	the	size	of	the	array	is	numberOfSegments+1.	

Each	module	will	de=ine	a	number	of	symbols	and	for	each	one	we	will	create	a	
Symbol	object.	The	module’s	symbols	are	pointed	to	by	an	array	named	
symbolArray.	We	also	maintain	a	=ield	named	numberOfSymbols	so	we	can	run	
through	the	array	in	order.	

Just	like	the	segment,	the	symbols	are	numbered	in	order	(1,	2,	3,	…)	starting	with	1.	
To	make	the	symbolArray	indices	match	the	symbol	numbers,	the	array	will	contain	
an	extra	unused	entry	for	index	0.	As	a	result,	the	size	of	the	array	is	
numberOfSymbols	+1.	

Hash	Tables:	Library	Index	and	Exported	Index	

There	are	two	dictionaries	mapping	string	names	to	objects.	One	is	called	the	
“Library	Index”	and	the	other	is	called	the	“Exported	Index”.	

Both	mappings	are	implemented	as	hash	tables	that	map	string	names	into	objects.	
The	Library	Index	maps	string	names	into	TableEntry	objects.	The	Exported	Index	
maps	string	names	into	Symbol	objects.	

Both	mappings	are	organized	identically.	Here	we	will	discuss	the	organization	of	
the	Exported	Index,	but	the	Library	Index	is	the	same.	

Each	Symbol	object	contains	a	variable	length	string.	The	=ields	of	relevance	from	
the	Symbol	object	are	stringLength	and	stringChars.	The	Symbol	object	is	
described	elsewhere	and	we	will	ignore	the	remaining	=ields	in	our	description	of	
the	hash	table.	

We	assume	that	string	names	may	contain	an	arbitrary	sequence	of	characters,	
possibly	including	embedded	NULL	\0	bytes,	so	we	use	a	string	length	for	the	
number	of	bytes	in	the	name,	rather	than	use	the	NULL-terminated	scheme	typically	
used	in	Unix/Linux.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	247 284

Appendix	4:	The	Linker	Algorithm	

The	key	functions	are	

void AddToExportedIndex (Symbol * sym)
Symbol * SearchExportedIndex (Symbol * sym)

To	add	an	element	to	the	mapping,	we	=irst	create	a	new	Symbol	object	and	then	call	
AddToExportedIndex.	If	there	is	already	an	entry	in	the	mapping	with	the	same	
symbol	name,	this	function	will	print	an	error	message.	

Not	all	Symbol	objects	will	be	added	to	the	mapping.	In	particular,	we	will	only	add	
symbols	that	have	been	exported	to	the	mapping.	In	the	case	of	imported	symbols,	
we	will	have	a	Symbol	object	and	we	need	to	search	the	mapping	to	see	if	it	contains	
another	Symbol	with	the	same	name.	This	test	is	done	with	the	
SearchExportedIndex	function.	

To	search	the	mapping,	we	take	the	name	and	compute	a	hash	value	from	the	bytes.	
This	computation	is	performed	by	a	function	named	ComputeHash.	The	
ComputeHash	function	lives	in	BlitzSupport.c	since	it	is	used	in	other	Blitz-64	
programs.	

The	mapping	is	implemented	as	an	array	of	pointers.	Each	pointer	points	to	a	linked	
list	of	Symbol	objects.	Each	Symbol	object	contains	a	=ield	named	
exportedIndexNext,	which	is	used	for	this	linked	list.	

To	=ind	an	element,	we	compute	the	hash	value	and	then	use	it	(mod	array	size)	as	
an	index	into	the	array.	This	gives	us	a	pointer	to	a	linked	list.	Then	we	perform	a	
linear	search	on	the	linked	list.	

The	array	size	is	de=ined	by	this	constant,	such	as:	

#define HASH_TABLE_SIZE 4999

This	number	can	safely	be	enlarged,	but	you	should	always	use	a	prime	number.	

Assuming	that	a	typical	program	uses	2,000	exported	symbols,	most	linked	lists	will	
not	be	longer	than	one	element.	Thus,	the	=irst	object	we	test	is	highly	likely	to	be	the	
match	we	are	looking	for.	To	handle	larges	programs	with	good	performance,	this	
constant	has	been	increased	to	an	even	larger	number.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	248 284

Appendix	4:	The	Linker	Algorithm	

The	Library	Index	is	similar,	except	that	it	maps	string	names	into	TableEntry	
objects.	

struct TableEntry {
 TableEntry * next; // Linked list for each hash value
 Module * exportedFromModule; // The module that exported this symbol
 int stringLength; // Number of characters
 char stringChars[0]; // The characters
};

Recall	that	a	library	=ile	contains	a	number	of	modules	and	each	module	exports	a	
number	of	symbols.	Each	library	life	begins	with	an	index	telling	which	symbols	are	
exported	and	which	module	exported	them.	First,	the	linker	must	=irst	read	in	all	the	
library	=iles	and	enter	each	exported	symbol	into	the	Library	Index.	Later,	as	the	
linker	is	building	the	output	=ile,	it	may	encounter	an	imported	symbol.	The	linker	
will	then	search	the	library	index	to	=ind	the	symbol.	After	retrieving	a	TableEntry	
object,	the	linker	can	determine	(using	the	exportedFromModule	=ield)	which	
module	from	the	library	to	add	to	the	growing	output	=ile.	

When	adding	symbols	to	the	Library	Index	(in	AddToLibraryIndex),	we	check	to	
make	sure	that	there	is	not	already	an	entry	there	and	print	an	error	message	if	
necessary.	

The	Library	Index	is	built	=irst,	as	the	input	=iles	are	processed	and	library	=iles	are	
encountered.	

The	Module	List	

At	this	point	(within	function	main)	we	have	already	run	though	the	input	=iles.	We	
have	already	built	the	ModuleList,	adding	one	Module	for	each	.o	=ile	and	we	built	
the	Library	Index	as	we	encountered	.lib	=iles.	

In	the	next	step,	we	will	enlarge	the	Module	List	so	that	it	will	contain	all	the	
modules	that	need	to	go	into	the	output	=ile.	

Initially,	the	list	contains	only	modules	that	came	from	.o	=iles,	but	we	may	need	to	
bring	in	additional	modules	from	library	=iles.	Whenever	a	module	imports	a	symbol	
that	is	otherwise	unde=ined,	we	will	search	the	Library	Index	looking	for	a	module	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	249 284

Appendix	4:	The	Linker	Algorithm	

that	exported	that	symbol.	If	one	is	found,	the	corresponding	module	will	be	added	
to	the	Module	List.	

Otherwise	if	there	is	no	entry	in	the	Library	Index,	an	error	will	be	generated.	

Reading	the	Modules:	AddNewModule	

A	function	named	AddNewModule	is	called	once	for	each	module	that	will	go	into	
the	output	=ile.	The	AddNewModule	function	will	go	the	=ile	that	contains	the	
module	(either	a	.o	object	=ile	or	a	.lib	library	=ile)	and	will	read	in	the	header	
information	describing	that	module.	The	function	will	add	information	to	the	
growing	data	structures.	

void AddNewModule (Module * mod)

The	Module	object	contains	information	about	which	=ile	contains	the	module	and	
where	in	the	=ile	the	module	begins.	This	function	begins	by	reading	the	header	
information	(number	of	segments,	number	of	symbols,	source	=ile	name).	

Each	module	will	de=ine	a	number	of	symbols.	The	AddNewModule	function	will	
allocate	an	array	(symbolArray,	in	the	Module	object)	with	one	element	per	
symbol.	For	each	symbol	in	the	module,	we	will	create	and	initialize	a	Symbol	
object.	Furthermore,	if	the	symbol	is	exported,	this	function	will	add	the	symbol	to	
the	Exported	Index.	

Each	module	will	also	contain	a	number	of	segments.	The	AddNewModule	function	
will	allocate	an	array	(segmentArray,	in	the	Module	object)	with	one	element	per	
segment.	For	each	segment	in	the	module,	this	function	will	create	and	initialize	a	
Segment	object.	

Each	module	will	contain	a	number	of	patches.	For	each	patch	in	the	module,	the	
AddNewModule	function	will	create	and	initialize	a	Patch	object.	Every	Patch	
object	will	be	on	exactly	two	linked	lists.	There	is	one	linked	list	for	each	module	and	
there	is	a	global	linked	list	of	all	patches.	

The	AddNewModule	function	will	not	read	in	the	actual	data	bytes	for	the	segment,	
since	that	information	will	not	be	needed	until	later,	when	we	are	ready	to	build	the	
output	=ile.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	250 284

Appendix	4:	The	Linker	Algorithm	

Before	we	continue	describing	the	initialization	algorithm	in	function	main,	we	will	
describe	the	primary	data	structures	used	in	the	linker.	

The	Segment,	Symbol,	and	Patch	Objects	

Next,	we	discuss	the	data	structures	that	are	used	to	represent	the	information	
contained	in	the	modules	that	are	to	be	linked	together.	Generally	speaking,	these	
data	structures	are	allocated,	set	up,	and	initialized	by	the	function	
AddNewModule.	

struct Segment {
 Segment * next; // For the linked list of all segments
 // in executable
 Segment * nextForRegionList; // For the linked list of all segments
 // in a region
 Segment * subListNext; // For segmentList0, ...4, ...5, ...6, ...7
 Module * myModule; // The module from which this segment came
 int64_t locationInFile; // Location in file where segment data
 // bytes are located
 int segNumber;
 int lineNumber;
 int64_t initialLength; // Size in bytes (as given in .o module)
 int isKernel;
 int isExecutable;
 int isWritable;
 int isZerofilled;
 int64_t startAddr;
 int64_t gpValue;
 Patch * patchList; // The patches that apply to this segment
 Patch * patchListLast; // .
 Symbol * labelList; // The labels that are in this segment
 int64_t currentAddr; // Where the segment is placed in memory
 int64_t currentLength; // How big is this segment, in bytes
 // (may not be a multiple of 8)
 int64_t paddingAdded; // Number of bytes (0..7) added to bring
 // segment size up to multiple of 8
};

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	251 284

Appendix	4:	The	Linker	Algorithm	

struct Symbol {
 Module * usedInModule; // The module from whence this symbol came
 int symbolNumber; // The number of the symbol (1, 2, ...)
 int lineNumber; // Source file line number
 int symbolType; // 1=IMPORTED, 2=LABEL, 3= EQUATE
 Segment * segment; // Only for type 2 (LABEL)
 int64_t offset; // LABEL: offset from segment start;
 // EQUATE: offset from relativeTo
 // symbol, or absolute value
 // IMPORT: unused (zero)
 int relativeTo; // Only for type 3 (EQUATE);
 // 0 means "absolute" &
 // offset is the value
 // IMPORT, LABEL: unused (zero)
 int exported; // Only for type 2 (LABEL) and
 // type 3 (EQUATE)
 Symbol * target; // Type 1/IMPORTED: ptr to exported symbol;
 // Type 3/EQUATE: ptr to relativeTo
 // or NULL.
 Symbol * listNext; // For the linked list of all
 // symbols in executable
 Symbol * exportedIndexNext; // Linked list for each hash value
 // in ExportedIndex
 Symbol * nextForSegmentList; // There is also one linked list per
 // segment (labels only)
 int64_t currentValue; // For LABELs: the address; for EQUATEs:
 // the computed value
 int markFlag; // EQUATES only: 0 = not done yet;
 // 1=in progress;
 // 2=currentValue determined
 int stringLength; // Number of characters
 char stringChars[0]; // The characters
};

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	252 284

Appendix	4:	The	Linker	Algorithm	

struct Patch {
 Patch * next; // For the linked list of all patches
 Patch * nextForSegmentList; // There is also one linked list per segment
 int patchType; // 1,2,3, ...
 int lineNumber; // Source file line number
 Segment * segment; // Segment where this patch must be made
 int64_t initialOffsetToPatch;// Offset into segment where patch
 // must be made
 int initialSize; // Number of bytes present in .o file
 // (0,4,8,12, or 16)
 Symbol * targetSymbol; // Target symbol (NULL = absolute)
 int64_t offsetFromTarget; // Offset from target symbol (often zero)
 // . For patch type = ALIGN, offset
 // will be 8,16,32,or 16384
 int exactSize; // Exact size of result in bytes
 // (4, 8, 12, 16) or -1 if don’t care
 // . Only for Format S1,S2, ... S7
 int sizeIncrement; // The number of bytes to be inserted
 // by the linker
 int64_t currentOffsetToPatch;// Offset into segment where the patch
 // will actually occur
};

Segment	Objects	

There	is	a	linked	list	containing	all	the	segments	that	will	be	placed	in	the	output	=ile.	
This	list	is	pointed	to	by	the	global	variable	segmentList.	The	next	=ield	in	a	
Segment	object	is	used	for	this	list.	

Later,	we	will	describe	memory	“regions”.	The	region	concept	is	used	when	placing	
segments	in	memory,	i.e.,	when	assigning	addresses	to	segments.	Main	memory	will	
be	divided	into	a	sequence	of	regions.	Each	region	will	have	a	single	set	of	attributes	
(writable,	executable).	Each	Region	object	will	have	a	linked	list	of	all	the	segments	
in	it.	The	nextForRegionList	=ield	in	Segment	objects	is	used	for	this	linked	list.	For	
now,	this	=ield	is	just	initialized	to	NULL.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	253 284

Appendix	4:	The	Linker	Algorithm	

Later,	we’ll	look	at	the	attributes	of	a	segment	and	add	it	to	exactly	one	of	the	
following	linker	lists:	

segmentList0	 Linked	list	of	all	=ixed	segments	
segmentList4	 Linked	list	of	segments	that	are	not	Executable,	not	Writable		
segmentList5	 Linked	list	of	segments	that	are	not	Executable,					Writable	
segmentList6	 Linked	list	of	segments	that	are					Executable,	not	Writable	
segmentList7	 Linked	list	of	segments	that	are					Executable,					Writable	

Each	segment	came	from	a	module.	The	myModule	=ield	points	to	this	Module	
object.	

Segments	are	numbered	within	a	module.	The	segNumber	=ield	contains	this	
number.	Each	segment	is	placed	in	the	module’s	segmentArray;	the	array	index	and	
this	=ield	match.	Patches	refer	to	segments	by	number.	

The	object	=ile	contains	the	line	number	on	which	the	segment	began.	The	
lineNumber	=ield	saves	this	information	so	it	can	be	used	in	error	reporting.	

The	bytes	for	the	segment	(the	data	and	machine	code	bytes)	are	in	the	=ile	and	are	
not	read	at	this	time.	The	initialLength	=ield	tells	how	many	bytes	are	in	the	=ile.	The	
linker	may	increase	the	size	of	segments	(as	a	result	of	inserting	bytes	when	
translating	synthetic	instructions	or	.align	directives),	so	the	segment	size	may	grow.	
However,	the	initialLength	=ield	remains	unchanged.	

Each	segment	has	these	attributes:	isKernel,	isExecutable,	isWritiable,	
isZeroWilled,	startAddr,	and	gpValue.	These	are	read	in	and	stored	in	the	Segment	
object	for	later	use.	

Each	module	will	contain	a	number	of	patches.	Each	patch	applies	to	one	segment,	
namely	the	segment	containing	the	synthetic	instruction	or	the	.align	pseudo-op.	
Each	Segment	contains	a	list	of	Patch	objects.	This	list	is	pointed	to	by	the	=ields	
patchList	and	patchListLast.	As	the	patches	are	read	in,	they	are	added	to	the	list	
for	whichever	segment	they	apply	to	(in	addition	to	the	global	patch	list).	The	
patches	are	in	order	of	increasing	address,	so	the	new	Patch	objects	are	added	to	the	
tails	of	the	lists.	

Of	the	symbols	in	a	module,	some	are	“labels”,	which	identify	locations	within	a	
particular	segment.	(Other	symbols	are	“equates”	and	“imports”.)	The	labels	for	a	
segment	are	kept	in	a	linked	list,	and	each	Segment	has	a	=ield	named	labelList	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	254 284

Appendix	4:	The	Linker	Algorithm	

which	will	point	to	a	linked	list	of	Symbol	objects.	Each	Symbol	on	this	list	will	be	a	
label	in	this	segment.	Within	the	Symbol	objects,	there	is	a	=ield	named	
nextForSegmentList	which	is	used	for	this	linked	list.	

Later	in	the	linking	algorithm,	each	segment	will	be	assigned	an	address	in	memory.	
(Actually,	the	algorithm	may	try	different	addresses	until	it	can	=it	everything	in,	so	
the	segment	may	be	moved	around.)	The	currentAddr	tells	where	this	segment	will	
be	placed.	At	this	stage,	this	=ield	is	merely	initialized.	

The	linker	may	grow	a	segment,	and	the	currentLength	=ield	tells	the	current	size	of	
the	segment.	At	this	stage,	this	=ield	is	merely	initialized.	

Symbol	Objects	

Each	module	contains	a	bunch	of	symbols.	For	each	symbol,	a	Symbol	object	will	be	
created.	The	usedInModule	=ield	(in	the	Symbol	objects)	points	to	the	Module	that	
contained	this	symbol.	

Modules	identify	symbols	by	number.	Each	symbol	in	a	given	module	is	numbered	
(1,	2,	3,	…).	This	number	is	used	by	patches	and	other	symbols.	The	symbol	number	
is	kept	in	the	=ield	symbolNumber.	

The	lineNumber	=ield	tells	where	in	the	.s	source	code	=ile	the	symbol	was	de=ined.	
The	source	code	line	number	is	used	in	sorting	the	labels	within	each	segment,	in	
addition	to	error	reporting.		

There	are	three	different	kinds	of	symbol:	“Imported”,	“Label”,	and	“Equate”.	The	
symbol	type	is	identi=ied	but	the	=ield	symbolType	and	corresponds	to	the	way	in	
which	the	symbol	was	de=ined	in	the	.s	source	code	=ile.	A	number	is	used	for	
symbolType:	

	 1	=	imported	
	 2	=	label	
	 3	=	equate	

Depending	on	what	type	of	symbol	it	is,	the	following	=ields	are	used	a	bit	differently.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	255 284

Appendix	4:	The	Linker	Algorithm	

For	imported	symbols…	

	 symbolType	 1	=	“imported"	
	 segment	 not	used	
	 relativeTo	 not	used	
	 offset	 not	used	
	 exported	 not	used	
	 target	 ptr	to	matching	symbol,	which	was	exported	

For	label	symbols…	

	 symbolType	 2	=	“label"	
	 segment	 ptr	to	Segment	in	which	this	label	occurs	
	 relativeTo	 not	used	
	 offset	 offset	into	segment,	in	bytes	
	 exported	 1=exported;	0=not	exported	
	 target	 not	used	

Equate	symbols	can	either	be	“absolute”	or	“relativeTo”.	Initially,	they	can	be	
distinguished	by	the	relativeTo	=ield.	Subsequently,	they	are	distinguished	by	the	
“target”	=ield.	

An	“absolute”	symbol	looks	like	this…	

	 symbolType	 3	=	“equate"	
	 segment	 not	used	
	 relativeTo	 not	used	(zero)	
	 offset	 The	value	
	 exported	 1=exported;	0=not	exported	
	 target	 NULL	

An	“relativeTo”	symbol	looks	like	this…	

	 symbolType	 3	=	“equate"	
	 segment	 not	used	
	 relativeTo	 not	used	after	initialization	(a	symbol	number)	
	 offset	 An	offset	to	be	added	in	(often	zero)	
	 exported	 1=exported;	0=not	exported	
	 target	 A	pointer	to	another	symbol	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	256 284

Appendix	4:	The	Linker	Algorithm	

There	is	a	global	list	of	all	symbols,	which	is	headed	by	symbolList	and	
symbolListLast.	The	next	=ield	is	used	for	this	linked	list.	

A	symbol	can	be	exported.	If	the	symbol	is	exported,	then	it	will	be	added	to	the	
Exported	List,	so	that	it	can	be	located.	(We’ll	need	to	look	symbols	up	in	the	index	
whenever	we	have	an	imported	symbol,	so	we	can	link	an	imported	symbol	to	its	
matching	exported	target.)	The	exportedIndexNext	=ield	is	used	in	the	hash	table	
linked	lists	for	the	Exported	Index.	If	the	symbol	is	not	exported,	then	this	=ield	will	
never	get	used.	

There	is	a	linked	list	of	all	labels	that	appear	in	a	segment.	This	list	is	pointed	to	by	
the	=ield	labelList	in	the	Segment	object.	If	a	Symbol	is	a	label,	then	it	will	get	
added	to	the	linked	list	for	the	segment	in	which	it	occurs.	The	=ield	named	
nextForSegmentList	is	used	for	this	purpose.	If	the	Symbol	is	not	a	label,	the	
nextForSegmentList	=ield	will	remain	unused.	

We	know	the	value	of	absolute	symbols	as	soon	as	the	segment	is	read	in	from	a	=ile,	
but	the	value	of	labels	will	only	be	known	later	in	the	linking,	after	the	segment	has	
been	assigned	an	address	in	memory.	And	if	one	placement	doesn’t	work,	the	
segment	will	get	moved	to	another	memory	address.	Thus,	the	value	of	the	symbol	
may	change.	The	=ield	currentValue	is	only	used	for	labels	and	will	be	changed	
during	the	linking	algorithm.	

With	equated	symbols,	the	symbol	is	de=ined	in	terms	of	some	other	symbol,	called	
the	“relativeTo”	symbol.	The	equate	symbol	can	be	de=ined	as	equal	to	the	relativeTo	
symbol,	in	which	case	the	offset	will	be	zero.	Or	the	offset	can	be	non-zero,	in	which	
case	we	will	need	to	add	the	offset	to	the	value	of	the	relativeTo	symbol,	once	it	is	
known.	

At	one	point,	we	must	determine	the	value	of	all	equates.	It	is	always	possible	that	
equates	can	be	circularly	de=ined.	Cyclic	de=inition	is	an	error;	we	must	be	able	to	
process	the	equates	and	assign	a	value	to	each.	The	=ield	markFlag	is	used	when	
assigning	values	to	the	equates.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	257 284

Appendix	4:	The	Linker	Algorithm	

Patch	Objects	

A	“patch”	indicates	that	the	linker	will	need	to	modify	the	code	generated	by	the	
assembler	in	some	speci=ic	location	in	a	segment.	There	are	two	reasons	that	the	
linker	will	need	to	perform	patching.	

The	=irst	type	of	patch	is	for	a	synthetic	instruction	which	could	not	be	translated	by	
the	assembler.	This	could	happen	when	the	assembler	was	unable	to	determine	the	
target	address	for	the	instruction.	

The	second	reason	the	linker	must	take	action	is	for	.align	pseudo-ops.	Since	the	
assembler	doesn’t	know	where	exactly	the	segments	will	be	placed	in	memory,	it	is	
unable	to	know	how	many	bytes	to	insert	to	achieve	the	required	alignment.	In	
addition,	there	may	also	be	uncompleted	synthetic	instructions	preceding	the	.align	
again	making	it	impossible	for	the	assembler	to	know	how	many	bytes	to	insert	to	
achieve	the	required	alignment.	

The	will	be	one	Patch	object	for	each	required	patch	and	all	Patch	objects	will	be	
allocated	in	the	AddNewModule	function.	Associated	with	each	module	is	a	list	of	
patches	that	must	be	made	to	the	segments	in	that	module.	For	every	module	that	
will	be	included	in	the	output	=ile	(i.e.,	for	every	module	in	a	.o	input	object	=ile	and	
for	every	module	pulled	in	from	a	library	=ile),	there	will	be	a	separate	list	of	
Patches.	These	lists	will	be	built	by	AddNewModule.	

Each	Patch	object	will	actually	sit	on	two	linked	lists.	First,	there	is	a	global	linked	
list	of	all	Patch	objects.	This	list	is	pointed	to	by	the	global	variables	patchList	and	
patchListLast,	and	each	Patch	object	contains	a	next	=ield	for	this	global	linked	list.	

In	addition,	each	Patch	applies	to	a	particular	location	within	some	segment.	Each	
segment	contains	its	own	list	of	Patch	objects.	Each	Segment	object	contains	=ields	
called	patchList	and	patchListLast	which	point	to	the	head	and	tail	of	the	
segment’s	private	list.	Every	Patch	object	will	be	on	exactly	one	of	these	private	lists.	

These	private	per-segment	patch	lists	are	in	non-decreasing	order,	by	the	offset	that	
needs	to	be	patched.	Fortunately,	the	assembler	will	add	the	patches	to	the	object	
=iles	in	order,	so	all	the	linker	does	is	verify	the	correct	ordering	is	followed.		

Each	Patch	contains	a	=ield	named	segment	which	points	to	the	Segment	object	for	
the	segment	within	which	the	patch	is	to	be	made.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	258 284

Appendix	4:	The	Linker	Algorithm	

(Any	Patch	“p”	will	be	on	the	linked	list	“p->segment->patchList”	and	any	Patch	on	
this	list	will	point	back	to	that	same	Segment.)	

Each	Patch	contains	a	=ield	named	patchType	which	tells	what	sort	of	patch	
operation	the	linker	is	required	to	perform.	One	type	is	“alignment”	and	the	
remaining	types	are	for	the	different	types	of	synthetic	instructions.	The	patch	type	
is	given	by	an	integer	in	the	range	1	…	25.	Patch	type	24	is	for	“alignment	patch”.	

Each	Patch	contains	a	=ield	lineNumber,	referring	to	the	original	.s	assembly	
language	=ile	containing	the	synthetic	instruction	or	.align	causing	the	patch.	The	
lineNumber	is	only	used	to	print	error	messages.	

Each	Patch	contains	a	=ield	initialOffsetToPatch.	This	gives	an	offset	in	bytes	from	
the	beginning	of	the	segment	of	the	address	that	needs	to	be	patched.	This	offset	
value	comes	from	the	.o	object	module	and	is	not	changed	by	the	linker.	However,	
the	linker	will	be	inserting	bytes	into	segments	as	a	result	of	other	patches.	Thus	the	
actual	offset	may	increase	during	the	linker	algorithm.	
	
Each	Patch	contains	a	=ield	initialSize.	This	contains	the	number	of	bytes	already	
present	in	the	segment	prior	to	linking.	There	is	also	a	=ield	named	exactSize	which	
indicates	whether	the	assembler	has	already	determined	the	number	of	bytes	
required	for	the	patch.	

For	alignment	patches,	there	will	be	zero	bytes	initially	present	in	the	segment.	The	
initialSize	will	be	0.	The	exactSize	=ield	will	be	set	to	-1,	indicating	that	the	linker	is	
unconstrained	and	can	insert	as	many	bytes	as	it	needs	to.	

For	most	synthetic	instructions,	the	assembler	will	make	no	assumptions	about	how	
the	linker	will	translate	it	to	machine	code.		In	these	cases,	the	initialSize	will	be	4	
to	indicate	that	4	bytes	are	initially	present	in	the	segment.	The	exactSize	=ield	will	
be	set	to	-1,	indicating	that	the	linker	is	unconstrained	and	may	insert	additional	
bytes	as	necessary	in	translating	the	synthetic	instruction.	

However,	for	a	few	synthetic	instructions,	the	assembler	will	have	determined	that	
there	must	be	a	certain	number	bytes	in	the	translation.	Although	the	assembler	was	
unable	to	perform	the	translation	itself,	it	may	have	relied	on	that	being	the	size	of	
the	translation.	In	this	case,	both	initialSize	and	exactSize	will	be	equal	and	set	to	4,	
8,	12,	or	16.	There	will	be	exactly	that	many	bytes	initially	present	in	the	segment.	
This	exact	size	is	not	really	necessary,	but	is	included	as	a	safety	check	(a	program	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	259 284

Appendix	4:	The	Linker	Algorithm	

logic	check)	to	make	sure	that	the	linker	does	exactly	what	the	assembler	expected	it	
to,	and	relied	on.	

For	synthetic	instructions,	there	will	always	be	at	least	4	bytes	initially	present	in	the	
segment.	These	4	bytes	will	contain	4	register	=ields,	in	the	normal	bits	for	machine	
instructions	for	Reg3,	Reg2,	Reg1,	and	RegD.	Some	synthetic	instructions	have	
register	=ields	and	these	will	be	included	in	the	obvious	way	in	thee	4-bit	=ields.	The	
opcode	bits	(OP1	and	OP2)	will	always	be	zero;	the	type	of	instruction	can	be	
determined	from	patchType.	

If	the	initial	version	of	the	segment	contains	additional	words	(i.e.,	when	exactSize	
is	8,	12,	or	16),	these	additional	words	will	be	zeros.	In	other	words,	the	second,	
third,	and	fourth	words	(if	present)	will	be	set	to	zero	in	the	initial	version	of	the	
segment.	

Each	Patch	contains	two	=ields	named	targetSymbol	and	offsetFromTarget.	These	
specify	the	operand	that	requires	linker	intervention.	The	targetSymbol	will	be	set	
to	point	to	a	Symbol	object.	The	offsetFromTarget	will	be	an	integer	and	will	often	
be	zero.	Later,	when	we	determine	the	actual	value	of	the	target	symbol,	the	offset	
will	be	added	to	give	the	=inal,	effective	value	to	be	used	in	creating	the	machine	
code.	

During	the	linking	algorithm,	the	size	allocated	for	a	patch	may	be	increased.	For	
example,	in	an	alignment	patch,	the	linker	may	determine	that	300	bytes	must	be	
inserted.	As	another	example,	in	the	case	of	an	unconstrained	synthetic	instruction	
(i.e.,	where	initialSize	=	4	and	exactSize	=	-1),	the	linker	may	determine	that	an	
additional	word	of	machine	code	is	necessary.	The	linker	may	grow	an	
unconstrained	patch	by	adding	up	to	3	words	(to	make	the	total	16	bytes).	

As	a	result	of	growing	patches	and	inserting	bytes,	the	offsets	(from	the	beginning	of	
the	segment)	to	everything	that	follows	the	patch	will	be	shifted.	

The	sizeIncrement	and	currentOffsetToPatch	=ields	will	be	used	by	the	linker	
algorithm,	but	will	be	set	to	zero	initially.	As	the	algorithm	progresses,	
sizeIncrement	and	currentOffsetToPatch	will	change.	Both	are	in	terms	of	bytes.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	260 284

Appendix	4:	The	Linker	Algorithm	

Processing	Imported	Symbols	

Now,	let’s	continue	describing	the	algorithm	in	function	main	that	initializes	these	
data	structures.	

Prior	to	processing	the	imported	symbols	step,	we	ran	through	all	the	input	.o	=iles	
by	going	through	the	Module	List	and	calling	function	AddNewModule	for	each	
module.	This	allocated	and	initialized	the	Segment,	Symbol,	and	Patch	object	for	
each	module	that	was	explicitly	named	on	the	command	line.	

Whenever	an	imported	symbol	is	not	otherwise	de=ined,	but	is	de=ined	by	some	
module	in	some	library,	that	library	module	must	be	added	to	the	output	=ile.	The	
added	module	itself	may	import	more	symbols,	which	may	themselves	be	unde=ined,	
causing	additional	modules	to	be	pulled	in	from	the	library	=iles.	

We’ve	already	gone	through	the	Module	List	in	order	to	call	AddNewModule	for	each	
explicitly	mentioned	Module.	

Now,	in	order	to	pull	in	the	necessary	library	modules,	we	go	through	the	Module	
List	a	second	time,	from	beginning	to	end,	looking	at	all	imported	symbols.	During	
this	process,	we	may	add	additional	modules	to	the	end	of	the	Module	List.	In	
particular,	whenever	we	determine	that	another	module	from	a	library	is	needed,	
we’ll	add	a	new	Module	to	the	tail	of	the	Module	List.	

Whenever	we	add	a	new	library	module	to	the	Module	List,	the	function	
AddNewModule	must	be	called	to	allocate	additional	Segment,	Symbol,	and	Patch	
objects.	Since	newly	added	modules	are	placed	at	the	tail	end	of	the	Module	List,	
every	newly	added	module	will	get	processed	later	on	as	we	encounter	it	when	
going	through	the	Module	List.	Thus,	its	imported	symbols	will	eventually	be	
examined,	perhaps	pulling	in	yet	more	modules.	(Obviously,	this	process	will	
terminate	since	we	only	have	a	=inite	number	of	modules	that	can	be	added	to	the	
list.)	

For	each	module,	we’ll	run	through	all	the	symbols	in	that	module,	looking	only	at	
symbols	of	type	“imported”.	For	each	imported	symbol,	we’ll	locate	a	matching	
symbol	(i.e.,	same	spelling)	that	is	exported.	First,	we	check	the	Exported	Index	to	
see	if	there	is	a	matching	symbol	that	has	already	been	exported.	If	found,	then	we	
can	move	on.	Otherwise	if	there	is	no	matching	entry,	we	must	search	the	Library	
Index.	If	we	=ind	a	match	there,	then	we	will	pull	in	the	module;	otherwise	we	print	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	261 284

Appendix	4:	The	Linker	Algorithm	

an	error	(“Unde=ined	symbol”).	As	each	module	is	processed	by	AddNewModule,	
the	symbols	it	exports	will	be	added	to	the	Exported	Index.	

After	pulling	in	all	the	modules,	we	make	a	second	pass	through	the	global	list	of	
Symbols	and	link	every	imported	symbol	with	the	corresponding	exported	symbol.	
In	particular,	we	make	the	imported	symbol’s	target	=ield	point	to	the	exported	
symbol.	

Next,	we	run	through	the	global	symbol	list	a	second	time.	This	time,	we	look	at	the	
relativeTo	=ield.	If	a	Symbol’s	relativeTo	=ield	points	to	an	imported	symbol,	we	
will	modify	the	symbol	to	point	directly	to	the	exported	symbol.	

Next,	we	run	through	the	global	list	of	Patch	objects.	If	the	Patch	object’s	
targetSymbol	points	to	an	imported	symbol,	then	we	modify	the	patch	to	point	
directly	to	the	exported	symbol.	

Sorting	the	Label	and	Segment	Lists	

Every	symbol	that	is	a	label	belongs	to	exactly	one	segment.	In	other	words,	each	
label	is	intended	to	identify	an	address	within	some	segment.	

Each	Segment	object	contains	a	linked	list	of	all	the	labels	that	occur	within	it.	Each	
Segment	object	has	a	=ield	named	labelList	which	points	to	a	linked	list	of	Symbols,	
which	are	linked	using	a	=ield	named	nextForSegmentList.	

The	assembler	places	all	symbols	in	the	.o	=ile	in	a	random	order.	(The	symbols	come	
out	of	a	hash	table	and	the	order	is	a	byproduct	of	the	hashing,	so…	it’s	effectively	
random.)	

In	the	next	step	in	function	main,	we	sort	each	segment’s	label	list	to	get	them	into	
the	order	they	appeared	in	the	original	source	code.	This	is	necessary	because,	as	we	
go	through	a	segment	and	process	the	patches,	we	will	be	inserting	bytes	here	and	
there.	As	we	pass	by	labels,	we	will	need	to	update	them	as	well,	to	re=lect	the	new	
addresses	they	will	represent.	

You	might	guess	that	we	sort	the	labels	on	initial	offset	into	the	segment.	However,	it	
is	possible	that	there	can	be	more	than	one	label	for	a	single	offset.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	262 284

Appendix	4:	The	Linker	Algorithm	

Consider	this	example:	

label1:
.align 16

label2:

We	perform	the	sort	before	we	invoke	PlaceSegment,	which	means	that	the	ALIGN	
patches	all	have	zero	length.	Thus,	the	offsets	for	label1,	label2,	and	the	ALIGN	will	
all	be	identical.	But	we	need	to	process	them	in	the	correct	order,	since	the	ALIGN	
will	expand	to	several	bytes,	making	the	resulting	offsets	for	label1	and	label2	
different.	

We	know	that	only	one	label	can	occur	per	source	code	line	so,	instead	of	sorting	on	
offset,	we	sort	on	source	code	line	number.	

SortLabelLists	()	
This	function	looks	at	the	label	list	for	each	segment	and	sorts	it.	The	sort	is	
based	line	number	into	the	segment.	Actually,	because	ALIGNs	have	length	zero,	it	
is	better	to	sort	on	line	number.	This	keeps	things	in	the	proper	order.	

There	are	a	couple	of	additional	helper	functions	that	do	the	actual	sorting:	

quicksortLabelList	(int	m,	int	n)	
partitionLabelList	(int	left,	int	right)	—>	int	

Segment	Ordering	

Generally	speaking,	a	good	way	to	pack	“things”	into	an	available	space,	is	to	try	to	=it	
the	largest	things	in	=irst,	and	proceed	in	order	from	largest	to	smallest.	(Imagine	
packing	several	suitcases	into	the	trunk	of	a	car	or	furniture	into	a	moving	truck.	You	
want	to	put	the	largest	items	in	=irst.)	

For	=loating	segments	(where	the	programmer	has	not	said	explicitly	where	to	place	
the	segment),	the	linker	takes	this	approach	when	placing	segments	in	memory:	It	
looks	at	the	=loating	segments	in	order,	from	largest	to	smallest.	

The	problem	of	packing	segments	into	memory	in	an	optimal	way	must,	I	think,	be	
NP-complete;	but	trying	to	place	larger	segments	before	we	try	to	place	the	smaller	
segments	should	yield	acceptable	results.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	263 284

Appendix	4:	The	Linker	Algorithm	

Before	now,	we	have	a	single,	global	list	of	segments.	In	this	step,	we	will	partition	
the	set	of	segments	into	5	lists,	which	we	call:	

segmentList0	 All	=ixed	segments	
segmentList4	 Floating	segments	that	are	not	Executable	&	not	Writable		
segmentList5	 Floating	segments	that	are	not	Executable	&	Writable	
segmentList6	 Floating	segments	that	are	Executable	&	not	Writable	
segmentList7	 Floating	segments	that	are	Executable	&	Writable	

The	segments	on	all	lists	will	be	ordered	from	largest	to	smallest.	

We	do	this	by	=irst	sorting	the	list	of	all	segments.	Then,	we	run	through	it	an	place	
each	segment	on	exactly	one	of	the	sublists.	

The	actual	lengths	of	the	segments	will	change	over	the	course	of	the	linker	
algorithm.	(The	segment’s	currentLength	will	change,	but	initialLength	will	
remain	unchanged).	Since	the	lists	are	not	ordered	by	the	actual	length	but	by	initial	
length,	the	order	may	not	be	exactly	perfect,	but	since	the	order	of	the	segments	is	
unlikely	to	change	signi=icantly	as	segment	sizes	are	adjusted,	this	approach	should	
lead	to	fairly	good	packing	of	segments	into	the	available	spaces.	

OrganizeSegmentLists	()	
This	function	sorts	the	global	list	of	all	segments	from	smallest	to	largest,	based	
on	initialLength.	Then,	it	builds	all	the	individual	segment	lists,	ordered	from	
largest	to	smallest.	

There	are	a	couple	of	additional	helper	functions	that	do	the	actual	sorting:	
QuicksortSegmentArray	and	PartitionSegmentList.	

[We	don’t	actually	care	about	the	order	of	the	=ixed	segments.	Since	their	locations	
are	determined	by	the	programmer,	it	really	doesn’t	matter	what	order	we	look	at	
each	one.	And	you	might	have	noticed	that	it	is	inef=icient	to	sort	one	big	list.	We	
don’t	need	to	sort	the	=ixed	segments	at	all	and	it	would	be	more	ef=icient	to	sort	the	
four	small	lists	separately.	Technically,	this	is	accurate,	but…	(1)	We	do	not	expect	to	
see	many	=ixed	segments;	(2)	We	expect	most	segments	to	be	either	executable	and	
not	writable	(for	code	and	constants),	or	not	executable	and	writable	(for	data),	so	
we	really	have	only	two	signi=icant	lists;	and	(3)	We	just	don’t	expect	to	see	a	huge	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	264 284

Appendix	4:	The	Linker	Algorithm	

number	of	segments.	The	time	to	quick-sort	even	a	few	hundred	segments	is	still	
small.]	

Regions	and	Placing	Segments	

All	of	main	memory	will	be	represented	within	the	linker	and	Region	objects	will	be	
used	to	represent	memory	regions.	

struct Region {
 Region * prev; // Doubly linked list, ordered by address
 Region * next; // .
 Segment * segmentList; // List of segments in this region
 int64_t address; // Starting address of this region
 int64_t length; // Number of bytes (not necessarily a
 // multiple of anything)
 int regionStatus; // -1 = header; 0 = free; 4/5/6/7 = allocated
 int regionNumber; // For printing only
};

Each	region	has	a	starting	address	and	a	length	in	bytes.	The	=ields	named	address	
and	length	describe	the	region’s	location	and	size.	

Region	Invariants	

•	Every	byte	of	memory	belongs	to	exactly	one	region.	
•	The	regions	are	kept	in	an	ordered	list.	
•	All	regions	are	contiguous.	
•	The	address	of	the	=irst	byte	of	a	region	directly	follows	the	address	of	the	last	
byte	of	the	previous	region.	
•	Each	region	is	either	free	or	allocated.	
•	A	free	region	contains	no	segments.	
•	An	allocated	region	contains	one	or	more	segments.	
•	The	segments	in	a	region	occupy	exactly	the	bytes	within	that	region.	

Region	objects	are	organized	in	a	doubly	linked	list.	The	=ields	next	and	prev	are	
used	for	this	purpose.	

The	list	is	organized	as	a	circular	ring.	There	is	a	dummy	header	object	that	is	
inserted	into	the	ring.	Unlike	all	other	Region	objects,	the	dummy	header	object	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	265 284

Appendix	4:	The	Linker	Algorithm	

does	not	represent	a	range	of	memory	addresses.	The	dummy	header	is	inserted	
after	the	last	Region	and	before	the	=irst	Region.	

Each	region	has	a	status	given	by	the	=ield	named	regionStatus.	These	codes	are	
used:	

	 -1	 Dummy	header	
	 0	 Unallocated,	i.e.,	free	
	 4	 Allocated,	Not	Executable,	Not	Writable	
	 5	 Allocated,	Not	Executable,	Writable	
	 6	 Allocated,	Executable,	Not	Writable	
	 7	 Allocated,	Executable,	Writable	
	 	
Memory	regions	that	are	“free”	are	available	for	use.	Initially,	the	region	data	
structure	contains	only	a	single	region	which	contains	all	memory	bytes.	(And	the	
dummy	header	region	exists,	as	well.)	

The	linker	algorithm	will	place	segments	in	memory.	Whenever	a	segment	is	placed	
in	memory,	the	region	data	structure	will	be	modi=ied.	Bytes	will	be	removed	from	a	
free	region	and	added	to	the	allocated	region	that	will	contain	the	segment.	

Segments	have	memory	attributes	(executable,	writable).	When	a	segment	is	placed	
in	memory,	the	pages	in	that	region	will	need	to	be	marked	by	the	OS	kernel	with	the	
correct	(executable,	writable)	attributes.	So	when	a	region	of	memory	is	allocated,	it	
will	be	allocated	with	some	particular	set	of	attributes.	

Each	region	has	a	list	of	the	segments	that	are	in	that	region.	When	a	segment	is	
placed	into	a	region,	it	will	be	added	to	that	region’s	segment	list.	The	=ield	
segmentList	points	to	the	linked	list	of	Segment	objects.	Within	Segment	objects,	
the	=ield	nextForRegionList	is	used	for	this	inked	list.	Unallocated	regions	will	have	
segmentList	==	NULL.	

Region	objects	are	numbered	with	a	=ield	named	regionNumber.	This	=ield	is	only	
used	for	printing	to	distinguish	Region	objects.	There	is	a	global	variable	named	
nextRegionNumber	which	is	used	to	assign	increasing	numbers	whenever	a	new	
region	is	created.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	266 284

Appendix	4:	The	Linker	Algorithm	

Initially,	main	memory	will	be	divided	into	two	regions:	

	 •	Dummy	Header	
	 •	Free	Region	(covering	all	of	usable	memory)	

The	following	constants	are	initialized	during	program	startup	based	on	the	-k	
command	line	option:	

	 Kernel	(-k)	 User	Programs	
START_OF_MAIN_MEMORY 0x0_0000_0000 0x8_0000_0000
SIZE_OF_MAIN_MEMORY 0x8_0000_0000 0x8_0000_0000
HIGHEST_MAIN_MEMORY_ADDR 0x7_FFFF_FFFF 0xF_FFFF_FFFF

(There	is	also	a	-dsmall	option	which	will	reduce	memory	size	to	4	pages,	which	is	
useful	for	debugging	and	testing	boundary	cases.)	

During	the	linking	algorithm	as	segments	are	placed	in	memory,	a	new	region	may	
be	created	and	“carved	out”	of	an	existing	free	region.	

The	main	linker	algorithm	repeatedly	loops,	looking	for	a	solution	to	the	segment	
placement	problem.	Whenever	the	algorithm	iterates,	it	needs	to	start	over.	At	the	
start	of	each	new	iteration,	all	memory	regions	will	be	freed	and	the	Region	data	
structure	will	be	completely	re-initialized.	

MemoryReset		()	
This	function	creates	the	initial	circular	ring	of	two	Region	objects.	Upon	
subsequent	calls,	it	frees	any	previously	allocated	Region	objects,	as	well.	

As	mentioned	above,	each	region	points	to	a	linked	list	of	segments	that	are	in	that	
region.	During	MemoryReset,	we	also	go	through	the	segments	and	re-initialize	
their	“next”	pointers,	effectively	removing	them	from	the	regions.	

PrintRegionList	()		
This	function	prints	a	table	showing	all	the	regions.	It	also	contains	a	call	to	
CheckRegionConsistency.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	267 284

Appendix	4:	The	Linker	Algorithm	

PrintRegion	(region)		
This	function	prints	a	single	line	describing	a	single	region,	including	the	
numbers	of	the	segments	in	that	region.	

CheckRegionConsistency	()		
This	function	runs	through	the	region	data	structure,	performing	a	number	of	
consistency	checks.	It	is	only	invoked	from	PrintRegionList.	

In	a	normal	use	of	the	linker	CheckRegionConsistency	will	not	be	invoked.	If	there	
are	problems	or	bugs,	any	run	of	the	linker	will	almost	certainly	involve	a	command	
line	option	that	will	print	the	region	list	and	thus	invoke	CheckRegionConsistency.	

The	programmer	can	specify	exactly	where	a	segment	is	to	be	placed,	using	the	
“startaddr=”	on	a	“.begin”	statement.	A	segment	for	which	the	programmer	has	
given	a	starting	address	is	called	a	“=ixed”	segment	and	must	be	placed	at	the	exact	
address	the	programmer	has	speci=ied.	A	segment	without	a	starting	address	is	
called	a	“=loating”	segment.	The	linker	will	determine	the	address	of	=loating	
segments	and	place	them	wherever	it	determines	is	a	good	place.	

CreateNewRegion	(freeRegion,	address,	segment)		—>	ptr	to	new	region	
This	function	places	a	segment	in	memory.	It	creates	a	new	Region	object,	places	
the	segment	in	it,	and	returns	a	pointer	to	the	new	region.	The	function	takes	a	
free	region	as	input,	along	with	the	segment	that	is	being	placed	in	memory	and	
the	address	where	the	segment	is	to	be	placed.	The	free	region	is	guaranteed	to	
contain	all	the	memory	addresses	that	will	be	needed	to	place	this	segment	at	
this	address,	but	the	free	region	may	contain	additional	bytes	as	well.	

This	function	will	create	a	new	Region	object	and	place	it	in	the	ring	data	structure.	
The	new	region	may	be	identical	in	size	and	location	to	the	given	free	region,	in	
which	case	the	new	Region	will	entirely	replace	the	free	Region.	Or	the	new	Region	
may	leave	remnant	free	regions.	There	may	be	a	shortened	free	Region	before	the	
new	Region	and/or	there	may	be		shortened	free	Region	after	the	new	Region.	

Note	that	after	calling	this	function,	it	is	possible	that	the	original	free	region	has	
been	entirely	replaced	by	an	allocated	region	and	that	this	are	region	may	have	
exactly	the	same	(executable/writable)	attributes	as	the	region	before	or	after	it.	
These	regions	must	be	merged,	but	that	is	the	responsibility	of	the	caller;	it	is	not	
done	by	this	function.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	268 284

Appendix	4:	The	Linker	Algorithm	

MergeWithNeighbors	(region)	
This	function	is	passed	a	newly	allocated	Region,	previously	created	by	function	
CreateNewRegion.	It	is	possible	that	this	newly	allocated	region	has	the	exact	
same	attributes	(executable,	writable)	as	the	region	directly	before	or	after	it.	In	
such	cases,	the	two	regions	are	merged	into	one	larger	region.	This	function	uses	
a	helper	function	called	MergeTwoRegions,	=irst	to	deal	with	the	region	before	
the	candidate	region	and	second	to	deal	with	the	region	after	the	candidate	
region.	

MergeTwoRegions	(region1,	region2)	
This	function	will	merge	these	two	regions	into	one	region	if	and	only	if	they	have	
the	same	regionStatus	codes.	Whenever	two	regions	are	merged,	the	=irst	
remains	and	the	second	disappears.	All	segments	in	the	second	region	are	moved	
to	the	segmentList	of	the	=irst	region	and	the	second	region	object	is	freed.	

RegionsShareAPage	(WirstRegion,	secondRegion)	—>	bool	
This	function	tests	to	see	if	two	regions	happen	to	share	a	page.	The	regions	may	
not	be	adjacent,	but	=irst	region	is	assumed	to	come	before	the	second	region.	
This	function	determines	the	page	number	of	the	last	byte	of	the	=irst	region	and	
the	=irst	byte	of	the	second	region	and	asks	whether	they	are	on	the	same	page.	

If	two	segments	with	different	(executable,	writable)	attributes	are	placed	in	
adjacent	regions	that	happen	to	share	a	page,	then	an	error	must	be	reported.	

If	we	are	linking	a	user	program,	then	we	need	to	enforce	the	rule	that	two	segments	
may	not	share	a	page	unless	that	have	the	same	(executable/writable)	attributes.	
The	next	function	does	this.	

RegionsInConWlict	(region,	otherRegion)	—>	bool	
This	function	determines	whether	these	two	regions	have	con=licting	attributes.	
For	example,	if	one	region	is	“executable,	writable”	and	the	other	region	is	
“executable,	not	writable”,	there	is	a	con=lict.	Free	regions	never	con=lict,	since	
they	can	take	on	any	attributes.	

The	above	function	is	only	used	by	the	next	function.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	269 284

Appendix	4:	The	Linker	Algorithm	

CheckAndMergeNewRegion	(region)	
The	function	is	called	directly	after	a	new	region	has	been	created	to	contain	a	
some	segment.	This	function	calls	RegionsShareAPage	to	see	if	this	new	region	
shares	pages	with	any	other	nearby	regions	and	RegionsInConWlict	to	check	if	
are	con=licts.	If	there	is	a	con=lict,	then	it	prints	an	error	unconditionally.	Then	
this	function	calls	MergeWithNeighbors.	

This	function	calls	a	helper	function	named	FixedSegmentAttributeConWlict	to	
print	an	error.	

FixedSegmentAttributeConWlict	(region,	region2)	
This	function	unconditionally	prints	“*****	ERROR:	These	segments	have	
different	(executable,	writable)	attributes	but	try	to	occupy	the	same	page.	*****”.	
It	also	prints	additional	information	to	augment	the	error	message.	

SegmentSharesPageWithRegion	(segment,	region)	—>	bool	
This	function	is	passed	a	segment	and	a	region.	If	this	segment	has	any	pages	in	
common	with	the	memory	area	in	the	region,	this	function	returns	true.	

SegmentStatusConWlictWithRegion	(segment,	region)	—>	bool	
This	function	is	passed	a	segment	and	a	region.	Presumably	they	share	a	page,	
but	this	is	not	checked.	Instead,	it	returns	true	iff	they	have	(Executable/
Writable)	attributes	that	are	in	con=lict.	

ThereIsAnAttributeConWlict	(segment,	freeRegion)		—>		bool	
This	function	is	passed	a	segment	and	a	free	region	into	which	we	are	considering	
placing	the	segment.	This	function	looks	at	the	regions	that	precede	the	free	
region	and	the	regions	that	follow	the	free	region.	It	determines	whether	this	
segment	shares	a	page	with	any	allocated	regions	that	have	different	(executable,	
writable)	attributes.	For	user	programs,	every	page	will	must	have	a	unique	set	of	
attributes,	so	this	is	not	acceptable	placement	of	this	segment.	

If	we	are	linking	a	kernel	program,	we	don’t	care	about	con=licts	and	this	function	
returns	immediately.	Otherwise,	it	begins	by	examining	all	regions	that	follow	the	
free	region,	until	it	comes	to	a	region	that	does	not	share	a	page	with	the	segment.	
Then	it	examines	all	regions	that	precede	the	free	region,	again	halting	when	it	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	270 284

Appendix	4:	The	Linker	Algorithm	

comes	to	a	region	that	does	not	share	a	page	with	the	segment.	This	function	calls	
SegmentSharesPageWithRegion	and	SegmentStatusConWlictWithRegion	to	get	
the	job	done.	

FindFreeRegionForFixedSegment	(segment)	—>	region	
This	function	goes	through	the	region	list	looking	for	the	free	region	in	which	this	
=ixed	segment	is	to	be	placed.	If	none	can	be	found,	an	error	message	is	printed.	

The	above	function	can	print	the	following	errors,	all	of	which	are	“fatal”	and	will	
immediately	terminate	the	linker:	

•	The	starting	address	of	=irst	segment	overlaps	some	other	=ixed	segment	
•		The	ending	address	of	=irst	segment	overlaps	some	other	=ixed	segment	or	
some	unusable	memory	region	
•		The	starting	address	of	this	segment	is	not	within	0x0_0000_0000	...	
0x7_FFFF_FFFF,	yet	command	option	-k	requires	this	
•		The	starting	address	of	this	segment	is	not	within	0x8_0000_0000	...	
0xF_FFFF_FFFF.	(For	kernel	code,	use	the	-k	option)	

ComputeRegionStatus	(segment)		—>	regionStatus	
A	little	helper	function	that	returns	the	region	status	code	number	for	this	
segment:	
	 4	 Not	Executable,	Not	Writable	
	 5	 Not	Executable,	Writable	
	 6	 Executable,	Not	Writable	
	 7	 Executable,	Writable	

IsLegalAddress	(integer)		—>	bool	
A	little	helper	function	that	tests	whether	this	integer	is	a	legal	address.	By	legal,	
we	mean	that	it	is	any	value	within	
	 0_0000_0000	…	7_FFFF_FFFF	 	 if	-k	was	used	
	 8_0000_0000	…	F_FFFF_FFFF	 	 otherwise	

PlaceSegment	(segment,	newAddress)	—>	size	
This	function	is	passed	a	segment	and	the	address	where	this	segment	is	to	be	
placed	in	memory.	This	function	assumes	that	the	patches	have	already	been	
adjusted	and	it	will	not	modify	the	sizes	of	the	patches	(except	ALIGN	patches).	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	271 284

Appendix	4:	The	Linker	Algorithm	

This	function	will	compute	the	size	of	this	segment.	It	will	also	examine	all	the	
labels	in	the	segment	and	(knowing	where	the	segment	is	getting	placed),	it	will	
set	their	values.	This	function	will	also	determine	the	address	that	each	patch	for	
this	segment	is	supposed	to	modify	and	will	set	that.	

Now	that	we	have	addresses	for	the	bytes	within	a	segment,	we	can	determine	
how	many	bytes	to	insert	for	an	ALIGN	patch.	This	function	will	determine	the	
sizes	of	the	ALIGN	patches.	

Given:	An	address	(where	to	put	the	segment)	
Returns:	The	new	segment	size	in	bytes	

This	function	will	take	the	patches,	with	their	sizes	as	currently	con=igured.	It	will	
not	adjust	patch	sizes	(other	than	from	ALIGN	patches).	

For	the	segment...	
					Set	currentAddr	and	currentLength.	
For	every	ALIGN	patch...	
					Set	currentOffsetToPatch.	
					Determine	what	size	is	needed	&	set	sizeIncrement.	
For	all	other	patches...	
					Use	the	current	value	of	sizeIncrement.	
					Set	currentOffsetToPatch.	
For	every	LABEL...	
					Set	its	currentValue	to	an	absolute	address.	

This	function	will	go	through	the	segment	from	top	to	bottom.	It	will	only	look	at	
the	segment’s	labels	and	patches,	not	the	actual	data.	

The	above	function	uses	a	fairly	complex	algorithm.	Associated	with	each	segment	
are	two	lists:	patchList	and	labelList.	These	have	previously	been	sorted.	The	
function	starts	at	the	beginning	go	the	segment	and	goes	through	it	linearly.	It	
doesn’t	actually	look	at	the	data	bytes;	these	won’t	even	be	read	in	from	the	=ile	until	
later	when	we	are	building	the	output	=ile.	

As	this	function	goes	through	the	segment,	it	is	inserting	bytes.	Or,	more	precisely,	it	
is	=iguring	out	how	many	bytes	need	to	be	inserted	and	computing	how	that	shifts	
everything	down	in	memory	and	makes	the	segment	larger.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	272 284

Appendix	4:	The	Linker	Algorithm	

The	main	loop	goes	through	the	label	list	and	the	patch	list	simultaneously.	For	each	
iteration,	it	takes	whatever	comes	next	in	the	=ile.	This	is	either	a	label	or	a	patch.	

The	loop	is	keeping	track	of	how	many	bytes	have	been	inserted	so	far.	When	a	label	
is	encountered,	it	can	use	this	information	(bytesAdded)	to	determine	the	actual	
value	of	the	label.	

When	it	encounters	an	ALIGN	patch,	it	can	determine	the	current	address	and	
determine	how	many	bytes	to	insert	to	give	the	proper	alignment.	And	it	also	
increments	bytesAdded	accordingly.	

When	it	encounters	any	other	kind	of	patch,	it	looks	at	the	patch	(in	particular	at	the	
patch’s	sizeIncrement	=ield)	to	determine	how	many	bytes	this	patch	has	grown	
beyond	what	was	originally	in	the	segment.	Again,	it	will	increment	bytesAdded	
accordingly.	

Also,	for	all	kinds	of	patches,	it	will	make	a	note	of	exactly	where	in	the	segment	this	
patch	is	now	located,	by	setting	the	patch’s	currentOffsetToPatch	=ield.	

This	function	is	“idempotent”,	which	means	that	it	can	be	called	repeatedly	with	no	
adverse	effects.	If	you	don’t	like	where	the	segment	was	placed,	you	can	call	this	
function	again	to	put	it	somewhere	else.	As	the	main	algorithm	iterates,	the	
segments	will	be	moved	around	to	different	locations.	

PlaceOneFloatingSegment	(segment)	—>	freeRegion	
This	function	is	passed	a	segment.	It	=inds	a	location	where	this	segment	can	be	
legally	placed.	It	searches	the	region	list	and	looks	at	all	free	regions.	This	
function	returns	the	free	region	that	contains	the	segment’s	starting	address.	

This	function	does	not	modify	the	Region	data	structure.	However,	this	function	
calls	PlaceSegment	to	place	the	segment	at	some	address,	which	will	modify	the	
segment	and	set	segment->currentAddr.	

If	no	location	can	be	found	to	place	this	segment,	this	function	causes	a	
FatalError,	which	will	abort	the	linker.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	273 284

Appendix	4:	The	Linker	Algorithm	

Since	a	=loating	segment	can	be	placed	anywhere	and	since	memory	is	quite	large,	it	
is	hard	to	envision	a	scenario	where	this	function	fails	to	=ind	a	place	to	put	this	
segment.	So	the	likelihood	of	getting	this	error	message	is	small.	

PlaceFloatingSegments	(segmentList)	
This	function	is	passed	a	list	of	segments.	It	will	go	through	the	list	and,	for	each	
segment,	it	will	locate	a	place	in	memory	where	this	segment	can	be	placed.	It	
will	place	the	segment	there	and	modify	the	region	data	structure.	

This	function	runs	though	all	the	segments	in	the	list.	Some	segments	may	have	
already	been	placed.	For	example,	all	=ixed	segments	will	have	been	placed	
previously.	Also	some	segments	may	have	size	zero;	these	segments	will	not	go	
into	memory	and	we	just	ignore	them.	
		
For	each	segment,	this	function	calls	PlaceOneFloatingSegment	to	=ind	a	
location	for	the	segment.	Then	it	calls	CreateNewRegion	to	put	the	segment	into	
a	new	region.	Finally	it	calls	CheckAndMergeNewRegion	to	merge	the	region	
with	its	neighbors.	The	function	CheckAndMergeNewRegion	will	see	if	there	
are	con=licts	with	nearby	allocated	regions,	but	this	should	never	occur,	since	
PlaceOneFloatingSegment	will	only	=ind	legal	places	to	put	a	=loating	segment.	

PlaceAllSegments	()	
This	function	is	called	to	assign	a	memory	address	to	every	segment	and	build	
the	Region	data	structure,	which	will	re=lect	how	memory	is	used.	

For	each	segment,	this	function	will	set	the	segment’s…	
	 currentAddr	
	 currentLength	

For	every	ALIGN	patch,	this	function	will…	
					Set	currentOffsetToPatch.	
					Determine	what	size	is	needed	and	set	sizeIncrement.	

For	all	other	patches,	it	will…	
					Use	the	current	value	of	sizeIncrement.	
					Set	currentOffsetToPatch.	

For	every	LABEL,	it	will…	
					Set	its	currentValue	to	an	absolute	address.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	274 284

Appendix	4:	The	Linker	Algorithm	

The	above	function	will	take	the	patches	as	they	are	currently	con=igured.	In	other	
words,	it	will	not	evaluate	the	patches,	modify	them,	or	see	if	they	are	workable.	
After	all,	we	can	only	compute	or	check	the	patches	after	the	segments	have	been	
placed	in	memory,	since	we	can’t	assign	values	to	labels	until	after	the	segment	
placements	have	been	made.	We’ll	look	at	the	patches	later	on.	

The	algorithm	used	to	place	the	segments	in	memory	is	this:	
•	First,	place	all	=ixed	segments	at	their	locations.	
•	Then	try	to	=ill	in	gaps	keeping	segments	with	similar	attributes	together.	
•	Finally,	place	any	remaining	segments	wherever	we	possibly	can.	

The	PlaceAllSegments	function	begins	by	calling	MemoryReset	to	allocate	and	
initialize	the	Region	data	structure.	Next,	it	marks	all	segments	as	“unplaced”.	

Then	for	each	=ixed	segment,	it	calls…	
	 PlaceSegment	
	 FindFreeRegionForFixedSegment	
	 CreateNewRegion	
	 CheckAndMergeNewRegion	
		
Next,	PlaceAllSegments	will	look	at	each	free	region	and	try	to	=ill	it	with	=loating	
segments	that	have	the	same	(executable/writable)	attributes	as	the	previous	
region.	

Previously,	we	have	created	separate	lists.	The	lists	are	called:	

segmentList0	 All	=ixed	segments	
segmentList4	 Floating	segments	that	are	not	Executable	&	not	Writable		
segmentList5	 Floating	segments	that	are	not	Executable	&	Writable	
segmentList6	 Floating	segments	that	are	Executable	&	not	Writable	
segmentList7	 Floating	segments	that	are	Executable	&	Writable	

For	example,	imagine	we	have	an	“executable/not-writable”	=ixed	segment	followed	
by	a	free	region.	If	there	are	other	segments	that	are	also	“executable/not-writable”,	
we’d	like	to	place	them	in	this	free	region.	Perhaps	by	packing	all	the	“executable/
not-writable”	segments	close	together,	we	can	reduce	the	number	of	pages	that	must	
be	marked	“executable/not-writable”.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	275 284

Appendix	4:	The	Linker	Algorithm	

In	this	step,	the	function	searches	for	any	free	region	preceded	by	an	allocated	
region.	For	example,	assume	it	=inds	a	free	region	preceded	by	an	“executable/not-
writable”	region.	It	chooses	the	correct	segment	list,	e.g.,	segmentList6.	

Then	we	run	though	that	list,	attempting	to	place	those	segments	into	this	free	
region.	To	do	that,	this	function	calls	a	function	named	
TryToPlaceTheseSegmentsAfterThisRegion.	

Finally,	we	simply	place	the	remaining	=loating	segments	anywhere	we	can	=it	them.	

Do	this	this,	PlaceAllSegments	will	call	PlaceFloatingSegments	four	times,	once	for	
each	list	of	=loating	segments.	We	will	process	the	lists	in	this	order:	

segmentList5	 Floating	segments	that	are	not	Executable	&	Writable	
segmentList4	 Floating	segments	that	are	not	Executable	&	not	Writable		
segmentList6	 Floating	segments	that	are	Executable	&	not	Writable	
segmentList7	 Floating	segments	that	are	Executable	&	Writable	

The	idea	is	that	we	are	guessing	that	the	segments	that	contain	variables	will	be	
marked	not	executable	and	writable.	We	want	this	to	go	in	low	memory	(0x0	for	
kernel	or	0x8,0000,0000	for	user	programs,	so	that	gp-relative	addressing	will	work	
well.	Then	we	follow	it	segments	that	are	not	executable	and	not	writable;	which	we	
assume	is	read-only	data;	again	we	expect	placement	in	low	memory	will	tend	to	
facilitate	gp-relative	addressing.	Then	we	follow	it	with	code,	which	is	executable	
and	not	writable.	

TryToPlaceTheseSegmentsAfterThisRegion	(segmentList,	region)	
This	function	is	passed	a	list	of	segments,	all	of	which	have	the	same	attributes	
(executable,	writable).	It	is	also	passed	a	region,	which	is	followed	by	a	free	
region.	

We	run	through	the	segment	list	looking	at	each	unplaced	segment	in	turn.	We	
attempt	to	place	each	such	segment	at	the	beginning	of	the	free	space.	

The	function	TryToPlaceTheseSegmentsAfterThisRegion	is	passed	a	list	of	
=loating	segments,	all	of	whose	attributes	match	the	attributes	of	the	region.	The	
region	is	followed	by	a	free	region,	at	least	when	it	is	called.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	276 284

Appendix	4:	The	Linker	Algorithm	

The	function	runs	through	the	list	of	segments	and	tries	to	pack	them	into	the	free	
region.	The	segments	are	sorted	from	largest	to	smallest,	so	it	attempts	to	=ill	the	
free	region	with	the	largest	=irst,	followed	by	smaller	segments.	

Some	segments	may	already	have	been	placed;	these	are	ignored.	Otherwise,	we	call	
PlaceSegment	to	update	the	segment	as	if	it	has	been	placed.	This	will	determine	
the	segment’s	size.	Then	we	check	to	see	if	it	will	actually	=it	in	the	space	available.	
We	also	have	to	make	sure	that	placing	this	segment	here	will	not	cause	a	con=lict	
due	to	a	shared	page	with	a	subsequent	region.	This	is	done	by	calling	
ThereIsAnAttributeConWlict.	

If	everything	looks	good,	this	function	creates	a	new	region	and	places	the	segment	
into	it,	by	calling	CreateNewRegion.	Then	it	calls	MergeWithNeighbors	to	merge	
this	region	with	the	original	region.	It	is	also	possible	that	the	newly	created	region	
completely	eliminated	the	free	region	and	we	can	merge	the	new	region	with	the	
following	region.	

On	the	other	hand	(if	the	free	region	was	not	large	enough	or	there	were	attributes	
con=licts),	the	segment	is	not	placed	and	we	move	on	to	the	next	segment	(toward	
smaller	segments)	to	see	if	it	will	=it.	

Once	all	the	segments	have	been	placed	in	memory,	every	LABEL	symbol	will	have	
been	assigned	an	address.	Now	we	can	compute	the	value	of	all	EQUATE	symbols.	
Symbols	of	type	EQUATE	were	de=ined	with	an	.equ	pseudo-op.	

We	no	longer	care	about	symbols	of	type	IMPORT,	since	all	references	to	a	symbol	
de=ined	with	a	.import	pseudo-op	have	been	replaced	by	references	to	an	exported	
symbol,	which	necessarily	must	have	been	de=ined	either	as	a	LABEL	or	EQUATE	
symbol.	

ResolveEquates	()	
This	function	runs	through	all	symbols	and,	for	every	symbol	of	type	EQUATE,	
computes	and	=ills	in	its	“currentValue”	=ield.	

This	function	uses	a	marking	algorithm,	utilizing	the	“markFlag”	=ield	in	symbols.	
	 0	=	“not	done	yet”	
	 1	=	“in	progress”	
	 2	=	“done”	(currentValue	has	been	determined)	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	277 284

Appendix	4:	The	Linker	Algorithm	

First,	the	ResolveEquates	function	runs	through	all	symbols	and	marks	all	EQUATE	
symbols	as	“not	done	yet”.	It	marks	all	LABELS	and	IMPORT	symbols	as	“done”.	

Then	it	runs	through	all	symbols	again,	and	for	each	EQUATE	symbol,	calls	function	
ResolveOneEquate.	

ResolveOneEquate	(symbol)	
This	is	a	recursive	algorithm	that	computes	the	value	of	the	given	symbol.	

The	ResolveOneEquate	function	returns	immediately	if	the	symbol	is	marked	as	
“done”.	If	the	symbol	is	already	marked	as	“in	progress”,	we	have	detected	a	cyclic	
de=inition,	so	we	print	an	error	and	return.	

If	the	symbol	is	an	absolute	value,	then	we	can	immediate	set	its	value.	We	mark	it	
“done”	and	return.	

Otherwise,	this	symbol	is	de=ined	as	relative	to	some	other	symbol.	We	should	take	
the	value	of	the	other	symbol	and	add	the	given	offset	to	it.	

In	order	to	get	the	value	of	the	other	symbol,	we	will	call	ourself	recursively.	So	we	
set	the	markFlag	to	“in	progress”	and	recursively	call	ResolveOneEquate	on	the	
relative-to	symbol.	

Upon	return,	we	change	the	markFlag	to	“done”,	retrieve	the	value	of	the	relative-to	
symbol,	add	the	offset	to	it	to	determine	this	symbol’s	new	currentValue,	and	
return.	

The	Main	Linker	Algorithm	

Now	we	have	all	the	functions	we	need	—	the	functions	previously	described.	We	
are	ready	to	give	the	algorithm.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	278 284

Appendix	4:	The	Linker	Algorithm	

REPEAT	until	no	more	failures	
	 Place	all	=ixed	segments.	
	 Place	all	=loating	segments.	
	 	 (Placing	segments	will	set	"currentValue"	for	all	labels)	
	 Resolve	all	equates.	
	 	 Recursive	Algorithm:	Set	a	=lag	to	check	for	cycles.	
	 	 	 Initialize	the	=lag	to	0.	
	 	 	 0	=	not	done	yet;	1=in	progress;	2==inal	value	determined	
	 Check	all	patches.	
	 	 Determine	what	machine	code	the	patch	translates	to.	
	 	 If	any	patch	is	too	big	to	=it	its	allocated	space	
	 	 	 Increase	the	"sizeIncrement"	of	the	patch	
	 	 	 FAILED	=	true	
END	REPEAT	

The	placement	of	all	=ixed	and	=loating	segments	is	done	within	function	
PlaceAllSegments.	Equates	are	resolved	within	function	ResolveEquates.	And	the	
patches	are	checked	within	function	CheckAllPatches.	

So	the	above	algorithm	looks	more-or-less	like	this	in	the	code:	

failureOccurred = 1;
while (failureOccurred) {

failureOccurred = 0;
PlaceAllSegments ();
ResolveEquates ();
CheckAllPatches ();

}

In	order	to	understand	this,	think	about	the	patches	within	segments.	Each	patch	
has	an	initial	size.	If,	during	the	algorithm,	that	size	is	determined	to	be	too	small	for	
the	machine	instructions	that	must	be	used,	the	patch	size	will	be	increased.	This	
will	constitute	a	“failure”.	

The	placement	of	segments	is	done	without	modifying	the	patch	sizes,	with	one	
exception	exception:	the	ALIGN	patches.	The	ALIGN	patches	are	processed	at	the	
time	a	segment	in	placed	at	a	speci=ic	address.	(We	can	only	perform	the	alignment	
after	we	know	the	actual	addresses.)	

Placing	the	segments	has	the	side-effect	of	assigning	an	address	to	each	label.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	279 284

Appendix	4:	The	Linker	Algorithm	

After	the	segments	have	been	placed	and	the	labels	have	been	assigned	addresses,	
we	can	process	all	the	equates.	

Once	we	have	processed	the	equates,	we	have	values	of	all	symbols	and	we	know	
where	the	patches	are	in	memory.	

Then,	we	can	run	through	the	patches.	Each	patch	has	a	certain	number	of	bytes	
allocated	to	it.	The	function	CheckAllPatches	makes	sure	that	the	machine	
instructions	for	each	patch	will	=it	into	the	bytes	we	have	reserved	for	it.	If	there	is	a	
problem	(i.e.,	the	machine	code	for	a	synthetic	instruction	will	not	=it	into	the	space	
we	have	reserved	for	the	patch),	then	CheckAllPatches	will	determine	how	many	
bytes	are	needed	to	increase	the	reservation.	

If	CheckAllPatches	ever	determines	that	some	patch	would	not	=it	into	the	space	
reserved	for	it,	it	will	set	the	global	variable	failureOccurred	and	the	algorithm	will	
loop.	

The	size	of	a	patch	is	given	by	two	=ields	in	the	Patch	object:	initialSize	and	
sizeIncrement.	CheckAllPatches	may	increase	the	sizeIncrement	and,	if	so,	it	will	
set	failureOccurred.	

If,	however,	there	is	adequate	room	reserved	for	every	patch,	then	CheckAllPatches	
will	complete	and	the	repeat	loop	will	terminate.	

CheckAllPatches	()	
This	function	runs	through	all	the	patches	and	makes	sure	that	there	is	adequate	
room	in	the	segment	for	the	patch.	

If	we	encounter	a	patch	that	will	not	=it	in	the	allotted	space,	we	set	
failureOccurred	to	TRUE	and	we	increase	patch->sizeIncrement	to	indicate	
how	many	bytes	are	required.	

For	registers,	we	are	using	dummy	values.	The	actual	synthesized	instructions	
are	ignored.	

The	function	CheckAllPatches	simply	runs	through	the	global	list	of	patches	and,	
for	each,	calls	ProcessOnePatch.	Patches	of	type	ALIGN	are	ignored,	since	they	are	
processed	in	function	PlaceSegment.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	280 284

Appendix	4:	The	Linker	Algorithm	

ProcessOnePatch	(patch,	WinalRun)	
This	function	will	process	a	single	patch,	creating	the	translation	of	a	synthetic	
instruction.	It	will	place	the	resulting	machine	code	translation	into	these	
variables:	

	 word1	—	1st	instruction	word	
	 word2	—	2nd	instruction	word	
	 word3	—	3rd	instruction	word	
	 word4	—	4th	instruction	word	

It	will	use	as	many	of	these	as	necessary,	placing	NOPs	in	the	remaining	words.	

This	function	assumes	that	word1	will	initially	contain	the	registers	to	use	in	
=ields	Reg1,	Reg2,	Reg3,	and	RegD.	

During	the	main	algorithm,	the	registers	in	word1	will	be	zero	and	don’t	matter.	
During	the	=inal	run	when	we	are	actually	putting	the	bytes	into	the	segment	
data,	the	registers	in	word1	will	be	valid.	

This	function	will	modify	patch->sizeIncrement,	increasing	it	as	necessary.	

The	number	of	bytes	actually	used	is	initialSize	+	sizeIncrement.	

If	sizeIncrement	was	increased,	this	function	will	set	failureOccurred	to	TRUE.	
Otherwise,	failureOccurred	will	not	be	modi=ied.	

If	WinalRun	is	true,	this	function	will	assume	that	sizeIncrement	was	correct	and	
will	produce	a	ProgramLogicError	if	not.	

Errors	may	be	detected.	They	will	be	ignored,	unless	WinalRun	is	TRUE,	in	which	
case	they	will	be	printed.	The	only	user	error	detected	is	“offset	out	of	range”	for	
the	LOADx-offset	and	STOREx-offset	instructions.	

The	function	ProcessOnePatch	is	lengthy.	

We	should	make	one	note.	Normally,	the	translation	of	a	synthetic	instruction	does	
not	depend	on	the	values	of	Reg1,	Reg2,	Reg3,	or	RegD.	There	is	one	exception,	
namely	the	MOVI	instruction.	If	the	destination	register	in	gp	(r13)	then	the	
synthetic	instruction	may	be	translated	differently.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	281 284

Appendix	4:	The	Linker	Algorithm	

To	deal	with	this,	there	are	actually	two	patch	types	for	MOVI:	

patchType	==	1:		 MOVI	(RegD	≠	gp)	
patchType	==	25:		 MOVI	(RegD	=	gp)	

For	this	reason,	this	function	needs	to	know	what	is	in	the	=ile.	So,	in	this	case,	the	
function	will	read	a	word	from	the	=ile	at	the	site	of	the	patch	to	get	the	register	
values	to	see	if	the	destination	register	is,	in	fact,	gp	(r13).	

Finalization	

After	the	loop	terminates,	we	call	function	PerformRegionRounding.	This	function	
only	has	any	effect	if	we	are	linking	a	user	program.	

The	executable	will	be	organized	into	pages.	The	function	
PerformRegionRounding	will	enlarge	each	region	to	become	an	integral	multiple	
of	pages.	It	does	this	by	creating	some	“dummy”	zero-=illed	segments	which	it	adds	
to	regions	as	necessary.	

PerformRegionRounding	()	
This	function	is	called	after	all	segments	have	been	placed	and	the	regions	have	
been	created.	It	rounds	all	regions	to	be	an	even	multiple	of	pages	and	makes	
sure	each	region	starts	on	a	page	boundary.	It	does	this	by	taking	bytes	out	of	the	
free	regions	before	and	after	a	region.	

This	function	will	also	creates	dummy	"zero-=illed"	segments	whenever	the	bytes	
in	a	page	are	not	=illed	with	a	real	segment.	In	other	words,	when	bytes	are	move	
from	a	free	region	to	an	allocated	region,	a	new	zero-=illed	segment	will	be	
created	and	added	to	the	allocated	region.	Later,	when	we	are	writing	the	
allocated	regions	out	to	the	executable	=ile,	these	new	zero-=illed	regions	will	be	
included,	making	sure	that	all	bytes	in	the	regions	are	either	initialized	with	bytes	
or	zero-=illed.	

When	linking	a	kernel	program,	this	function	does	nothing.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	282 284

Appendix	4:	The	Linker	Algorithm	

CreateZeroWilledSegment	(region,	startAddr,	lengthInBytes)	
This	function	creates	a	dummy	segment	that	is	zero-=illed	and	adds	it	to	the	given	
region.	

Such	a	segment	is	required	when	the	linker	places	two	or	more	segments	in	a	
single	page	but	when	there	is	a	gap	between	them.	These	bytes	must	be	zero-ed	
at	load	time.	There	is	also	a	dummy	module	that	will	be	created.	This	module	will	
contain	all	the	dummy	segments.	

The	module	will	NOT	be	placed	on	the	module	list,	so	it	will	not	print	out.	
However,	if	errors	occur,	the	module	will	be	needed	for	printing.	

The	newly	created	dummy	segment	will	be	placed	on	the	global	segment	list,	but	
will	not	be	placed	on	any	of	the	segment	sublists.	The	new	segment	will	be	placed	
on	the	region's	segment	list.	

The	program	also	checks	to	make	sure	there	is	a	symbol	named	“_entry”.	

Finally,	the	program	writes	out	the	executable	=ile.	Given	the	data	structures	we	have	
built	up	to	this	point,	this	part	is	straightforward.	

Finally,	we	print	out	the	data	structures	(by	invoking	DumpAllDataStructures)	if	
the	-s	command	line	option	was	speci=ied,	then	print	counts	of	error	messages	and	
warnings	and	terminate.	

Blitz-64:	Assembler	and	Linker	/	Porter	 	 Page	 	of	 	283 284

Acronym	List	
CSR	 Control	and	Status	Register	
EOL	 End	of	line	
ISA	 Instruction	Set	Architecture	(the	core	design)	
KPL	 Kernel	Programming	Language	
LC	 Location	Counter	
LSB	 Least	Signi=icant	Bit	/	Byte	
MSB	 Most	Signi=icant	Bit	/	Byte	
PC	 Program	Counter	
UTF-8	 An	encoding	for	Unicode	(Unicode	Transformation	Format)	

Blitz-64:	Assembler	and	Linker	/	Porter	 Page	 	of	 	284 284

